
ABSTRACT
The attenuation introduced in measured vorticity quantities by

the finite separation distances between the cluster of wires in nine
and twelve wire vorticity probes is examined by using a three
point model of the probe. The analysis demonstrates that the
probes introduce a significant amount of spatial attenuation if the
separation distances in the probe are significantly larger than three
times the Kolmogorov length scale. In addition, the one dimen-
sional spectra of the vorticity measured by the probe in isotropic
turbulence do not satisfy the one-dimensional isotropic vorticity
spectral relations for the high wave numbers due to the spatial
attenuation. It is demonstrated that the effect of spatial attenuation
on vorticity measurements is dependent on the shape of the three
dimensional velocity spectrum which is being measured.

INTRODUCTION

Instantaneous measurement of the mean square vorticity or dissi-
pation of the turbulent kinetic energy requires the simultaneous
measurement of a number of spatial derivatives. However, the
finite dimensions of the measuring devices which determine the
spatial derivatives act as a spatial filter if they are not sufficiently
small to resolve the smallest scales of the turbulence. The attenua-
tion of the derivative measured using a parallel wire probe, which
is the simplest geometry for measuring spatial derivatives, has
been studied analytically or experimentally by a number of
researchers including Wyngaard (1969), Klewicki and Falco
(1991), Antonia et. al. (1993), and Ewing et. al. (1994). More
complex geometries such as the nine and twelve wire probes (e.g.
Honkan and Andrepolous, 1993 or Wallace et. al., 1992) used to
measure the three components of vorticity simultaneously, how-
ever, have not been similarly analyzed. In the current analysis a
three point model is studied using the techniques outlined by

Wyngaard (1968, 1969) to determine an estimate of the attenua-
tion introduced by these complex wire geometries.

Typical multi-wire probes utilize three or four wire probes cen-
tered around three points separated by finite distances. The analy-
sis presented below examines the spatial attenuation caused by the
finite separation of these points by modelling the probe as three
measuring points. The analysis neglects the attenuation introduced
by the finite dimensions of the individual wire clusters. The model
will produce an accurate estimate of the attenuation if the dimen-
sions of the wires in the cluster are significantly smaller than the
separation distances; it is an estimate of the lower bound of the
amount of attenuation when this is not true. Using this model it is
possible to determine equations relating the three dimensional
vorticity spectrum which would be measured by a finite size probe
in an isotropic flow to the actual three dimensional vorticity spec-
trum in the flow. It is then possible to determine a filtering func-
tion which describes how the finite dimensions of the probe filter
the three dimensional spectra of the derivative components in the
vorticity.

Since it is not possible to measure a three-dimensional spectrum
in an experiment, it is necessary to introduce models for the three
dimensional spectrum in order to calculate numerical estimates of
the amount of the attenuation which occurs in measured quanti-
ties. The current analysis uses three different isotropic models of
the three dimensional spectrum to determine the sensitivity of the
attenuation to the shape of the spectrum.

Initially the models are used calculate the attenuation of mean
sqaure vorticity measurements. In addition to studying the magni-
tude of the attenuation of the individual vorticity components, the
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current study examines whether all of the components are attenu-
ated by approximately the same amount. This is always an impor-
tant consideration when measured data is compared to each other,
because a failure to satisfy this constraint could lead an experi-
menter to false conclusions about the anisotropy (or isotropy) of
the flow.

In the last section the attenuation of the one-dimensional spectra
is examined. Recently, Ong et. al (1993) used measurements from
multi-wire probe to test whether the smallest scales of the turbu-
lence are locally isotropic using the isotropic one-dimensional
vorticity spectra relationships. The equations for the attenuated
three dimensional vorticity spectra are used here to determine the
one-dimensional vorticity spectra which would be measured by a
finite dimensioned probe in the flow. These one-dimensional spec-
tra are substituted into the isotropic one-dimensional spectral rela-
tionship to determine if the attenuated spectra satisfy the same
relationship as the unattenuated spectra.

THREE POINT MODEL

 The calibration of the nine or twelve wire probes normally
requires the use of sophisticated techniques (e.g. Wallace, 1986)
which can not be modelled using the methods outlined by Wyn-
gaard (1969). Instead a three point model, illustrated in figure 1, is
used to model the nine and twelve wire vorticity probes. It is
assumed the three components of velocity are known exactly at
each of the three measuring points. Following the general method
outlined by Wallace (1986), the spatial derivatives in the x2 and x3
directions can be determined by writing the velocities at each of
the measuring points as a Taylor expansion of the velocity at the
center of the probe and truncating the expansion after a single
term, i.e.

