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ABSTRACT

Previous analysis of the far field in a turbulent, incompressible, isothermal jet has demonstrated that the Reynolds

averaged equations which govern the evolution of the single-point statistical moments admit to similarity solu-

tions. This analysis demonstrates that the equations which govern the evolution of the two-point velocity correla-

tion tensor admit to similarity solutions. The final similarity equations are not independent of the growth rate or

Reynolds number of the jet, indicating that the form of the similarity solution may be dependent on the source con-

ditions.
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INTRODUCTION

There has been a long history of using similarity solutions in the study of laminar fluid dynamics (Batchelor, 1967)

dating back to the early work on the laminar boundary layer by Blasius. Physically, the similarity hypothesis is

useful because it sheds insight into the nature of the evolution of the flow. Mathematically, the technique is also

useful for analyzing problems because it reduces the number of independent variables in the problem by one or

more, and can often be utilized to reduce a problem governed by a partial differential equation to one which is gov-

erned by an ordinary one.

Similarity analyses have also been utilized to an examine an extensive number of turbulent flows. A review of

some of these earlier analyses can be found in classical texts on turbulence such as Tennekes and Lumley (1972) or

Hinze (1975). Traditionally, the similarity hypothesis was applied to a turbulent problem by choosing scales for the

statistical moments in the governing equations using a single length and velocity scale. The similarity solutions

were then substituted into these equations to determine if the hypothesized similarity solutions were consistent

with the equations. George (1989) pointed out that this approach may over-constrain the analysis and suggested

using arbitrary scales for the statistical moments in the equations. The equations of motion are then used to deter-

mine what relationships must exist between the scales for the moments in order to ensure that the equations of

motion admit to a similarity solution. Since the method suggested by George (1989, 1994) is a more general

approach which does not exclude solutions of the traditional type, it is utilized in this analysis to query if the equa-

tions which govern the two-point velocity correlation tensor admit to similarity solutions.

Almost all previous attempts to find similarity solutions in turbulent flows have centered on the Reynolds averaged

equations which govern the single point statistical moments (i.e., moments in which all of the variables are evalu-

ated at the same point in space and time). The notable exceptions are the investigations of decaying homogeneous



isotropic turbulence (v. von Karman and Howarth 1941, Batchelor 1948,   and George 1992) and the investigation

of the homogeneous shear layer reported by George and Gibson (1992). The authors of this investigation are not

aware of any other attempts to find similarity solutions of the for the equations which govern two-point velocity

correlation tensor in a non-homogeneous shear flow.

This analysis investigates whether similarity solutions exist for the equations which govern the two-point velocity

correlation tensor in a single spatially-evolving flow: the far field of the axisymmetric jet. At present there isn’t

sufficient experimental evidence to test the similarity hypothesis for the two-point velocity correlation tensor, so no

attempt is made to pursue this important question in this analysis. This issue will be addressed in a future investi-

gation. The extension of the theory to other spatially-evolving flows is discussed elsewhere (Ewing, 1995).

REVIEW OF SINGLE-POINT SIMILARITY HYPOTHESIS

It is useful to briefly review the application of the similarity analysis to the equations which govern the evolution

of the single-point statistical moments in the far field of an axisymmetric jet; in order to dem

onstrate the technique. The similarity analysis of the single-point equations for the far field of the axisymmetric jet

was reported previously by George (1989), but recent studies of other shear flows (v. George, 1994) have illus-

trated the need to vary the earlier approach outlined by George(1989). The derivation in this section is in keeping

with this later work. The similarity analysis is carried out using only the highest order terms in the Reynolds aver-

age equations, so the solutions outlined in this section are first order accurate.

Using standard thin-shear-layer and high-Reynolds-number assumptions (v. Tennekes and Lumley, 1972), the first

order differential and integral equations for the mean momentum are given by (Husseinet al., 1995)

(1)

and

(2)

where Ui and ui are the mean and fluctuating velocity respectively in the xi direction. The geometry of the axisym-

metric jet and orientation of the coordinate system are illustrated in figure 1. The over bar indicates an ensemble

average and M0 is the rate of momentum addition at the source.

