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The governing equations for the two-point velocity correlations in the far field of
the axisymmetric jet are examined and it is shown that these equations can have
equilibrium similarity solutions for jets with finite Reynolds number that retain a
dependence on the growth rate of the jet. The two-point velocity correlation can be
written as the product of a scale that depends on the downstream position of the two
points and a function that only depends on the similarity variables. Physically, this
result implies that the turbulent processes producing and dissipating energy at the
different scales of motion, as well as transferring energy between the different scales of
motion, are in equilibrium as the flow evolves downstream. A particularly interesting
prediction from the analysis is that the two-point similarity solutions depend only on
the separation distance between the points in the streamwise similarity coordinate (i.e.
υ = ξ ′ − ξ ), that is, the logarithm of the streamwise coordinate itself (i.e. ξ = ln x1,
where x1 is measured from a virtual origin). Thus, the measures of the turbulence are
homogeneous in the streamwise similarity coordinate.

The predictions from the similarity analysis for the streamwise two-point velocity
correlation were compared with combined hot-wire and LDA measurements on the
centreline of a round jet at a Reynolds number of 33 000, and with two-point
velocity correlations computed from PIV measurements in a round jet at a Reynolds
number of 2000 performed by Fukushima et al. In both cases, the measured two-
point velocity correlations in the streamwise direction collapsed when they were
scaled in the manner predicted by the similarity analysis. The results provide further
evidence that the equilibrium similarity hypothesis does describe the development of
the flow in fully developed turbulent round jets and that the two-point correlations
are statistically homogeneous in the streamwise similarity coordinate.

1. Introduction
There has been considerable interest in characterizing the development of turbulent

round jets since these are considered to be among the canonical turbulent free shear
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flows, and are closely related to flows that occur in a broad range of practical
applications. Earlier investigations have focused both on the axisymmetric shear layer
formed in the near field of the jet, and on the fully developed region of the jet which
is of interest here (see Jung, Gamard & George 2004 and Gamard, Jung & George
2004 for recent reviews). It is well known that the profiles of the Reynolds-averaged
mean velocity field and turbulent stresses become self-similar in the fully developed
region of the axisymmetric jet (e.g. Panchapakesan & Lumley 1993; Hussein, Capp &
George 1994), and this result is often used to estimate the properties of the jet at
different downstream locations in practical applications. It has been widely believed
until recently that the similarity solutions for the round jet are universal or describe all
jets. However, Boersma, Brethouwer & Nieuwstadt (1998) and Mi, Nobis & Nathan
(2001) found that the Reynolds-averaged profiles of the flow field and scalar field in
the fully developed region of the round jet do depend on the initial conditions of
the jet, as originally proposed by George (1989, 1995) using equilibrium similarity
analysis for the single-point equations. A similar dependence on initial conditions has
been observed in wakes and shear layer flows (e.g. Wygnanski, Champagne & Marasli
1986; Ghosal & Rogers 1997; Slessor, Bond & Dimotakis 1998; Moser, Rogers &
Ewing 1998; Johansson, George & Gourlay 2003).

George (1989) argued that the differences observed in the far field could be due to
differences in the large-scale structures generated in the near field that propagate into
the fully developed region. The large-scale organized motions present in the inter-
mediate and far field of the axisymmetric jet have been characterized in a number
of investigations. Many of the earlier investigations (e.g. Dimotakis, Maike-Lye &
Papantoniou 1983; Tso & Hussain 1989; Mungal & Hollingsworth 1989) found that
motions with aximuthal mode numbers 0 and 1 play a prominent role in the far
field, in agreement with the prediction from the stability analysis by Batchelor & Gill
(1962). More recently, Kopiev et al. (1999), Gamard et al. (2002, 2004), and Freund &
Colonius (2002) found that motions with azimuthal mode 2 make the most prominent
contribution to the intermediate and far field of the axisymmetric jet and the noise
field produced by this flow. Iqbal & Thomas (2007) found that the azimuthal mode-2
peak occurred when only the streamwise velocity component was considered, but
found a mode-1 peak if all three velocity components were included; and this was
later confirmed by Wänström, George & Meyer (2005).

The prominence of the large-scale structures observed in the fully developed region
of the axisymmetric jet suggests that the similarity observed in the profiles of the
single-point moments is a measure of an underlying ‘equilibrium’ in the development
of the large-scale structures and energy transfer processes in the turbulent flow.
Gamard et al. (2002, 2004) found that two-point velocity correlations with separation
distances in the radial and azimuthal direction on different downstream planes in the
fully developed region of the round jet collapsed when they were compared in the
similarity variables derived herein, suggesting the structures may be evolving in an
equilibrium manner. Gordeyev & Thomas (2000) had previously found a similar result
for correlations with separations in the spanwise and cross-stream direction measured
in the plane jet. Neither investigation, however, considered the two-point correlations
in the streamwise direction.

