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ABSTRACT Wyngaard (1968, 1969) to determine an estimate of the attenua-
The attenuation introduced in measured vorticity quantities by tion introduced by these complex wire geometries.
the finite separation distances between the cluster of wires in nine
and twelve wire vorticity probes is examined by using a three Typical multi-wire probes utilize three or four wire probes cen-
point model of the probe. The analysis demonstrates that the tered around three points separated by finite distances. The analy-
probes introduce a significant amount of spatial attenuation if the sis presented below examines the spatial attenuation caused by the
separation distances in the probe are significantjyetahan three finite separation of these points by modelling the probe as three
times the Kolmogorov length scale. In addition, the one dimen- measuring points. The analysis neglects the attenuation introduced
sional spectra of the vorticity measured by the probe in isotropic by the finite dimensions of the individual wire clusters. The model
turbulence do not satisfy the one-dimensional isotropic vorticity will produce an accurate estimate of the attenuation if the dimen-
spectral relations for the high wave numbers due to the spatial sions of the wires in the cluster are significantly smaller than the
attenuation. It is demonstrated that thfe&fof spatial attenuation separation distances; it is an estimate of the lower bound of the
on vorticity measurements is dependent on the shape of the threeamount of attenuation when this is not true. Using this model it is

dimensional velocity spectrum which is being measured. possible to determine equations relating the three dimensional
vorticity spectrum which would be measured by a finite size probe
INTRODUCTION in an isotropic flow to the actual three dimensional vorticity spec-

trum in the flow It is then possible to determine a filtering func-
tion which describes how the finite dimensions of the probe filter
the three dimensional spectra of the derivative components in the
vorticity.

Instantaneous measurement of the mean square vorticity or dissi-
pation of the turbulent kinetic emsr requires the simultaneous
measurement of a number of spatial derivatives. Howeker
finite dimensions of the measuring devices which determine the
spatial derivatives act as a spatial filter if they are ndicgarftly Si . ibl hree-di ional
small to resolve the smallest scales of the turbulence. The attenua-, = oc Itis not possible to measure a three-dimensional spectrum

. o ; . . In an experiment, it is necessary to introduce models for the three
tion of the derivative measured using a parallel wire probe, which . : ) . .

. . . . o dimensional spectrum in order to calculate numerical estimates of
is the simplest geometry for measuring spatial derivatives, has

been studied analytically or experimentally by a number of :.Zes a_lr_r;]c;uzt r(::;;?Z:;eg.iatfgsvf:rlggeggﬁy 'r:oltrr]omsanizzizcljsqgfaml-
researchers including yigaard (1969), Klewicki and Falco tlhe 'three dLijmensionaIysle(l:Jtr m to determilne th:Isensitivit of the
(1991), Antonia et. al. (1993), and Ewing et. al. (1994). More pectru y

complex geometries such as the nine and twelve wire probes (e.g.attenuatlon to the shape of the spectrum.
Honkan and Andrepolous, 1993 orléce et. al., 1992) used to
measure the three components of vorticity simultanepbshy-

ever have not been similarly analyzed. In the current analysis a
three point model is studied using the techniques outlined by

Initially the models are used calculate the attenuation of mean
sqaure vorticity measurements. In addition to studying the magni-
tude of the attenuation of the individual vorticity components, the
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FIGURE 1 THREE POINT MODEL OF MULI-WIRE PROBE

current study examines whether all of the components are attenu-
ated by approximately the same amount. This is always an impor-

tant consideration when measured data is compared to each other

because a failure to satisfy this constraint could lead an experi-
menter to false conclusions about the anisotropy (or isotropy) of
the flow

In the last section the attenuation of the one-dimensional spectra
is examined. Recentl{Dng et. al (1993) used measurements from
multi-wire probe to test whether the smallest scales of the turbu-
lence are locally isotropic using the isotropic one-dimensional
vorticity spectra relationships. The equations for the attenuated
three dimensional vorticity spectra are used here to determine the
one-dimensional vorticity spectra which would be measured by a
finite dimensioned probe in the flolhese one-dimensional spec-
tra are substituted into the isotropic one-dimensional spectral rela-
tionship to determine if the attenuated spectra satisfy the same
relationship as the unattenuated spectra.