(1)

where there is summation over j=1, 2. The velocity vector is
u=(u1, u2, u3) andx=(x1, x2, x3) is the position vector. The quanti-
ties in this paper are non-dimensionalized by the Kolmogorov
length scaleη=(ν3/ε)1/4 and the Kolmogorov velocity scale
uk=(νε)1/4, whereν is the kinematic viscosity andε is the dissipa-
tion per unit mass. The superscript p=(1,2,3) is used to denote the
individual measuring points and c indicates the center of the probe
(see figure 1). The value of the coefficients in the Taylor expan-
sions,hj

(p), are related to the separation distances,∆2 and∆3, in
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FIGURE 1 THREE POINT MODEL OF MULTI-WIRE PROBE
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the x2 and x3 directions. The essence of the current analysis is to
test if the truncation of the Taylor expansion at a single term intro-
duces a significant amount of error.

The streamwise derivatives of the velocity components are cal-
culated using Taylor’s frozen field hypothesis. It is assumed that
the derivatives calculated using this technique are exact. This may
not be true in a real experiment (Lumley, 1965), and would add
further error and uncertainty to the error due to the spatial attenua-
tion. Taylor’s hypothesis is applied to the average of the velocities
at the three measuring points, so the resulting derivative is an esti-
mate of the derivative at the center of the probe making it consis-
tent with the derivatives calculated using equation (1).

Equation (1) can be rearranged to generate equations for the esti-
mate of the each of the derivatives in the non-streamwise direc-
tions and an equation for the velocity at the center of the probe.

(2)

(3)

(4)

∆2 and∆3 are the separation distance in the x2 and x3 directions
(figure 1) and are non-dimensionalized by the Kolmogorov length
scale. The derivative in the x2 direction is a difference equation
involving only the velocities at measuring points 1 and 2. There-
fore, the measured derivative is an estimate of the derivative cen-
tered between these two points. This is a problem for this method
if the dimensions of the probe are not small relative to the varia-
tion of the statistical quantity being measured.

It is possible to use equations 2-4 to generate equations relating
the measured three-dimensional derivative spectra to the three
dimensional velocity spectra in the flow. The equation for the
streamwise derivative spectra is

(5)

where the brackets on the subscripts are used to indicate there is
no summation over the i.k=(k1, k2, k3) is the wave number vector
non-dimensionalized by the Kolmogorov length scale. The sym-
bol Φ(ι),1;(ι),1 is used to indicate a three-dimensional derivative
spectrum and the superscript m is used to indicate that it is a mea-
sured spectrum. The two groups of subscripts separated by the
semicolon indicate the two derivative quantities that the three
dimensional spectrum corresponds to. In each of the groups the
first subscript indicates the velocity component, while the sub-
script following the comma indicates the derivative coordinate.
The symbolΦ(ι)(ι) denotes the three dimensional velocity spec-
trum for ith velocity component in the flow.

x2∂
∂ui ui

1( ) ui
2( )–

∆2
----------------------------=

x3∂
∂ui 2ui

3( ) ui
2( ) ui

1( )+( )–

2∆3
--------------------------------------------------------=

ui
c

ui
1( ) ui

2( ) ui
3( )+ +

3
----------------------------------------------=

Φ i( ) 1 i( ); 1, ,
m 1

9
--- 3 2 k2∆2( ) 4

k2∆2

2
----------- 

 
cos+cos+=

1
2
--- k3∆3( )cos× k1

2Φ i( ) i( )



The equation for the measured three dimensional x2 derivative
spectra is

(6)

and the equation for the x3 derivative spectra is

(7)

where there is no summation on the i in either equation.

To calculate the vorticity it is necessary to determine the three-
dimensional spectrum of the product of two different derivative
components. The term for the x1 vorticity is

(8)

where the term on the left includes the two cross terms in the vor-
ticity component. This term is straight-forward to derive, but the
cross terms in the other two components must be handled care-
fully to ensure the correct value is derived since the exact deriva-
tive in the x1 direction includes a factor ofik (wherei is ) in
Fourier space and the non-streamwise derivatives do not include a
term with ani. The equation for the terms in the x2 vorticity spec-
trum is

(9)

and the equation for the terms in the x3 vorticity spectrum is

(10)

The measured three dimensional spectra for each vorticity com-
ponents can be determined using the equations 5-10. The correct
value of each of the derivative components can be determined
using the equation

(11)

One check that equations 5-10 are correct is that they are equal to
the corresponding member(s) of the fourth order tensor defined by
equation 11 in the limit of the zero separation distance.