Hitherto, there have only been a few attempts to examine if the governing equations
for measures of the large-scale structures, such as the two-point velocity correlations,
have equilibrium similarity solutions in turbulent flows. Most of these investigations
have focused on decaying isotropic turbulence (e.g. von Kármán & Howarth 1938;
Batchelor 1948; George 1992; Speziale & Bernard 1992) or homogeneous shear
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turbulence (e.g. George & Gibson 1992). Ewing et al. (2007) did demonstrate that the
governing equations for the two-point velocity correlation tensor admit equilibrium
similarity solutions in the temporally evolving wake. They also found that the two-
point velocity correlations from two DNS of temporally evolving wakes collapsed
when they were scaled in the manner predicted in the analysis, suggesting strongly that
any structures present were evolving in an equilibrium manner. With the exception
of the recent work of Burattini, Antonia & Danaila (2005) using structure functions,
there do not appear to have been any attempts to extend this analysis to spatially
evolving shear flow, such as the axisymmetric jet. In these flows, the characteristic
length scales of the structures in the streamwise direction increase as the flow evolves
downstream, so the similarity variable for the streamwise direction must be defined
differently than for temporally evolving flows.

The present work considers the governing equations for the two-point velocity
correlations in the round jet and shows that these equations can have equilibrium
similarity solutions. The solutions for the correlations in the streamwise direction
are then compared to measurements of the two-point correlation in the streamwise
direction that were not considered in the aforementioned investigations. This includes
two-point correlations on a jet centreline determined from simultaneous measurements
with an LDA system and hot-wire anemometry system. This seems to be the first
implementation of this combined technique originally proposed by George, Beuther &
Lumley (1978). Two-point velocity correlations were also computed from the PIV
measurements in a jet with a Reynolds number of 2000 performed by Fukushima,
Aanen & Westerweel (2000) that Westerweel et al. (2002) used to examine mixing in the
axisymmetric jet. These results do confirm that the predictions from the equilibrium
similarity analysis do describe the development of the streamwise two-point velocity
correlations in the fully developed region of the axisymmetric jet.

2. Analysis of the governing equations
The objective of the analysis is to determine if the governing equations for the

two-point velocity correlation tensor can have equilibrium similarity solutions in the
axisymmetric jet. These governing equations can be written as (Hinze 1975)
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where the unprimed variables are evaluated at one location in the jet, and the primed
variables are evaluated at a second arbitrary location in the jet at the same point
in time. Here, U1 and U2 are the mean velocities in the streamwise (x1) and radial
(x2) coordinate directions, while u1, u2, and u3 are the fluctuating velocities in the
streamwise, radial, and azimuthal (x3) coordinate directions, respectively. Note that
the summation convention is not applied to the superscript on the metric for the
coordinate system, h(j ) = (1, 1, x2). Instead, the superscript has the same value as the
index of the differential coordinate next to the metric.

It is proposed that these two-point equations admit equilibrium similarity solutions
of the form†
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are the similarity variables in the radial and azimuthal directions, respectively, and ∗ is
included to account for any dependence on the initial conditions of the jet. Here, υ is
a similarity variable for the streamwise direction that will be determined by analysing
the governing equations. Thus, the two-point correlations have been written as the
product of a scale that depends on the streamwise position of the two points relative
to the jet origin, and a function that depends only on the local similarity variables
and is independent of the locations of the two points relative to the origin.

The Reynolds-averaged mean continuity and mean momentum equations in the
axisymmetric jet contain information about the development of the mean velocity
field that is not included in the governing equations for the two-point correlations (or
the single-point equations for the Reynolds stresses). Thus, they must also be included
in the analysis. Hussein et al. (1994) showed that the mean momentum equations only
admit equilibrium similarity solution of the form

U1(x1, x2) = Us(x1)f (η), (2.10)

and

u1u2 = Rs(x1)g(η), (2.11)

† Note that the superscripts on the scales in brackets are not indices, and should not be considered
when applying the summation convention.
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when
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Substituting the proposed similarity solutions for the two-point correlations and
the solutions for the mean velocities into (2.1) yields equation (A 1) (see Appendix A).
The terms in (A 1) have been written as products of functions that depend on the
location of the two points relative to the jet origin (in square brackets) and functions
that only depend on similarity variables. The equations admit equilibrium similarity
solutions of the proposed form if the dependence on the locations of the two points
relative to the jet origin can be removed from the equations. This can be accomplished
if either all of the terms in square brackets are proportional, or the ratios of different
terms only depend on υ , the similarity variable for the streamwise direction.