THREE POINT MODEL

The calibration of the nine or twelve wire probes normally
requires the use of sophisticated techniques (eadiaé, 1986)
which can not be modelled using the methods outlined y-W
gaard (1969). Instead a three point model, illustrated in figure 1, is
used to model the nine and twelve wire vorticity probes. It is
assumed the three components of velocity are known exactly at
each of the three measuring points. Following the general method
outlined by Véllace (1986), the spatial derivatives in therd %
directions can be determined by writing the velocities at each of
the measuring points as aylor expansion of the velocity at the
center of the probe and truncating the expansion after a single
term, i.e.
ou’;

@

ui(P) = ut+ hj(p)

i
where there is summation over j=1, 2. The velocity vector is
u=(uq, Uy, ug) andx=(xq, X, X3) is the position vectoiThe quanti-
ties in this paper are non-dimensionalized by the Kolmogorov
length scalerlz(v3/s)1’4 and the Kolmogorov velocity scale
w=(ve) 4 wherev is the kinematic viscosity ariis the dissipa-
tion per unit mass. The superscript p=(1,2,3) is used to denote the
individual measuring points and c indicates the center of the probe
(see figure 1). The value of the digénts in the Aylor expan-
sions,hj(p), are related to the separation distanégsandAg, in

the »% and % directions. The essence of the current analysis is to
test if the truncation of theaJlor expansion at a single term intro-
duces a significant amount of etror

The streamwise derivatives of the velocity components are cal-
culated using dylor's frozen field hypothesis. It is assumed that
the derivatives calculated using this technique are exact. This may
not be true in a real experiment (Lumld®65), and would add
further error and uncertainty to the error due to the spatial attenua-
tion. Taylor's hypothesis is applied to the average of the velocities
at the three measuring points, so the resulting derivative is an esti-
mate of the derivative at the center of the probe making it consis-
tent with the derivatives calculated using equation (1).

Equation (1) can be rearranged to generate equations for the esti-
mate of the each of the derivatives in the non-streamwise direc-
tions and an equation for the velocity at the center of the probe.

o _u®-u® @)
0%, A,
ai _ 2ui(3) — (ui(Z) + ui(l)) 3)
0%y 27,
o o ui(l) + ui(2) + ui(3) @)
I 3

A, andA; are the separation distance in theaxd » directions
(figure 1) and are non-dimensionalized by the Kolmogorov length
scale. The derivative in the, xlirection is a dilerence equation
involving only the velocities at measuring points 1 and 2. There-
fore, the measured derivative is an estimate of the derivative cen-
tered between these two points. This is a problem for this method
if the dimensions of the probe are not small relative to the varia-
tion of the statistical quantity being measured.

It is possible to use equations 2-4 to generate equations relating
the measured three-dimensional derivative spectra to the three
dimensional velocity spectra in the flowhe equation for the
streamwise derivative spectra is
1
9

Dsz 2]

[3 +2cos (k,A,) + ACOSDTD

®h 1@ T

x cos (k) [KE® )

®)
where the brackets on the subscripts are used to indicate there is
no summation over thek=(ky, k, ks) is the wave number vector
non-dimensionalized by the Kolmogorov length scale. The sym-
bol @) 1.),1 is used to indicate a three-dimensional derivative
spectrum and the superscript m is used to indicate that it is a mea-
sured spectrum. The two groups of subscripts separated by the
semicolon indicate the two derivative quantities that the three
dimensional spectrum corresponds to. In each of the groups the
first subscript indicates the velocity component, while the sub-
script following the comma indicates the derivative coordinate.
The symbol®),y denotes the three dimensional velocity spec-
trum for velocity component in the flaw



The equation for the measured three dimensiopalexivative
spectra is

2
W 20,2 = A_g[l‘cos(szz)] ® ) (i) 6)
and the equation for the xlerivative spectra is
m [Iszzl:J
¢(i),3;(i),3 = 6+Zcos(k 50,) —BCOSDTD
x €0s (KgA,) ]q)(i) 0 (7)

where there is no summation on the i in either equation.

