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Abstract

The angular responge of an x-wire is studied at low velocities (0.25 m/s
to 1 m/s). It is found that the k-factor in the modified-Cosine Law is strongly
velocity dependent. The implications of this on wulti-component measurement
are explored, and a practical scheme for inéorporating it is proposed. At
lower velocities a total loss of directional sensitivity is observed which
leads to additional errors in x-wire measurements. Expressions are derived for
evaluating when cross-flow errors begin to affect x-wires. Also, a ''dropout'’
phenomenon is observed in which certain voltage pairs can not be converted into
the velocity components. The implication of this dropout and rectification on

the turbulence measurements is also discussed.



Nomemclature

u instantaneous velocity in vertical direction (m/s)

0 mean velocity in vertical direction (am/s)

v instantaneous velocity in horizontal direction (m/s)

v mean velocity in horizontal direction (w/s)

Oeff effective cooling velocity (m/s)t

Uo free stream velocity (m/s)

k coefficient in eqn. 2

] wire length (mm)

d ' wire diameter (mm)

a angle between the inclined wire and vertical direction (rad)

¢ angle between flow velocity vector and plane normal to wire (rad)



Introduction

It can be ssown [1] that for the laminar flow past an infinitely long and
uniformally heated cylinder placed obliquely to a uniform undisturbed velocity
field, the heat transfer is proportional only to the normal velocity component.
This result is known as the Cosine Law since it implies

Ueff = Uocos¢ ()
where ¢ is the angle between the flow velocity vector and the plane mnormal to
the wire as shown in Figure (1).

In most hot wire applications, however, the flow is not laminar and the
temperature distribution is not uniform. Nonetheless, the Cosine Law is still
the basic relationship on which empirical relations are b#sed. Schubauer and
Klebanoff [2] experimentally demonstrated circumstances under which the Cosine
Law was valid for finite length wires up to an inclination angle of 70°. Thus
th;re are situations where the mean velocities are high and the turbulent
intensities are small in ;hich Cosine Law may work satisfactorily. There have
been, however, fe; proponents of the Cosine Law for the high intensity turbu-
lent flows since the work of Champagne and Sleicher (3] which showed signi-
ficant deviation from thi§ simple response. Even so, there are many who have

continued to use the empirical relation (1) without being fully aware of its

limitaions.
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Real hot wires depart from Cosine Law because of their finite length and
because of end losses to the prongs. The effect of both of these is to make the
temperature distribution across the wire non-uniform. Binze [ 4] and Webster [5]
suggested the following relation

Ueffloo = [cos%) + kzsin2¢]1/2, (2)



the second term accounting for the cooling caused by the velocity component
along the wire. Hinze found the value of k to be between 0.1 to 0.3 whereas
Webster found k to be 0.2. Champagne et al. [3) in a systematic study on heat
transfer of inclined wires found k to be a function of the wire length to
diameter ratio, 1/d. They found k= 0.2 for 1/d = 250.
Alternatives to equation (2) have been proposed. Fujita and Kavoznay
{6] proposed the follo*ing expression
Oeff/Uo = cosdl1+A,(1-cos2¢/sing)] N .> (3)
where A was found to be slightly velocity dependent in the range of 2 m/s to

12m/s.

In addition to its anéul#: sensiti?ity and the probleams ii cre#tes at high
turbulence intensity, there are additional proflem§ thch ;tise under these
condi tions. Hot Qires reséond only to the magnitude of velocgty ;nd are in;en—
sitive to its direction. As a consequence, the wire is sensitive to components
of velocity in the ctoss—stfeam ditecgion. The go-cail;d ”czoss—f10§
errors’’. In addition, the wire cannot. di stinguish ;hen the sign of the velo-
city vector ch;nges. The phenomenon is kno;n as rectific;tién and can be a
major source of error in sitnations where the flo; teversalg occur on the wire.
Since the advent of the éon;tant teméefature anemometer and iiﬁeatization in
the mid 1960°'s, there has been almost total di;rega:d fbr the limitations
imposed by hot-wire tectification and cross flow errors. An é*ception to this
is the careful study by Tutu Qnd Chevray [7] of the effects of rectification
and cross-flow errors on x-wire response.

This paper attempts to summarize our experience at TBL in using x-wires in
high intensity turbulent flows and in flows with low mean velocity’, specifi-

cally, the effect of latter on the velocity dependence of the angular response,



the loss of directional sensitivity, and ""dropout’’.

 Experimental Results

The tungstun wires used in this study were 2.5 pm in diameter and were
gold-plated at the ends to give an effective 1/d4 of 250. These were operated
in the constant temperature mode using a DISA 55M10-system. The overbeat ratio
was 0.4, This low overheat was used to optimize the wire response for its use
in an non-isothermal flow and to reduce the velocity at which natural convec—
tion effects dominate.