The solutions for the pressure-velocity correlations in this incompressible flow must
also satisfy
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These equations admit similarity solutions of the proposed form if the terms in square
brackets are proportional, or if the ratios of these terms are only a function of υ .

It can be shown that governing equations for the two-point velocity correlation do
indeed admit similarity solutions of the proposed form. The first step in demonstrating
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this is to separate the terms in square brackets in (A 1) into two groups of terms that
are proportional; namely,[
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The constraints in (2.20) and (2.21) are satisfied when the scales for the similarity
solutions are given by

Q(i,j )
s (x1, x

′
1) = a(i,j )

c (∗)Us(x1)Us(x
′
1), (2.22)

T
(ki,j )
s,1 (x1, x

′
1) = b

(ki,j )
c,1 (∗)Us(x1)Q

(i,j )
s (x1, x

′
1), (2.23)

T
(i,kj )
s,2 (x1, x

′
1) = b

(i,kj )
c,2 (∗)Us(x

′
1)Q

(i,j )
s (x1, x

′
1), (2.24)

Π
(,j )
s,1 (x1, x

′
1) = d

(,j )
c,1 (∗)Us(x1)Q

(i,j )
s (x1, x

′
1), (2.25)

and

Π
(i,)
s,2 (x1, x

′
1) = d

(i,)
c,2 (∗)Us(x

′
1)Q

(i,j )
s (x1, x

′
1), (2.26)

where a(i,j )
c (∗), b

(ki,j )
c,1 (∗), b

(i,kj )
c,2 (∗), d

(,j )
c,1 (∗), and d

(i,)
c,2 (∗) are parameters that can depend

on the source conditions of the flow. The constraints in (2.20) and (2.21) and the
equations for the pressure-velocity correlation are only satisfied when

dδ

dx1

= constant (2.27)

and the streamwise similarity variable satisfies

∂υ

∂x1

∝ 1

δ(x1)

dδ

dx1

and
∂υ

∂x ′
1

∝ 1

δ(x ′
1)

dδ

dx ′
1

. (2.28)

Therefore, it follows that

∂υ

∂x1

∝ 1

x1

and
∂υ

∂x ′
1

∝ 1

x ′
1

. (2.29)

or that

υ = α1 ln x1 + β1(x
′
1) and υ = α2 ln x1 + β2(x1), (2.30)

where α1 and α2 are constants, and β1 and β2 are functions that depend on x ′
1 and

x1, respectively. These results can be combined to yield

υ = α1 ln x1 + α2 ln x ′
1 + γ1, (2.31)

where γ1 is a constant.
The constants in (2.31) can be determined by examining the ratios of the terms in

(2.20) to those in (2.21) that are proportional to[
Q(i,j )

s Us(x1)

δ(x1)

dδ

dx1

]/[
Q(i,j )

s Us(x
′
1)

δ(x ′
1)

dδ

dx1

]
∝ x ′2

1

x2
1

. (2.32)

The equations for the two-point velocity correlations only admit similarity solutions
of the proposed form if these ratios are constants or functions of υ; i.e.

x ′2
1

x2
1

= Γ (υ) (2.33)
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or

ln(x ′
1) − ln(x1) =

lnΓ (υ)

2
= Φ(υ). (2.34)

Thus, it follows that α1 = −α2 and γ1 = 0.† Here, α2 is set equal to 1, so that

υ = ln x ′
1 − ln x1. (2.35)

This can be written as

υ = ξ ′ − ξ, (2.36)

where

ξ = ln x1 (2.37)

is the similarity coordinate in the streamwise direction.† This transformation changes
the semi-infinite streamwise coordinate x1 into a coordinate ξ that is infinite in extent.