To calculate the vorticity it is necessary to determine the three-
dimensional spectrum of the product of twofeliént derivative
components. The term for the worticity is

4 . 00,0
ATA—S > DSII’](k AZ) q323
where the term on the left includes the two cross terms in the vor-
ticity component. This term is straight-forward to derive, but the

q)g,]3;3, 2 +®F (8)
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cross terms in the other two components must be handled care-

fully to ensure the correct value is derived since the exact deriva-
tive in the x direction includes a factor @ (wherei is »/~1) in
Fourier space and the non-streamwise derivatives do not include
term with ani. The equation for the terms in thgvorticity spec-
trum is

" _ 2kl i (k Dk2A2|:|
Pllaa1* Py 3 = A—gsm( 303) COSO5~ P13 (9)
and the equation for the terms in theverticity spectrum is
4k,
112t P01 = 37 [ sin (I8, + cos (katly)
KA
<snG 5% |o, (10

The measured three dimensional spectra for each vorticity com-

ponents can be determined using the equations 5-10. The correct

value of each of the derivative components can be determined
using the equation

D15 = KKy (11)

One check that equations 5-10 are correct is that they are equal to
the corresponding member(s) of the fourth order tensor defined by

equation 1 in the limit of the zero separation distance.

It is possible to determine the filtering functions of the geometry
and gain insight into the nature of the filtering by taking the ratio

of the measured three dimensional derivative spectrum and the

exact three dimensional derivative spectrum. For example

¢T3;1,3 _ 6+ 2cos (k,A,) —8cos (k,A,/2) cos (K;A5) (12)
® 313 403K2

This expression can be simplified bgylor expanding the trigo-
nometric functions. Using the current geometry this yields
(Dfs; (1,3)

o = 1 koA + kAT .. (13)
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It is important to note that the filtering which occurs in this partic-
ular derivative is only a function &, ks, A,, andAz and is not a
function ofk,. The expression also indicates that the attenuation is
significant for lage values ok; or k. For this derivative it is the
filtering in thekz which will normally be the most important since
the exact derivative is the velocity spectrum multipliedkss
Therefore much of the spectral density the three dimensional
spectrum, is concentrated atgarvalues oks. A similar analysis

can be carried out for the other derivatives in the measured vortic-
ity components. For the current model the filtering functions are
all functions ofky, ks, Ay, andAz only and independent &f.

THREE DIMENSIONAL VELOCITY SPECTRUM

The calculations in this paper require a three dimensional veloc-
ity spectrum to simulate the turbulence field which would be mea-
sured by the probe. The only models available currently are
isotropic, so these are utilized to estimate the error introduced in
the measured quantities. Threefatiént models are used to test
the sensitivity of the results to the three-dimensional turbulence
model.

The three dimensional velocity spectru&aij, can be defined in
terms of the three dimensional emerspectrum functiork (k),

a(BatcheIor 1953),

~ o~ 1 ~ ~ ~
E(k) = 3f [ ®ii(k)da(k) (14)

lil=k
where the integration is carried out over spherical shells of radius
kin wave number spacé.is the magnitude of the wave number
vector k=(ky, k,, ki3). For isotropic turbulence the two are

related by (Batchelpd953)
%2

E (k)

47k
whereg; is the Kronecker delta. By definitioE(E) must inte-
grate to the turbulent kinetic eggrand the dissipation per unit
masse,

o (k) = kR (15)

£ = 2vJ’E2é(R) dk (16)
Wyngaard (1968,1969) used Pag¢1965) model for the ergr
spectrum, i.e.

