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Abstract

The coefficients of the orthogonal basis obtained
from the application of the Proper Orthogonal De-
composition (POD) to the streamwise velocity field
in the axisymmetric mixing layer are presented. The
coefficients are utilized to explain the interaction be-
tween azimuthal modes in the shear layer and their
relation to the large scale structure at a position 3
diameters downstream from the exit of a round jet.
The large scale structure in the axisymmetric mixing
layer has been found to be well represented by the
first radial POD mode and a further breakdown of the
structure into azimuthal modes reveals more insight
into the structure dynamics. It is shown that higher
azimuthal Fourier mode structures (m =3,4,5 and 6)
interact in the layer and a proposed phase relationship
between these structures at different parts of the layer
is discussed.

Introduction

The POD technique has been used in the eduction of
coherent structures in the axisymmetric mixing layer
by Glauser (1987). These experiments showed conclu-
sively that only three POD modes were necessary to
describe the radial dependence of all but the smallest
structures present in the flow. Moreover, only a single
POD mode captured all the essential characteristics
of the large scale structure. A surprising result of the
Glauser experiment, however, was that the azimuthal
Fourier modes necessary to describe the flow varied
greatly with radial position. (Note that the periodic-
ity of the flow in the azimuthal direction, 6, dictates
that the azimuthal POD modes are Fourier modes.)
Specifically, near the potential core, the 0-azimuthal
mode contained almost all the energy, while outside
the energy was distributed in modes centered around
mode-5.

The short-coming of the Glauser experiment was

that although it was able to determine which modes
were important to the flow, it could not determine how
they were assembled in the flow. For example, it was
not possible to tell whether the mode-0 (which dom-
inated the statistics of the inner shear layer and core
region) occurred simultaneously with the mode-5 con-
tributions on the outside, with a time lag, or simply
randomly phased with respect to it. This could only
have been determined if the eigenfunctions could have
been projected back onto the entire profile to deter-
mine the coefficients for a single ensemble. And this
would have been possible only if all the measurements
at all locations had been made simultaneously. The
coefficients so determined could then have been used
to reconstruct the instantaneous spatial and temporal
flow at the cross-section, one mode at a time.

The experiment of Citriniti (1996) was designed
specifically to provide the missing information to find
out how the radial POD and azimuthal Fourier modes
fit together in time. This was a non-trivial undertak-
ing, even by comparison to the Glauser experiment
since what was required was simultaneous measure-
ment in an entire cross-section of a very high Reynolds
number flow. And, most importantly, the measure-
ments had to have sufficient spatial resolution to avoid
aliasing the higher spatial azimuthal and POD modes
into the lower ones which were of primary interest.

The results of this effort to obtain the dynamical
relationships between azimuthal Fourier modes in the
axisymmetric shear layer are presented below. Specifi-
cally, the phase relationship between azimuthal modes
0,3,4,5 and 6 in the inner and outer portions of the
layer are determined.

Methods

Proper Orthogonal Decomposition
The present investigation uses the

POD-



reconstructed velocity database obtained in the
experiment of Citriniti (1996). In that experiment,
the POD technique was applied to an ensemble of
realizations of the streamwise velocity field, three
diameters downstream from the exit of a round
jet. The velocity field was reconstructed using the
calculated eigenfunctions and random coefficients.

The structure, in the POD application, is assumed
to be represented by the first of an ordered set of or-
thogonal eigenfunctions, ¥;(Z,t), that are defined by
the maximization of their normalized mean square pro-
jection on the velocity vector, u;(Z,t) (Lumley, 1970).
The maximization is performed via the calculus of vari-
ations and the result is an integral eigenvalue equation
of the Fredholm type (Lumley, 1970),
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where the symmetric kernel of this equation is the two
point correlation tensor

R ;(Z,7',t,1") =< wi(&, t)u;(&,t") > (2)

and 9, are the eigenfunctions and A is the eigenvalue.

Solution of this equation produces the eigenfunctions
and Galerkin projection of the instantaneous velocity
on the set determines the coefficients of the eigenfunc-
tions. The velocity field can then be reconstructed and
the form of this equation for the axisymmetric mixing
layer, (x1, 2o, x3) = (z,r,0), is (Citriniti and George,
1997),
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where n = 1,2,3... represents the discrete nature of

the solution set and ¢£") (r,m, f) and a,(m, f) are the
POD eigenfunctions and coefficients, respectively, de-
composed in frequency, f, and azimuthal mode num-
ber, m. An equation for the coefficients is obtained by
using the orthogonality of the eigenfunctions, i.e.

an(m, f) = /a?mf(r,m,f)¢§”*) (r,m, f)dr. (4)

Performing partial sums in equation 3, i.e. N =
1,2,3,..., provides a way to visualize different energy
weighted views of the flow. It has been shown, v. Cit-
riniti and George (1997), that setting N = 1 effectively
filters out the small scale structure and leaves an unob-
scured view of the large scale, or coherent, structure in
the axisymmetric mixing layer. Also, since the eigen-
functions are made orthonormal, the magnitude of the
streamwise velocity is determined by the coefficients.
Therefore, by studying the instantaneous coefficient
dynamics on a mode-by-mode basis, a clear view of
the structure interaction is obtained.