Thus, the governing equations for the two-point velocity correlations do indeed
admit equilibrium similarity solutions of the proposed form. Substituting the similarity
solutions into the equations for the two-point velocity correlations yields

eυa(i,j )
c

[
−f (η)qi,j − f (η)

∂qi,j

∂υ
−

(
∂qi,j

∂η
+

q3,j

η
δi3

)
1

η

∫ η

0

η̃f (η̃) dη̃ + f (η)q3,j δi3

]

e−υa(i,j )
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∂η′ +
qi,3

η′ δj3
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1
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∫ η′

0

η̃f (η̃) dη̃ + f (η′)qi,3δj3

]

= +
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δi1

+

{
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q1,j η
dηf
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(
η
df
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+
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η̃f dη̃

)}
δi2

]

† Note that as a result, Us(x1) = eυUs(x
′
1), so there is a variety of ways to represent the dependence

on the location of the two points in (2.22)–(2.26).
† The similarity coordinate in the streamwise direction could have been deduced intuitively by

recognizing that the similarity coordinates re-scale the physical coordinates to account for changes
in the size of the turbulent motions as the flow evolves downstream. Thus, ξ can be defined as
dξ ∝ dx1/δ1(x1). If δ1(x1) ∝ δ(x1) and δ(x1) ∝ x1, it follows that ξ = ln(x1). The proposed similarity
solutions must be independent of the two points’ locations relative to the jet origin, and thus could
only be a function of the separation distance between the two points in the similarity coordinate;
i.e. υ = ξ ′ − ξ , as deduced from the analysis of the equations above.
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+ e−υ
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while the equations for the pressure velocity correlation are given by

−2d
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1 + d
(,1)
c,1
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1
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and

−2d
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1 − d
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∂π2
1
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− d
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c,2 η
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1
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1

η

∂ηπ2
2

∂η
−

d
(3,)
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1

η

∂π2
3

∂θ
= 0, (2.40)

where the Reynolds number

Reδ =
Us(x1)x1

ν
∝ Usδ

ν
(2.41)

and the growth rate dδ/dx1 are both constants that may depend on the source
conditions of the jet. There is no choice of a(i,j )

c that will remove the Reynolds
number from both the convective and viscous terms in the equations. Thus, the
equations admit similarity solutions even for finite-Reynolds-number jets, but the
solution depends on the jet Reynolds number. There is also no choice for a(i,j )

c that
will remove the growth-rate-dependent parameter from these equations. In particular,
comparing the convection, pressure-velocity transfer, and the dominant production
terms in the u1u

′
1 equation, it is clear that this equation can only be independent of

dδ/dx if

d
(,1)
c,1

a
(1,1)
c

= const (2.42)

and
a(2,1)

c (dδ/dx)−1

a
(1,1)
c

= const (2.43)

where the constants must be independent of the jet growth rate. Similarly, the u2u
′
2

equation, the u2u
′
1 equation, and the pressure-velocity correlation equation could only
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be independent of dδ/dx1 if

d
(,2)
c,1 (dδ/dx1)

−1

a
(2,2)
c

= const, (2.44)

a(2,2)
c (dδ/dx1)

−1

a
(2,1)
c

= const, (2.45)

and

d
(,2)
c,1 (dδ/dx ′

1)
−1

d
(,1)
c,1

= const. (2.46)

Equations (2.42), (2.44), and (2.46) can only be satisfied if a(1,1)
c /a(2,2)

c is independent of
the jet growth rate, while (2.43) and (2.45) can only be satisfied if a(1,1)

c (dδ/dx1)
2/a(2,2)

c

is independent of the jet growth rate. These cannot both be satisfied, so there is no
choice for the parameters that would remove the dependence on the jet growth rate
from the governing equations for the two-point similarity solutions. Thus there is no
unique similarity solution for the two-point velocity correlations in the axisymmetric
jet, an apparently universal characteristic of free turbulent flows.

It can only be determined from experiment whether or not the two-point similarity
solutions deduced here describe the evolution of actual jets. Gamard et al. (2002,
2004) showed that two-point velocity correlations measured on different downstream
planes in the fully developed region of the axisymmetric jet with separations in only
the azimuthal and radial directions change in a manner consistent with the predictions
of the equilibrium similarity analysis. Gordeyev & Thomas (2000) also found a
similar result for two-point correlations in the plane jet, again for the case when
the separations were only in lateral and cross-stream directions. Hitherto, however,
there do not appear to have been any measurements of the two-point correlation
with separations in the streamwise direction at different downstream locations in
the fully developed region of the round jet that could be used to determine if the
two-point similarity solutions deduced here do describe the change in the streamwise
correlations in actual jets. Of particular interest, of course, is the prediction that
the two-point correlation is statistically homogeneous in the streamwise similarity
coordinate, ξ .