It is hypothesized that a similarity solution exists to these equations in which the mean streamwise velocity, U1,

can be written as
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where Us is a velocity scale andδ is a length scale for the far field of the axisymmetric jet.

The mean cross-stream velocity, U2, can be determined by integrating the averaged incompressible continuity

equation for this flow; i.e.

(4)

Substituting the hypothesized similarity solution for U1 (i.e. equ. 3) into equation 4 and integrating the equation

from the center line toη yields

(5)

Following George (1989), the hypothesized similarity solution for the   Reynolds stress is given by

(6)

In order to avoid over constraining the analysis of the problem the scale for the is arbitrary at this point and

is not chosen equal to Us
2.

Substituting the hypothesized form of the similarity solutions (i.e., equation 3, 5, and 6) into equations 1 and 2
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Figure 1. Geometry of the Far Field in the Axisymmetric Jet.



and

(8)

The x1 dependence of each terms in equations 7 and 8 is contained in square brackets.

Mathematically, the evolution of the single-point moments governed by equations 7 and 8 are consistent with a

similarity hypothesis if the x1 dependence of all of the terms in each equation are proportional, so thex1 depen-

dence can be removed from equations 7 and 8. Physically, applying a similarity hypothesis to the single-point

equations, implies that the flow evolves such that all of the terms in each equation maintain a relative balance as

the flow evolves downstream; i.e., no term increases or decreases in size relative to the rest of the terms in the

equation.

Thus, equations 7 and 8 admit to similarity solutions if

(9)

Note, the growth rate of the layer is not determined by these constraints because the ratio Rs/Us
2 is not yet known.

The second constraint can be only satisfied if the Reynolds number defined using the similarity velocity and length

scales is a constant; i.e.,

(10)

In this case, the third constraint in equations 9 is also satisfied.

In order to determine the growth rate of the jet, George (1989) examined the turbulent kinetic energy equation

using scales for the rate of dissipation of the turbulent kinetic energy determined from physical arguments. Later

analysis (e.g. George, 1994) indicated that it is more appropriate to examine the individual Reynolds stress compo-

nent equations. The analyses of these equations for the far field of the axisymmetric jet are briefly outlined.

The first order equation for  is given by

(11)

where  is the dissipation rate of . By utilizing similarity solutions for the new moments such as
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It is straight forward to demonstrate that a similarity solution can exist for equation 11 only if

(13)

Similar analyses can also be carried out for first order which govern the evolution of the moments, ,

and ;i.e,

(14)

(15)

and

(16)

Expressing each of the moments in these equations in a similarity form analogous to those in equation 12, it is

straightforward to demonstrate that these equations only admit to similarity solutions when

(17)

(18)

(19)

In addition, the sum of the pressure-strain terms in the equations for the  Reynolds

stresses must be zero when the flow is incompressible; i.e.,

(20)

It is straightforward to demonstrate that this equation is only consistent with the hypothesize similarity solutions

when

(21)

Thus using the conditions in equations 13, 17, and 19 it follows that
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Therefore, the equation of motion admit to a similarity solution only when

(23)

which is the result George (1994) determined for the plane jet.

Note, there are two different choices for the scale  in equation 22,  and . It is not immedi-

ately clear from this analysis which of these choices is more appropriate when scaling data from different jets. One

consequence of having these two choices is the growth rate of the jet appears as a parameter in the final set of equa-

tions which govern the similarity solutions. Therefore, the functional form of the similarity solutions (e.g.

) may implicitly depend on the growth rate of the jet, or more properly on the initial conditions of the jet

(v. George, 1989).

The constraints in equations 13, 17, an d 18   also define the scale for all of the dissipation rate terms in the Rey-

nolds stress equations given by

(24)

The constant of proportionality in this equation may differ for the individual components and may depend on the

source condition of the jet. George (1994) argued this conditions is satisfied for flows with either a large turbulent

Reynolds number or flows with a constant turbulent Reynolds number. The analysis of equations which govern the

evolution of the two-point velocity correlation tensor will shed further insight into why this second scaling argu-

ment is valid.

This analysis has demonstrated that the similarity solutions are consistent with the first order equations of motion.

