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The governing equations for the two-point correlations of the turbulent fluctuating
velocity in the temporally evolving wake were analysed to determine whether they
could have equilibrium similarity solutions. It was found that these equations could
have such solutions for a finite-Reynolds-number wake, where the two-point velocity
correlations could be written as a product of a time-dependent scale and a function
dependent only on similarity variables. It is therefore possible to collapse the two-
point measures of all the scales of motions in the temporally evolving wake using a
single set of similarity variables. As in an earlier single-point analysis, it was found
that the governing equations for the equilibrium similarity solutions could not be
reduced to a form that was independent of a growth-rate dependent parameter. Thus,
there is not a single ‘universal’ solution that describes the state of the large-scale
structures, so that the large-scale structures in the far field may depend on how the
flow is generated.

The predictions of the similarity analysis were compared to the data from two
direct numerical simulations of the temporally evolving wakes examined previously.
It was found that the two-point velocity spectra of these temporally evolving wakes
collapsed reasonably well over the entire range of scales when they were scaled in the
manner deduced from the equilibrium similarity analysis. Thus, actual flows do seem
to evolve in a manner consistent with the equilibrium similarity solutions.

1. Introduction
A widely accepted idea about turbulent flows is that most turbulent free shear

flows eventually evolve to a state in which the profiles of the mean velocity and
Reynolds stresses are self-similar (e.g. Wygnanski, Champagne & Marasli 1986;
Hussein, Capp & George 1994). There has been considerable disagreement, though,
as to whether there is a unique or ‘universal’ self-similar solution that describes the
far field of each type of flow. This idea of a universal self-similar solution for each
type of flow was proposed early in the investigation of turbulent shear flows (cf.
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Townsend 1956) and has been widely accepted since (e.g. Tennekes & Lumley 1972;
Narasimha 1992; Pope 2000; Durbin & Reif 2001). George (1989, 1995) showed that
there was a family of similarity solutions for the governing equations in each type
of free-shear flow that includes a parameter that depends on the growth rate of the
flow. George argued that the development of the flows into the far field could depend
on the initial or source conditions of the flows and, indeed, Wygnanski et al. (1986)
and a number of more recent investigations (e.g. Ghosal & Rogers 1997; Moser,
Rogers & Ewing 1998; Slessor, Bond & Dimotakis 1998; Mi, Nobes & Nathan 2001;
Johansson, George & Gourlay 2003) have found that the development of jets, wakes,
or shear layers generated by different sources do seem to develop to different states.

Townsend (1956) noted the possibility that turbulent flows could have non-unique
self-similar solutions, but conjectured that the large-scale structures generated in the
near field would break down and the new large-scale structures would approach
a universal state that depended only on the type of shear flow. Thus, Townsend
recognized that the ‘equilibrium’ observed in the single-point moments was a measure
of an ‘equilibrium’ in the processes that govern the development of the underlying
structures, which are not well characterized by the single-point moments. Therefore
it is useful to examine two-point measures of the turbulence to determine if the
underlying structures in the flow are evolving in an equilibrium manner, and whether
there is more than a single universal solution for these measures in each family of
flows.

Since Townsend (1956), there has been considerable interest in characterizing the
development of the large-scale structures in turbulent shear flows. Of particular
interest have been the large-scale structures that occur in the plane wake. One of
the earliest investigations of these structures was conducted by Grant (1958), who
reported measurements of the two-point and two-time correlations of the fluctuating
velocity field in the wake and used these measurements to revise Townsend’s ‘double-
roller eddy’ model for the structures occurring across the wake (and also the boundary
layer). Keffer (1965) conjectured that the double-roller eddies observed in wakes were
horseshoe vortices formed from an instability in the spanwise roller vortices. Later
investigations found that the roller eddies did appear to be horseshoe vortices caused
by an instability in the spanwise shear layer (e.g. Antonia et al. 1987; Hayakawa &
Hussain 1989, and references therein) though there was some evidence of single
roller eddies (e.g. Townsend 1979; Mumford 1983) or rib structures in the wake (e.g.
Hayakawa & Hussain 1989). Antonia et al. (1987) also noted that the structures in
the far field were similar to those observed in the near field, but occurred further from
the wake centreline. Grant (1958) had found that lateral correlations measured 500
and 1000 diameters downstream of a cylinder collapsed when they were scaled by the
appropriate similarity variables, but this does not appear to have been re-examined
in later investigations.

