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1. INTRODUCTION

1.1 The Laser Doppler Method

The laser Doppler Anemometer (the LDA in the following) is an instru-
ment for fluid flow research which has the potential of allowing local time
resolved measurements of fluid velocity without disturbing the fluid phenom-
enon under investigation. However, as in the case of its main competitor
in the field, the hot-wire anemometer, the application of the LDA to turbul-
ence measurements is not trivial and the problems (and the challenges) facing
the experimenter grow with increasing levels of the turbulent fluctuations.
This article reviéws the status of turbulence measurements with the LDA and
outlines the.achievements of the past few years and some of the remaining
problems. The article will deal with.only those methodé allowing time re-
solved measurements of the velocity, and thus we shall not treat such signal
processing methods as spectrum analysis of the Dcppler signal or time-averaged

photon correlation.

‘The laser- Doppler methdd‘is.based on the measurement of the Doppler shift
of laser light scattered from small particles carriéd along with the fluid.
Due to the motion of the particles the frequency of the scattered light will
be shjfted by an amount wp = K+ u, where K = Ky - K4 is the difference be-
tween the wave vector of the scattered and incident light respectively and

u = (u,v,w) is the velocity of the medium (Fig. 1-1). The stability and spatial

coherence of the gasllaser output allow the 1ight to be focused to a small

spot within the fluid. Excellent monographs now exist on the basic theory of the
LDA and the reader is referred to these for further information (Durst, Me]]ing.
and Whitelaw (1976), Durrani and Greated (1977)). For the detection of the
frequency shift, the optical heterodyning or liaht-beating effect of a square

law photodetector is utilized. The scattered Tight is mixed on the surface

of the photodetector with a reference beam derived directly from the laser or

with light scattered from another incident beam. Figure 1-2 shows the optical
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arrangement, which is almost ekc]usively used today, and also serves to
define the basic optical parameters.

The function of the optical system is partly to direct and focus the
jncident beams to a small volume within the flow field, and partly to collect
the scattered light from this volume whf]e simultaneously discriminating
against ambient Tight and Tight scattered from regions outside the volume.
For clarity it is desirable to distinguish between the region of space
defined by the intersection of the two incident beams, which we shall des-
jgnate the probe volume, and the region in space from which Doppler signals
are detected, which wé shall designate the measuring volume. The measuring
volume is more difficult to define than the probe volume since it depends on
the field of view of the detector, the overall gain in the system, -nd even
on the method of signal processing. The probe volume is usually defined by
the 1/e2 - boundary of the modulation depth of the interference pattern

existing in the beam intersection region. With Gaussian laser beams the

probe volume is an ellipsoid, and we have the familiar expression for the
probe volume dimensions in terms of the half-axes of the ellipsoid in the
coordinate system defined in Figure 1-2 (a,b, and c) or the standard

deviation of the Gaussian intensity distribution (ox, oyand oz):

d
_ . 1 '
2a = 40x " cos(e8/2) _ (1.1.1a)
2b = 4o = d (1.1.1b)

_ _ 1
2c = 402 = W : (].].]C)

where d], the beam waist of the focused laser beam in the measuring volume,

may be expressed as

¢ =2 2 (1.1.2)

Y]
and where A6 is the beam convergence angle of the focused beam, and X the



wave length-of the laser light.

The photodetector responds to the square of the total light field in-
cident at each point of the detector surface,di aIEtIZ, where E_ = E; + E,,
and E1 and E2 represent the scalar field strength at the detector surface of'the
scaftered light and the reference beam in the reference beam mode or the two
scattered beams in the dual-scattered beam mode. The resuliting photocurrent
is the sum of contributions from each point of the detector surface:

i«f |Et|2dA=J |E, |2dA +f |E,|2dA + J (E\E,*E Ep)dA  (1.1.3)

Ag Aq Ag Ag

where Ad,is the total detector area.

In case of a single particle at location 5p(t) the resulting photo-

current may be written as

isp(t) = i,(t) + iy (t) + 2/i]it$ 123t5 cos [wpt +¢p], (1.1.4)

where i](t) and iz(t) are the currents which would be caused by each incident
beam acting alone and where the Doppler frequency wp is given by

wp = [4n up/2] sin (8/2). : (1.1.5)
Ep and ¢p is a
constant phase term depending on the initial location of the particle. The

u_ is the x-component of the instantaneous particle velocity

a.c. part of the signal can be written
1sp,ac(t) =1 w[ﬁp(t)] cos [th + ¢p], (1.1.6)
where w(x) = 2/1135j izigj may be regarded as a weight function describing the

intensity of the modulated part of the detector signal received from space
location x, and I includes the scattering characteristics of the particle.

In general, when many particles are present simultaneously in the
measuring volume, the Doppier signal will consist of a slowly varying part
(the d.c. part or pedestal) and a higher frequency term (the a.c. or Doppler

modulated term):



i(t) = i,(t) + i,(t) + 2/i;(£)i,(t) cos [upt + ¢(t)] (1.1.7)

where now

wp = [4n Uy /2] sin (8/2). : (1.1.8)
i](t), iz(t) and ¢(t) are now randomly fluctuating quantities resulting
from the superposition at the detector surface of the scattered optical
fields from all i]]uminéted particles. Normally, there are many interference
fringes within the measuring volume, in which case i](t), iz(t) and ¢(t) are

slowly varying relative to the cosine term. u_ = (uo,vo,wo) represents the

0
velocity of the fluid in the measuring volume. The exact definition of U
depends on the circumstances of the measurement, and a further discussion is
deferred to the description of particular cases later in this article.

From eqS. (1.1.5) and (1.1.8) we see that the LDA instrument measures
the x-component of the instantaneous ve]ocity.go; the instrument is totally
insensitive to the other velocity components voand wo.‘ However, the particle
transit time or residence time is determined by the magnitude of the total
velocity vector. As we shall discuss in sectiors 2 and 3, the properties of
the Doppler signal and the noise level and accuracy‘of the system as a whole
are determined by the magnitude and direction of the total velocity vector
relative to the orientation of the optical beams. Furthermore, it should be
noted‘that the relétion between the Doppler frequency and the velocity U is
linear; thus, calibration is limited to the determination of the coefficient
of proportionality given by the laser wavelength A and the beam intersection
angle 6. Complete characterization of the turbulent velocity field-requires
simultaneous determination of all three velocity components. For practical
and economical reasons, however, many investigations are carried out with
a one-component system which in some cases creates special problems because
of the unknown magnitude and direction of u,-

The properties of the Doppler signal and thus the proper method of
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signal processing depends strongly on the number of particles present in

the measuring volume and the ﬁode of operation of the detector optics, Drain
(1972),Lading (1973), Hanson (1974). If the probability that two or more
particles are present simultaneously in the measuring volume is negligible,
the best signal-to-noise ratio of the Doppler signal is obtained in the so-
called incoherent detection mode, .in which a large detector aperture is used
to collect a maximum of scattered light from a single particle. The detector
optics is fully able to resolye the interference fringe pattern existing in
the probe volume (this mode of operation is often referred to as the fringe
mode). If many particles simultaneously occupy the measuring volume, the
photocurrent contributions from the individual particles add incoherently at
the detector surface, id(t) = % in(t); where in(t) is the detector current
caused by each individual particle independent of the others. lowever, in the
many-particle case a better signal-to-noise ratio can be obtained using the
ceherent detection mode. In this mode the receiver aperture is kept so small
that the scattered 1ighp from all particles add coherently on the detector sur-
face: id(t) « (2 En(t))z_ In the coherent detection mode the signal strength
can be enhanced by using a strong reference beam and the signal-to-noise ratio
improved with the addition of more particles, whereas the signal-to-noise ratio
is independent of'partic]e number in the incoherent detection mode.

The type of signal encountered in actual measurements depends on the
fluid and the type and amount of seeding material added. In order to control
the characteristics of the particle motion it is desirable to work only with
monodisperse scattering particles uniformly distributed in the fluid. When
this is not possible the experimenter can in most cases exert a certain amount
of control over the size of particles contributing to the signal accepted by
the processor by adjusting signal gain and in‘some cases by setting levels for

the rejection of very low or very high amplitude signals. Continuous, many
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particle signals are most often encountered in measurements in 1liquids,
whereas Doppler signals from measurements in gases are often of the single
burst type. In this article we do not intend to enter the subject of light
scattering from small particles or the questions concerning the proper seeding
methods or materials, but again refer the reader to the monographs on LDA
measurements and the articles by Farmer (1972), Durst and Eliasson (1976)

and Adrian and Orloff (1977), where these prbb]ems are discussed and refer-

ences to specialized papers on the subject may be found.

1.2 Physical Parameters Affecting the Doppler Signal

As indicated above the LDA responds to the component of fluid velocity
normal to the interference fringe planes in the probe volume. The actual
physical process underlying the laser Doppler method can be desc-ibed as
a measurement of the phase difference of two optical waves scattered by
small particles in the probe volume. The time rate of change of this phase
difference can be interpreted as a measure of the suitably defined fluid
velocity relative to the interference fringe planes in the probe volume.
Evidently this interpretation reqﬁires that the particles follow the fluid
motion with negligible slip due to fluid shear or acceleration. This aspect
of the problem will be taken up in Section 5; in the meantime it will be
assumed that the particles follow the fluid motion exactly. The only other
physical parameter of the fluid directly affecting the phase of the scattered
light is the refractive index. Index of refraction variations may cause small
random shifts in the phase of the optical beams and thereby in the location of
the interference fringe planes. Larger optical inhomogeneities may cause
the measuring volume to move about randomly or cause the beams to miss each
other resulting in a loss of signal or a reduced signal-to-noise ratio.
Optical index fluctuations are primarily a result of density fluctuations

(in turn caused by pressure or temperature fluctuations) or in the case of
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turbulent mixing or combustion,a result of concentration fluctuations. The
effect of optical index fluctuations on the spectral properties of the
Doppler signal is treated in Section 4. Meanwhile we shall consider the
fluid to be of constant density and refraétive index.

In addition,the signal phase fs influenced by electronic noise from
various sources of whicﬁ the most .important are the detector shot noise and
the thermal noise in the input circuit to the signal processor. Usually it
is possible to opekate the system in such a way that the detector shot noise
is dominant (shot noise limited signal), and in this case the signal-to-noise
ratio is directly proportiona] to the power of the incident laser beams.

In the following discussion it will be convenient to introduce the con-
cept of the “idea] LDA" in which shot noise and fherma] electronic noise may
be considered negligible, and where the optical system may be ccasidered
perfect. A perfect optical system would be one in which no optical aberrations
or alignment errors exist, so that the interference fringe system is undis-
torted and at a fixed location in space. For the purpose of investigating
the inherent properties of the LDA as an instrument for‘turbu1ence measurements,
we shall assume an ideq] LDA for the remainder of this paper; the influence

of noise and optical distortions will not be considered.

1.3 Signal Processor Operation

In addition to the above considerations, two other main factors determine
the performance of the LDA in turbulence measurements: First, the type or
appearance of the Doppler signal, i.e., whether the signal may be considered
“quasi-continuous" or whether it consists of single bursts interspersed with
periods of low power shot noise. Second, the type of signal processor
employed, -and eveﬁ to a certain degree, the mode of operation of the signal
processor. .

Details of the principles and modes of operation of the various types of
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LDA signal processors will not be deécribed here; the reader is referred to
the ample literature on the subject. For our discussion of turbulence meas-
urements it suffices for the moment to distinguish between two distinct
operating modes: one, the frequency demodulator type (of which the frequency
tracker may be taken as the prime example) operating on continuous sigha]s,
and two, the burst procéssor, which essentially measures the time for a
particle traversal through the measuring volume or through some finite length
within the measurihg volume. ‘An example of the last kind of processor is the
burst counter or LDA-counter, which measures the time for an integer number of
zero-crossings of a high-pass filtered Doppler burst. Other systems operating
in the burst mode have been developed, e.g. the filter bank (Baker and Wigley
(1967) )and the burst correlator (Fog (1976)).

' It is however, important to note that many of these processors may operate
in either the continuous, tracking mode or the burst mode depending on the
choice of parameters such as signal level and bandwidth. As an example, the
frequency tragker is normq]ly applied to quasi-continuous signals. However,
most trackers have a distinct minimum operational inpﬁt signal level belcw
which the tracking loop will be broken and the instrument kept in a hold-mode
(drop-out protection). If the input signal is Towered sufficiently, so that
only tﬁe highest péaks of the fluctuating envelope are allowed to exceed the
drop-out level, the tracker will operaté in a single burst-detection mode.