Experiment

The flow field at 3 diameters downstream of the
nozzle is representative of the fully developed mixing
layer. At this position, it has been shown that 138
measuring positions is sufficient to properly resolve the
flow field for the application of the POD to the stream-
wise velocity field (Citriniti and George, 1996). The
hot-wire probes are distributed across the mixing layer

at 6 radial position with the azimuthal distribution of
probes on the 6 radii, starting at the center and pro-
ceeding outward, 6, 12, 24, 32, 32, 32 thus totalling 138
positions. The transducers were simultaneous operat-
ing, single-wire, hot-wire anemometer probes powered
by in-house anemometers, v. Citriniti et al. (1994).
The sampling rate of each of the hot-wires was set at
2,048 Hz to satisfy the Nyquist criterion which must
be greater than twice the 800 Hz corner frequency on
the low-pass anti-alias filters. There were 300 blocks
of 1024 samples producing a bandwidth of 2 Hz and a
block length of 0.5 s.

The Reynolds number based on nozzle diameter, d,
for the jet is 80,000. The free-stream turbulence inten-
sity at the jet exit is 0.35% and the boundary layer at
the jet exit was turbulent with an approximate thick-
ness of 1.2 mm. The mean velocity profile was flat to
within 0.1%.

The statistics of the streamwise velocity field, as
measured by the sampling grid, demonstrate that an
axisymmetric shear layer has been formed, i.e. the
mean and rms contours are circular v. Citriniti (1996).
The mean velocity normalized by the exit velocity is
about 0.9 at the inner radius of the sampling array and
falls to 0.15 at the outside of the mixing layer. The
spectral character of the velocity field demonstrates
the fully developed, turbulent character of the mixing
layer, v. Citriniti (1996).

Coefficient Dynamics

The magnitude and phase of the random coeflicients
are shown in sequential order in figure 1 to figure 3.
The first column shows the temporal evolution of the
magnitude of the first radial POD coefficient while the
second shows its phase angle. The third column is a
plot of the reconstructed velocity field by the POD (w.
equation 3) with N = 1 and using the first 7 azimuthal
modes, m = 0,1,2,3,4,5,6. The third column shows
the effect the large scale structures on the streamwise
velocity field in the mixing layer. Each row in the 3
figures represents one step in the temporal evolution of
the structures. There is no discontinuity between fig-
ures so they could, in essence, be placed top to bottom
to obtain 12 straight time steps in the flow evolution.
Each row is separated by about 1 ms in real time.

In figure 1 the amplitude of the sixth azimuthal
mode is first seen to grow and then begin to decay
(column 1). Directly following the peak in this mode,
there appears to be a mode-transfer process that be-
gins with the increase in the amplitude of mode 5 and
proceeding to modes 4, 3 and 2. This transfer is in-
teresting because it suggests that the smaller length
scale modes may act as triggers, or perhaps indica-
tors, for the emergence of the lower, more energetic
mode-number structures in the mixing layer. This
mode interplay has also been observed in the POD-
based dynamical system simulations of Glauser et al.
(1992).

Citriniti and George (1997) have shown that the
higher azimuthal mode structure is associated with
streamwise vortices which advect high-momentum
fluid from the potential core to the outside of the layer
and low-momentum, ambient fluid toward the poten-
tial core. The fact that the mode-6 structures pre-
cede the lower mode structures indicates that these
streamwise vortices are important players in the en-



ergy cascade process of turbulence. It is interesting
to note that the mode-6 structure, which is correlated
over a shorter spatial scale than the mode-4 structure,
should be the trigger mechanism since this would im-
ply that the energy cascade proceeds from smaller to
larger scales. However, it should be noted that these
temporal visualizations do not follow individual en-
ergy paths but rather the entire field so the mode-6
trigger may just be the consequence of the temporal
sequencing of the large scale structure in the layer at
x/d = 3. These results are consisitent both with the
low-mode dynamical systems models of Glauser et al.
(1992) as well as the proposed mechanism for turbu-
lent structure interaction in the mixing layer proposed
by Glauser and George (1987). This model proposes
that the dynamics of the large scale structure in the
layer parallels the leapfrog mechanism of two interact-
ing vortex rings.

The phase of the random coefficients also shows in-
teresting trends. A pattern of large phase lag followed
by a continuous evolution toward zero phase and then
to large phase lead is seen at all azimuthal modes indi-
cating a highly repetitive pattern of structures exists
in the layer.

Other useful measures of the large scale structure
in the turbulence are evident in the movies generated
by the sequential plotting of the figures presented ear-
lier. In these movies, the true evolution of the large
scale structures is evident. Especially the bursting of
a highly coherent ring-like structure near the potential
core of the layer. This event is seen in the third row
of figure 2 and is followed (and proceeded because of
the repetitive nature of the flow) by the straining of
streamwise structures which are believed to be formed
by the breakup of the Kelvin-Helmholtz rings formed
at the edge of the shear layer.
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Figure 1: See figure 3 for extended caption
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Figure 2: See figure 3 for extended caption
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Figure 3: Sequential plots of the coefficient magnitude and phase and the projected velocity for the first POD
mode and azimuthal modes 0-6. Column 1: magnitude of the first 6 azimuthal modes. Column 2: phase angle
of the first 6 azimuthal modes. Column 3: projection of the streamwise velocity field using the first POD mode
and azimuthal modes 0-6 (v. equation 3). The rows display the temporal evolution of the various quantities and
are separated in real time by approximately 1 ms.