Figure (2) illustrates the angular dependence of a hot-wire at velocities
below 1 m/s. These low velocities occur in buoyancy dominated flows such as
plumes and at the outer edges of many other free shear flo;s. It is clear that
the angular response is strongly dependent on the velocity Uo. Also note that
at the lower velocities and higher inclinations the wire's angular response is
significantly reduced. Other investigators have noted this velocity depen-—

dence, although the effects were weaker since the velocities were not as low.

Discussion of Results

The phenomenon illustrated in Figure (2) can be attributed to two c;uses:
first, the increased conducton to the end supports as the forced cooling is
reduced, and second, the increase in the natural convection losses relative to
the forced component with deéfeasing velocity. The first effect can be attri-
buted to increasing temperature gradient associated with these changes in the
wire temperature distribution. The second effect has beeen documented for
single wires by Collis and Williams (8] when Re < thla (for air). For our
wires this would correspond to a velocity of about 4 1 10_2 m/s, or about an

order of magnitude below that for which we observe significant effects on the



angular response.
An alternative to eqguation (1) can be taken as

2 ,1/2

0 /0 = lcos® + K2(0 )sin® ) %)
(o] (o]

eff
where k is dependent on the total velocity Uo. We were able to express this

dependence by the following polynomial

k30 ) =B + B 0l/2 4 g o3/2

1l o 20 )

Due to velocity dependence of k, the solution of (4) requires an iterative
procedure. First a guess of Uo is made and the corresponding k is calculated
from (5). Then (4) is solved to get a new value of Uo’ The procedure is
repeated until the t;o consecutive values differ by a specified tolerance. The

simple Cosine Law can be used to make the initial guess of Uo .

Implications for Measurement

Figure (3) shows the velocities which can be resolved by an x—-wire.
Assuming an ideal x—wire (no prong support interference, symmetric sensiti-
vity), no data can fall outside this cone. These curves were obtained by using
the restrictions imposed by equations (2) and (4). For the constant k-factor
the measured region i; bounded by t;o straight lines, whereas for our case
these lines change with the velocity, thus giving curves. Note the cusp at low
velocities which represents a total loss of directional sensitivity near the
origin or zero velocity. The dashed linmes correspond to the Cosine Law. At high
velocities, all three will perform adequately as long as the relative cross-

stream velocity is not large.

Cross—flow Erroxs
The most basic limitation on the hot wire is due to the so—-called cross-

flow errors which arise from the fact that a vector field (the velocity) is



being mapped into a scalar (the cooling velocity) by the wire. It is possible
to evaluate when these cross-flow errors become significant by expanding the
cooling velocity asbout the state where the fluctuating velocities are zero.
This has been carried out in detail in [4) for a single wire, and will be
extended to the x-wire in the following paragraphs. Consider Figure (4) which
shows a hot-wire inclined at an angle a to the vertical direction. The effec-

tive cooling velocity for this wire is given by

2

a 2
eff

= (u cosa + v sina)2 + kz(u sina - v cosa)2 + w (6)
where w is the velocity component normal to the u-v plane, the cross-dlow

component. For simplification it will be assumed that a is constant and is

equal to 45°. Therefore,

2 .
2 1 2,k 2. 2 \
Soep = 51u+v) + 5 (v V)T + w (7

Since when using an x-wire the w component is not known, the effective cooling

velocity must be assumed to be,

P O L l;—zwm-vm)z (8)
where the subscript m denotes the velocities measured using a x-wire. Thus the
cross—flow errors result due to neglect of w? in equation (8.).

Tutu and Chevray (7], by assumingva joint—-Gaussian pdf for the two velo-
city components, have calculated the errors in various turbulence moments due
to cross—-flow and rectification. ﬂo;ever. our objective here is to get algeb-
raic expressions which an experimentalist can use to estimate when these errors
begin to affect his measurements. To achieve this we equate the actual and

assumed forms of the cooling velocity of equations (7) and (B) to obtain

2 2

(u+v)2 + kz(n—v)2 + 2w” = (u +v )2 + kz(u -v ) (9)
m m @ m

Similarly for the second inclined wire (a= -45°) we have



(u-v) + kz(u+v)2 + 2w2 = (u -v )2 + kz(u +v )2 (10)
@ m m m
Subtracting (12) from (11) we have
u v = uv (11)
Thus the measured product of u and v is exactly the actual product.

Substituting u = 0 + v’ and v = V + v' into equation (11) and averaging

gives

v = uv + (0V-0 V) (12)
m m m m

This equation shows that cross-flow errors in the measured shear stress enter

only through the measured mean velocities as shown below.