3. Experimental methodology and uncertainty
Experiments were performed here (described in detail below) to measure the two-

point velocity correlation of the streamwise velocity along the centreline of a jet
with an exit Reynolds number of 33 000, using an LDA system to measure the
upstream velocity and a hot-wire to measure the velocity at the downstream locations.
The two-point correlations in the streamwise direction in an axisymmetric jet at a
Reynolds number of 2000 were also computed from PIV measurements performed
by Fukushima et al. (2000) and discussed in Westerweel et al. (2002). This database
was used here to compute the streamwise two-point correlations of two velocity
components (streamwise and radial) both on and off the jet centreline. The exper-
imental methodology for the experiment performed here is described in detail first.
The uncertainties in the two-point correlations determined using the LDA/hot-wire
technique and from the database of PIV measurements are then discussed in detail.
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Figure 1. Schematic showing the set-up of the hot-wire and LDA during the measurements.

3.1. Chalmers experiment

The experimental facility used in this investigation was used previously by Gamard
et al. (2004), and designed as a 2/5-scale replica of the facility used by Hussein
et al. (1994). The flow from a blower was conditioned in a 58.5 cm × 58.5 cm × 59 cm
settling chamber before entering a contoured nozzle with an exit diameter of 1 cm.
The jet exited into an enclosure that was large enough to minimize the return flow.
The momentum of the forward jet flow was conserved to within a few per cent at
150 diameters downstream of the jet exit. The development of the jet in the region
x/D =30 to 80 of interest here was initially checked using a single hot-wire probe.
The measured profiles of mean and fluctuating velocities were self-similar, and nearly
identical to those reported by Hussein et al. (1994). The momentum integral of the jet
computed from these profiles varied by less than 1 % over this range. Further details
can be found in Frohnapfel (2003).

3.2. LDA/hot-wire measurement technique

The two-point correlation of the streamwise fluctuating velocity along the jet centreline
was determined by simultaneously measuring the velocity at a fixed upstream location
using an LDA system, and at different downstream locations using a hot-wire anem-
ometry system as shown in figure 1. This novel technique can provide measurements
of the streamwise correlation with low statistical uncertainty while avoiding the wake
effects associated with measurements using two hot-wires. The LDA measurements
were performed using a Dantec fibre-optic LDA system with DANTEC BSA 57N11
processors configured in back-scatter mode with a measuring control volume 30 µm in
diameter and 300 µm long. The flow was seeded using a smoke generator that produced
particulates with a diameter of approximately 0.7 µm. The blower was located inside
the enclosure so the air was recirculated to achieve approximately uniform seeding
of the jet and ambient air. The hot-wire measurements (HW) were performed using
a standard unplated 5 µm diameter single-wire probe, with a length-to-diameter ratio
of 250. The probe was connected to a DANTEC Mini CTA set up with an overheat
of 1.8. The cutoff frequency on the CTA was set higher than the roll-off frequency of
the probe. The signal from the hot-wire anemometer was low-pass filtered and then
sampled using a IOtech 16-bit A/D board. The hot-wires were calibrated in a second
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Parameter x/D = 30.3 x/D = 43.3 x/D = 58.3

Integral time scale (ms) 3.5 8.5 14
Low-pass filter (kHz) 10 10 3
HW sampling frequency (kHz) 40 40 12
Total record length (s) 300 300 600

Table 1. Summary of the sampling times in the LDA/HW measurements.

contoured nozzle jet with a 9.8 cm diameter outlet before and after each experiment
using the approach outlined in George, Beuther & Shabbir (1989).

The sampling of the signals from the LDA system and the hot-wire anemometry
systems were synchronized by connecting the Dantec BSA analyser and the IOtech
data acquisition system to the same external clock. The output trigger from the BSA
analyser was then used as the external trigger to start the data acquisition system
for the hot-wire signal. The LDA system and the IOtech data acquisition system
were both set to sample for a fixed length of time once sampling was initiated. The
synchronization of the velocity signals measured with the two systems was checked
by simultaneously measuring the velocity at essentially the same location using both
systems. The resulting velocity traces were in excellent agreement, indicating the
signals were properly synchronized.

The effect of the smoke particles on the hot-wire measurements was checked by
performing measurements using the hot-wire at the same location with and without
the smoke present. There was no visible difference in the character of the velocity
signals, and the variance of the fluctuating velocity in the two cases agreed to within
experimental uncertainty. Further, any spikes that would occur if impacting particles
boiled off would be uncorrelated with the turbulence because their arrival time would
be uncorrelated with the turbulence field. Thus they would not affect the correlation
computed between the velocities measured with the LDA and HW systems. The
effect of the smoke on the hot-wire calibration was also examined by comparing the
calibration curves determined before and after the hot-wire was operated for two
hours in the seeded jet. The velocities calculated from the two calibration curves
differed by less than 2 %, a change similar to the drift observed during normal hot-
wire operation. The results were consistent with the observation that the smoke used
did not leave a residue on the wire.