It is possible to determine the filtering functions of the geometry
and gain insight into the nature of the filtering by taking the ratio
of the measured three dimensional derivative spectrum and the
exact three dimensional derivative spectrum. For example

(12)

This expression can be simplified by Taylor expanding the trigo-
nometric functions. Using the current geometry this yields

(13)
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It is important to note that the filtering which occurs in this partic-
ular derivative is only a function ofk2, k3, ∆2, and∆3 and is not a
function ofk1. The expression also indicates that the attenuation is
significant for large values ofk2 or k3. For this derivative it is the
filtering in thek3 which will normally be the most important since
the exact derivative is the velocity spectrum multiplied byk3

2.
Therefore much of the spectral density, in the three dimensional
spectrum, is concentrated at large values ofk3. A similar analysis
can be carried out for the other derivatives in the measured vortic-
ity components. For the current model the filtering functions are
all functions ofk2, k3, ∆2, and∆3 only and independent ofk1.

THREE DIMENSIONAL VELOCITY SPECTRUM

The calculations in this paper require a three dimensional veloc-
ity spectrum to simulate the turbulence field which would be mea-
sured by the probe. The only models available currently are
isotropic, so these are utilized to estimate the error introduced in
the measured quantities. Three different models are used to test
the sensitivity of the results to the three-dimensional turbulence
model.

The three dimensional velocity spectrum,ij , can be defined in
terms of the three dimensional energy spectrum function ( ),
(Batchelor, 1953),

(14)

where the integration is carried out over spherical shells of radius
in wave number space.is the magnitude of the wave number

vector =( , , ). For isotropic turbulence the two are
related by (Batchelor, 1953)

(15)

whereδij  is the Kronecker delta. By definition,( ) must inte-
grate to the turbulent kinetic energy and the dissipation per unit
mass,ε,

(16)

Wyngaard (1968,1969) used Pao’s (1965) model for the energy
spectrum, i.e.

(17)

to study the attenuation of probes where
 (η=(ν3/ε)1/4), represents the spectrum function and

wave number non-dimensionalized by Kolmogorov variables,
respectively. The value of alpha is chosen as 1.6 in this study,
which is in the acceptable range for this value.

Pao’s spectrum function is not a realistic model of the high wave
number region (k > 0.1) because it distributes too much energy to
this region. In addition, the one-dimensional spectrum for Pao’s
spectrum function does not roll off as fast as experimental data in
the far dissipation region (see Driscoll, 1982). This led to the
introduction of models which roll off faster in this regionsuch as
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Lin’s (1972) model of the energy spectrum

(18)

The value of alpha is chosen as 1.65 (see e.g. Driscoll, 1982).
Ewing et. al. (1994) demonstrated that the amount of attenuation,
for parallel wires, was significantly less sensitive to changes in the
value ofα than it was to the change of model.

The previous two spectra models are infinite Reynolds number
models of the equilibrium and dissipation regions. To include the
possibility of finite Reynolds number effects (i.e. roll off at low
wave numbers), a composite spectrum is included in the analysis
(Hellend et al., 1977) which is the product of von Karman’s
(1948) empirical model for the energy containing eddies and Pao’s
model. The model for the spectrum is

(19)
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FIGURE 3 COMPARISON OF THE ONE-DIMENSIONAL
STREAMWISE VELOCITY SPECTRUM
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FIGURE 2 COMPARISON OF THREE DIMENSIONAL
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L is a charteristic length scale of the energy containing eddies,α a
model constant chosen as 1.6 in the current analysis andβ is deter-
mined by satisfying the dissipation integral. For L/η, greater than
200 the value ofβ is approximately equal toα. The turbulence can
be charterized using the Reynolds number based on the Taylor
microscale. This Reynolds number can be calculated using the
expression

(20)

where u2=( )/3.

The three dimensional energy spectrum function for the three
spectral models is shown in figure 2. Note the roll off of the com-
posite spectrum at low wave numbers, and the more rapid roll off
of Lin’s spectrum at the high wave numbers. Figure 3 illustrates
the one-dimensional spectrum of the streawise component, nor-
malized by Kolmogorov variables, of the turbulence. This is the
one-dimensional spectrum which is normally measured in an
experiment (if Taylor’s frozen field hypothesis is utilized to con-
vert the time spectrum to a wave number spectrum). Notice that all
of the spectrum functions which utilize Pao’s model for the high
wave number region roll off slower at the high wave numbers. In
addition the one-dimensional spectrum of the infinite Reynolds
number models continues to increases in the low wave number
region, while the composite spectrum levels off in a manner more
characteristic of measured turbulence.

