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Abstract

The data base measured by Citriniti (1995) is used
to examine the accuracy of using Linear Stochastic Es-
timation to estimate the velocity field in the annular
mixing layer. This data base is used to compute the
velocity field that would be measured if the field was
measured on two radial rings in the shear layer and the
velocities on four other rings were estimated using Lin-
ear Stochastic Estimation. This result is compared to
the actual velocity field measured at 138 points on the
6 radial positions by Citriniti (1995). The estimated
and actual velocity fields are projected onto the or-
thogonal basis deduced by Citriniti (1995) and only
the information from the most energetic modes are re-
tained. It is found that the estimated field is capable
of accurately reproducing the gross features of both
the ring structures and the inter-ring regions found in
the shear layer.

Introduction

It is widely recognized that large energetic structures
play an important role in the dynamics of the near
field in many free-shear flows, such as the axisymmet-
ric shear layer occurring near the exit of a round jet.
Although there are many different techniques that can
be used to identify the coherent structures (cf Bonnet
and Glauser 1994), only a few of these can be used to
study the dynamics of the structures. One technique
that can be used for this purpose is the Proper Or-
thogonal Decomposition (POD) technique introduced
by Lumley (1967).

One of the primary difficulties of studying the in-
stantaneous dynamics of the large structures with this
technique (and others) is that it requires the simulta-
neous measurement of the velocity over the region of
interest. As a result, there have been few attempts to
experimentally study the instantaneous dynamics of

the structures on an entire plane in a free-shear flow.
In one attempt to investigate these features Citriniti
(1995) simultaneously measured the velocity field at
138 points in a high-Reynolds-number annular shear
layer using hot-wire anemometers. Using the POD
technique he found evidence that the shear layer was
made up of both ring vortices and streamwise rib vor-
tices that occur between the vortex rings, similar to
the streamwise vortices that occur in the planar mix-
ing layers braid region (cf Rogers and Moser 1994).
The experimental evidence also suggests that these
streamwise modes may entrain more ambient air into
the shear layer than the ring vortices (the commonly
assumed entrainment mechanism).

Although this experiment yielded very useful phys-
ical information about the axisymmetric shear layer,
the effort required to perform the experiment effec-
tively precludes its use on a wide variety of flows.
One alternative approach suggested by Bonnet et al.
(1994) is to measure the velocity at a small number
of points and use Linear Stochastic Estimation to ap-
proximate velocity over the rest of the field. This es-
timated velocity field could then be used as an input
into POD technique and an estimate for the dynamics
of the large structures could be deduced. Bonnet et al.
(1994) demonstrated that this technique was capable
of accurately reproducing the dynamics of the large
structures when applied to one non-homogeneous di-
rection in a shear layer. They also suggested that the
method could be extended to more spatial dimensions
in a flow, however as yet, there has not been an at-
tempt to confirm this.

The objective of this investigation is to examine if
LSE can be used in conjunction with the POD tech-
nique to produce an accurate estimate of the dynam-
ics of the large structures on a full » — 8 plane in the
axisymmetric shear layer. The predictions for the dy-



namics of the structures from the estimated field are
compared with the results reported by Citriniti (1995)
to determine how well the technique reproduces the
dynamics of both the ring and inter-ring regions.

Background

Annular Shear Layer Data Base

In order to study the large structures in the axisym-
metric shear layer Citriniti (1995)" constructed an ar-
ray of 138 single-wire transducers that was placed at
a distance of 3 diameters downstream of a round jet.
Glauser (1987) had shown previously that the large
structures in flow could be resolved using the POD if
the velocity was measured at 6 radial positions across
the layer at »/d = 0.15,0.28,0.41, 0.54, 0.67, and 0.80.
He also found that the agzimuthal dependence of the
structures could be recovered if the velocity was mea-
sured at 6 azimuthal positions at the inner most ra-
dial position and 12, 24, 32, 32, and 32 positions at the
other b radial positions, respectively. This information
was used to locate the probes within the 138 wire ar-
ray. The mean velocity normalized by the exit velocity
ranged from 0.9 to 0.15 over these 6 radial points indi-
cating that array of hot wires measured the streamwise
velocity component in a region that spanned most of
the shear layer.

The exit velocity profile of the jet was top hat within
0.1% with a turbulence intensity of 0.35%. The outlet
velocity of the jet was set such that the exit Reynolds
number based on the nozzle diameter, d, was 80,000.
For these conditions, Glauser (1987) demonstrated
that the large structures could be well resolved in the
first 800 Hz of the spectra so the signals from all of the
wires in the array were filtered at 800 Hz and simulta-
neously sampled at 2,028 Hz. The data was gathered
in 300 blocks of 1024 points, which allowed the accu-
rate computation of spectral information.