The two-point correlations were measured for cases where the LDA probe was
located at x/D = 30.3, 43.3 and 58.3 in a jet with an exit velocity of 50 m s−1, corres-
ponding to an exit Reynolds number of approximately 33 000. At each new location,
the centreline of the jet was determined using hot-wire anemometry measurements.
The LDA probe was focused at this location by moving the focal volume until both
beams scattered light due to interference with the hot-wire sensor located on the
centreline. The hot-wire was then moved to different positions along the centreline
of the jet. In all experiments, the jet was run for approximately 45 minutes after the
initial seeding to ensure that the jet and ambient air in the enclosure were uniformly
seeded. Measurements were initiated when the sampling rate from the LDA system
fell below 600 samples per second and continued until the sampling rate dropped to
150 samples per second due to deposition of the particles. This allowed approximately
30 minutes for measurements. The sampling parameters used at the different locations
and the integral time scale at these locations are summarized in table 1.



Two-point similarity in the round jet 321

Parameter x/D = 30.3 x/D = 43.3 x/D = 58.3 PIV data

Number of independent samples N >42500 >17000 >21000 657
ερ (%) at ρ = 1 0.5 0.8 0.7 3.9
ερ (%) at ρ = 0.5 1.0 1.5 1.4 7.8
ερ (%) at ρ = 0.1 4.8 7.5 6.8 39

Table 2. Summary of uncertainty in the correlations computed from the LDA/HW
measurements and the PIV measurements of Fukushima et al. (2000) due to sample size.

3.3. Data reduction

The theory for using a burst-mode LDA system in conjunction with a transducer
that yields a continuous signal, such as a hot-wire anemometer, was described in
detail in George et al. (1978). The residence time-weighted algorithm to compute the
cross-correlation between the signals from the two systems is given by

CLDA-HW =

N∑
n=1

u
(n)
HWu

(n)
LDA�t (n)

N∑
n=1

�t (n)

, (3.1)

where �t (n) is the residence time of the particle and u
(n)
HW and u

(n)
LDA are the

velocities from the hot-wire and LDA systems, respectively, determined simultaneously
whenever a seeding particle enters the LDA scattering volume. The correlations of
the HW and LDA signals from the two systems were initially determined by selecting
cases when the two velocities were sampled within 10 µs of each other. The resulting
data rate was too low, so instead all of the LDA measurements were used to compute
the two-point correlations and the corresponding velocity for the hot-wire system was
estimated by linearly interpolating the velocity between the neighbouring times.

3.4. Statistical accuracy for the LDA/HW and PIV data

The variability (relative r.m.s. statistical error) in the two-point correlation coefficient
is given by (George et al. 1978)

ερ =
1√
N

1

ρ
, (3.2)

where N is the number of independent samples and ρ is the correlation coefficient. The
absolute error in the correlation coefficient is constant, so the relative error increases
as the correlation coefficient decreases. Thus, a large number of independent samples
is required to accurately determine the correlation coefficient at large separation
distances of particular interest here (because the correlation coefficient is small). Long
sampling times were used here to ensure ερ was sufficiently small to determine if the
correlations at different locations collapsed when they were scaled using similarity
variables.

Following George et al. (1978), the number of independent samples in the LDA/HW
technique was estimated by N = T/2τ , where T is the total length of the record and
τ is the integral time scale. The resulting number of the independent measurements
determined from the parameters in table 1 ranged from 17 000 to 42 500, and the
variability in the coefficient summarized in table 2 was 5 to 8 % when the correlation
coefficient was 0.1. The database of PIV measurements performed by Fukushima
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Figure 2. The streamwise two-point correlation coefficient of the streamwise fluctuating
velocity measured along jet centreline using the LDA/HW technique at �, x/D = 30.3;
�, x/D =43.3; and �, x/D = 58.3. The error bars show the 95% confidence interval due
to the sample size.

et al. (2000) included 657 images, so the uncertainty in the correlation coefficients
computed from the PIV measurements (also shown in table 2) were 5 to 10 times
larger than those determined using the LDA/HW technique.

