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ABSTRACT

Previous analysis of the far field in a turbulent, incompressible, isothermal jet has demonstrated that the Reynolds
averaged equations which govern the evolution of the single-point statistical moments admit to similarity solu-
tions. This analysis demonstrates that the equations which govern the evolution of the two-point velocity correla-
tion tensor admit to similarity solutions. The final similarity equations are not independent of the growth rate or
Reynolds number of the jet, indicating that the form of the similarity solution may be dependent on the source con-

ditions.
Keywords similarity, two-point velocity correlation

INTRODUCTION

There has been a long history of using similarity solutions in the study of laminar fluid dynamics (Bat&6&Tpr
dating back to the early work on the laminar boundary layer by Blasius. Phydigallsimilarity hypothesis is
useful because it sheds insight into the nature of the evolution of theMbtivematically the technique is also
useful for analyzing problems because it reduces the number of independent variables in the problem by one or
more, and can often be utilized to reduce a problem governed by a padiandi&l equation to one which is gov-

erned by an ordinary one.

Similarity analyses have also been utilized to an examine an extensive number of turbulent flows. A review of
some of these earlier analyses can be found in classical texts on turbulence suctekssland Lumley (1972) or

Hinze (1975). Taditionally, the similarity hypothesis was applied to a turbulent problem by choosing scales for the
statistical moments in the governing equations using a single length and velocity scale. The similarity solutions
were then substituted into these equations to determine if the hypothesized similarity solutions were consistent
with the equations. Gege (1989) pointed out that this approach may -ceastrain the analysis and suggested

using arbitrary scales for the statistical moments in the equations. The equations of motion are then used to deter-
mine what relationships must exist between the scales for the moments in order to ensure that the equations of
motion admit to a similarity solution. Since the method suggested byy&€b989, 1994) is a more general
approach which does not exclude solutions of the traditional type, it is utilized in this analysis to query if the equa-

tions which govern the two-point velocity correlation tensor admit to similarity solutions.

Almost all previous attempts to find similarity solutions in turbulent flows have centered on the Reynolds averaged
equations which govern the single point statistical moments (i.e., moments in which all of the variables are evalu-

ated at the same point in space and time). The notable exceptions are the investigations of decaying homogeneou



isotropic turbulence (won Karman and Howarth 1941, Batchelor 1948, anddeet®92) and the investigation
of the homogeneous shear layer reported by ggeand Gibson (1992). The authors of this investigation are not
aware of any other attempts to find similarity solutions of the for the equations which govern two-point velocity

correlation tensor in a non-homogeneous shear flow

This analysis investigates whether similarity solutions exist for the equations which govern the two-point velocity
correlation tensor in a single spatially-evolving flow: the far field of the axisymmetric jet. At present there isn’
sufficient experimental evidence to test the similarity hypothesis for the two-point velocity correlationgemsor
attempt is made to pursue this important question in this analysis. This issue will be addressed in a future investi-

gation. The extension of the theory to other spatially-evolving flows is discussed elsewhere (Ewing, 1995).

REVIEW OF SINGLE-POINT SIMILARITY HYPOTHESIS

It is useful to briefly review the application of the similarity analysis to the equations which govern the evolution
of the single-point statistical moments in the far field of an axisymmetric jet; in order to dem

onstrate the technique. The similarity analysis of the single-point equations for the far field of the axisymmetric jet
was reported previously by Geer (1989), but recent studies of other shear flowS&éoge, 1994) have illus-

trated the need to vary the earlier approach outlined byg@@®89). The derivation in this section is in keeping

with this later work. The similarity analysis is carried out using only the highest order terms in the Reynolds aver-

age equations, so the solutions outlined in this section are first order accurate.

Using standard thin-shelyer and high-Reynolds-number assumptionggnnekes and Lumle$972), the first

order diferential and integral equations for the mean momentum are given by (Hetsseih995)

ou ouU ox,u,u
U=t +U,—2 = _17M (1)
6x1 0x2 Xy 0x2
and
J’O U2 x,dx, = M, 2

where | and y are the mean and fluctuating velocity respectively in tlrection. The geometry of the axisym-
metric jet and orientation of the coordinate system are illustrated in figure 1. The over bar indicates an ensemble

average and Mis the rate of momentum addition at the source.