Eliminating V from equation ( 9) uwsing (12', we can get an expression

. . s s 2
which is quadratic in um, The solution of this equation is given by

2

2
u? - %(u2+v2+ 2w 2) + %—\/(uzwz + 2 2)—4uv . (13)
® 1+k 1+k

where the positive root is needed to recover the proper expression for the case
when w2=0. »To obtain an equation for the instantaneous velocity u equation
(13) has to be gimplified using several binomial expansions. The final expres-
sion for L is then decomposed into a mean and a fluctuating part and then time

averaged. The algebra, although very lengthy, is straightforward, we here give

only the final result:

2 2 22 4
2x
L o e b R Y e
1+k° 0 0 0 0
2
where > ) is the leading error term. If similar analysis are carried out
1+k“ 0

for hot-wire placed normal to the flow (Binze, 1959), one obtains

2 2 22 2
0 =0 {1 + %(1—-- i S e %-!—)} (15)
m U2 U3 04 04




It is clear from the above expressions that the cross—flow errors for a x-wire

2 w
are greater than for a single wire by a factor of ~. For — = 50%, the mean

0
, 1+k2
velocity is overestimated by 12.5% for a normal wire and 20% for a x-wire.

The above procedure can be used to obtain the following expressions for

the second moments.

—_ _ )
z A 1 ,2uw2 2u2w2 w4 wz
Wt M T S T TSt e T D (18}
m 1+k” w0 u"0 u’0 u'0

. )
N 2 42
"Z=;T{1+ lz[vgzv'u;wz‘“’ 12(‘v 2.2 )]} (17)
m 1+k v°0 v 1+k 0%v

It is clear from these equations that the crossflow errors can signifi-
cantly affect the measured moments when turbulence intensity is high ()20%).
Note that because the higher order terms become increasingly important as the

turbulence intensity is increased, these expressions can at best serve as

indicators of when crossflow is a problem.

From the preceding it is clear that there are three primary sources of
error in a x-wire signal at low velocities, rectification, cross—flow and lack
of directional sensitivity at higher inclinations. The problem of rectification
is obvious for a single wire in which the flow must reverse its direction for
rectification to occur. Tutu and Chevray [é] have pointed out that rectifi~
cation errors are more subtle and serious for x—wires than for single wires.

The reason for this is illustrated by Figure (5) which shows how a nega-
tive u-velocity fluctuation can cause reversal on ome wire, even when its
wagnitude is substantially less than the mean. As a consequence, significant
rectification can occur in flows of even modest intensities (~25 %). Since

negative fluctuations in the streamwise direction are often highly correlated



with fluctuations in the cross-stream direction in shear flows (as in Fig. §b),
rectification can be a2 real problem, especially since it will not be detected
by wany data processing schemes in current useage.

Figure (6) shows a joint pdf of the u and v components measured in a plume
with 50% local turbulence intensity [10]. The straight lines correspond to the
limits of resolution of the cross-wire as shown in Figure (3). Note the squeez-—
ing of the contours of constant probability in the region at the lower left
where the resolution limits are exceeded.

An additional wmanifestation of the rectification phenomenon is the occur-
rence of voltage pairs which could not be resolved into velocity pairs from the
angle calibration. In other words, the instantaneous voltage pairs obtained do
not lie in the calibrated region of Figure (3) and can not be inverted by equa-
tion (4). As a consequence these data must be dropped from the statistics. For
such data, the word '"dropout’’ is probably a more accurate description than
"'rectification’'. Dropout is usually caused by a high intensity in the u or v
component and is especially troublesome when the mean velocity is low. This is
because wires are fairly insensitive to direction at low velocities and any
small measurement error (electronic noise, prong support interference, velocity
component perpendicular to the x-wire plane, wake of one wire or, another, or a
velocity or temperature gradient between the wires) can create a large error in
the output. The dropout is small at the center of flows such as plumes but has
been observed to be as big as 40% at the outer edges.

It is important to note that dropout can not be detected by common analog
signal processing schemes (for example summing and differencing circuits). As a
consequence, the processed data will be incorrect without the experimenter
being aware of the problem. The effects will be most noticeable in ‘the higher

moments where the scrambled tails of the distribution are most heavily
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Figure Captions
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1.

5.

Geometry for inclined wire showing relation of effective velocity
(assumed normal for Cosine Law) to flow velocity.

Angular Response of a Hote Wire.

Velocities which can be resolved by an x-wire.

Sketch showing how flow reversal can occur on an inclined wire at
only modest levels of turbulence.

2-D Probability Contours of u and v velocity components obtained by
x-wire at 50% turbulence intensity.

A Bot-Wire inclined at an angle a to the vertical direction.
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Figure 6.