4. Measurements of the streamwise two-point velocity correlations
The two-point correlation coefficients of the fluctuating streamwise velocity in the

streamwise direction given by

ρuu(x, x ′) =
u(x, t)u′(x ′, t)

[u(x)2 u′(x ′)2]1/2
, (4.1)

measured along the centreline of the jet with a Reynolds number of 33 000 are shown
in figure 2. Here and throughout this section, x is the streamwise distance from
the nozzle exit. The distance required for the two-point velocity correlation to fall
off to a given value increases as the flow evolves downstream, indicating that the
characteristic length scale of the large-scale motions is increasing as the flow evolves.
The two-point velocity correlations along the centreline presented in the streamwise
similarity coordinate are shown in figure 3. The location of the virtual origin was
subtracted from the streamwise position x in determining the similarity coordinate
(i.e. ξ = ln(x − xo), where xo is the location of the virtual origin). The virtual origin
of this jet was 4.6D downstream of the jet exit. The two-point correlations collapse
to within experimental uncertainty over the entire range, indicating that similarity
solutions for the two-point velocity correlation do describe the development of the
large-scale motions in the streamwise direction of the jet, at least along the centreline.

The correlations computed from the PIV measurements performed by Fukushima
et al. (2000) for a jet with a Reynolds number of 2000 show similar trends, although
with greater uncertainly (owing to the much smaller number of samples). These data
were used to compute the correlation of the streamwise and radial fluctuating velocity
both on the centreline and off this axis. Of particular interest are the correlations along
lines of constant η = r/δ. (Note that this was not reasonable using the LDA/HW
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Figure 3. The streamwise two-point correlation coefficient of the streamwise fluctuating
velocity in similarity coordinates along the jet centreline at �, x/D = 30.3; �, x/D =43.3;
and �, x/D = 58.3. The error bars show the 95 % confidence interval.
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Figure 4. The streamwise two-point correlation coefficient of (a) the streamwise fluctuating
velocity and (b) the radial fluctuating velocity in similarity coordinates along the jet centreline
about �, x/D = 53; �, x/D = 72.2; and �, x/D = 80 computed from the PIV measurements
performed by Fukushima et al. (2000). The error bars in (a) show the 95 % confidence interval
due to the sampling size in PIV measurements.

technique, since the local turbulence intensity rises rapidly away from the centreline,
thereby making the crossflow errors in the HW measurements large.) The two-point
correlation coefficients of the streamwise and radial fluctuating velocity along the jet
centreline and along a line with r = δ(x) (where δ(x) is local half-width of the jet)
between x/D = 50 and x/D =80 are shown in the similarity coordinate in figures 4
and 5. The streamwise coordinate x is, again, the distance from the jet exit, while
the virtual origin in this jet was 6.75D downstream of the jet exit. The results for
r = δ are the average of the results from the two sides of the jet on the measurement
planes (or positions 180 degrees apart in the azimuthal direction), which may reduce
the uncertainty in these results.

The distance over which the radial fluctuating velocity becomes uncorrelated is
less than for the streamwise fluctuating velocity at both positions. The correlation
coefficients along r = δ also fall more rapidly than those on the centreline. Overall, the
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Figure 5. The streamwise two-point correlation of (a) the streamwise fluctuating velocity and
(b) the radial fluctuating velocity in similarity coordinates along r/δ(x) = 1 about �, x/D = 53;
�, x/D = 72.2; and �, x/D = 80 from the PIV measurements performed by Fukushima et al.
(2000).

two-point velocity correlation coefficients at both radial locations collapse to within
experimental uncertainty, suggesting strongly that the two-point similarity solutions
deduced here do describe the growth of the structures in the streamwise direction.
Interestingly, the correlation along the centreline of the jet with Reynolds number of
2000 in similarity variables initially falls off more slowly than result for the higher-
Reynolds-number jet, indicating that the structures in the jets may depend on the
Reynolds number of the jet as predicted in the analysis.

5. Summary and conclusions
It was shown that the governing equations for the two-point velocity correlations

in the far field of the axisymmetric jet admit equilibrium similarity solutions for
a finite-Reynolds-number jet, where the two-point correlations were written as the
product of a scale dependent on the streamwise position of the two points relative
to the jet origin and a function dependent only on similarity variables. Physically,
this implies that the turbulent processes at the different scales of motion in the jet
are in equilibrium when the jet is evolving in a manner consistent with the proposed
equilibrium similarity solution. The two-point similarity solutions deduced here are
more general than those deduced by analysing the equations for the single-point
moments (Hussein et al. 1994) because they include information about how the
energy is contained in and transferred among the different scales of motion that is
not contained in the single-point equations.