If the burst frequency appears within the instrument's “capture range", it
will acquire Tock and track each burst, but remain in drop-out condition in
the time interva]s between bursts. Conversely, a typical burst-type instrument
as(the LDA-counter may operate in a continuous mode on a continuous signal and
even provide an analog output through a D/A-converter.

With these qualifications in mfnd'we shall in the following consider in
mofe detail the operation of the tracker as a typical example of a continuous

LDA-signal processor providing essentially a continuous analog output and
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the operation of the LDA-counter as an example of the burst processor

providing one digital velocity sample per burst.
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2.  THE CONTINUOUS LDA

2.1 The Doppler Current

The statistical properties of continuous, many-particle Doppler signals
can now be regarded as well understood. The detector current was initially
treated as a superposition of random phase wave packets(Greated & Durrani (1971))
and the methods of analysis of.noise in' FM demodulators applied to derive the
statistical properties of the amplitude and phase fluctuations of the envelope
of signals from steady flows. Edwards et al (1971) applied the methods of
light-beating spectroscopy to the optical spectrum and the resulting photo-
current and derived expréssions for the spectral properties of the detector
current in steady, non-uniform flow. They showed the spectrum from a Gaussian
measurins volume to be Gaussian with a half-width inversely proportional to
the diameter of the measuring volume while the spectrum in non-uniform flow
was shown to be skewed and broadened as a resu]t.of gradients within the
measuring volume.

George and Lumley utilized the fact that the turbulent velocity fluctua-
tions and the particle distribution are statistically independent to create
a framework for incorporating both the flow field statistics and the fluctua-
tions caused by the random scattering center positions in a unified treatment

George and Lumley (1973)*. Since this is the only approach which has led to
explicit results for the instantaneous Doppler signal in turbulent flow, it
will be followed below. |

It is convenient to represent the Doppler current by the following
expression

10 )| Tgplet) gla)da (2.1)

where isp(g,t) is the time dependent current generated by the particle that
was at a at t = o, where g(a) is a function which accounts for the presence

(or absence) of a particle at a, and where H(t) is the instantaneous number

* hereafter referred to as reference I.



of particlies in the volume. This expression is exactly equivalent to one
in which the current is represented as the sum of the currents generated
by the particles in the volume.
The current generated by a single particle passing through the scattering
volume can be represented as

isp(g,t).= I w(x) cos 5 - X (2.1.2)

where K is the previously defined scattering wavevector, x = x(a,t) is the
position of the paftic]e which started at a, and Iw(x) is the envelope of
the current. The function w(x) is defined so that w(0) = 1 and can be taken
to specify the spatial extent of the scattering volume by defining

V= J w(x)d3x (2.1.3)
A consequencé of this is that the insfantaneous number of particlec in the
volume is |

N(E) = [ wxla.t]) gla) ¢ (2.1.4)

If we operate only on the current generated by individual particles

(eqn. 2.1.2), we can in a straight-forward manner obtain the velocity infor-

mation from the time dependent phase since

x =K E+ft y_(g_,t')dt] (2.1.5)
0

K- u(a,t') (2.1.6)

o(t)

I
| =

and

6(t)
This attractive possibility will be explored later when we consider burst

counters. Unfortunately, for the continuous (many particle) case considered

here things are more complicated.

2.2 The Velocity Measured by the Continuous LDA

Ideally one would like to begin from the phase of the Doppler current
and identify a portion of the phase as the velocity signal. Unfortunately,
because of the random character of the fluctuations in phase and their many

sources, there is no straight-forward way to accomplish this. That this is
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so is readily obvious by substituting equations 2.1.2 and 2.1.5 into
equation 2.1.1 and observing that since w(x) is, in effect, time dependent
because of the particle's motion, it is not possible to directly separate
the velocity dependent part of the phase.

George and Lumley (1973) recognized the apparent impossibility of
this approach and proposed instead thaf for the continuous LDA an effective
velocity be defined as an average over the volume of the velocities of the
particles present.” Formally this can be written as

Uo(t) = grryy | ulast) wixla,t]) o(a) o (2.2.1)

This approach was particularly useful for the cases where the flow
could be assumed incompressible, and the particles were statistically uni-
formly distrﬁbuted throughout space. ‘With several additional local assump-
tions it was possible to show that the statistics of this effective velocity
could be separated from the other sources of random phase fluctuations and
was therefore an appropriate (although possibly non-unique) choice for the
measured velocity.

The relation of Uy to the Eulerian velocity at the center of the volume

can be computed from the following relationships:

-

Ug = l-J u(x,t) w(x)d3x (2.2.2)

e

+ %2 fj wix) wix"JuxJu"(x")d3x d3x’ (2.2.3)

The overbar is used to represent the ensemble average, primes are taken to
represent fluctuatina values, and cabital Tetters are hereafter used to denote
mean values unless ntherwise noted. In most cases of interest for the continuous
LDA, the expected number of particles in the volume, N, is larae and the first

term in equation (2.2.3) can be neglected.
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From equation (2.2.2), the effeét of the spatial averaging on meas-
urements of the mean velocity can be shown directly to depend (to first
order) on the curvature of the profile. This was first pointed out by
Edwards et al (1971) who treated only laminar flow. The results are se]dom
important for turbulence measurement since mean profile curvature effeéts
are relatively less important than for laminar flow.

George and Lumley (1973) calculated the effect of the spatial averaging
in equation (2.2.3) on the measured spectrum in a homogeneous, isotropic

turbulent flow for an ideal Gaussian scattering volume for which

, 2 2 2
w(x) = exp - §§¥~+ ?%3 + §§§ (2.2.4)

Using Taylor's hypothesis to convert temporal variations to spatia’ variations
(i.e. converting frequency to wavenumber by w = kU) and defining a transfer

function as

_ Measured spectrum _ Fm(k)
T(k) True spectrum ] (2.2.5)
F11(k>

where F;] (k]) is the one dimensional spectrum, results 1ike those shown in
Figures 2-1 and 2-2 were obtained using Pao's spectrum for the turbulence.

As for the hotwire, it is clear that disturbances smaller than the largest

dimengion of the volume cannot be measured.

There are a number of extensions aﬁd refinements which could be carried
out. In particular: alternate formulations for the effective measured
velocity could be constructed and their consquences explored, and the
effect of alternate volume shapes (w(x) different from Gaussian) could be
calculated. It appears unlikely that any additional fundamental knowledge

would be gained from these.
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2.3 The Problem of Random Phase Fluctuations (Doppler Ambiguity)

In reference I, the authors were able to show that if an effective

displacement fie]diéo,ywas defined by
= dx
u =9%, (2.3.1)
I T B

then the expression for the Doppler current (egn. 2.1.1) could be reduced to

i(t) = (F2462)"% cos (Kx - 4) (2.3.2)
where |

tan ¢ = 2 (2.3.3)
Note that F, G, and ¢ are all time dependent and 1in general random
gquantities.

Most importantly, by assuming thét the average number of particles in
the volume was large (N>10) and that relative displacements due to the tur-v
bulence were governed by Gaussian probability distributions, it was possible
to show that the fluctuations of X, (and hencelu, ) and those of F, G, and
¢ were statistically independent. This fact and the additional fact that
F and G could be shown to be Gaussian random variables allowed immediate
application of the 1arje body of research on FM-noise which had developed
over the past forty years.

It is not the purpose of this article to review all of the consequences
of this ' . on the design of continuous LDA processors, but rather
to concentrate on those aspects which bear directly on the interpretation
of measurements of turbulent velocities. For a more complete treatment the
reader is referred to reference I and the papers by Duranni and Greated (1973),
and George (1976)%.

The ideal signal processor would remove the amplitude information from
equation (2.3.2) and yield an output proportional to the derivative of the

total phase. Thus the "velocity-like" output of the detector, say ud(t),

* hereafter referred as reference II.
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would be given by

1

uy(t) = u (t) - K" o(t) (2.3.4)

)
Since the fluctuations Uy and é have been shown to be statistically
independent, the statistical quantities of this output signal most often
of interest have the following propertfes:

(i) The autocorrelations of u, and ¢ are additive

T Ug(E) =TT 0 (E) + K (t) 8(t') (2.3.5)
(1) The spectra of u_ and ¢ are additive
-2 .
5,7 =5, (1) + K5y () (2.3.6)

(iii) The mean square values of Uy and $ are additive
-
= - 32 ’
ué ué + K ¢ (2.3.7)

(iv) The probability densities of u, and ¢ are convolved.

o0

p, (u) = f p, (x-u) Pisk (x)dx (2.3.8)

o

Clearly it is not enough to be able to relate the volume-averaged
velocity to the turbulence (section 2.2), but we must also have complete
knoW]edge of ¢ if we are to interpret the measurements. An unfortunate fact
is thét the spectfa] bands of U and ¢ always overlap so that a simple removal
of the phase fluctuations by fi]teringlis not possible. In fact, there appears
to be no way to avoid this contamination although there are several ways in

which its effects can be minimized. These will be mentioned later.

2.4 The Statistics of the Phase Fluctuations

The reality of the phase fluctuations and their effect on attempts to
measure turbulence from cohtinuous signal processors is readily apparent from
Figure (2-3) taken from Lading and Eanrds (1976). The top trace represents
the turbulent input signal to an LDA signal simulator while the bottom three

traces represent the outputs of various continuous LDA processors. If there
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were no random phase fluctuations in the signal, all four traces should be jden-
tical, Instead the bottom traces are similar and are distinctly different from the
turbulence signal at the top. The high frequency contributiohs of the random
phase fluctuations are readily apparent; more subtle, but still present, are

the lower frequency contributions which overlap the frequency band of the

turbulent fluctuations.

The statistics of the random phase fluctuations can be shown to be
entirely determined by one parémeter, Aw, called the Doppler ambiguity band-
width (or broadening). (Aw)"] is, in fact, related to the time the envelope
of the Doppler current remains correlated with itself and can be determined

from the following

F(t) F(e7) _ G(t) G(t') . ,
= = = exp {-(bw 1)%2) (2.4.1)

The rate at which the envelope becomes uncorrelated can be influenced by
numerous effects. Of primary importance for turbulence measurement are:

the loss of correlation because of the change in population of the scatterers,
the loss in correlation due to the fact that mean gradients in the volume
cause particles to beat against each other, and the same effect due to
fluctuating gradients in the volume. These are referred to respectively as:
transit time broadening, Buw, 3 gradient broadening, bug s and turbulence broad-

ening, Awy - It can be shown that

(Aw)? = (Aw, )% + (Aw Y2+ (Aw )2 (2.4.2)
L Q T
Each component can be calculated separately and the appropriate cquations
are shown in Table I. For details the reader is referred to reference I
and Berman and Dunning (1973).
An example of the relative importance of these three effects can be
found in the measurements of Berman and Dunning (1973) in a turbulent pipe

flow. Near the center of the pipe where the mean gradient was small the
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transit time and turbulence broadening terms were about equal and dominant.
Near the wall, however, where both turbulence intensity and mean gradient
were larger, the mean gradient and turbu]encé broadening dominated while

the transit time broadenihg was negligible.

It is appropriate to note that there seems to have often been confusion
regarding the turbulent broadening part, Awy - This broadening is quite in-
dependent of effect of the f]u;tuations in the effective velocity U, which
contribute directly to a broadening of the Doppler current spectrum (for
further information see reference II).

Once Aw is known, the above-mentioned statistical measures of ¢ can
readily be calculated from the relationships summarized in Table II (from
Ref. II). These are plotted in Figures (2-4), (2-5) and (2-6). It is easy
to show that ;; = », This of course assumes that our ideal detector has an

unlimited frequency response.

2.5 Implications of Phase Fluctuations on Turbulence Measurement

A number of implications of these results on attempts to measure turbul-
ence are obvious. First, low turbulence intensity measurements are not some-
thing the continuous LDA does well. Second, measurements of autocorrelations
at small time delays and spectra at high frequencies will be difficult or
impossible. Third, the accuracy of probability density determination will be
entirely dependent on whether u' >> K Aw.

Figure (2-7) shows an attempt to measure an autocorrelation in a grid
turbulence. The finite value of the correlation at zero-time delay reflects
the finite bandwidth of the processor. Figure (2-8) showsa similar attempt
to measure a velocity spectrum in a turbulent pipe flow. In this case, the
 high level of the turbulence spectrum relative to that of the phase fluctuations

indicates that a reasonably accurate estimate of uéz could be made if a filter

were placed near the frequency at which the spectra are equal (shown by arrow).