Experimental evidence must be examined to determine if actual flows evolve in this manner. The experimental

data from the far field of the jet indicate that these flows do evolve in a manner which is consistent with the single-

point similarity hypothesis (Husseinet al. 1994 or Panchapakesan and Lumley 1993).

SIMILARITY ANAL YSIS OF THE TWO-POINT EQUATIONS

The single-point similarity analysis is useful because it supplies information about the evolution of the turbulent

flow. However, more insight into the structure of the turbulent flow can be gained by examining the information

contained in the two-point velocity correlation tensor. Assuming the turbulence to be statistically stationary, the

equations which governs the evolution of the velocity correlation at two arbitrary points in a cylindrical coordinate

system and a single point in time are given by (the analogous equation in cartesian coordinates is reported in

Hinze, 1975)
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(25)

The prime in equation 25 is used to identify variables which are evaluated at one point in space, while the

unprimed variables are evaluated at the second point (v. figure 2), while hj =(1,1,x2) is the metric of the coordinate

system. The value of the superscript on the metric, j, has the same value as the index of the differential coordinate

next to the metric.

The objective of this analysis is to determine if the set of equations which govern the evolution of the two-point

velocity correlation tensor, equation 25, admit to a similarity solution for arbitrary separation between the two

points. That is, do the equations of motion allow for solutions where the flow evolves such that the correlation of

the velocities at the points xk and xk´, , can be related to the correlation of the velocities at two other point

downstream at xk´´and xk´´´. In order to answer this question, the two-point correlations in equation 25 are written

in a form where the functional dependence is the product of two parts (analogous to the similarity solutions for the

single-point equations). The first part is a scale function which depends on the position of the two points relative to
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Figure 2. Two-Point Velocity Correlation in the Jet



the origin of the jet, while the second part is a function of the separation vector between the points and independent

of the position of the two points relative to the origin of the jet. This hypothesized set of solutions is then substi-

tuted into equation 25 to determine if it is consistent with this equation.

The first part of the similarity solution is a scale which indicates how the two-point velocity correlation varies as a

function of the location of the downstream location of the two points. Analogous to the single-point analysis, the

scales for the two-point correlations are determined by examining the restrictions imposed by the equations of

motion. The scales for the two point correlation tensor must also agree with the scale determined from the single-

point analysis in the limit of zero separation distance.

When considering the second portion of the similarity solution, which is a function of the separation distance

between the points, it is important to note that the characteristic length scales of the turbulent field in the jet grow

as the jet evolves downstream. In the single-point analysis this is accounted for by scaling the distance in radial

direction by the length scaleδ. The single-point similarity hypothesis also indicates that the Reynolds number,

Re=Usδ/ν, for the axisymmetric jet is a constant. Therefore, all of the physical length scales of the flow, such as

the integral length scales and the Kolmogorov length scale, should grow in proportion as the flow evolves down-

stream. Consequently, it should be possible to normalize all of the length scales by one length scale. Of course, the

solution for the statistical moments in the jet may depend on the ratio of the other length scales and the single

length scale chosen to normalize the problem, but this ratio remains constant for any particular jet.

 In order to rescale the separation distances and remove the influence of the length scale growth, a new coordinate

system is defined by normalizing the differential lengths of the physical co-ordinate system by the local length

scale ; i.e.,

(26)

Clearly, the transformed coordinate system in the x2 direction isη, the same coordinate which was used in single-

point analysis. In addition, since the variation of the length in the azimuthal direction is contained in the metric x2,

the coordinate x3 is the same in both the physical and transformed coordinate system. When the growth of the

length scaleδ is linear, the transformed coordinate in the mean flow direction is given by
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define two new co-ordinates given by

(28)
and

(29)

Thus, a function which is dependent onζ andζ´ can be written in terms of a variableυ, which is only a function of

the separation distance between the two points in the transformed coordinate, and a variable which is dependent

on the position of the two points relative to the jet origin. Since the second portion of the hypothesized similarity

solution must be independent of the position of the two points relative to the jet origin by definition, it follows that

this portion of the similarity solution must be a function of the variableυ only.

The hypothesized forms of the two-point similarity solutions, consistent with the guidelines outlined above, are

given by
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(31)

where  is equal to ,  ia equal to etc.