E(k) = O(k—5/3exp{—§ak4/3} (17)
to study the attenuation of probes whéie= (v5/4gl/4)-1E

andk = kn (n=(v¥e)Y/4), represents the spectrum function and
wave number non-dimensionalized by Kolmogorov variables,
respectively The value of alpha is chosen as 1.6 in this study
which is in the acceptable range for this value.

Paos spectrum function is not a realistic model of the high wave
number regionk > 0.1) because it distributes too much ggen
this region. In addition, the one-dimensional spectrum forsPao’
spectrum function does not rollfafs fast as experimental data in
the far dissipation region (see Driscoll, 1982). This led to the
introduction of modelswhich roll off faster in this regiorsuch as
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E(K) = a (k53 + k1) exp{— E%k‘”3+ K25} (18)
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L is a charteristic length scale of the gecontaining eddies; a
model constant chosen as 1.6 in the current analysig isrdeter-
mined by satisfying the dissipation integral. Fon Lgreater than
200 the value of is approximately equal . The turbulence can
be charterized using the Reynolds number based onaylerT
microscale. This Reynolds number can be calculated using the
expression
A 20(1/2 ©
Re, = £ - Eggl [ E()

where §=(04, )/3.

(20)

The three dimensional emgr spectrum function for the three
spectral models is shown in figure 2. Note the rdlbéthe com-
posite spectrum at low wave numbers, and the more rapid foll of
of Lin's spectrum at the high wave numbers. Figure 3 illustrates
the one-dimensional spectrum of the streawise component, nor-
malized by Kolmogorov variables, of the turbulence. This is the
one-dimensional spectrum which is normally measured in an
experiment (if Bylor's frozen field hypothesis is utilized to con-
vert the time spectrum to a wave number spectrum). Notice that all
of the spectrum functions which utilize Paahodel for the high
wave number region roll blower at the high wave numbers. In
addition the one-dimensional spectrum of the infinite Reynolds

The value of alpha is chosen as 1.65 (see e.g. Driscoll, 1982). number models continues to increases in the low wave number
Ewing et. al. (1994) demonstrated that the amount of attenuation, région, while the composite spectrum levelsiofa manner more
for parallel wires, was significantly less sensitive to changes in the characteristic of measured turbulence.

value ofa than it was to the change of model.

The previous two spectra models are infinite Reynolds number

models of the equilibrium and dissipation regions.ificlude the
possibility of finite Reynolds numberfeéts (i.e. roll of at low

ATTENUATION OF THE MEAN SQUARE VORICITY

The attenuation of the mean sqaure vorticity can be calculated by
integrating the equations for the measured three dimensional

wave numbers), a composite spectrum is included in the analysis derivative spectra. Figure 4 illustrates the attenuation introduced

(Hellend et al.,, 1977) which is the product of von Karrman’
(1948) empirical model for the emggrcontaining eddies and Pao’
model. The model for the spectrum is

/3
E(k) = aE,ﬁLE’S

k(L/ 4 3
(T 5 e i) (49

by the probe when the probe geometry is chosen to model the
geometry of Villlaces (1992) twelve wire probe and Honkan and
Andreopouloss (1993) nine wire probe, wiy,=1.15A3. Each of

the measured vorticity components have been normalized by the
exact value of the vorticity component for the spectrum to demon-
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FIGURE 5 ATENUATION OF THE MEAN SQUARE VOR-
TICITY FOR OTHER GEOMETRIES

strate the relative attenuation of the signal. The figure illustratesmean sgaure vorticity components, calculated usingsLspec-

that the amount of attenuation is highly dependent on the choice ofrum function, is shown in figure 5. In the first case whgms,