ATTENUATION OF THE MEAN SQUARE VORTICITY

The attenuation of the mean sqaure vorticity can be calculated by
integrating the equations for the measured three dimensional
derivative spectra. Figure 4 illustrates the attenuation introduced
by the probe when the probe geometry is chosen to model the
geometry of Wallace’s (1992) twelve wire probe and Honkan and
Andreopoulos’s (1993) nine wire probe, with∆2=1.15 ∆3. Each of
the measured vorticity components have been normalized by the
exact value of the vorticity component for the spectrum to demon-
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FIGURE 4 ATTENUATION OF THE MEAN SQUARE VOR-
TICITY FOR ∆2 = 1.15∆3
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strate the relative attenuation of the signal. The figure illustrates
that the amount of attenuation is highly dependent on the choice of
the model for the high wave number portion of the spectrum func-
tion. The error in the signal is 10 percent when the separation dis-
tance in the x2 direction is approximately 3 times the Kolmogorov
length scale for Lin’s spectrum function but the same attenuation
occurs when the separation distance is only 2.25 times the Kol-
mogorov length scale for Pao’s spectrum function. The attenuation
introduced by the geometry for Lin’s spectrum function is much
smaller that the other two spectrum functions because Lin’s rolls
off faster in the high wave number region. This causes less of the
relative spectral density to be in regions wherek2 andk3 are large
(i.e. where attenuation is large). In addition, the normalized atten-
uation of the measured vorticity components calculated using the
composite spectrum (Reλ>120) does not differ significantly from
the normalized attenuation calculated using Pao’s spectrum. For
lower Reynolds numbers, such as Reλ=28.8 , it is clear that the
model of the low wave numbers can have a significant effect on
the estimate of the amount of attenuation which occurs in the mea-
sured vorticity.

It is important to note that the difference in the amount of attenu-
ation between the models increases as the separation distance
increases. This indicates that data correction is not an effective
technique of handling spatial attenuation, since the uncertainty of
the correction factor increases significantly as the correction factor
increases.

This geometry, with ∆2=1.15 ∆3, (for the Reynolds numbers
tested) attenuates all three of the mean sqaure vorticity compo-
nents by approximately the same amount for a given probe dimen-
sion and spectrum function. Therefore, the relative magnitude of
the components is conserved during the measurement despite the
attenuation due to spatial filtering. The calculations were repeated
for two other geometries (∆2=∆3 and 1.2∆2=∆3) to determine
whether the three components of vorticity are equally attenuated
for a wide range of geometries. The attenuation of the normalized

FIGURE 5 ATTENUATION OF THE MEAN SQUARE VOR-
TICITY FOR OTHER GEOMETRIES
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mean sqaure vorticity components, calculated using Lin’s spec-
trum function, is shown in figure 5. In the first case when∆2=∆3,
the three components of vorticity are attenuated by approximately
the same amount except when the separation distances are large.
In the second case (1.2∆2=∆3) the attenuation of the three compo-
nents differs by 3 percent when∆2 is 3 times the Kolmogorov
length scale, despite the fact that two of the components are only
attenuated by 10 percent. It is clear that the three components of
the mean sqaure vorticity measured simultaneously using the cur-
rent three point model are not attenuated by approximately the
same amount for all geometries. It is important to realize that this
criterion has only been tested for isotropic turbulence in the cur-
rent analysis and it is not possible to generalize this result to aniso-
tropic turbulence without an appropriate model for anisotropic
turbulence.

ONE-DIMENSIONAL SPECTRA

Recently, Ong et. al. (1993) measured the one dimensional spec-
tra of the vorticity to determine if the spectra satisfy the isotropic
one-dimensional vorticity relationships (e.g Ong et. al. 1993)

(21)

The measured one-dimensional spectra can be related to the three
dimensional vorticity spectra by the equation

(22)

whereεijk  is the alternating unit tensor. The results of the experi-
ment demonstrated good agreement over an intermediate range of
wave numbers, but the relationship was not satisfied at the highest
wave numbers or at the low wave numbers.

The spectra measured for a probe of finite dimensions were cal-
culated by substituting the appropriate measured three dimen-
sional spectra into equation 21. It is important to note that the one-
dimensional spectra in equation 21, at a particular value ofk1, are
determined by integrating the three dimensional spectra over ak2
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FIGURE 6 RATIO OF TERMS IN THE ONE-DIMENSIONAL
ISOTROPIC VORTICITY RELATIONS
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k3 plane for a fixedk1. Therefore an one-dimensional spectrum is
the sum of quantities which have been attenuated by different
amounts (since the local attenuation is a function ofk2 andk3) so
that it is not possible to generate a simple filtering of the one-
dimensional spectra in terms of the finite dimensions of the probe,
∆2 and ∆3, since the attenuation must also depend on the three
dimensional spectrum of the turbulence.