The portion of each term (in equation 31) dependent on the position of the jet origin is included in square brackets.

Equation 31 will admit to similarity solutions of the hypothesized form if it is possible to choose the scale func-

tions (Pi,j etc.) in a manner such that all the terms in the square brackets are only a functionυ only.

A closer examination of equations 31 reveals that the functions in the square brackets can be easily divided into

two groups. The terms in each of these groups are proportional if the terms satisfy constraints analogous to the con-
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straints outlined for the single-point equations. The constraints for the first group are given by

(32)

The constraints for the second group are given by

(33)

Examining the first two terms in equations 32 and 33 (and the consistency condition for zero separation) leads to

the choice of the scale for the two-point velocity correlation tensor, , given by

(34)

where b(i,j) is a numerical power which is a function of the value of i and j. The function b(i,j) must be chosen so

the scales for the two-point velocity correlation tensor are consistent with the scales chosen for the single-point

moments. However, neither the two-point nor the single-point similarity analyses yield sufficient information to

choose the values of b(i.j).

Once the scale for  is chosen, all of the other scales are determined. These are given by

(35)
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where growth rate terms are included in the some of the scales when the equations indicate they are appropriate.

Note that the viscous terms in the two-point correlation tensor equation consist of a linear operator applied to the

two-point velocity correlation tensor. Thus,one of the key differences between the two-point similarity analysis

and the single-point analysis is that the viscous terms in the two-point equations do not introduce additional arbi-

trary scales, as they did in the single-point analysis. It is clear that the scales for the viscous terms in equation 31

are only proportional to each other if the growth rate of the jet is constant. In addition, the viscous terms are pro-

portional to the convective terms if

(36)

For this flow (with a constant growth rate), this condition implies that the Reynolds number of the jet based on the

similarity variables must be a constant. This requirement is analogous to the condition outlined by George (1994)

for a relative balance between the convection and dissipation rate terms in the single-point Reynolds stress equa-

tions.

It is straightforward to demonstrate that both groups of constraints in equations 32 and 33 are satisfied when the

scales are chosen as defined in equations 34 and 35. In addition, the ratio of the terms from the two groups in equa-

tion 32 and 33 is given by

(37)

which is only a function of the separation distance between the points in the transformed coordinate. Therefore,

when the scales are chosen as in equations 34 and 35,   equation 31 can be written in a form which is independent

of the position of the jet origin.

For example, if the scales for  are defined as

(38)

and the proportionalities in equation 35 are taken as equalities, equation 31 can be rewritten as
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(39)

If equation 39 has a non-trivial solution then the equations for the two-point velocity correlation tensor admit to a

similarity solution. With some additional effort, it is also possible to demonstrate that these solutions are Hermitian

and maintain the reflective properties in the azimuthal direction.

The similarity analysis of the two-point equations was carried out using a virtual origin to model the flow exit, so

the similarity solution defined by equation 39 must be viewed as an asymptotic state of the turbulence in a jet.

However, this asymptotic state may not be unique. Some of the coefficients in equation 39 have an explicit depen-
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dence on both the growth rate and the Reynolds number of the jet. There is no obvious technique to eliminate both

of these factors from the similarity equation, so the form similarly solution for the two-point correlation tensor may

be dependent on source conditions to the extent that the source conditions affect the value of Reynolds number and

the growth rate of the jet.

THE PRESSURE FIELD

Since the two-point velocity information is now available in similarity form, it is also possible to examine the pres-

sure field generated by the region described by the similarity solution to determine if this field yields a pressure-

velocity correlation which is consistent with the hypothesized similarity form. For an incompressible free shear

layer (no boundaries) it is possible to demonstrate that the instantaneous fluctuating pressure field (that is the

instantaneous pressure minus the mean pressure) is related to the velocity field in the volume (excluding the singu-

larity at the virtual origin of the flow) by the expression (v. Towsend, 1976 for the expression in cartesian coordi-

nates)

(40)

where the integration is carried out over the volume excluding the virtual origin (for example using a cut along the

-x1 axis). The fluctuating pressure field also includes a contribution from the surface around the singularity. The

contribution of the pressure from this volume integration to the pressure-velocity correlation can be determined by

multiplying this equation by  and averaging. It is now possible to determine how the flow described by the sim-

ilarity solution contributes to this pressure velocity correlation. This only includes the flow on the positive side

of the axis excluding the origin (taking the virtual origin at the origin of the coordinate system with the jet flow-

ing in the positive  direction) because the similarity coordinate system defined in both the single and two-point

similarity analysis becomes singular at the origin and is incapable of describing the flow behind the virtual origin.