the model for the high wave number portion of the spectrum func-the three components of vorticity are attenuated by approximately
tion. The error in the signal is 10 percent when the separation disthe same amount except when the separation distancesgare lar
tance in the xdirection is approximately 3 times the Kolmogorov In the second case (1A3=A3) the attenuation of the three compo-
length scale for Lirs spectrum function but the same attenuation nents difers by 3 percent whed, is 3 times the Kolmogorov
occurs when the separation distance is only 2.25 times the Kollength scale, despite the fact that two of the components are only
mogorov length scale for Paspectrum function. The attenuation attenuated by 10 percent. It is clear that the three components of
introduced by the geometry for Lsnspectrum function is much  the mean sqaure vorticity measured simultaneously using the cur-
smaller that the other two spectrum functions becauss kifis rent three point model are not attenuated by approximately the
off faster in the high wave number region. This causes less of thesame amount for all geometries. It is important to realize that this
relative spectral density to be in regions wherandks are lage criterion has only been tested for isotropic turbulence in the cur-
(i.e. where attenuation is ). In addition, the normalized atten- rent analysis and it is not possible to generalize this result to aniso-
uation of the measured vorticity components calculated using thetropic turbulence without an appropriate model for anisotropic
composite spectrum (Re120) does not dér significantly from turbulence.

the normalized attenuation calculated using $apectrum. For

lower Reynolds numbers, such as,®28.8 , it is clear that the =~ ONE-DIMENSIONAL SPECTRA

model of the low wave numbers can have a significdaceén Recently Ong et. al. (1993) measured the one dimensional spec-
the estimate of the amount of attenuation which occurs in the meaya of the vorticity to determine if the spectra satisfy the isotropic
sured vorticity one-dimensional vorticity relationships (e.g Ong et. al. 1993)

d@y,, (k)

.. . . _ 1
It is important to note that the tifence in the amount of attenu (sz(kl) = (Pm3(k1) = §|:(pw1(k1) _le
1

ation between the models increases as the separation distance ] (21)
increases. This indicates that data correction is not factiee The measured one-dimensional spectra can be related to the three
technique of handling spatial attenuation, since the uncertainty ofdimensional vorticity spectra by the equation
the correction factor increases significantly as the correction factor

o, = [0 ipE i) 1m®i,pa,m () Aotk

increases.
_ _ whereg;;, is the alternating unit tensarhe results of the experi-

This geometry with A;=1.15 Ag, (for the Reynolds numbers  ment demonstrated good agreement over an intermediate range of
tested) attenuates all three of the mean sqaure vorticity compowaye numbers, but the relationship was not satisfied at the highest
nents by approximately the same amount for a given probe dimenyayve numbers or at the low wave numbers.
sion and spectrum function. Therefore, the relative magnitude of
the components is conserved during the measurement despite therhe spectra measured for a probe of finite dimensions were cal-
attenuation due to spatial filtering. The calculations were repeatecty|ated by substituting the appropriate measured three dimen-
for two other geometriesA¢=A; and 1.2A;=Ag) to determine  sjonal spectra into equation 21. It is important to note that the one-
whether the three components of vorticity are equally attenuatedjimensional spectra in equation 21, at a particular valitg, afe
for a wide range of geometries. The attenuation of the normalizedgetermined by integrating the three dimensional spectra deer a

(22)
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ks plane for a fixed,. Therefore an one-dimensional spectrum is
the sum of quantities which have been attenuated ligretift
amounts (since the local attenuation is a functiok, @ndks) so

that it is not possible to generate a simple filtering of the one-
dimensional spectrén terms of the finite dimensions of the probe,
A, and A3, since the attenuation must also depend on the three
dimensional spectrum of the turbulence.

The measured one-dimensional vorticity spectra for a single
geometry withA,=1.15 Az were used to test whether the finite

attenuation of the probe causes the measured data to fail to satisfy

the one-dimensional vorticity relations in equation 20. The deriva-
tive term in equation 20 was determined analytically bigdhti-

ating equation 21, so it does not incorporate any of the errors
which would occur using a finite é&rence method on the one-
dimensional spectr@Wl .