The measured one-dimensional vorticity spectra for a single
geometry with∆2=1.15 ∆3 were used to test whether the finite
attenuation of the probe causes the measured data to fail to satisfy
the one-dimensional vorticity relations in equation 20. The deriva-
tive term in equation 20 was determined analytically by differenti-
ating equation 21, so it does not incorporate any of the errors
which would occur using a finite difference method on the one-
dimensional spectra .

Figure 6 illustrates the ratio of the first and final terms in equa-
tion 20 for various separation distances. The calculations were
carried out for both Lin’s and Pao’s spectrum functions. In all
cases the measured data fail to satisfy the relationship at the high-
est wave numbers although, it does satisfy the isotopic relation-
ship at the lower wave numbers. As the finite dimensions of the
probe increase, the region over which the relationship is not satis-
fied increases. This is similar to the result determined by Wyn-
gaard (1968) for one-dimensional velocity spectra measured using
cross wires. Wyngaard demonstrated that the finite dimensions of
the probe would cause the measured one-dimensional spectra to
have a different ratio than occurs in the flow, although the primary
cause investigated by Wyngaard was cross talk between the com-
ponents which does not occur in the present model.

A comparison of the attenuation curves for the two different
spectral models demonstrates that the amount of attenuation
which occurs is dependent on the spectrum function used to model
the turbulence. Figure 7 demonstrates that the ratio of the

 is nearly unity over the entire range of wave num-
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bers, for all choices of separation distances and both spectrum
models.

It is clear that the spatial attenuation can cause the measured one-
dimensional vorticity spectra to fail to satisfy the isotropic one-
dimensional vorticity relations at the high wave numbers, even if
the underlying turbulence is isotropic. Therefore, comparisons
such as those shown in figure 6 do not exclude the possibility that
the turbulence being measured is isotropic if the dimensions of the
probe used to make the measurement are large relative to the
smallest scales of the turbulence. The region where the attenuation
is large should not be used to confirm the local isotropy theory
because the figure illustrates that the effect of spatial attenuation is
dependent on the three dimensional spectrum of the turbulence
which is being measured, so it is not possible to predict what the
curve for the ratio will be with knowing the actual three-dimen-
sional spectra. It must be noted that all of the analyses in the cur-
rent paper were carried out using isotropic turbulence models. In
an experimental measurement a significant amount of attenuation
could cause an isotropic flow to appear anisotropic (the case
examined in this paper), or the opposite may occur where aniso-
tropic turbulence appears to satisfy the isotropic one-dimensional
relations due to spatial attenuation.

SUMMARY AND CONCLUSIONS

The analysis demonstrated that the amount of attenuation in the
mean sqaure vorticity component measured using the three point
model is significant when the separation distance is greater than 3
times the Kolmogorov length. In addition the amount of attenua-
tion which occurs is dependent on the shape of the spectrum func-
tion at high wave numbers for all Reynolds numbers as well as the
model of the energy containing scales for lower Reynolds num-
bers. The attenuation calculated in the current paper does not
include the attenuation due to the finite length measuring devices.
This should be valid if the finite dimensions in the cluster of wires
are significantly smaller than the wire separation distances. Look-
ing at the different spectral models, it is clear that since the turbu-
lence spectrum is unknown a priori, the uncertainty in the mean
sqaure vorticity measurements increases as the separation distance
increases. This indicates that data correction may not be an effec-
tive method of handling the problem.

The analysis also demonstrates that attenuation introduced by the
finite dimensions of the probe causes the measured one-dimen-
sional vorticity spectra to fail to satisfy the one-dimensional iso-
tropic vorticity spectra relations, even when the actual turbulence
being measured is isotropic. The ratio of is approxi-
mately unity for all of the cases studied in this paper, so these one-
dimensional spectra are affected in the same way by the attenua-
tion. The spatial attenuation causes the term involving the stream-
wise vorticity to fail to be equal to either of these two components
over a range of the largest wave numbers. The range of wave num-
bers increases as the dimension of the probe increases.

It is clear from the curves shown that it is not possible to generate
a general correction for the spatial attenuation effects. Therefore,

φw2
φw3

⁄



the region where attenuation is significant should be ignored when
confirming the existence of local isotropy because it may be diffi-
cult to distinguish between the effects of spatial attenuation and
the aberrations which occur due to the anisotropy of the flow.
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