Further, like the analysis of the single-point moments in a range of flows (George
1995; Moser et al. 1998), it was shown that the governing equations for the equilibrium
similarity solutions could not be reduced to a form independent of the jet growth
rate. Thus the results indicate that there is not a universal solution that describes the
large-scale structures in the far field of the round jet, so that the structures present
may depend on how the flow is generated. It cannot be determined from the analysis
whether the round jet generated from different sources would evolve to different
solutions, but the investigations of Boersma et al. (1998) and Mi et al. (2001) show
such a dependence.

Gamard et al. (2002, 2004) showed that the two-point velocity correlations with
separation distances in the radial and azimuthal direction measured on different planes
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in the fully developed region of the round jet collapsed when they were scaled in a
manner consistent with the analysis outlined here. The correlations in the streamwise
direction were determined here from combined LDA/HW measurements in a jet with
a Reynolds number of 33 000 and from PIV measurements in a jet with a Reynolds
number of 2000 performed by Fukushima et al. (2000). The streamwise velocity
correlations in the individual jets collapsed when they were scaled in the manner
predicted in the analysis. Thus the equilibrium similarity solutions deduced here do
appear to describe the evolution of the turbulent motions in the far field of the round
jet. The results in the two jets examined here did differ, indicating that the structures
in the jet may depend on the Reynolds number of the jet as predicted by the analysis.

The equilibrium similarity solutions for the two-point velocity correlations have
implications on attempts to model the pressure-strain, the dissipation, the mean square
vorticity, and attempts to represent the turbulent motions using techniques such as
the proper orthogonal decomposition, all of which require two-point information. For
example, it can be shown that the turbulence dissipation and mean square vorticity
have similarity solutions when the two-point velocity correlations have similarity
solutions as discussed in Appendix B. The similarity solution for the two-point
velocity correlations also only depends on the separation distance between the points
in the logarithmic streamwise similarity variable, so the correlation is statistically
homogeneous in this direction. Since the similarity variable in the streamwise direction
is the logarithm of the physical coordinate from the jet virtual origin, the semi-infinite
physical coordinate is also transformed into an infinite similarity coordinate (−∞, ∞).
As a result, the optimal modes to represent the energy of the turbulent motions in
the streamwise direction are Fourier modes in the similarity coordinate system. The
consequences of this result will be explored in subsequent work.

Earlier versions of this analysis were presented in the PhD dissertation of Ewing
(1995) and in Ewing & George (1995), and formed the basis of the invited lecture
by WKG at the 2003 APS/DFD Annual meeting. The HW/LDA experiments here
were part of the Masters thesis of Frohnapfel (2003). The authors would like to thank
L. Jernquist, T. G. Johansson, and P. B. V. Johansson for their assistance in setting
up and performing the experiments presented in this work. The work was originally
supported in part by funding from the National Science Foundation of the United
States of America. Subsequently the work of WKG, BF and JP was supported by
Vetenskapsr̊adet, the Swedish Research Foundation, while that of DE was supported
by the Natural Sciences and Engineering Research Council of Canada.

Appendix A. Equation for two-point velocity correlations
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Appendix B. Similarity of the velocity derivative correlations
Similarity solutions for the dissipation of the turbulent kinetic energy, ε, given by

ε = lim
xk→x ′

k

2νeij eij , (B 1)

where eij is the rate-of-strain tensor given by (see Batchelor 1967)
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or the two-point correlation for the vorticity given by
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where εijk is the alternating tensor, can be deduced by recognizing that (cf. Hinze
1975)
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since ui is not a function of x ′
i nor u′

j a function of xi . Thus, similarity solutions for
the two-point velocity gradients can be used to deduce similarity solutions for the
two-point velocity correlations. For example,
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This can be done for all the terms in (B 1) and (B 3) and it can be shown that the
scale for all the terms is proportional to[

Us(x1)Us(x
′
1)

δ(x1)δ(x
′
1)

]
. (B 7)

It follows that the dissipation of kinetic energy per unit mass can be written as

ε = lim
xk→x ′
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consistent with the similarity solution for the dissipation assumed in the single-point
analysis (e.g. Hussein et al. 1994). The two-point vorticity correlation tensor can be
written as

ωiω
′
l =

[
Us(x1)Us(x

′
1)

δ(x1)δ(x
′
1)

]
hi,l(η, η′, θ, υ, ∗) (B 9)

when the two-point velocity correlation tensor has a similarity solution. This reduces
to a similarity solution for the single-point vorticity moments in the limit of zero
separation distance.
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