Substituting the hypothesized similarity solution for the mean velocity field. the two-point velocity correlation ten-
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sor, and the turbulent transfer terms into the resulting equation yields

(41)

where a(k) is equal to 1 when k is 1 and it has a value of 2 when k is 2 or 3., is defined as

(42)

while
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(46)

The scale term for the pressure-velocity correlation term in equation 41 is consistent with the scaled required by

the similarity analysis. Thus, the similarity hypothesis is internally consistent in the sense that if the motion in the

jet is consistent with a two-point similarity hypothesis, then the pressure field generated by the motion in the jet

yields a pressure-velocity correlation of a form which also satisfies the similarity hypothesis.

SIMILARITY OF THE VELOCITY GRADIENT MOMENTS

The similarity solution indicates that the two-point velocity correlation tensor can be written in a form which is

independent of the position of the two-points relative to the origin of the flow for all separation distances. Hence, it

is logical to expect that other moments which can be directly related to the two-point correlation tensor, such the

two-point velocity gradient correlation, should have a similarity form when the solution for the two-point velocity

correlation tensor can be written in a similarity form.

The dissipation of the kinetic energy per unit mass,ε, can be written as

(47)

where the eij  is the rate-of-strain tensor. For a cylindrical coordinate system, the rate of strain tensor is given by (v.

Batchelor, 1967)

(48)

Therefore, the dissipation of kinetic energy can be written as

(49)

where Ri,j is the two-point velocity correlation tensor; i.e.,

(50)

Substituting the similarity solution for the components of the two-point velocity correlation tensor (i.e., equation

31) into the terms in equation 49, it is straightforward to demonstrate that all of the two-point velocity gradient

moment can be written as a product of a scale (which are proportional for all of the moments) and a similarity
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function, so that

(51)

This is consistent with the similarity form for the dissipation required by the similarity analysis of the single-point

moment equations since the Reynolds number of the flow is constant.

Using a similar approach it is straight forward the demonstrate that the two-point vorticity correlation can be writ-

ten in a similarity form when the two-point velocity correlation tensor has a similarity form. In this case, it also fol-

lows that the single-point vorticity moments have similarity solutions.

SUMMARY AND CONCLUSION

The review of the similarity hypothesis for the single-point equations illustrates that the results for the axisymmet-

ric jet are analogous to the results derived for the plane jet by George (1994). The component equations for the sin-

gle-point second order velocity moments admit to a similarity solution only when the growth rate of the jet is linear

an the Reynolds number based on the similarity variables is a constant.

The analysis also demonstrates that the equations which govern the evolution of the two-point velocity correlation

tensor admit to similarity solutions for the far field of the axisymmetric jet. In this similarity solution the scaled

two-point correlation functions are independent of the position of the two points downstream of the jet origin. In

flows this case, the single-point similarity solution can be viewed as a special case of the more general two-point

similarity solution. The analysis also demonstrated that the Reynolds number of the jet based on the similarity vari-

ables must be a constant in order to ensure that the convective and viscous terms in the two-point equations evolve

in a manner consistent with the similarity hypothesis for all separation distances.

It was also demonstrated that the two-point velocity-gradient moments have a similarity form when the compo-

nents of the two-point velocity correlation tensor have a similarity form. This result could be used to demonstrate

that the dissipation of the turbulent kinetic energy has a similarity solution which is consistent with form required

by the single-point similarity analysis. This result demonstrates that it is reasonable to hypothesize that the dissipa-

tion of kinetic energy has a similarity form at a finite Reynolds number when the Reynolds number of the flow is

constant as George (1994) did.

At present there is insufficient experimental evidence to validate the two-point similarity hypothesis. An experi-

mental investigation is presently being carried out to generate data for this purpose.
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