Proper Orthogonal Decomposition

Lumley (1967) argued that the functions used to rep-
resent the large structures in a turbulent flow should
be defined in an objective manner using information
from the flow only. For example, Lumley suggested
these functions could be defined as those that make the
largest contribution to the turbulent energy in the re-
gion of interest. Using this definition, it can be shown
that functions for the homogeneous and stationary di-
rections are simply Fourier modes so these directions
can be transformed out the problem in the standard
manner.

For the axisymmetric shear layer, the functions to
represent the information in the radial direction that
satisfy this definition, ®"(r, m, f), are solutions to the
integral eigenvalue problem given by (Citriniti 1995)

/°° P(r,r',m, FY®*(r',m, f)r'dr’ =
0
A" (m, £)@ (r,m, f), (1)

where 9(r, ', m, f) is the Fourier transform of the two-
point velocity correlation in both the azimuthal di-

1See also the paper by Citriniti in this volume.

rection and time, m is the agzimuthal mode number
and f is the frequency. It is straightforward to show
that these functions are orthogonal (¢f Lumley 1967).
Thus, the integral eigenvalue can be solved using only
statistical measures of the flow to yield an orthogo-
nal basis to optimally describe the flow in the radial
direction.

The information about the dynamics of the field is,
however, contained in the coefficients of the orthogonal
basis which are given by

a”(m, f) = /0 W(r,m, £Y®"* (r, m, f)rdr, (2)

where 4(r, m, f) is the Fourier transform of the instan-
taneous velocity field in the azimuthal direction and
time. Thus, it is necessary to simultaneously sample
the velocity field over the entire domain of interest in
order to determine these coefficients.

Once the coefficients for the orthogonal functions are
determined, the dynamics of the large-scale structures
in the field can then be studied by reconstructing the
Fourier coefficients; i.e.,

N
urecrmf :Z

where NN is a user specified parameter. If all the avail-
able modes are used (i.e., N is set to its highest value)
then all the information from the original signal can
be recovered. If on the other hand N is set to a small
number then only the information from the most ener-
getic modes is retained, thus reducing the small-scale
information in the signal. The amount of small-scale
information in the reconstructed velocity field can be
further reduced by including the information from only
a small number of azimuthal modes. The coeflicients
for the other modes are set to zero in order to remove
them from the signal. This reduced signal can then be
inverse Fourier transformed in time and the azimuthal
direction to yield a low-order model for the instanta-
neous velocity field in the axisymmetric shear layer.

Citriniti (1995) demonstrated that the dynamics of
the large-scale structures could be modeled if only the
first POD mode is used (i.e., N=1) and only the coef-
ficients for azimuthal mode numbers 0 and 3 — 6 are
retained in the reconstructed field. Examples of the
reconstructed instantaneous fluctuating velocity fields
computed using these modes are show in figures 1
and 2. In both of these figures the colour scale corre-
sponds to the value of the instantaneous fluctuating ve-
locity. The light colours correspond to velocities that
are larger than the local mean while the dark colours
correspond to velocities less than the local mean.

It is clear that there is a band of faster-than-average
moving fluid inside a band of slower-than-average mov-
ing fluid in figure 1, which is consistent with the pat-
tern one would expect with the passage of a vortex ring
like structure. On the other hand there are neighbour-
ing regions of fast and slow moving fluid in figure 2,
suggesting that regions of fast flow moving out of the
core neighbour regions of slow moving fluid being en-
trained into the core. This is consistent with the pat-
tern one would expect in a braid region of counter-
rotating streamwise vortices. Thus, the velocity field

(r,m, f), (3)
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Figure 1: Ring-like structure from the low-order re-
construction of the axisymmetric shear layer.
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Figure 2: The inter-ring region that appears to contain
a series of counter-rotating streamwise vortices.

reconstructed with only a few modes on the r—8 plane
showed evidence of both ring vortices and streamwise
vortices in the inter-ring regions.

Linear Stochastic Estimation

Although these results shed insight into the dynam-
ics of the structures in the axisymmetric shear layer,
it is not trivial to simultaneously measure the veloc-
ity field at 138 points in the field. Thus, as Bonnet
et al. (1994) suggested, it would be very useful if a
similar picture of this flow (and others) could be de-
duced by applying the POD to an instantaneous field
that was measured at a smaller number of points and
estimated at the other points necessary to resolve the
POD coefficients. Bonnet et al. suggested using Lin-
ear Stochastic Estimation to extrapolate information
from the measured points and fill out the field suffi-
ciently to use the POD.