It is hypothesized that a similarity solution exists to these equations in which the mean streamwise Wglocity

can be written as

Uy (03 ) = Uy(x)f(m), = 55 ©
1



Figure 1. Geometry of the Far Field in the Axisymmetric Jet.

where U is a velocity scale andlis a length scale for the far field of the axisymmetric jet.

The mean cross-stream velocity,, can be determined by integrating the averaged incompressible continuity

equation for this flow; i.e.
aU 1 0X2
ax1 Xy O0Xy

=0 (4)

Substituting the hypothesized similarity solution for (Ue. equ. 3) into equation 4 and integrating the equation

from the center line tg yields

0, 0=+ 852 +2[U.Z]) it iy i+ [, 2]

nf(n) (5)
Following Geoge (1989), the hypothesized similarity solution for the Reynolds @is given by
U U, = Ry(x) g(n) (6)

In order to avoid over constraining the analysis of the problem the scale fojuhes arbitrary at this point and

is not chosen equal tot)

Substituting the hypothesized form of the similarity solutions (i.e., equation 3, 5, and 6) into equations 1 and 2

dug), o, du USds |Hadf - = R,
—f2_ [ _S _s¥v = _|:—i|
[Usdxjf D{Usdxj * 2{ 0 dx }Dn an nt(n)dn o
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and
[(UD)2] I f2Zndn = M, (8)
The x dependence of each terms in equations 7 and 8 is contained in square brackets.

Mathematically the evolution of the single-point moments governed by equations 7 and 8 are consistent with a
similarity hypothesis if the xdependence of all of the terms in each equation are proportional, sodépen-

dence can be removed from equations 7 and 8. Physiapllyying a similarity hypothesis to the single-point
equations, implies that the flow evolves such that all of the terms in each equation maintain a relative balance as
the flow evolves downstream; i.e., no term increases or decreases in size relative to the rest of the terms in the

equation.

Thus, equations 7 and 8 admit to similarity solutions if

o dd o 1d5 1dU )
del’ ' Edel U dx1

Note, the growth rate of the layer is not determined by these constraints because tig&ksétis ROt yet known.

R,OU

The second constraint can be only satisfied if the Reynolds number defined using the similarity velocity and length

scales is a constant; i.e.,

us
Re = 'T;S"D'Vg (10)

In this case, the third constraint in equations 9 is also satisfied.

In order to determine the growth rate of the jet, Ged1989) examined the turbulent kinetic eyeequation
using scales for the rate of dissipation of the turbulent kinetiggmsatermined from physicalguments. Later
analysis €.g. Geoge, 1994) indicated that it is more appropriate to examine the individual Reynolds stress compo-

nent equations. The analyses of these equations for the far field of the axisymmetric jet are briefly outlined.

The first order equation far, u, is given by

ou ou?  pdu dxulu, U

1
— 4 _ = - —
Ulaxl U26x2 POX; X, OX, 2U, U, 0X, &, (11)

Where.‘»:u is the dissipation rate cmflul. By utilizing similarity solutions for the new moments such as
uf _
5 = K, (x)k, (),

U%UZ = Tufuz (Xl) tufuz (M), aul = Du1 (Xl) du1 (n) (12)

pdxl Py, (X)) py, (n)



It is straight forward to demonstrate that a similarity solution can exist for equéatmmylif

2 Us ds 3dd (13)
K, OUZ D, OP Déd TU%UZDUSXm

Similar analyses can also be carried out for first order which govern the evolution of the mapugnta;u,,

anduluz;i.e,
ou2 XU pu,] 2u2u
o _,p19%Y% 10 | ., Pl cUsly
Ukaxk 2px2 dx, deX2|:X2u2 2Xy—= D X, €y, (14)
ou2 U, u,u ou X, Uu2 2u,u2
Uo2+2-233=pP18 17225 T3 (15)
a Xy PX,dX5 X,  0X, X, 3
and

ou, u, pDaul oupLl 16x2u2ul u%ul_u_au
K 0x, pDax2 axlg X, 0X, X, 20x,"

(16)

Expressing each of the moments in these equations in a similarity form analogous to those in equation 12, it is

straightforward to demonstrate that these equations only admit to similarity solutions when