A similar spectrum measured in a grid turbulence is shown in Figure (2-9).
Filtering in this case would be less satisfactory.

It should be clear from the examples chosen that single point statistical
measures can be taken with an LDA. It should aTso be clear that great care
must be taken in interpreting the results. Moreover, significant benefits
are to be gained if the'ambiguity noise can be minimized. Means for doing
this are discussed in the next section.

2.6 Minimizing and E]iminatihg the Effects of Phase Fluctuations
on Turbulence Measurement

For any given flow situation there exists an optimal scattering QoTume
size which minimizes fhe value of Aw and hence the spectral level of the
phase fluctuations. This is réadi]yﬂébident from equations (2.4.2) and
Table I. For more detail and examples see George (1972), Berman and Dunning
(1973) and reference I. The last of these also considered the trade-off
between spatial resolution and minimfzing the spectral height of the phase
fluctuations; in almost all cases the phase fluctuations are responsible
for the limiting conditions on spectral measurements.

A more imaginative approach to minimizing the effects of phase fluctua-
tions is simply to try and eliminate some of them. Wilmshurst and Rizzo (1974),

noting'that the maximum phase spikes corresnond to the minimum of the Donnler

envelope, used a tracker error signal weighted with envelope amplitude,
thereby eliminating a significant contribution to ;Z. In fact, any real
tracker discriminates against these large phase fluctuations by tracking

the Doppler signal only when the envelope is above a given threshold.

If the portion of the signal removed by this procedure is small compared to
the length of the envelope .(which is, in turn, usually much smaller than any
flow time of interest), a significant reduction in §2 appears to be possible.
Unfortunately the implications of this on the phase fluctuation spectrum are
not clear; that is, it is not clear whether the level of the phase fluctuation

spectrum is reduced (the desired result) or whether only the high frequency



part of the spectrum is removed.* If only the latter, then the benefits
are minimal. ‘

George (1974) following a suggestion of Rowe showed that a sequence of
Tow-pass filters could be used to make accurate turbulence intensity meas-
urements of the spectrum of the zero-crossings, even when the contribufion
of the phase fluctuations was large. This technique has been successfully
applied by numerous investigators to make reliable intensity measurements.

It is easy to'show that the correlation of phase fluctuations between
non-overlapping scattering volumes is zero, (references I & II). This
implies that the continuous LDA can be successfully used for ambiguity-free,
non-intrusive cross-correlation measurements. Examples of such use are
Morton énd Ciarke (1971) and Reed (1978). Van Maanen et al (1976),following
-a suggestion of George (1971 and reference I),built a special optical system
for correlating signals from two volumes within the smallest turbulence scale,
thereby obtaining the ambiguity-free, single point turbulence spectrum.

In summary, it is possible to minimize the spectral level of the phase
fluctuations in all situations by choosing the appropriate scattering volume.
Moreover, even these phase fluctuations can often be dealt with directly by
filtering or subtraction since their spectral level is known exactly once

' Aw is-known. Finaily the continuous LDA is at its very best in measuring
cross-correlations since it is both ambiguity free and non-intrusive (thus

eliminating the familiar problem of the wake of the leading probe).

* It appears to be straightforward to extend Rice's calculations to include
the spectrum of the level crossings. To the best of our knowledge this
has not been done.
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2.7 Dropout

No real tracker can track the fluctuating phase of the Doppler signal
exactly. Momentarily or permanently the lock between tracker oscillator
and signal may be broken and the tracker encounters a so-called drop-out.
In modern trackers the tracking perforhance is monitored by a drop-out
detector, which indicates the presence of a drop-out, when the correlation
between the signal and the tracker oscillator falls below a preset level.
Under normal operating conditions drop-out is associated with signal amplitude
fluctuations caused by phase cancellations between many particles in the meas-
uring volume rather than with the absence of particles in the volume.
Since these amplitude fluctuations  occur with time scales of the order
of the particle transit time through the measuring volume, drop-out periods
are normally short compared to the time scales of the flow. A typical drop-
out case is illustrated in Figure 2-10, which shows at the bottom the Doppler
signal, next the control voltage to the tracker oscillator and at the top the
tracker output including drop-out periods, where the signal during drop-out
has been replaced by the last measured value. As discussed earlier, drop-out
can be beneficial if it discriminates against the largest phase fluctuations.

‘There are three ways of handling the signal during drop-out:

1. Setting the output equal to zero during drop-out,

2. setting the output equal to the mean during drop-out,‘and

3. holding the signal at its last value during drop-out.

In the following each of these alternatives are analyzed.

We first assume that the occurrence of drop-out and reacquisition of
signal are statistically independent of the velocity, and that the fractional
drop-out time is small and independent of velocity. This is a good approx-

imation in the case of a many-particle continuous signal. The probability
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that the Doppler signal amplitude R is below a given value, R] say, is

given by (reference 11I):

=1 - R
P[r<R]] 1 - exp p— . (2.7.1)

where i2 is the mean-sqﬁare Doppler signal. If the drop-out threshold is
given, the fraction of time the tracker is in drop-out condition can readily
be computed.

Lumley, Buchhave and George (1978) suppose that the drop-out fimes are
independently distributed with a probability of a drop-out in any interval
dt of udt. They further suppose that the drop-out process is a Markov chain
so that udt is the transition probability from "in" to "out". The transitions
to the tracking condition are also independently distributed with a transition
probability from "out" to "in" in the interval dt of vdt. Thus the expected
“in-time" is 1/u, and the expected "out-time" is 1/v. (The latter corresponds
to the result computed from the amplitude probability distribution above).
The probability of being'"in" at any instant is (1+u/v)-], while the probability
of being "out" is (]+v/u)']. For all cases of interest v/u<<1, which is to
say that the tracker is "in" most of the time. |

To analyze the tracker output an indicator function I(t) was defined as
+1 when the tracker is "in" and 0 when the tracker is "ouﬁ". The expected
value of I is clearly T = (1+u/v)-].» The tracker output signal can thus be

represented as
f(t) = f(t) - I(t), (2.7.2)
where f(t) is the output without drop-out (the tracker response to the

instantaneous velocity).

Case 1: Qutput equal to zero during drop-out.

We consider the statistics of f given by equation (2.7.2). It is
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straightforward to show that the mean is given by

T T eF . (VY
Fef-T=F- (55 (2.7.3)

while the mean-square fluctuation is given by

- bl __2
12 = 12 . 12 + [f + f'2] I'2 (27.4)

I(t) can be shown to have a mean-square value given by

Ilz - T(]-T) - LJ-\'-)V - % (2.7.5)

and an autocovariance function given by

B I (o0 1 £ R By
Ry = Tiv)z © =te (2.7.6)

. i +
th e m o -

The ané]ysis leads to the following expressions for the autocorrelation

and spectrum of f

L =2 _2 277
Ry = TR+ FR _RR, (2.7.7)

o 5pr 22 [0 77 [peopd (2.7.8)
f f ™7 T+(w/v che

To get this particular form for the spectrum we have assumed that the periods

and

R

between drop-outs 1/u are short compared to the integral scale T. The effect
of tﬁe drop-out is to add a spike to the autocovariance and a low-passed white
noise to the spectrum. The amount of ﬁoise is determined by the mean square
of the total signal (i.e. mean plus fluctuating component). If the periods
between drop-outs are long compared to the integral scale, Rf will dominate

in the last term of equation (2.7.7) and the effect of the drop-out is merely
a.slightly reduced record length, but no significant addition of noise.

Case 2: Output set equal to mean during drop-out.

We can represent the tracker output as follows:

F(t) = f(t) I(t) + F - [1-1(t)] | (2.7.9)
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It is easy to show that the mean is preserved in this case, i.e. ?_= f
The mean-square fluctuation, the autocorrelation, and the spectrum are given
by equation (2.7.4), (2.7.7), and (2.7.8) respectively with f set equal to -
zero. Thus the noise level introduced by the drop-out on these measure-
ments is considerably reduced since thé spectral height of the noise, for
examp]e, is now determined only by the drop-out and the mean=square fluctuating
signal.

Case 3: OQOutput holds last value

This method is common practice in commercial trackers. The output signal

can be represented by:

F(t) = F(L)I(t) + F(t) [1-1(t)] (2.7.10)

where

f(t) = f(t,) for t, <t <t 4 (2.7.11)

and t, (k=1,2,...) are the drop-out times.

It is easy to show that in this case the mean and all higher moments of
f are identica] to those of f. Thus, not only are the mean velocity and the
turbulence intensity accurately reproduced, but also the entire probability
density. Some noise is still present in the spectrum, but under normal con-
ditions the spectral noise power will be considerably lower than in the pre-

vious case. The autocovariance can be computed from from equation (2.7.10) as

Rz = TZRf + (Rf+R%_2Rf$) R + 2T(1-T)R¢f (2.7.12)
Assuming again T >> 1/v and 1/u we see that the autocovariance is dominated
by the first term, which is the desired autocovariance of the signal, and
the second term, which is a spike at the origin of duration = 1/u and a
magnitude determined by the difference Rf+R%-2Rf§, which for 1/u<<T is small

compared to ;:El Thus the noise term in the spectrum will be significantly

reduced relative to the previous case:
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Sz = Sc+ ;g-z (af)2 [WZ»_NF} (2.7.13)

where (Af)? represents the difference 2(f'2- Rﬂ;(o)) << f'2 .
Considering the other extreme, 1/v>>T, we must have Rf% =~ 0, since
f(t) will now most likely be uncorrelated with its value at the previous

drop-out. At the same time Ry = f'2 Rp so that RgR; = f'2 R% and also

RfRI = (Tsz)Rf. Thus the autocovariance reduces to

Ri = T Ry + (1-T)f'2 R} (2.7.14)

For long drop-out times method 3 is more noisy than setting the output

to zero during drop-out. However, 1/v<<T is not the usual mode of operation
for the tracker.

In summary, drop-out can affect all statistical properties of the tracker
output. fhe magnitude of this effect depends on the manner in which the tracker
compensateskfor this drop-out. In the most usual mode of operation of the
£racker, where drop-outs are short compared to the flow integral scale, drop-out
is best handled by maintaining the last measured output until the tracker has
again acquired lock. _This method preserves all moments of the velocity distri-
bution, and adds the least amount of noise to the spectrum. Higher order
approximations during drop-out can be envisioned, e.g. Tinear extrapolation
from the last measured value. Such methods might further reduce noise in

tracker output, but has to the best of our knowledge not been tried in practice.
If drop-out periods long compared to the integral scale occur,it might be best

to set the output equal to a running average of previously measured values.



3. BURST SIGNAL PROCESSING

3.1 Signal Processor Function

The operation of ‘the burst signal processor (single particle meas-
urement or individual realization)differs radically from that of the quasi-'
continuous{type signal processor. Whereas the 1attef in its normal mode of
operation presents a continuous output,‘possibly interspersed with periods of
drop-out, the former detects the velocity of 1ndfvidua1,partic]es and in most
cases bases the velocity output on a measurement of the time of flight across
the measuring volume (or across a fixed number of interference fringes in the
measuring volume). Knowing the fringe spacing, the timing information is
equivalent to a ve]ocfty sample. The velocity sample is computed and presented
at the output after the particle traversal, usually as a digital word, and thus
does not represent a real-time analog output. The function of the processor
is inherently a digital, random sampling of the velocity at a point in time
determined by the particle arrival. In some processors the real-time clock
is also used to provide the time increment between samples allowing, as we
shall discuss later in this section, the formation of the velocity autocovar-
jance and spectrum from the randomly sampled data. If the seeding concentration
is sufficiently high, a continuous analog output can be obtained through a D/A
converter, but in most cases of interest, the data rate would be below that
required to resolve small scale turbulent fluctuations in a real-time mode.
Thus, the main prob]em in burst detection LDA signal processing is the extrac-
tion of statistical quantities from the randomly sampled data accumulated by
the processor.