There is evidence that the large-scale structures present in the far field of wakes
depend on the wake source. For example, Bonnet, Delville & Garem (1986) found
that the two-point velocity correlations measured in the wake behind a flat plate with
turbulent boundary layers were significantly different from those reported by Grant for
the wake produced by a circular cylinder, particularly in the lateral direction. Bonnet
et al. suggested that the transition of the wake behind a body with laminar boundary
layers could create different structures from those formed when two independent
turbulent boundary layers meet behind a body (as was the case in their flow). Indeed,
Weygandt & Mehta (1993) found that the structures in the far-field wake of a
plate with turbulent boundary layers were more three-dimensional than those in the
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far-field wake of a plate with laminar boundary layers. Moser et al. (1998) also
found that differences in the large-scale structures initially present in direct numerical
simulations of temporally evolving wakes did seem to persist into the far field of
these flows. Not surprisingly, investigations have shown that the structures formed
during the transition process in plane wakes depend on the initial conditions (e.g.
Williamson & Prasas 1993; Maekawa, Mansour & Buell 1992) and that the initial
development of the structures may be more complex than suggested by phase-averaged
measurements (Brede, Leder & Westergaard 2003).

Heretofore, there have been only a few attempts to analyse the equations for the two-
point velocity correlations in turbulent flows in order to examine whether they have
self-similar solutions. These investigations have primarily focused on homogeneous
flows, including decaying isotropic turbulence (e.g. von Kármán & Howarth 1938;
Batchelor 1948; George 1992; Speziale & Bernard 1992), or homogeneous shear
flow (George & Gibson 1992). Ewing & George (1995) demonstrated that the
governing equations for the two-point velocity correlation in the spatially developing
jet have self-similar solutions. Experimental investigations of the two-point measures
on different downstream planes in spatially evolving flows include studies of the plane
jet by Gordeyev & Thomas (2000), the round jet by Gamard, Jung & George (2004),
and the axisymmetric wake by Johansson & George (2006). All found that the results
seem to exhibit two-point similarity as predicted by Ewing (1995), although none
considered the correlations in the streamwise direction.

The present work considers the change in the two-point correlations at long times
in the temporally evolving wake. This work follows the investigation by Moser et al.
(1998) that examined the similarity of the single-point moments in temporally evolving
plane wakes with different initial conditions. Here, the governing equations for the
two-point velocity correlations are analysed to determine whether these equations
have equilibrium similarity solutions. The data from two direct numerical simulations
of the temporally evolving wake considered by Moser et al. are then used to determine
whether the derived equilibrium similarity solutions do describe the evolution of the
different scales of motion in these simulations. Finally, some implications of these
self-similar solutions on different measures of the turbulent structures are presented.

2. Analysis of the governing equations
The objective here is to determine whether the governing equations for the two-point

velocity correlation tensor can have equilibrium similarity solutions for a temporally
evolving plane wake. The temporally evolving wake is homogeneous in the mean
flow and lateral directions and spreads in the inhomogeneous direction over time.
The governing equations for the two-point single-time correlations of the fluctuating
velocity (cf. Hinze 1975) in this flow reduce to
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where the unprimed variables are evaluated at one point in the wake, xα , and the
primed variables are evaluated at a second arbitrary point in the wake, x ′

α , at the
same time. Here, r1 = x1 − x ′

1 and r3 = x3 − x ′
3 are the separation distances in the

homogeneous streamwise and lateral directions of the wake, respectively.
It is proposed that the two-point correlations in (2.1) have solutions of the form
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where

ζ = r1/δ1(t), (2.7)

η = x2/δ(t), (2.8)