Ky d& do
P DD D 5 Xm Tug DTU§UZ DUsKUzd_xl (17)
UK
s u; dd @
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RUsdd dd dd
S S
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In addition, the sum of the pressure-strain terms in the equations far, the u,u,, and Usu, Reynolds

stresses must be zero when the flow is incompressible; i.e.,

pD6u1 10x2u2 16u3D
P 00X, x2 0X, x26x3D

0 (20)

It is straightforward to demonstrate that this equation is only consistent with the hypothesize similarity solutions

when
Pul O Pu2 0 Pus (21)
Thus using the conditions in equations 13, 17, and 19 it follows that
do 7
. 2 == 2190 22
Pu1DPu2 KulDKuZDUS K DRSd K DU Ddxl (22)



Therefore, the equation of motion admit to a similarity solution only when

2qy209o? | dd
Us DUSDXmD dxl Lconst (23)

which is the result Gege (1994) determined for the plane jet.

Note, there are two dérent choices for the scaléu2 in equation 22U§ and Ug (dd/ dxl) 2 |t is not immedi-

ately clear from this analysis which of these choices is more appropriate when scaling datddrent pfs. One
consequence of having these two choices is the growth rate of the jet appears as a parameter in the final set of equ:
tions which govern the similarity solutions. Therefore, the functional form of the similarity solutions (e.g.

ku2 (n) ) may implicitly depend on the growth rate of the jet, or more properly on the initial conditions of the jet

(v. Geoge, 1989).

The constraints in equations 13, 17, an d 18 also define the scale for all of the dissipation rate terms in the Rey-

nolds stress equations given by
us3
S
D O 3 (24)

The constant of proportionality in this equation mayedifor the individual components and may depend on the
source condition of the jet. Gegar (1994) ayued this conditions is satisfied for flows with either gdaurbulent
Reynolds number or flows with a constant turbulent Reynolds nuifiiieanalysis of equations which govern the
evolution of the two-point velocity correlation tensor will shed further insight into why this second scgling ar

ment is valid.

This analysis has demonstrated that the similarity solutions are consistent with the first order equations of motion.
Experimental evidence must be examined to determine if actual flows evolve in this.nféenerperimental
data from the far field of the jet indicate that these flows do evolve in a manner which is consistent with the single-

point similarity hypothesis (Husse@hal. 1994 or Panchapakesan and Lumley 1993).

SIMILARITY ANAL YSIS OF THE TWO-POINT EQUAONS

The single-point similarity analysis is useful because it supplies information about the evolution of the turbulent
flow. However more insight into the structure of the turbulent flow can be gained by examining the information
contained in the two-point velocity correlation tensgsssuming the turbulence to be statistically statigntuy
equations which governs the evolution of the velocity correlation at two arbitrary points in a cylindrical coordinate
system and a single point in time are given by (the analogous equation in cartesian coordinates is reported in
Hinze, 1975)
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il x'2 '2 0X'5 m Dx'% 0X'5 x'% 0

The prime in equation 25 is used to identify variables which are evaluated at one point in space, while the
unprimed variables are evaluated at the second poifigve 2), while h=(1,1,xz) is the metric of the coordinate
system. The value of the superscript on the metric, j, has the same value as the indexfefahgadi€oordinate

next to the metric.
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Figure 2. Wo-Point \&locity Correlation in the Jet

The objective of this analysis is to determine if the set of equations which govern the evolution of the two-point
velocity correlation tensprequation 25, admit to a similarity solution for arbitrary separation between the two
points. That is, do the equations of motion allow for solutions where the flow evolves such that the correlation of

the velocities at the pomtsk and %, u can be related to the correlation of the velocities at two other point

J 1
downstream atx’and x"". In order to answer this question, the two-point correlations in equation 25 are written
in a form where the functional dependence is the product of two parts (analogous to the similarity solutions for the

single-point equations). The first part is a scale function which depends on the position of the two points relative to



the origin of the jet, while the second part is a function of the separation vector between the points and independent
of the position of the two points relative to the origin of the jet. This hypothesized set of solutions is then substi-

tuted into equation 25 to determine if it is consistent with this equation.