The best optical configuration for single particle detection is the dual-
beém, fringe mode system which optimizes the collection of light from single
scattering particles. In the absence .of particlies in the measuring volume,

the detector output is shot noise due to ambient Tight and laser light reaching
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the detector from optical surfaces and windows. The photocurrent is thus a
band 1imited shot noise signal superimposed on randomly arriving Doppler

bursts. Mayo (1975) suggests a triply stochastic model for the burst signal:

i(t) =z eg

i=- e

; +hit-t;) | (3.1.1)

where e, 9 and h(t) are respectively electronic charge, the random charge gain

of the detector preamplifier and the impulse response of the detector/preamp/

th

filter system. t, is the random time for the occurrence of the i photo-

i
electron. This process is a modulated Poisson process (known as a Mandel-

process from photon cbunting theory), where the modulating function is

the statistical mean photoelectron rate A(t), which in turn is related to the

classical thica] power at the detector p(t) by:

A(t) = 2plt) I (3.1.2)

hv
where n is detector efficiency and hv the photon energy. p(t) reflects the

superposition of the background photoelectron arrival rate Ay and the randomly

arriving bursts:
.

p(t) =M [a + 1 1

=eoo

(-1 Ul )], 1.
3 f(t T4 rj)] (3.1.3)

where'Ij is a random peak amplitude parameter determined by particle size and
scattering function and f(t,u, r) is a normalized optical system response
function. T thus marks the peak of a burst. As indicated f, which
specifies the burst shape, is in general a function of particle velocity
gd and particle trajectory parameter rj.

The triply stochastic nature of the photodetector signal is evident from thi:

model. The occurrence of the photoelectron at ti is a Poisson process modulated

by the instantaneous classical optical power p(t). p(t) is in turn a stochastic
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process determined by the particle arrival times Ty which are again distri-
buted as a modulated Poisson process. The function modulating the burst
arrival times is determined by the velocity time function u(t) and possibly
other effects correlated with the velocity. The velocity may itself be a
stochastic function, e.g. Gaussian random turbulence. Mayo (1977)provides
a FORTRAN program for the simulation of é burst signal, which allows evaluation
of signal processor performance from assumed models of the statistical pro-
cesses entering the signal synthesis.

With sufficiently high ]aser'power, the background current may be neglected
and the signal-to-noise ratio of the detector current (defined as the signal
variance relative to tﬁe square of the signal mean at the peak of the burst)
high enough to allow the burst wave form to be set equal to the classical
optical pulse. For the case of two Gaussian laser beams of equal power inter-
secting in a common focal volume as illustrated in Figure 1-2, we retrieve

the well-known Gaussian burst in the limit of infinite signal-to-noise ratio:

j . = 1. (t + 1.
i5(t) = Iw(x;(t)) [1 + cos (wpt)], (3.1.4)
where 5j is the particle trajectory, wp the Doppler frequency and w(x) is

given by equation (2.2.4).

3.2 The Velocity Measured by Burst Processors

Representation

Unlike the case with the continuous LDA where we were able to only
postulate the form of the measured velocity and then show that this form
was reasonable, for the burst processor we can write directly the velocity
signal since there are assumed to be only single particles present. Thus

the velocity measured by the ideal burst processor is exactly the velocity

of the particle producing the burst. The only question is whether the

randomly arriving samples are capable of reproducing the statistics of the
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desired Eulerian velocity field. We shall see that the answer to this

question is in the affirmative if the burst signal is analyzed for the

period of time the particle is in the volume.

To examine this further we write for the measured velocity
uy(t) = [ Wix(a,t)]ula,t) g (a) ¢% (3.2.1)

in the same form as that assumed for the continuous case.* In effect, this
reproduces the instantaneous velocity of the scattering particle only while
it is in the scattering volume. A typical uo(t) is shown in Figure (3-1).
Assuming incompressibility and mapping from the Lagrangian to the Eulerian

frame this can be written

() = [ W) ulx(a,t)] g (x,t) @’ (3.2.2)
where
’ )dt (3.2.3)
= + u YN
X=a Jo _(E‘_’t] 1
and
g(a) + g;(x,t). (3.2.4)

The statistics of g](é)t) for statistically uniform seeding to 2nd

order can be shown to be given by (George, Buchhave, and Lumley, 1978).**

g'l (z(_st) =u (3.2.5)

g-l(_)_(_at)g-l(x_| at') = Up(ﬁatlélstl) + Uz

where p(x,t|x',t') is the probability that the particie at x at time t has
moved to x' at time t' and u is the expected number of particies per unit
volume. An excellent approximation to p(x,t|x',t') for all practical purposes
is:

p(x,t]x",t") » &(x'-x-Ut) + u? (3.2.6)

*  The average over the number of particles in the volume is no longer
necessary since, by hypothesis, there is never more than one.

** References I and II ignored the time dependence of the g function. The
differences, with one exception, are inconsequential.
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Mean Values

Once thg above problem for the statistics of q1(5,t) is uncoupled from
the statistics of the velocity field, then it is straightforward to show
that the average of Uy is given by

u (1) = uf u(x,t)  w(x)d3x (3.2.7)

To understand'the jmplications of this consider the simple case where
u(x,t) is independent of x,t and w(x,t) = 1 within the volume and zero outside.
(Note that these correspond to a uniform mean velocity and an on-off scattering
volume; fhe on-off volume is an excellent approximation to the volume seen by

a burst processor if we ignore the angle effects discussed later). Assuming

this, we have

u (t) = uV u(x,t) (3.2.8)

0
Thus the measured mean velocity is directly proportional to the desired

Eulerian mean. It should not be inferred from this that one needs merely

average realizations to achieve reasonable averages. Equation (3.2.8)

assumes that the velocity has been measured during all of the time the par-
ticle i3 in the volume and the factor uV accounts for the portion of time that
it is‘not. |

To see this, assume that we are détermining the mean values by time-
averaging. ' T

TET - —}- [O ug (t)dt (3.2.9)

where it is assumed that T is sufficiently long. Eqn. (3.2.8) implies that

T T
U () == j u (t)dt = v JT-J u(x,t)dt = pV ulx,t) (3.2.10)
0

where u(x,t) is the information we desire. Then it follows that

. |
. 1
o= jo u_(t)dt (3.2.11)
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But uVT is exactly the fraction of time that the signal uo(t) is non-zero.
Thus, the correct mean is given by averaging only during those periods where

there is a signal.

Most real processors measure the average velocity during the burst; thfs
jmplies that the velocity must be approximately constant during its tréversa]
of the volume. Moreover, since there is only a single realization during each
particle passage, then the realization must be weighted by the time the particle
would contribute tb the integral; that is, the residence (or transit) time.
This is easily seen by approximating uo(t) as constant while there is a sinnal
and writing the integral as a sum:

u(x,t) = ———-f u (t)dt =

1
uwyT o 0 gAti
i

(3.2.12)

where uo(ti).represénts the ith realization and Ati the residence time of that
particle. Note that the direction of the particle and its velocity are
irrelevant; only its x-component and residence time matter.*

The idea of transit time weighting of the rea]izations‘and the pre-
ceding proof were first presented by George in 1975 (reference 1). Hosel
and Rodi (1977) later presented.a less rigorous derivation based on mean
transit times and successfully applied it to measurements of mean velocity

in a jet. Some commercial burst processors now provide the residence time

information necessary for using equation (3.2.12) and those derived below.

Turbulence Intensities

Now we examine the second order statistics of the effective velocity. ‘le
square and average equation (3.2.2) and apply the results of equation (3.2.5)

to obtain

u (thu (t7) = ”JJW(5) w(x') ulGtiu(xat') pix,t]x',t') d3x d3x'

+ uZH wix) wix') TGE) U(EET) d3x dix’ | (3.2.13)
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* The residence weighting may be viewed as a correction, which creates an
effective sample rate independent of velocity; referring to Figure (3-2), the
actual sample rate is seen to be R = pA|u|. The effective Sample rate of

residence time weighted samples may be written:

c:lzo{

R. = At - - A Ju] = - vAlu| = u - V, where V is the volume

of the measuring volume, At is Ehé mean residence time for particles with
velocity u and ¢ is the corresponding average trajectory length through the
measuring volume. The resultant rate is Jjust the average number of particles

in the volume, independent of |u].
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We first consider the case t = t' for which p(x,t[x',t') = &(x-x")
This case is of particular interest since it, in fact, corresponds to the

mean square velocity.  From equation (3.2.13) we obtain:

IWZ(L) U2(x) d3x + Jw3(§) u'?(x) d3x

T2, T
U0 uo2 u

+ [terms of order (uV)?] ' v (3.2.14)
The second term is negligible compared to the first and is not of interest
here since we are fnterested only in individual realization anemometry where
the particle concentration is Tow. (Note that the reverse was true for the
continuous LDA where the first term was neglected with respect to the second).

It is clear that we can readily identify the mean'square fluctuation we
desire fn eqﬁation (3.2.14) if U(E) = constant. Again assuming w(x) = 1 within
the volume and zero outside, and assuming u'Z to be constant over the volume,

we obtain

* uo"Z =y u'? (3.2.15)

Analysis of this in terms of time integrals leads to the same conclusion as
before: The residence time weighted average provides the correct mean square
fluctuating velocity (reference II). Thus
;[u(ti)-U]zAti
uz =1 ~ (3.2.18)

LAt.
i 1

where U is computed<froh equations (3.2.12)

It is tedious but straightforward to interpret equations (3.2.7) and (3.2.1
for non-ideal scattering volumes and non-uniform velocities. The only differenc
is that now vofume-averaged information is obtained. The effect on the statis-
tiés of this volume averaging is identical to that in the continuous case men-
tioned earlier. Note that the presence of a mean gradient will contribute an
apparent turbulence intensity even when no turbulence is present because of the'

contribution of the first term in equation (3.2.14). A particular problem
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associated with directional effects of real finite volume processors is

discussed in Section (3.3).

Correlations and Spectra

We now examine the possibility of measuring autocorrelations and spectra
with burst processors. -The correlation of the measured velocity is readily

computed to be

u (t) u (t") = JJ UG U(x5t) wix) Wix')gq{x,t) gy (x",t7) - d3x d3x’
. (3.2.17)

Applying equations (3.2.5) and (3.2.6) we have

G TET (B = | WEETWETET Wix) wix') s(x'-x-Un) dix dy’
C1(x)
+ "2” u(x;t) ulx",t7) wix) w(x') d3x d3'

(3.2.18)
IT (<)

Iﬁ the succeeding analysis we shall show that the first term contributes only
for very short time lags (1 < d/U) whereas the second produces the volume-
averaged correiation (or spectrum) in thé same manner as for the continuous
signal and is therefore the desifed result.

We consider the first term only for now. Carrying out the integration

over the delta function we obtain

I(t) = u[u(&,t) u(x + Ut,t +1) w(x) w(x + Ut)d3x (3.2.19)

If the turbulence is assumed frozen, the space-time correlation of the

fluctuating component reduces to the turbulence intensity, i.e.

uT G B U, tea)= UTE(x)

and we are left with

I(1) = u”U(Z_) U(x + U(x)1) + U Z(x) [wlx) w(xHU(x)1)d®% (3,2.29)
Thus the contribution of the first term to the autocorrelation is simply a
contribution determined by the volume and the mean transit time of the

particles.
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For the case where the mean velocity is uniform and turbulence homo-

geneous this reduces to

1) = ¥[02 + T py(0) » (3.2.22)
where

Vo (<) f wix) wix + Ur)ddx (3.2.23)

For the case where w(x) = 1 inside and zero outside the volume, this is
simply a spike at the origin of unit height whose width is proportional

to the mean transit time of the particles through the volume (~d/U). Note
that equation (3.2.22) reduces to the result obtained in the previous section
for 1 = 0. as it shou]d.

Since this first term I(t) contains no information of interest except at
1=0, it can be considered noise which it is desirable to eliminate. Fortun-
ately, this is easf]y done with the autocorrelation since time lags of the
order of a particie transit time are'sé1dom of interest in turbulence. This
is always the case if the streamwise extent of the scattering volume is smaller
than the Kolomogorov microscale. A Tess restrictive condition might be d << Au
where Au is the spatial Taylor microscale for the u-component of velocity
and characterizes the small t behavior of the autocorrelation (since AT=AU/U).

It is straightforward to show that this unwanted information contributes
over the entire frequency range of the spectrum to w ~ TO-] with height
SI(m) oV [U? +u77]10 and rolls off as w2 thereafter where t, is the transit
time. iote that the magnitude of this term can be considerably increased
if significant velocity gradients are present across the volume.

It will be seen below that in most burst-processing applications this
cdmp]etely swamps the desired spectrum which is proportional to (uV)?. (Recall
that uV is expected number of particles in the volume, and is generally much
less than unity}. Fortunately, since-the correlation of this "transit time
noise" is confined to near the origin, it can be eliminated in most applica-

tions by removing it from the correlation before transforming to obtain the
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spectrum.
We consider now the second term and recognize it to be similar to the
term we retained in the analysis of continuous signal processors (Chap. 2).