In this approach, the instantaneous velocity at a
position z, i1s approximated as a linear combination
of the velocities at the points where it is measured

(z',2",..)); i.e.,

Ue(zn) = A(zn)u(z’) + Bzn)u(z”) + ... (4)

The coefficients, A(z, ), B(zy), . ..are then determined
by minimizing the mean square error in the estimated
velocity; i.e., (te(2n) — u(zn)?).

For the current application, it is more useful to es-
timate the Fourier coefficients 4(r,m, f) at a radius
in the axisymmetric shear layer using the Fourier co-
efficients measured at one or two radial positions. If
the Fourier coeflicients are measured at a single radial
position it follows that the Fourier coefficients at the
other positions can be approximated as

ae(r’nama f) = C(rnama f)ﬂ(r/,m, f)? (5)

where 4(r’,m, f) are the Fourier coefficients at the
measured points. In this case, the mean square error

in the estimated Fourier coefficient, (%, — 4)(4. — 4)*,
is minimized if
F(rna rla m, f)

e D) = B vm, 1) ©

where F(r,, ', m, f) = Ge(rn, m, f)a*(r', m, f). Thus,
the coefficients used to estimate the velocity are deter-
mined using statistical measures of the flow that can
be easily measured with a small number of hot-wires.

If the Fourier coeflicients are measured at two radial
positions it follows that the coefficients at the other
radial positions can be approximated as

A(rn, m, U, m, f) +
B(T‘n, m, f)a(rlla m, f)? (7)
where 4(r’,m, f) and 4(r”m, f) are the measured

Fourier coefficients. In this case, the error in the esti-
mated coefficients are minimized if

ae(rnama f) =

A(rnama f) =
F(rp, v YF(r",7") — F(rp, v\ F(r", ") (8)
F(r//, r//)F(r/, r/) _ |F(r//, r/)|2
and
B(rnama f) =
F(rp, v )F(r',r") — F(rp,r")F(r',7") 9)
F(T”, T”)F(T’, T’) _ |F(T”, T’)|2 .

The dependence of F on m and f has been left out of
these last equations in order to shorten their length.

Results

In the axisymmetric shear layer, the LSE technique
could be use to interpolate or extrapolate information
in two different spatial directions, r or . Since the
signals are correlated over a greater distance in the
radial direction than the azimuthal direction (relative
to the characteristic length scales in those directions),
it follows that the LSE should work more effectively in
radial direction than in the azimuthal direction. Thus,
the first step in this investigation was to examine how
effectively the LSE could interpolate or extrapolate
information in the radial direction. It was assumed



that the Fourier coefficients @(r,m, f) are known at
one or two radial positions. This information is then
used to estimate the Fourier coefficients at the other
radial positions. Physically, this corresponds to doing
the experiment carried out by Citriniti (1995) using
only one or two rings of hot-wires instead of the 6
used in that experiment.

A number of different configurations were examined
in order to determine which radial positions were the
optimal to use. Initially the suitability of different po-
sitions was examined by considering the value of the
means square error in the estimated coefficient normal-
ized by the mean square value of the actual coefficients;
i.e.,

|(ae(rna m, f) - a(rna m, f))|2
F(rnarnama f) '

It was found that none of the individual radial posi-
tions could be used to extrapolate the Fourier coef-
ficients for both the 0 mode and modes 3 — 6. The
mean square error in the estimated Fourier coefficient
for the 0 mode was generally small over the dominant
energy frequencies when a point on the inner or high-
speed side of the layer was used as the measured point.
This was not unexpected since the ring vortex struc-
ture, which contributes to the 0 mode, is the most
dominant feature of the inner radial positions. Simi-
larly, the normalized error in the Fourier coefficients
for modes 3 — 6 was significantly lower when a point
on the outer or slow speed side of the layer was used
as the measured point. Again, this is expected since
the inter-ring region is more dominant on the outside
of the layer than the inside.

Thus, it was suspected that the most accurate esti-
mated coefficients could be derived if two measuring
points were used, with one on each side of the shear
layer. A variety of combinations of these points were
studied. It was found that that there was little vari-
ation in the accuracy of the estimated Fourier coeffi-
cients (at least from the perspective of the normalized
mean square error) when the two measured points were
situated on opposite sides of the mixing layer. The
best results, however, seemed to occur when the two
radial positions are chosen near center of the shear
layer, r/d = 0.41 and r/d = 0.67, which is analo-
gous to the result deduced by Bonnet et al. (1994).
The normalized mean square error in the estimated
Fourier coefficients for azimuthal modes 0 at the other
four radii in the shear layer are shown in figure 3. It
is important to note the spectra for the 0 mode has a
dominant peak at approximately 100 hz so this is the
region where the Fourier coefficients need to be well
predicted. It is clear that this occurs for all the radial
positions except for the position at the center of the
mixing layer. It is not clear why the prediction at this
point is so poor however, a similar result was noted
by Bonnet et al. when they used the LSE in a single
non-homogeneous direction.