The first part of the similarity solution is a scale which indicates how the two-point velocity correlation varies as a
function of the location of the downstream location of the two points. Analogous to the single-point analysis, the
scales for the two-point correlations are determined by examining the restrictions imposed by the equations of
motion. The scales for the two point correlation tensor must also agree with the scale determined from the single-

point analysis in the limit of zero separation distance.

When considering the second portion of the similarity solution, which is a function of the separation distance
between the points, it is important to note that the characteristic length scales of the turbulent field in the jet grow
as the jet evolves downstream. In the single-point analysis this is accounted for by scaling the distance in radial
direction by the length scal® The single-point similarity hypothesis also indicates that the Reynolds number
Re=U0/V, for the axisymmetric jet is a constant. Therefore, all of the physical length scales of treitlowas

the integral length scales and the Kolmogorov length scale, should grow in proportion as the flow evolves down-
stream. Consequently should be possible to normalize all of the length scales by one length scale. Of course, the
solution for the statistical moments in the jet may depend on the ratio of the other length scales and the single

length scale chosen to normalize the problem, but this ratio remains constant for any particular jet.

In order to rescale the separation distances and remove the influence of the length scale growth, a new coordinate
system is defined by normalizing theferential lengths of the physical co-ordinate system by the local length
scaled (x,) ; i.e.,

X, dXg
0 (xy)

Clearly, the transformed coordinate system in thelixection isr, the same coordinate which was used in single-

3(x,)’ (26)

@O0 gy 022 dx, O
-, X

Z rl 6 (Xl) n 3

point analysis. In addition, since the variation of the length in the azimuthal direction is contained in the,metric x

the coordinate xis the same in both the physical and transformed coordinate system. When the growth of the

length scal® is linear the transformed coordinate in the mean flow direction is given by
¢ = In{(x,—x7)/1} @27)

wherel is a constant with units of length included for dimensional reasonxjaigithe location of the virtual ori-
gin of the jet. This transformation converts the streamwise coordinate in the jet from a semi-infinite cooydinate x

to a coordinat€ which is infinite in extent.

For functions which are dependent on twded#nt positions in this new co-ordinate, €agndd{’, it is useful to



define two new co-ordinates given by

¢=¢+{ (28)
and
= (C=0)=In[ (% —xg) / (% =X}) ] (29)
Thus, a function which is dependent{and(” can be written in terms of a variallewhich is only a function of
the separation distance between the two points in the transformed coordinate, and aqvariatieis dependent
on the position of the two points relative to the jet origin. Since the second portion of the hypothesized similarity
solution must be independent of the position of the two points relative to the jet origin by definition, it follows that

this portion of the similarity solution must be a function of the variatdaly.

The hypothesized forms of the two-point similarity solutions, consistent with the guidelines outlined above, are
given by

UL (Xg Xg's Xg %o X Xg) = Py 1 (Xg, %) G 5 (N, ', Xg X5, 0)

Upb'ue = s (% X ) B (0,0 X5, X5, V)

uu'uy = Tfjk(xl, xl’)tﬁjk(n, N’ X3 X3, V)
pu’ = T (x3, X;) P (N, N', X5 X5, V)
pu; = T2 (X5, X,') P2(N, N', Xg, X3, V) (30)
The summation convention, where summation isimplied over repeated subscripts, is not utilized in these equations
nor in any equation hereafter unless explicitly stated. The mixed coordinate notation in equation 30 (i XX,
andv) is included to facilitate the comparison between the scales for the two-point correlation tensors and the rel-

evant scales for the single-point moments (sir;,(j:;eTlﬂ’ki,j, and Tzi,kj etc. must be consistent with the scale for the

single-point moments in the limit of zero separation distance).
Substituting these similarity solution into the equation 25 yields
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whereU.' is equal toU (X;') , &' ia equal tod (X;') etc.