Decomposing the velocity into mean and fluctuating parts yields

I1(x) = u%jj U(x) U(x') wlx) wix') d3x d3x

+ uz” u'(x,t) ut(x",t") wix) w(x') d3x d3x' (3.2.24)

The first term is pfecise]y‘the square of the volume-averaged mean velocity
given in equation (3.2.7) and the second represents a volume-averaged space-
time correlation. If we assume a uniform mean velocity and a frozen turbulence

we can write, using the volume averaged spectrum of section 2.2

11 (<) Ug + (pv)?2 BV(T) , ‘ (3.2.25)

where

' ik-Ut 3
By () = [e ™ L% (ka%

fu'(é;t) u{x,t") w(x) w(x') d3x d3x' (3.2.26)

Clearly Bv(r) is the desired information.

Combining I(t) and II(t) we have

T TEU (0, TET0) = (W72 oy () + ()2 By(x)

(3.2.27)

Since gV << 1, the second term is substantially smaller.
However, since the first term is zero for all v > d/U, the second term can
still be obtained for all but the smallest time lags. This is not the case
with the spectrum, however, which will be completely dominated by the first
term.
It is éasy to improve fhe situation by first computing the autocorrelation
from the randomly arriving samples, then keeping only the part for which

v > d/U. If the transit time is indeed less than any time lag of interest,
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the remainder of the autocorre]ationvcan be transformed to yield the
spectrum. Since the value of the autocorrelation at t = o has been
obtained by the earlier analysis of u'Z(equations 3.2.15) and 3.2.16),

this value can be used to replace the missing information at the origin.
Moreover, since we know that the autocorrelation is parabolic at the origin,
the gap can be substantfa] (relative to 1 ) before we lose any information
about the fluctuating velocity field. Thus the desired information about

the autocorrelation is given by the second term as

FTOTTET = 07 1 fuy(e) uglero) at (3.2.28)

where we have repTaced ensemble averages by time averages.

In practice the elimination of the spike at the origin can be accom-
plished by simply not considering products of realizations with themselves,
but only those products of realizations with other particles. It is impor-
tant to note that the autocorrelation (or any cross correlation) cannot be
computed simply by multiplying different realizations, grouping and averaging,
as this introduces a bias (see §§ 3.3, 3.5).

The analysis above shows that if we consider the particle to contribute

to the signal while it is in the volume, all of the desired statistical

inforﬁation can bé obtained. As a consequence, the autocorrelation for

a lag t can be computed only when there is a particle in the volume at t
and one at t+r. This is illustrated in Figure (3-3). The interpretation
of this analysis leads to the following approximation to equation (3.2.28):

] ]
T U (ti) u (tj) Atij

NONECHERE (3.2.29)
X At. .
iy M

th realization and

J
the jth realization displaced by time t. The denominator is essentially the

where 1 = ti'tj’ i<j and Ati' is the overlap time of the i
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total overlap time corresponding to realizations of u(t) u(t+t) since

(wV)2T = 1 Bty The overlap time is difficult to obtain in practice; an
1] .

equivalent estimator for individual realizations is proposed in Section 3.5.
Similar considerations can be applied to single and joint probabi]ity
densities, and to cross-correlations of different signals. Again the
algorithm must be determined by the time the one or more signals actuaily
contribute to the appropriate time integral expression.' These are discussed

in detail in Buchhave (1978) and George et al (1978).

3.3 Processing the Uncorrected Signal

Various methods of implementing residence time weighting have been sug-
gested,'but before discussing these and other correction techniques we shall
briefly review the effects of processing the sampled data without applying
any corrections. The fact that the particles cross through the measuring
volume at a rate proportibna] to thevinstantaneous velocity (given uniform
particie distribution) gives rise to bias errors when statistical quantities
are formed by direct ensemble averaging of the accumulated sample values.
However, the bias effect associated with the fluctuating velocity is only
one of a number of possible biasing effects occurring in burst-type LDA
proceﬁsing. The ﬁampling rate may also be correlated with velocity direction
and with fluctuations in particle concéntration resulting from density fluc-
tuations, mixing of different fluids,or chemical reactions.

Assuming initially uniform scattering particle concentration and uniform
density there are two main sources of bias associated with the velocity of
the fluid through the measuring volume: correlation between sampling rate
and velocity vector magnitude,and variation of the probability of a measure-
ment with velocity direction (variation of measuring volume cross section).

Referring to Figure (3-3), the rate at which particles cross the measuring
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volume is given by R = pA|u| where A is the cross-sectional area of the meas-
uring volume normal to the streamlines. We operate with the usual assumptions
in burst detection that the velocity does not change appreciably during the
time it takes a particle to cross the volume and that the probability of more
than one particle in V at any time is negligible. Most signal processors,
however, require a minimum number of zero crossings to execute a measurement.
This fact has the effect of reducing the effective cross sectional area of
the probe volume in a given direction to a value smaller than the geometrical
cross section of the probe volume and results in "dead angles" in which no
measurement is possible. Buchhave (1976) investigated the effect of the vari-
ation of cross-section With flow direction on bias in LDA-counter measurements
and showed the effect to be significant and of the same order of magnitude as
the velocity magnitude effect. Expressing the cross section in terms of the

velocity components u, v, and w we may write

2
Alw) = abc & (1 - p2q2) (3.3.1)
where , ) )
p2 =%Z+;“Z+%Z (3.2.2)

and a, b, and ¢ are given by equation (1.1.1).Q = Ne/Nf is the ratio»of Nes

the minimum number of zero crossings or fringe crossings required for a meas-
urement, to Nf, the maximum number of fringe crossings available (corresponding
to a particle trajectory along the x-axis). When Q > 0, A approaches the geo-

- metrical cross section of the ellipsoidal probe volume, while increasing values
of Q reduces A, incfeases the directional dependence and introduces dead angles.
Figure (3-4) is a plot of A for particle trajectories parallel to the x,y-plane
(normalized with respect to the geometrical cross section normal to the x-axis),
versus ¢, the angle between u and the x-axis. These curves are valid for a
monidisperse particle “distribution. Measured angular characteristics

tend to show a less pronounced dead angle effect due to the presence of large

particles.
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The velocity bias effect on the formation of ensemble averages from
LDA burst signal processors wés first studied by McLaughlin and Tiederman

(1973) for the 1imited case of Q = 0 and a spherical measuring volume.
Using expressions (3.3.1) and (3.3.2) and assuming a data rate given by
R= u|u|A,Buchhave (1976) later repeated the analysis including the direc-
tional dependence of thé cross section for various velocity distributions.
Figure (3-5) shows the results for an assumed Gaussian velocity distribution
superimposed on a constant mean velocity. The McLaughlin-Tiederman analysis
corresponds to the curves for Q = 0. As is evident from the figure, direct
mean and rms values from the accumulated data result in gross errors for
turbulence intensities above ~ 10%, and the errors increase as the angular
dependence increases. The effect of bias is also visible in velocity histo-
grams formed from the measured data. Figure (3-6)(McLaughlin anc Tiederman
(1973) )illustrates the resulting skewness in the measured velocity distribution.
The correlation between data rate and velocity also results in bias in steady
flow when gradients are‘present within the measuring volume. Kreid (1974)
- predicted the errors introduced by steady gradients within the volume and
found good agreement between measured and calculated bias errors in laminar
pipe flow. Figure (3-7) shows the expected gradient bias errors according

to these calculations.

3.4 Bias Correction

In introducing this section it is important to recall that in Section
3.2 it was shown that if time averages were formed by integrating only during
the time measurement (i.e., only during particle residence times), no bias
would exist. For example, the mean velocity can be approximated by the sum
of products of trajectory-éveraged velocity values and residence times in an

unbiased manner by
? uiAti
U =—m—.— (3.4.])
i
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uj corresponds to the quantity measured by most burst type LDA signal
processors. Thus complete velocity bias correction is achieved (or better,
bias is avoided altogether) if in addition to the velocity output a meas-
urement of the residence time is made available at the processor output to |
be used as a weighting factor in the computation of statistical quantifies.
McLaughlin & Tiederman (1973) suggested a bias correction for one compo-
nent measurements,.which has since been used by a number of inveetigators.
By weighting each sample by a weighting factor inversely proportional to the

measured velocity component of the ith

sample, us, a correction of the com-
puted statistical quantities results, which gives correct values in the case
of one-dimensional flow fluctuations or steady flow, but overcompensates,
when the velocity is fluctuating in two or three dimensfons. Another 1imita-
tion is that the one dimensional correction does not take into account any
directional dependence of the measurement cross section. Using the weight

luil'] the expressions for the corrected mean and mean square fluctuating

values become:

N
1.21“‘1' U N
U =g - = T - (3.4.2)
-z juy L |ugl
i=1 i=1
and
N |_] ,
lu, [u;-ul
g _ i i i (3.4.3)
N -1
£ |usl
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Figure (3-8) shows expected errors in mean and rms velocity meas-
urements assuming a three-dimensional Gaussian velocity distribution and the
application of the one-dimensional weighting factor. Again the curves for ‘
Q = 0 correspond to the analysis by McLaughlin and Tiederman, while other
Q-values correspond to cases where the finite fringe number requirement
introduces additional angular depehdence. The one-dimensional correction
reduces the bias errors, but beyond approximately 15% fluctuations relative
to the mean the errcrs increaée quite steeply. However, for a value of Q
about 0.2 (corresponding to e.g. 8 zero-crossings out of 40) the directional
dependence of the measurement cross section is seen to balance to some degree
the over-compensation introduced by}the one-dimensional bias correction.

Bias effects and the various correction methods are presently being
studied by.a number of investigators. It still has not been firmly estab-
1ished underlwhich conditions the assumptions 1éading to the expressions for
tﬁe data rate in Equations (3.4.2)and (3.4.3) are valid. Some investigators

have reported a weaker correlation between data-rate and velocity than ex-

pected from these expressions (e.g. Smith and Meadows, 1974). Recent
nmeasurenents by Karpuk and Tiederman (1976) and Quigley and Tiederman (1977)

. in the viscous sublayer in pipe flow show good agreement between mean and rms
values computed from LDA single particle measurements corrected by one-dimen-
sional weighting anq hot-wire data. The measurements were made with an optical
system specially designed to give a probe volume with small spatial dimensions
in the direction of the mean velocity gradient. The authors note that the
data rate did not seem to be correlated with direction, but did not indicate
the ratio of the total number of fringes needed for the signal processing
to the number availab]e,winv

Recently Erdman and Gellert (]976) have studied the correclation between
velocity and particle arrival rate and have shown very good correlation in an

air flow modulated by an acoustic horn up to frequencies where particle lag

influences the particle mntion.
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Although the one-dimensional cofrection is of interest because it is
relatively simple to implement and gives good results in steady or one-
dimensional flow, it secms more promisingvin turbulence measurements,
especially of high intensify, to adhere to the method suggested by the ex-
pressions developed in Section (3.2) i.e. the residence time weighting;

This method should give correct results for two or three dimensional fluc-
tuations of arbitrary high levels of fluctuations as long as the directional
effect associated With a minimum number of zero crossings is negligible. This
condition can be achieved either by adding periods to the burst by optical
frequency shifting or. by basing the signal processing of the burst on the
avai]ab]e number of fringe crossings. The directiona]ldependence is then
reduced to the geometrical cross section of the volume, and the residence

time weighting should give correct results independent of the particular

shape of the volume even when the volume is truncated by the field of view

of the photodetector or by measurements close to a wall.

A number of methods of implementing the residence time correction have
been realized. Hosel and Rodi (1977) suggest a circuit, which measures the
width at half height of a burst by an analogue method (rectification and
Tow-pass filtering). The method of measuring the total number of fringes
in a burst (a digital method, which unlike analogue methods is not frequency
dependent) has been adopted by some commercial producers of LDA- equipment.
Both the measured number of fringe crossings and the time between the first
and last zero-crossing (or the velocity based on the inverse of that tine)
are made available simultaneously at the output. Experimental evaluation of
the residence time correction is still rather scant, but the results of Hosel
and Rodi (1977) show good agreement between measured and computed values
for mean velocities.

Finally, concerning velocity bias it may be mentioned (as already pointed
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out by MclLaughlin and Tiederman) that in simultaneous measurement of all
three velocity components (or in 2-dimensional measurements in flows in which
fluctuations in the third direction‘are negligible) it is of course possible
to compute the magnitude of the velocity vectorgri, and assign a weighting -
factor proportional to[!il'] to each sample set (uy, v, wy), and even to
correct for directiona]‘dependence‘based on the knowledge of the direction
of u. Such correction might be carried out on stored data points after the
measurement, but it appears that this method has not yet been tried in actual
measurements.