The normalized mean square error in the Fourier co-
efficients for azimuthal mode 5 are shown in figure 4.
The error is only shown for the outer three positions
because the Fourier coefficient for mode b is not mea-
sured in the inner most radius. The spectra for this
mode peaks at the lowest frequency measured so it is

I(u (r,, m, H= u(r,, m, HIFFC,, 1, mfH
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Figure 3: Normalized mean square error in the coeffi-
cients for azimuthal mode number 0. ri/d =
0.15, ---- ro/d = 0.28, —-— ry/d = 0.54, and
---- ors/d=0.8.

important that the Fourier coefficients for this mode
number are accurately predicted in this region. Al-
though the normalized mean square error is higher for
these Fourier coefficients than for the 0 mode, the level
of the error is still small in the low frequency region
at the outer radial positions where the higher modes
play a large role in the dynamics of the flow.

Although these results show that the normalized
mean square errors in the estimated coefficients are
small for the important ranges of frequencies, they
do not provide any information about how well the
instantaneous coefficients are predicted. In order to
examine this question the estimated and actual coef-
ficients were projected onto the orthogonal basis de-
duced by Citriniti (1995) to determine the coefficients
for the POD modes. Following the same procedure
outlined by Citriniti (1995), the coefficient of the first
POD mode computed from the estimated field was
used to generate a partial reconstruction of the field.
The information from azimuthal modes 0, 3,4, 5, and
6 were retained and the resulting coeflicients were in-
verse Fourier transformed in time and the azimuthal
direction in order to produce a low-order estimate of
the velocity field.

A comparison of several realizations from the esti-
mated and original fields are shown in figures 5 - 10.
The realizations from the estimated field are shown in
figures 5 - 7 while corresponding realizations from the
original field are shown in figures 8 - 10. The colour
is again used to denote the level of the instantaneous
fluctuating velocity with light colours corresponding to
velocities larger than the local mean and dark colours
corresponding to velocities less than the local mean.

Comparing figures 5 and 8 it is clear that the esti-
mated realization has almost all of the gross features
of the original field. As one would expect the esti-
mated field appears to be a filter version of the original
field, removing some of the finer features of the flow
and smoothing the topology. This is evident if the
highest speed contour from the two realizations are
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Figure 4: Normalized mean square error in the coef-
ficients for azimuthal mode number 5. -—-- r3/d =

0.28, —-—r4/d = 0.54, and ---- ors/d = 0.8.

compared. The shape of the contour is smoother for
the realization from the estimated field. Two differ-
ent realizations in the inter-ring region are compared
in figures 6 and 9 and figures 7 and 10. It can be
seen that the overall levels of the fluctuating velocity
in the estimated field are smaller than the levels in the
actual field. However, the topology of the structures
in the region are well preserved showing the distinc-
tive feature characteristic of the streamwise vortices.
Thus, the estimated field seems to be quite capable of
reproducing the major features of the shear layer.

Summary

The accuracy of using estimated velocity fields to
study the dynamics of the large structures in the ax-
isymmetric shear layer is examined using the data base
measured by Citriniti (1995). It was found that the dy-
namics of the ring vortices and the inter-ring regions
could be well reproduced if the Fourier coefficients are
measured on 2 radil and estimated on 4 others. This
reduced the number of probes necessary to carry out
the experiment from 138 to 56, thus effecting a 60 per-
cent savings in the number of probes. Further refine-
ment of the estimation technique will be considered in
order to try to increase the savings in the number of
probes. In particular interpolation in the azimuthal
direction will be considered.
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Figure 5: Ring-like structure from the low-order re-  Figure 8: Ring-like structure from the low-order re-
construction produced using the estimated field. construction produced using the original field.
1 0.6
-
= 0
-1 .
-1 -05 ] 0.5 1 -1 -05 ] 0.5 1
wid wid
Figure 6: The inter-ring region from the low-order re-  Figure 9: The inter-ring region from the low-order re-
constructing produced using the estimated field. Ap-  construction produced using the original field. Ap-
pears to be a series of counter-rotating vortices. pears to be a series of counter-rotating vortices.
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Figure 7: A second realization in the inter-ring region ~ Figure 10: A second realization in the inter-ring region
from the low-order reconstruction produced using the  from the low-order reconstruction produced using the
estimated field. original field.