The portion of each term (in equation 31) dependent on the position of the jet origin is included in square brackets.
Equation 31 will admit to similarity solutions of the hypothesized form if it is possible to choose the scale func-

tions (R; etc.) in a manner such that all the terms in the square brackets are only a fuoctipn

A closer examination of equations 31 reveals that the functions in the square brackets can be easily divided into

two groups. The terms in each of these groups are proportional if the terms satisfy constraints analogous to the con-



straints outlined for the single-point equations. The constraints for the first group are given by
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The constraints for the second group are given by
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Examining the first two terms in equations 32 and 33 (and the consistency condition for zero separation) leads to
the choice of the scale for the two-point velocity correlation terﬁﬁojr, given by
) A8 PO
Pij OU (X7) Ug (%) (ax, (34)
where b(i,j) is a numerical power which is a function of the value of i and j. The function b(i,j) must be chosen so
the scales for the two-point velocity correlation tensor are consistent with the scales chosen for the single-point
moments. Howevemeither the two-point nor the single-point similarity analyses yielficgrit information to

choose the values of b(i.j).

Once the scale fdP, j is chosen, all of the other scales are determined. These are given by

dd dd
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T OUG(x0) 2Ug (%), T2 DU (x3) Ug (%) 2 (35)



where growth rate terms are included in the some of the scales when the equations indicate they are appropriate.

Note that the viscous terms in the two-point correlation tensor equation consist of a linear operator applied to the
two-point velocity correlation tensofhus,one of the key differences between the two-point similarity analysis
and the single-point analysis is that the viscous terms in the two-point equations do not introduce additional arbi-
trary scales, as they did in the single-point analysis. It is clear that the scales for the viscous terms in equation 31
are only proportional to each other if the growth rate of the jet is constant. In addition, the viscous terms are pro-

portional to the convective terms if
P, jU P,
X, D;z' - U, Uconst (36)
For this flow (with a constant growth rate), this condition implies that the Reynolds number of the jet based on the
similarity variables must be a constant. This requirement is analogous to the condition outlinedgley( Ga5z)
for a relative balance between the convection and dissipation rate terms in the single-point Reynolds stress equa-

tions.

It is straightforward to demonstrate that both groups of constraints in equations 32 and 33 are satisfied when the
scales are chosen as defined in equations 34 and 35. In addition, the ratio of the terms from the two groups in equa

tion 32 and 33 is given by
PrjUs (%) P jUs (%)) B DXLZ

X1 U Xq 0 ij_

which is only a function of the separation distance between the points in the transformed coordinate. Therefore,

- e—2U

(37)

when the scales are chosen as in equations 34 and 35, equation 31 can be written in a form which is independen

of the position of the jet origin.

For example, if the scales fét j are defined as
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and the proportionalities in equation 35 are taken as equalities equation 31 can be rewritten as
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If equation 39 has a non-trivial solution then the equations for the two-point velocity correlation tensor admit to a
similarity solution. Vith some additional &rt, it is also possible to demonstrate that these solutions are Hermitian

and maintain the reflective properties in the azimuthal direction.

The similarity analysis of the two-point equations was carried out using a virtual origin to model the flow exit, so
the similarity solution defined by equation 39 must be viewed as an asymptotic state of the turbulence in a jet.

However this asymptotic state may not be unique. Some of théigesfs in equation 39 have an explicit depen-



dence on both the growth rate and the Reynolds number of the jet. There is no obvious technique to eliminate both
of these factors from the similarity equation, so the form similarly solution for the two-point correlation tensor may
be dependent on source conditions to the extent that the source condidichihafvalue of Reynolds number and

the growth rate of the jet.

THE PRESSURE FIELD

Since the two-point velocity information is now available in similarity form, it is also possible to examine the pres-
sure field generated by the region described by the similarity solution to determine if this field yields a pressure-
velocity correlation which is consistent with the hypothesized similarity form. For an incompressible free shear
layer (no boundaries) it is possible to demonstrate that the instantaneous fluctuating pressure field (that is the
instantaneous pressure minus the mean pressure) is related to the velocity field in the volume (excluding the singu-

larity at the virtual origin of the flow) by the expressionT@wsend, 1976 for the expression in cartesian coordi-
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where the integration is carried out over the volume excluding the virtual origin (for example using a cut along the
-X1 axis). The fluctuating pressure field also includes a contribution from the surface around the siribldarity
contribution of the pressure from this volume integration to the pressure-velocity correlation can be determined by
multiplying this equation by,' and averaging. It is now possible to determine how the flow described by the sim-
ilarity solution contributes to this pressure velocity correlation. This only includes the flow on the pgsiside

of the axis excluding the origin (taking the virtual origin at the origin oiktheoordinate system with the jet flow-

ing in the positivex, direction) because the similarity coordinate system defined in both the single and two-point

similarity analysis becomes singular at the origin and is incapable of describing the flow behind the virtual origin.