The question of whether other factors influence the data rate is still
largely unresolved. Tiederman (1977) raised the question of whether differ-
ences in signal-to-noise ratio of fast and slow bursts might influence the
data rate. Other physical effects, which cause correlation bet\ 2en data rate
and flow velocity include density variations caused by pressure or temperature
fluctuations, mixing of fluids with different particle concentration and chemicai
reactions. Asalor and Whitelaw (1976) derived expressions for the correlation
between combustion-induced temperature , pressure , and concentration fluctuatier
and data rate based on gésumptions about the velocity-temperature and velocity-
pressure correlations in a diffusion flame. From the analysis and subsequent
measurements the authors concluded that in this particular flow the bias effects
due to velocity fluctuations confirmed the hypothesis about the velocity-data rat
correlation of Mclaughlin-Tiederman. Velocity-pressure and velocity—temperatu%e
correlation effects were found to be negligible. Reference II discusses briefly
the extension of the arguments of Section (3-2) to flows with density fluctuatio

3.5 Correlation and Spectral Measurements

The measurement of covariance functions and spectra plays an important
role in turbulence research. These functions reveal the inner structure of
the turbulent motion and shed light on the dynamic processes of momentum and

energy transfer between the spectral components of the fluctuating velocity.
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The experimental and computational methods for the determination of covari-
ance functions and spectra have undergone considerable changes during the

last decades in step with the technological development of measuring apparatus
and computing facilities. These technical developments include digital |
sampling and data storage techniques allowing long-time averaging without
drift problems, decreasing cost and increasing speed of digital computers,

and the development and implementation of more sophisticated computational
methods. The latest step in this on-going process is the development of inte-
grated, hybrid analog/digital circuits allowing fast, inexpensive implementa-
tion of complex computational methods and transforms. Previous analog
delaying and.mu1tip1ying operations are replaced by digital manipulation of
discrete-time samples of the signal. Tradition and computational efficiency
have in nearly all cases dictated periodic sampling, but mathematical exam-
inations carried out in the fifties and sixties on the effects of random
sémp]ing and the realization that certain forms of random sampling have
advantages in spectral computation (e.g. alias-free spectra) plus

the fact that the burst type LDA signal processor provides data at random
times corresponding to the random arrival of scattering particles in the meas-
uring volume,have brought renewed interest and new developments in randon
sampling spectral estimation.

Methods of spectrum computation of regularly sampled signals from
continuous LDA-signal processors are essentially identical to those used in
hot-wire data analysis and the results are derived identically except for the
effects of drop-out and ambiguity noise described in Chapter (2). Three
basic methods of discrete power spectrum estimation exist:

1) the Blackman-Tukey method based on the Fourier Transform of the
autocovariance function,

2) the direct formation of the power spectrum from Fourier transform

coefficients of the sampled data, and



3) the digital filter or complex demodulation method.
Many variations exist, and the optimum choice of time lag, sample size and
possible smoothing window depends on the type of spectrum expected and the
desired characteristics of the resulting estimate.

Consider a record of length T consisting of N samples [u(ti)](i=1,2,---,N)

th sample, and let us designate

where t, is the time of measurement of the i
by C(t) and S(w) the time autocovariance function and spectrum of the under-
lying continuous signal. The basic characteristics describing the performance
of a spectrum estimate are then the deviation of the expected value of the

spectrum estimate S(w) from the true value, i.e. the bias given by

B =S(w) - E[S(0)] | (3.5.1)
where E[ ] denotes mathematical expectation, and the variability given as

an expressfon for the variance of a given estimate, e.g.

var [$(w)] = E[(S(w) - E[S(w)])?] (3.2.5)
Tﬁese parameters are normally functions of the desired spectral resolution
or bandwidth B and the number of samples N.

The effect on spectral aliasing of Various forms of random sampling was
studied by Shapiro and Silverman (1960), who concluded that although not all
types .of randomness in the sampling procedure lead to alias-free spectra,
many sampling distributions exist, including the Poisson distribution, which
will remove aliasing in computed‘spectra irrespective of the average data
rate, albeit at the.cost of increased variability. A number of spectral
estimates, equivalent to fhe Blackman-Tukey methods, but based on randomly
sampled data, were presented at the 1974 Purdue Workshop on laser anemometry
(Thompson and Stevenson 1974), In these methods an estimafed auto-
covariance function was formed from the measured values of velocity u(ti)and
the time increment since the last va]%dated samp1e,ti—ti_1. The time axis was

divided into M slots of equal width At where At is selected to give an effectiv
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spectral resolution Aw=1/(2nat) in the computed spectrum. An estimate of the
autocovariance function at nAt was formed by adding cross products between
samples u(ti) and u(tj) separated by lag times ti‘tj falling in the range
n at + (1/2) At and counting the number of such products:
zoulty) u(ty) ,
C(nat) = Jod z- . (n,']/z)AKti—tj < (n+1/2) a1 (3.5.3)
1,J

The denominator is simply the number of products in the window. The spectrum
was then obtained from the autocovariance estimate in the usual manner by
Fourier transform after application of a suitable data window, D(nat):
o M i nat
( k) =3 C(nat) D(nat) e’ “k (3.5.4)
n=1
The properties of this spectral estimtor were analyzed by Gaster and

Roberts (1975). First a more direct spectral estimator using all occurring

lag times ti - tj was investigated:

N N
Sy o ]
S$1{w) = —oy : 1<YJD(t tJ) u(t;) ulty) cos w(ty-t;) (3.5.5)

This estimator treats each cross product u(ti) u(tj) as a realization of the
autocovariance function for a lag © = ti-tj‘ Note, zero lag products do not
occur. The spectral estimator Sz(w) was shown to be consistent and unbiased

and to have a variance given by:

var[s ()] = 33 [S(u »

dnvjz | (3.5.6)
where a Poisson sampling process of mean rate v and a Gaussian random process
of mean square velocity o2 were assumed. This expression shows the increased
variance introduced by the Poisson sampling; the penalty for the random sampling

becomes appreciable for mean sampling .rates lower than the corresponding

Nyquist rate for regularly sampled data.
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The spectral estimator (equation 3.5.5) is impractical to implement
because of the double summation, but Gaster and Roberts did implement the
time-slot épproximation (equation 3.5.3), and showed using simulated signals
that the variance of the former (equation 3.5.6) is still a reasonable
estimate for the variability of the latter. For constant slot width
the spectrum is conveniently computed via the FFT, but computation by direct
implementation of equation (3.5.3) for logarithmically spaced slots is not
unreasonabie, since a high frequency estimate at w,. does not require
summing over the full array of covariance values, but only for lags shorter
than 1/wr'

The special features of these spectral estimators may be summarized:

1) no aliasing in the computed spectrum (a fact related to the LDA -
method of Samp]ing, not to the particular spectral estimator).

2) reaéonab]y simple implementation, even for non-uniform lags,

3) insensitivity to added white noise due to the fact that only
non-zero lag products are used in the estimator, and finally,

4) an increased variance of the spéctra] estimate relative to
regularly sampled signals. |

In a more recent paper, Gaster and Roberts (1977) examine a direct
“transform of the sampled data:

§,00 = 5mpr [z ulty) e™% 2o 5 u2(t)) p2(t,)] (3.5.7)
i i
This estimator is identical in form'to the estimator used for regularly
spaced samples, However, in this case the time increments are random and the

terms in the sum are evaluated at the random sampling times ti'

However, all samples are weighted equally and the factor ti'ti—1 originally
multiplying each term is replaced by the average interval between samples

1/v and pulled outside the sum. It is shown that the variability of this
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estimator, evaluated for Poisson samb]ing and assuming a Gaussian random
process u(t), in general depends on the shape of the spectrum S(w), the
window D(t) and the length of the record length T but for large record
length, approaches the Va]ue

var [§,(0)] = [S(u) + Z 1 (3.5.8)

The first term represents the variébi]ity of the conventional periodogram
with periodic sampling, whereas the second represents the added variability
due to the random sempling. Data smoothing windows or block averaging may
be épp]ied to form stable spectrum estimates. Gaster and Roberts suggest
that in many cases it will be advantageous to use a spectral bandwidth which
increases in proportion to the center frequency of the estimate in order to
obtain stable estimates at high frequencies.

So faf only the slotted time lag auto;ovariance method has been applied
to actual bufst LDA realizations (no residence time weighting). Measurements
wére reported at the 74 Purdue meeting by Smith and Meadows and by Scott.

These measurements were in free jets in air. Other tests included meas-
urements of acoustical vibrations with a loudspeaker. The basic feasibility
of the burst type LDA power spectrum measurement was proven. Later results
have been reported by Mayo et al (1974) and by Bouis et al (1977. None of
these measurements made any attempt to.correct for the bias effects
discussed in Section +3.2.2 and below.

It seems that more experience with LDA 'spectral measurements are needed
before all aspects of error sources.are clarified. A study (Wang 1976, and
Asher, Scott and Wang 1974) of various sources of errors in relation to counter
LDA data concludes that the quantizing of the output due to the finite resolutio
of the counter itself is the greatest source of error in LDA single burst spec-
tral measurements. However this analysis did not consider the "apparent turbule

caused by the finite dimensions of the measuring volume in the presence of grad-
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jents within the volume as described in Section 3-2 nor did it consider the
biasing effects introduced by using uncorrected data. It should be apparent
that bias effects will somehow modify the computed spectral estimator as we]]
as mean and mean square values, and that bias correction methods shou]d be
applied to spectral measurements as well.

In Section (3-2), it was shown that autocorrelation from burst processors
could be computed correctly without bias aé

z ui u. Atij

R(x) = +2d I U '~ (3.5.8)

I At,.
i W

where Atij is the amount of time a realization u; with residence time Ati at t,

overlaps another reaiization uj of residence time Atj at tj = ti+T' Recall
that self products (i=j) are not included in the sum since they result in the
unwanted spike at the origin. This value (t=0) is computed separately by
gguation (3.2.16).

In practice, equation (3.5.8) is not a useful algorithm since not only
must the particle velocities and transitltimes be stored but also their
arrival times from which the over]ap is computed.

| It can be shown (Buchhave, 1978) that an estimator which retains the
essence of equation (3.5.8) can be formed by simply multiplying each velocity

realization taken at different times (or from different records) by its

residence time and dividing by the sum of the residence times:

u. u. Ati At

Rl(‘;) = 1aJ v J . T = it'—t'l
L At Atj ’ id (3.5.11)

i,J
This estimator is not biased due to velocity - data rate correlation,
if angle effects have been minimized by frequency shift or similar techniques

(c.f. the discussion about bias correction in Section (3-2). It is also easy

to see that this non-biased algorithm can be fitted directly into the time

slot approximation discussed earlier.
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To thiS point it appears that the significance of the b{as correction
in the formation of autocorrelation functions and spectra has not been
studied. This question will be taken up in a succeeding publication
(Buchhave, 1978). A1l attempts to-date to reconstruct the autocorrelation
from burst LDA's have been biased since no attempt has been made to correct

for the residence time (or particTe arrival rate).

Some preliminary results were pub]ishéd at the 1978 Purdue meeting
(Buchhave, 1978a) and the question will be treated in more detail in a

succeeding publication (Buchhave, 1978b).
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4. REFRACTIVE INDEX EFFECTS ON LDA MEASUREMENT

4.1 Source and Magnitude of Refractive Index Fluctuations

If the laser beams of the LDA must propagate through a medium having
random index of refraction fluctuations, the ray paths will no longer be
straight, but will have random f]qctuating curvature, and the phase and am-
plitude of the arriving signal will fluctuate randomly. This is the phe-
nomenon which causes jitter and scintillation of stellar images, and scin-
tillation of extra-terrestrial radio sources, where the index of refraction
fluctuations are due primarily to temperature fluctuations in the atmosphere.
There is an extensive 1iterature on this subject (see, for example, Monin &
Yaglom 1975, Chapter 9).

The effect of 1hdex of refraction fluctuations on LDA measurements has
been considered by Lumley et al (1978), whom we follow closely. These fluc-
tyations arise primarily from fluctuations of temperature or composition when
the LDA is used in flows in which heat transfer, chemical reactions or com-
buétion are taking place. We will find in section 4.3 that fluctuations of
the order of 2x10'6 are necessary for an appreciable effect. Let us consider
what level of fluctuations might be met under various circumstances. In
gases, the index is usually given for Sodium Tight (x = 0.5893 um), and at
- 273° K and one standard atmosphere (101 kNm'z). The index under other con-
ditions is approximate]y proportional to density and is only a weak function

of wavelength in the visible range. Some representative values of (n-l)}O4

under standard conditions are:

CH4: 4.44 02: 2.71

CO,: 4.48 H,0: 2.49

o
Air: 2.93
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(Handbook of Chemistry & Physics, p. E-224). Taking air as an example, we

can write
s 273 -3p ~
(n-1)10" = 2.93 —==2 £ =7.92x 107" & (4.1.1)
101x10
where p is absolute pressure in Nm"2 and T is absolute temperature in O.