Figure 6 illustrates the ratio of the first and final terms in equa-
tion 20 for various separation distances. The calculations were
carried out for both Lis and Pas spectrum functions. In all

cases the measured data fail to satisfy the relationship at the high-

est wave numbers although, it does satisfy the isotopic relation-
ship at the lower wave numbers. As the finite dimensions of the

bers, for all choices of separation distances and both spectrum
models.

It is clear that the spatial attenuation can cause the measured one-
dimensional vorticity spectra to fail to satisfy the isotropic one-
dimensional vorticity relations at the high wave numbers, even if
the underlying turbulence is isotropic. Therefore, comparisons
such as those shown in figure 6 do not exclude the possibility that
the turbulence being measured is isotropic if the dimensions of the
probe used to make the measurement age laglative to the
smallest scales of the turbulence. The region where the attenuation
is laige should not be used to confirm the local isotropy theory
because the figure illustrates that tHeafof spatial attenuation is
dependent on the three dimensional spectrum of the turbulence
which is being measured, so it is not possible to predict what the
curve for the ratio will be with knowing the actual three-dimen-
sional spectra. It must be noted that all of the analyses in the cur-
rent paper were carried out using isotropic turbulence models. In
an experimental measurement a significant amount of attenuation
could cause an isotropic flow to appear anisotropic (the case
examined in this paper), or the opposite may occur where aniso-
tropic turbulence appears to satisfy the isotropic one-dimensional
relations due to spatial attenuation.

SUMMARY AND CONCLUSIONS

The analysis demonstrated that the amount of attenuation in the
mean sqgaure vorticity component measured using the three point
model is significant when the separation distance is greater than 3
times the Kolmogorov length. In addition the amount of attenua-
tion which occurs is dependent on the shape of the spectrum func-
tion at high wave numbers for all Reynolds numbers as well as the
model of the engy containing scales for lower Reynolds num-
bers. The attenuation calculated in the current paper does not
include the attenuation due to the finite length measuring devices.
This should be valid if the finite dimensions in the cluster of wires
are significantly smaller than the wire separation distances. Look-
ing at the diferent spectral models, it is clear that since the turbu-
lence spectrum is unknown a priori, the uncertainty in the mean
sgaure vorticity measurements increases as the separation distance
increases. This indicates that data correction may not bdean ef
tive method of handling the problem.

probe increase, the region over which the relationship is not satis- The analysis also demonstrates that attenuation introduced by the

fied increases. This is similar to the result determined y-W

finite dimensions of the probe causes the measured one-dimen-

gaard (1968) for one-dimensional velocity spectra measured using Sional vorticity spectra to fail to satisfy the one-dimensional iso-

cross wires. Whgaard demonstrated that the finite dimensions of

the probe would cause the measured one-dimensional spectra tdeing measured is isotropic. The ratio &,

have a diferent ratio than occurs in the flpaithough the primary
cause investigated by wgaard was cross talk between the com-
ponents which does not occur in the present model.

A comparison of the attenuation curves for the twdedéht

tropic vorticity spectra relations, even when the actual turbulence
P, is approxi-
mately unity for all of the cases studied in this papeithese one-
dimensional spectra arefefted in the same way by the attenua-
tion. The spatial attenuation causes the term involving the stream-
wise vorticity to fail to be equal to either of these two components
over a range of the lgest wave numbers. The range of wave num-

spectral models demonstrates that the amount of attenuationbers increases as the dimension of the probe increases.

which occurs is dependent on the spectrum function used to model

the turbulence. Figure 7 demonstrates that the ratio of the

(PW2 / <PW3 is nearly unity over the entire range of wave num-

It is clear from the curves shown that it is not possible to generate
a general correction for the spatial attenuatidace$. Therefore,



the region where attenuation is significant should be ignored when Vol. 2, pp. 983-987.
confirming the existence of local isotropy because it may fie dif

cult to distinguish between thefedts of spatial attenuation and

the aberrations which occur due to the anisotropy of the flow
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