Substituting the hypothesized similarity solution for the mean velocity field. the two-point velocity correlation ten-



sor, and the turbulent transfer terms into the resulting equation yields
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where a(k) is equal to 1 when k is 1 and it has a value of 2 when k is Z0ri8.defined as

F = G o,
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0" = X53—X3" (46)

The scale term for the pressure-velocity correlation term in equation 41 is consistent with the scaled required by
the similarity analysis. Thus, the similarity hypothesis is internally consistent in the sense that if the motion in the
jet is consistent with a two-point similarity hypothesis, then the pressure field generated by the motion in the jet

yields a pressure-velocity correlation of a form which also satisfies the similarity hypothesis.

SIMILARITY OF THE VELOCITY GRADIENT MOMENTS

The similarity solution indicates that the two-point velocity correlation tensor can be written in a form which is
independent of the position of the two-points relative to the origin of the flow for all separation distances. Hence, it
is logical to expect that other moments which can be directly related to the two-point correlatigrsteatstire
two-point velocity gradient correlation, should have a similarity form when the solution for the two-point velocity

correlation tensor can be written in a similarity form.
The dissipation of the kinetic emgrper unit mass, can be written as

e = lim2vie ijein (47)
X - X'
where the gis the rate-of-strain tensdfor a cylindrical coordinate system, the rate of strain tensor is given by (v
Batchelor 1967)
1dq0u; 1 au O
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Therefore, the dissipation of kinetic eggican be written as
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where R; is the two-point velocity correlation tensor; i.e.,
Rl,J = UI (Xl' X21 X3, t) u] (Xll, XZ', X3I, t) (50)

Substituting the similarity solution for the components of the two-point velocity correlation tensor (i.e., equation
31) into the terms in equation 49, it is straightforward to demonstrate that all of the two-point velocity gradient

moment can be written as a product of a scale (which are proportional for all of the moments) and a similarity



function, so that
|:Us (Xl) Us (X]_')
0 (X1) d(Xxy)

This is consistent with the similarity form for the dissipation required by the similarity analysis of the single-point

€ =2v lim
X, - X'

}D(n,n', 6,v) = D (n) (51)

moment equations since the Reynolds number of the flow is constant.

Using a similar approach it is straight forward the demonstrate that the two-point vorticity correlation can be writ-
ten in a similarity form when the two-point velocity correlation tensor has a similarity form. In this case, it also fol-

lows that the single-point vorticity moments have similarity solutions.

SUMMARY AND CONCLUSION

The review of the similarity hypothesis for the single-point equations illustrates that the results for the axisymmet-
ric jet are analogous to the results derived for the plane jet bg&E894). The component equations for the sin-
gle-point second order velocity moments admit to a similarity solution only when the growth rate of the jet is linear

an the Reynolds number based on the similarity variables is a constant.

The analysis also demonstrates that the equations which govern the evolution of the two-point velocity correlation
tensor admit to similarity solutions for the far field of the axisymmetric jet. In this similarity solution the scaled
two-point correlation functions are independent of the position of the two points downstream of the jet origin. In
flows this case, the single-point similarity solution can be viewed as a special case of the more general two-point
similarity solution. The analysis also demonstrated that the Reynolds number of the jet based on the similarity vari-
ables must be a constant in order to ensure that the convective and viscous terms in the two-point equations evolve

in a manner consistent with the similarity hypothesis for all separation distances.

It was also demonstrated that the two-point velocity-gradient moments have a similarity form when the compo-
nents of the two-point velocity correlation tensor have a similarity form. This result could be used to demonstrate
that the dissipation of the turbulent kinetic eyyehas a similarity solution which is consistent with form required

by the single-point similarity analysis. This result demonstrates that it is reasonable to hypothesize that the dissipa-
tion of kinetic enggy has a similarity form at a finite Reynolds number when the Reynolds number of the flow is
constant as Gege (1994) did.

At present there is insiifient experimental evidence to validate the two-point similarity hypothesis. An experi-

mental investigation is presently being carried out to generate data for this purpose.
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