If we consider isentropic variations in the pressure in a compressible flow,
and make use of a quasi-Gaussian estimate relating pressure and velocity
fluctuations (Batchelor, 1956; p. 182), we find that r.m.s. velocity fluc-
tuations of the order of 70 m/s are necessary to produce index of refraction
fluctuations of the necessary level. Since this corresponds to a 4% tur-
bulence level in a sea-level mean flow at Mach 5, we can usually neglect this
source of refractive index fluctuations, and take P = const. For temperature

fluctuations we can write

.
n' = - (n-1), ;% 0 (4.1.2)

where T0 and (n-])o are the values at 273%°K, and 6 is the temperature

1

fluctuation. Thus, for air at 273%K, dn/de = -1.07x1078 ok white at

1300 °K dn/de =-4.73x10"8 k1.

As far as composition fluctuations are concerned, to a first approxi-
mation we may take the deviation proportional to the relative mass fraction

X. Thus, for a two component mixture, we obtain

T
= n.-n. = - 9
dn/dX = ny-n, (n] n2)0 T (4.1.3)

Considering, for example, a Methane-Oxygen mixture, we have dn/dX = 1.73x10_4

5

at 273 °K, and 3.63x10° " at 1300 °K. Since we may have mass fraction fluc-

tuations of order unity, these are also representative of the values of n'.
In Tiquids, the index of refraction is considerably more sensitive to

temperature. In water, for example, at 273 °K, we have dn/ds = ~9x107° ok”!
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for the absolute index of refraction for sodium 1ight (Handbook of Chemistry

& Physics, p. E-223).

In addition, since the refractive index of various liquids differs usually
in the first decimal, mixing of two 1iquids of differing indices can result
in values of dn/dX of order 10']; glycerine-water results in 0.14, for ex-

ample. If we consider the case of sea water (Handbook of Chemistry and

Physics, p. D—249).we find the index of refraction to be primarily a func-
tion of salinity (measured in parts per million), with dn/dS = 1.8x10_4. If
the LDA were used in an experiment involving the mixing of sea water at 30°/00
salinity and fresh water, we could have values of n' of the order of 5.4x107°.
It is evident that there are a number of situations in which the LDA
could be used in which substantial index of refraction fluctuations might
be present; we must examine the sensitivity of the measurements to these
fluctuations.

4.2 Effect of Fluctuations on Ray Path and Phase in the Geometrical

Optics Limit.

We may assume that the wavelength of the radiation is short relative
to the size of the inhomogeneities, and that the radiation is monochromatic.
We may then go to the geometrical optics limit (see Tatarski, 1961, section
6.1; Neubert, 1970). If k is the wavenumber of the radiation, and n the
index of refraction, if we write E = Aexp [iS], where E is any component of
the electric field, A is the amplitude and S is the phase, we obtain the

eikonal equation for the phase

s,. = k2n2(x) (4.2.1)

From the canonical Hamiltonian solution to the eikonal equation (Kravtsov,

1968) we obtain

S = S0 + k J n(S') ds' (4.2.2)
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where the integral is taken along the ray path Xi(S) given by the Fermat
relation
dX. _
=4 |, i |
Msi = s [n ds ] (4.2.3)
It is probably easiest to consider the fringe mode of operation, in
which two beams (in the undisturbed state)

K2 (k sin 672, k cos 6/2,0) = ki
‘ (4.2.4)

un
=
S

k). (<k sin /2, K cos 8/2,0)
form fringes which, if undisturbed, would 1ie stationary in planes perpen-
dicular to the X axis. Lines of constant phase difference of the two signals
will be lines of constant fringe phase. If these lines of constant fringe
phase move with a certain velocity, this will produce an error in‘the appar-
ent particie velocity.

We may calculate

S

g8y fﬁl(s')ds- + ku(s) 82 (4.2.5)
0

dX

dS _ 3S i
where dat - axi It

X1 to vary, corresponding to the fringe velocity. Hence, dX]/dt will con-
aX] N aX] dg]
ot 98, dt

To hold the phase difference constant, we must allow

sist of two parts, where E] is the co-ordinate of the ray on

the initial wave front. We are not interested in the motion of & however,

but in the motion which it produces at the scattering volume, so that we can
dX ax

write 1
t at

+ou where Uy is the velocity of the fringe pattern.
1

Hence

. D .
. [ oy “J‘H o5 aS(r)] N [ s s(r) J 0.2.6)
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where axg/at is 1/2 the sum of the ray terminal velocities and aX?/at

is 1/2 the difference. We have selected rays which intersect instantaneously,
so that the values of'n at the end of each ray are the same. We may now
consider n = n + n', n' << n. The first term in (4.2.6) is of order n', and
it is clear that 8Xj/at.+ uj is at most of order n'. Hence, to 1owest‘order

as (1) 5s(r)

we can neglect the departure of n and 3. " 3.
J J

values; we may also take the integrals in (4.2.6) along the undisturbed rays.

from their undisturbed

In addition, we take the termination of the rays on a plane perpendicular to
the X, axis, passing through the point of intersection of the undisturbed
rays. Hence, X2 = Xos @ fixed value, and the second term in square brackets
in (4.2.6) vgnishes. Since for the undisturbed rays we have as/aXj = kj/k,

we can write

S L L

W= -3 "=, . 8 "(z_'i)dS-f"(i'L)ds (4.2.7)
. n 2 sin 5 :

where we have taken the undisturbed rays to be of equal length L.
To evaluate axf/at, we must integrate (4.2.3) twice, making use of the

assumption that n' is small. To first order we obtain

ax L :
1_L Sy -
3t :f (1-0) nyqds (4.2.8)
n 0

where we are neglecting the change in slope from the undisturbed value as
the ray pierces the plane, a term of order L % sin %—, which is considerably

smaller. Thus,

L L
up = - ]7% [ JU- %) n,,(x-L)ds + J (1- [S—)r'\,1(X'r)d5]
(0] 0
] L L
- —_— n(x-i)ds - | n (x-r)d 4.2.9)
n 2 sin %—[OJ nx 1? > i n (xr)ds J (

Physically, it can be seen what is happening: presuming that the phases

stay the same, if the beams swing in the same direction, the fringes will
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move with them. If the beams swing in opposite directions, however, the
fringes will remain stationary. In addition, if the relative phases change,
the fringes will move; We may note that one of the standard techniques for
examining flows without mean velocity is to shift the frequency of one beam'
to produce a steady drift of the phase difference, and hence of the fringes.
To produce this effect, the parenthesis of the second term in (4.2.9) is re-
placed by Aw/k.

The ratio of fhe first and second terms can be estimated by taking
N,y = n'/An, n = sy U= n'U/An where An is the Taylor microscale for the
index of refraction fluctuations. The ratio is L sin %/An. Since sin %—~ 0.1
in most situations, and L will usually be at least 32, the integral scale,
we have 0.3/§Z7T§'for the ratio, where Rz = ug/v. If R2 = 167, the terms
are comparable; if Rn = 1500, the terms differ by half an order of magnitude.
Laboratory values of R2 typically lie between these two values, so that
although the first term is probably larger in most circumstances, it probably
does not always dominate. It is of course true also that path Tength and
scattering angle will differ in different experimental situations.

What is not apparent from (4.2.9) however, is that the spectra of the
two terms differ markedly. Lumley et al (1978) find that while the spectrum

4/3, that of the second falls as K'2/3’

of the first term rises sharply as K
so that the contaminating effect at the high end of the spectrum is felt

from the first term long before that from the second term. This is because
the first term depends on derivatives of the index of refraction field one
order higher than are present in the second. We will Timit our consideration
to the first term, and refer the reader to Lumley et al (1978) for a dis-

cussion of the second.

4.3 Beam Swinging Effects.

It is relatively straightforward to show that the cross-spectrum between
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the two beam-swinging terms in (4.2.9) is negligible for large L, since

the region of correlation is of fixed extent as the beams diverge. Thus,

the spectrum can be written as

+ o
2
L, U? anLk] ” [§(5-1) + 5(5-3)]‘Sn(l<_)dk2dk3 (4.3.1)

o=

n

where K]U=w *_ . Taking the spectrum of index of refraction fluctuations to
be isotropic, so that Sn = En(k)/4nk2, where En(k) is the three-dimensional

spectrum, and
__7?__
E =3:€

2/3 (-5/3
nT Y5 K (4.3.2)

e

which is a reasonable approximation for any scalar (Monin & Yaglom, 1975,
section 23.5) we obtain for the spectrum
=z,

3,2 8/3
%g-ﬂ—E-L g { cos 9—] (k,2)4/3 (4.3.3)

For this spectrum to rise to the same value as the ordinary one-dimensional
velocity spectrum at the highest end, K]n=0.55 (Tennekes & Lumley, 1972,

p. 273 requires

2 2 3
n'" _ u L -9/4 -8/3

If we take typical values of u/U ~ 10_ , L/2 ~ 3, R2 ~ 800, cos = - 1, we
have n'/n = 1.96 x1078 required.

This value of n'/n corresponds to temperature fluctuations of 1.83 °K
in air at 273 °K, or to fluctuations of 41 °K in air at 1300 °K, We may
consequently expect this to be a significant effect in combustion. Methane-

-2

Oxygen mass fraction fluctuations of 5.39 X 10 = at 1300 °K are also sufficient

* and we have used Taylor's hypothesis; that is, we have assumed that the
principal source of variation contributing to the time derivatives appearing
in (4.2.9) is the convection of the frozen index-of-refraction fluctuations
across the ray path, and we have taken the mean velocity in the 1-direction.
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to produce these levels of n'/n. Note that the cut-off point, where (4.3.3)

2/3; hence, nearly a full decade

crosses the velocity spectrum, goes as (n'/n)
will be lost when the‘mass fraction fluctuations of CH4-02 are 0(1) at
1300 °K. In addition, it must be noted that at the cross-over point the
combined spectrum is twice the value of either, so that the spectrum is
contaminated by 10% or more down to a wavenumber about half the cross-over
value.

In water, of course, the situation is much more serious: 2.17 x 10'2 °K
will satisfy (4.3.4), and 1 °K will cause loss of a decade.

Note that the spectral level goes up quite rapidly as L increases,
every effort should be made to keep L as small as possible, though it will
probably not be possible to reduce it‘much below a value of 3.

Using the spectrum (4.3.3), we can integrate to find the r.m.s. value
of the spurious velocity. This is useful because in many experimental situa-
tions a continuous signal is not obtained, so that the spectral information
is not available. Hence, only the direct influence on the variance can be

determined. Integrating (4.3.3) we obtain

S ——
3X 7
Efl )2 = g.90x1072 N— (L

2 L

13U R7/4 (cos 2)8/3 (4.3.5)

If we adopt as a criterion that the r.m.s. value of the spurious velocity

should be 10% that of the real velocity, then this requires that

X

= 0.112 (532 R, (cos %)'8/3 (4.3.6)

:|l
N

Again using the values cited below (4.3.4), we find a level of n'/n = 1.86x10
required, or virtually the same as that arising from the criterion (4.3.4).
Hence, in this parameter range, a signal/ noise ratio of unity at the high
end of the spectrum or 10% contamination of the r.m.s. value of the signal,

are equivalent.

-6
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We should also estimate the r.m.s. motion of the ray terminus, since
this represents an uncertainty in the particle location; in addition, if
the motion of the ray terminus becomeS too large, it is possible for the
beams to fail to overlap, and thus produce no fringes. In this case, the
signal is lost. It is simplest to write (4.2.3) on coordinates along and
perpendicular to the undisturbed ray path. Then, making the same assumptions,

we obtain

— 7 3
X% = Gz L (%Rl”“-]) (4.3.7)

Taking the same‘values quoted below (4.3.4) we obtain Yi?:~ 0.5um,
or 5um at ten times the level of n'/n. These small values are quite con-
sistent with the fact that the velocities of the fringes octur primarily
at the highest frequencies. If sin-% ~ 0.1, a typical value, the fringe
spacing is roughly 2.5um, if 1light of wavelength 0.5um is used. Thus, we
are envisioning r.m.s. motion of between 20% and 200% of the fringe spacing.
The beam diameter at the scattering volume is usually of order 10 fringes,
or 25um. It is clear that only under extraordinary circumstances would
Ji?r be large enough for the beams to fail to intersect. However, if we

consider the case of mixing of sea water at 30°/ , salinity with fresh water,

we obtain J;? -~ 1.24 mm, which is more than sufficient.

4.4 The Possibility of Correction

Correction of the measurements for these effects is possible in several
ways. Obviously, if the spectrum can be measured sufficiently beyond the
cross-over point to reach a region of approximate K4/3 dependence, this can
be subtracted. In the absence of this, however, there are other possibilities.
If one beam can be passed through the same part of the flow and heterodyned

with an unscattered beam, and the result processed by a detector, then from
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(4.2.5) we get a direct measure of
L
kU J ns ds : (4.3.8)
)
(assuming Taylor's hypothesis). This will have a spectrum given by

el kK2 n'2 L 1%(cos 2) 8/3 (k,q)72/3 (4.3.9)
and a variance given by
6-11 kK2 n'2 =% (cos P¥3 Sr, ) (4.3.10)

Depending on the experimental situation, the value of L may not be the same.
However, if the various parameters can be estimated, an estimate for n'2

can be obtained from either (4.3.9) or (4.3.12) and this used to correct the

measurements.
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5. PARTICLE PROBLEMS

5.1 Criteria for Particle Selection

We cannot consider here the various types of particles commercially
available for flow seeding. We will consider, however, the criteria which
should be used for partfc]e selection.

The basic requirement is that the particles follow the fluid motion down
to the smallest scale of interest. We will presume here that the smallest
scale of interest is 11n where n is the Kolmogorov microscale; this corres-
ponds to kn=0.55, where k is wavenumber. This is essentially the viscous
cut-off (see Tennekes & Lumley, 1972, p. 270). By following the fluid
motion,'we mean that the value of the'spectrum of particle/fluid relative
velocity should be small compared to the value of the spectrum of fluid
velocity at the wavenumber in question. Following Lumley (1976), and taking
the fluid velocity seen by the particle to be essentially the Langrangian

velocity, we have

2
da, w
5 << 1 S (5.1.1)

2
R R
1+a$ w

1/4 the

for w.= 0.74 v/n. -2 is the particle time constant, and v = (ve)
Kolmogorov velocity. If we take as a specific criterion that the velocity

should be in error by no more than 1%, we may write
- ev1/2 1
aqw < 10 or a1(—0 < 77 (5.1.2)

Using e = u3/2 (Tennekes & Lumley 1972, p. 68), we may write (5.1.2)

as

uoyl/2 1 ,

In a turbulent pipe flow of water at 1 m/s, diameter 6 cm, this gives roughly
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a 5_2x10-45; for the same flow in air we have a, 5_9x10°45. We may use
the Stokes form for a]V(Lumley, 1967):
2 ’ .
=4 pr
a1 = g7 (2 > +1) (5.1.4)

where Py is the particle density and pf'that of the fluid, and d is the
particle diameter. For use in air it is difficult to find particles of

45

density much less than 1 g/cc  For such particles, the value of a; = 9x10"
corresponds to d ~ 17um. For the case of water, if we presume that op is
still 1 g/cc; we have d ~ 49/um.

Since scattering particles typically in use have diameters of the order
of a few microns, we may be sure that in these typical situations there is
no need for concern that the particles are not following the flow. It is
not hard to think of situations with higher Reynolds numbers and shorter
chgracteristic times, however (e.g.- rocket exhausts) where this might be a

problem.

5.2 Influence of Non-Uniformities of_Partic]e Concentration

Two common seeding methods are likely to produce non-uniformities of
particle concentration which can influence velocity statistics. In one,

a point source of particles is introduced upstream of the measurement location;
in the other, only the turbulent part is seeded, in a turbulent flow having a
turbulent/non-turbulent interface.

Let us consider first the case of a point source. For simplicity we
will take a homogeneous turbulence with a uniform mean velocity U. To sim-
plify matters further, we can suppose that the particles are released along
a line perpendicular to the flow, parallel to the X3 axis, a distance L up-
stream. In this way we need consider only wandering of the particles in
the Xy direction. The generalization from a line source to a point source
is straightforward. Now, if the particles are released along the X3 axis
=0, and measurements are carried out along

between -dx2/2 < X f_dX2/2 at x

2 1
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the line Xy = L, X3 = 0, we will have a signal if XZ(L’ x2,0,t|t-L/0)

e[—dx2]2,+ dx2|2], where X2(5) t|t') is the 2-position at t' of the material
point which was or will be at x at t (we are ignoring dispersion in the
direction of the mean flow). If, for simplicity, we suppose that the turbu]énce

is Gaussian, then X2 and.uz(g,t) will be jointly Gaussian. We have
t-L/U
Xy (LoXps0,t[E-L/U) = x, + f'uz(x(é,t|t'),t')dt' (5.2.1)
t

The mean value is Y; - Xy and the variance is

(X2-x2)2 = 2 g TL L/U = og, say (5.2.2)

" where TL is the Lagrahgian integral time scale, and we have presumed that
L/U is at least several times TL, a restriction probably not met in practice.

For the cross-correlation, we may write

t-L/U

_2 1 ] 2
T (K ETEL/U)%,) = u J o (t'-t) dt'= - W2 T, (5.2.3)
t
where oL is the Lagrangian autocorrelation coefficient. Hence, the auto-

correlation coefficient is given by

- L
p=- ot | ' (5.2.4)

The probability density for - dx2/2 < X2 <+ dx2/2, and the joint densities
for Uy to have an arbitrary value while - dx2/2 < X2 < + dx2/2 may be written
down immediately, from which we obtain the conditional probability for U2,

given that X2(L,x2,0,t|t-L/U) € [-dx2/2,+dx2/2]:
i o u Xo 12
2T o1 V1-p2 (1-p7) ] 2
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If the option is taken, that the processor holds the last value during
drop-outs (see section 2.7), then the probability density for the total sig-
nal is the same as that for the signal during the on-times. Thus, (5.2.5)
will be the density for the total signal. We see that, if the measurement
point is not directly downstream of the release point, a spurious mean velocity
will be introduced, given by |

g .

Uo = -p L x, =
Up =P e TR u/2L (5.2.6)

while the variance is reduced:
7 .
U, (1-TLU/2L) (5.2.7)

even difect]y downstream of the release point. One can conceivably get
sufficiently far downstream so that TLU/2L<<1, so that the effect is
negligible, but this is often beyond the range of the experiment. Roughly

speaking, TL = 2/3u (Tennekes & Lumley, 1972, p.278), so that

L~ 1Uz2 |
T *Eul (5.2.8)

Since U/u is probably between 10 and 102, for an error of no more than 10%
in the velocity variance, we require L/2 < 17 or 170 respectively; that is
of the order of ]0—102 boundary layer thicknesses, jet diameters, etc.

The second seeding method which can cause problems concerns uniform
seeding of the turbuient part of a flow. For example, if a jet is uniformly
seeded at the nozzle exit, then downstream the seeded material will correspond
exactly with the turbulent fluid, and there will be no seeding in the non-
turbulent part exterior to the tufbu]ent/non-turbu]ent interface. If the
processor holds the last value of the signal each time the signal drops out,
the probability density of the velocity will be exactly that measured in the
turbulent part of the fluid only, which is observed to differ considerably

from that measured in both turbulent and non-turbulent parts (Hedley & Keffer,
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1974). Since in most flows, intermittancy extends deep into the flow,

reaching the centerline in a wake (Townsend, 1956), this is not a useful way
to measure overall properties. It is, however, an ideal way to measure pro--
perties in the turbulent fluid only, a matter of considerable current interest.
Such an application would e]iminate the'necessity of establishing threshold
criteria for the velocity field, always more or less unsatisfactory. The
results obtained should be essentially comparable with those obtainable with
the hot-wire by conditioned sampling on a temperature signal, if the turbulent

fluid is heated.
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TABLE I

Formulas For Calculating Ambiguity Bandwidths
From Berman and Dunning (1973) and George and Lumiey (1973)

Transit Time:

Turbulent:

Mean Gradient:

Total:

AwL = u/%@b]

(807)? = 2/15 - (Ko,)? (e/v)

AQG = Ko, (-du/dx,)

2 +2 cos 1/2
1 + sin ]/26{2——(:0—5‘2—-/2

W
}
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TABLE I1

Statistical Properties of Phase Fluctuations

2 -
Probability Density - Py (x) = 1/2 [1 + '(XE)T] 3/2

A . B ey dp oy 2n (1-p2)
utocorrelation - HE) ¢(t+T) =12 (gz-» ) T

o = exp {(Awr)z /2}

Spectrum - S (w) = 4]——-/77 Aw % n-3/2
n=1

w2
exp {; znZAmiz }



1-1

1-2
2-1

2-2

2-3

-73-
FIGURE CAPTIONS

Wave vector diagram showing directions of incident and scattered
light and the velocity vector. ,

Optical configuration of typical LDA

Turbulent spectra normalized in Kolmogorov variables showing effect
of spatial averaging (reference I)

Typical transfer function resu1t1ng from averaging of turbulent

fluctuations across the volume, me (largest scattering volume dimension)”

(reference 1)

Simulated turbulence and LDA outputs from three types of signal
processors - a phase lock loop, a zero-crossing detector, and a
frequency lock loop.

Probability density of random phase fluctuations.
Autocorrelation of random phase fluctuations.

Spectrum of random phase fluctuations.

Typical autocorrelations measured in turbulent flow using an LDA.
Finite value for 1= 0 reflects effect of finite bandwidth of detector.

"Velocity" spectra measured in turbulent pipe flow showing effect of
phase fluctuations at high frequencies. (Berman and Dunning (1973).

Oscilloscope traces showing (from bottom): the Doopler current, LDA
output (threshhold at zero) and LDA output (threshhold set to eliminate
large phase fluctuations).

Typical uo(t) from equation (3.2.1) illustrating how the velocity is

sampled by individually arriving particles.

Computation of the autocorrelation from burst processors using only
the overlap times for different particles. The middle trace is the
upper trace displaced by amount T as shown.

Measuring volume cross-section.

Measuring volume cross-section as a function of angle in the x-y
plane (0=45°).

Calculated bias error of mean and rms velocity measurements for 3-D
Gaussian, isotropic turbulence including effects of measuring volume
cross-section.
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FIGURE CAPTIONS

Velocity probability distribution for uncorrected 2-D velocity
fluctuations showing effects of bias and results of McLaugh11n-
Tiederman correction.

Mean velocity bias in Poissenille flow (after Kreid 1973).

Calculated bias error of mean and rms velocity measurement in
3-D Gaussian, isotropic turbulence including effects of measuring
volume cross-section. :
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Figure 1.2 Optical Configuration of typical LDA.
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Figure 1.3 Illustration of the stochastic nature of
the LDA burst signal (from Mayo 1977).
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Figure 2.1 Turbulence spectra normalized in Kolmogorov varijables
showing effect of spatial averaging.
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Figure 2.2 Typical transfer function resulting from averaging of turbulent

fluctuations across the volume m= (largest scattering yalume
dimension) reference 1



-80-

TURBULENCE

‘A\MwJWmeMWVVW”( v MMM\WWM\
M‘\f QVWWWWWMWWM{MM‘W\WWWM

COMMERCIAL TRACKER

"“\MwmMM‘WWM\Wf’%

Figure 2-3 Simulated turbulence and LDA outputs from three
types of signal orocessors - a phase lock loob,
a zero-crossing detector, and a frequency lock
loop.
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Figure 2-5 Autocorrelation of random phase fluctuations.
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2-9 Turbulence spectrum in grid turbulence - §A= 453x-LDA, @-hot film
anemometer



-87-

Figure 2-10 Oscilloscope traces showing (from bottom): the
Doppler current, LDA output (threshhold at zero)
and LDA output (threshhold set to eliminate large
phase fluctuations).
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Figure 3-1 Typical uo(t) from equation (3.2.1) i]]ustratinq
how the velocitv is sampled by individually arriving
particles.
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Figure 3-2 Measuring volume cross-section.
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Figure 3-3 Computation of the autocorrelation from burst processors using only
the overlap times for different particles. The middle trace is the
upper trace displaced by amount t as shown.
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Velocity probability distribution for
uncorrected 2-D velocity fluctuations
showing effects of bias and results of
McLaughlin-Tiederman correction.
(after McLaughlin & Tiederman 1973)
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including effects of measuring volume cross-section.
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