η′ = x ′
2/δ(t), (2.9)

and

ξ = r3/δ3(t) (2.10)

are the similarity coordinates. Thus, the two-point correlations here are written as
the product of a time-dependent scale and a solution that depends only on similarity
variables. The superscripts in these relationships are not indices so they should not be
considered when applying the summation convention. The subscripts are indices so
the summation convention applies to repeated subscripts in the following equations.
The length scales in the x1- and x3-directions, δ1 and δ3, are arbitrary at this point
and will be determined from the constraints imposed by the governing equations.
The symbol ∗ has been included in the solutions to allow for any dependence on the
source conditions of the flow.

The averaged momentum equations include information about the development of
the flow that is not included in the transport equations for either the single-point
turbulence Reynolds stresses or the two-point velocity correlations. Thus, the results
from the analysis of these equations must be considered in the analysis of either the
single-point or the two-point equations. Moser et al. (1998) showed that the mean
momentum equations have equilibrium similarity solutions of the form


U1 = U∞ − U1(x2, t) = Us(t)f (η) (2.11)

and
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. (2.14)
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Substituting the proposed similarity solutions into the governing equations yields[
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If all the terms in the equations are first-order, the equations can have equilibrium
similarity solutions only if the time-dependent portion of each term (in square
brackets) is proportional. Physically, this would imply that the production and
dissipation of energy at the different scales of motion, and the transfer of energy
between the different scales of motion, are in equilibrium as the flow evolves.

Constraints for δ1 and δ3 can be determined by considering the nonlinear energy
transfer terms in the equations. In particular, the time-dependent portions of the
energy transfer terms in the equation for u1u

′
1 and the equation for u2u

′
1 are only
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Thus, it follows that δ2
1 ∝ δ2 or δ1 ∝ δ. A similar approach can be applied to the

energy transfer terms in the equations for u3u
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3 and u3u

′
2 to show that δ3 ∝ δ. Thus,

the characteristic length scales of the turbulent motions grow at the same rate in all
directions as the flow evolves.
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u1u2 from the momentum equation in the limit of zero separation. Thus,
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Using (2.18) and comparing the scales for the production and convection terms in the
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1 equation yields
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The scales for u2u
′
2 and u3u

′
3 are deduced by recognizing that in an incompressible

flow
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Substituting the similarity solutions into this equation yields
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The proposed similarity solutions are again consistent with this equation only if the
time-dependent terms (in square brackets) are proportional. Using this constraint, and
comparing the convection and pressure transfer terms in the uαu′

α equations implies
that

Q1,1
s ∝ Q2,2

s ∝ Q3,3
s ∝ U 2

s . (2.22)

The remaining terms in (2.15) are proportional only if
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The constants of proportionality in these relationships may depend on the source
conditions of the flow.

The growth rate of the similarity length scale can be deduced by comparing the
scales for the unsteady term and the production term in the u1u
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2 equation; i.e.[
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since Us ∝ 1/δ from the mean momentum equation. Finally, the convection and
viscous terms in the equations can be proportional only if[
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This is the same constraint deduced from the integrated mean momentum equation,
so the viscous terms can be retained in the governing equations for the two-point
velocity correlations without imposing any additional constraints in this constant-
Reynolds-number flow. Thus, the governing equations for the two-point velocity
correlations indeed admit equilibrium similarity solutions that describe the evolution
of all the scales of motion for turbulent wakes with finite Reynolds numbers. It is
straightforward to show that the more general similarity solutions deduced here for the
two-point correlations reduce to forms consistent with the more restricted solutions
for the single-point moments in the limit of zero separation distance.

The functional form of these solutions does depend on the Reynolds numbers of
the wake, so different scaling should still be used when comparing measures of the
large- and small-scale motions from wakes with different Reynolds numbers. Further,
as with the single-point equations (cf. Moser et al. 1998), there was not a unique
choice for the time-dependent scales of the two-point correlations that would allow
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the growth-rate-dependent parameter β to be removed from the governing equations
for the similarity solutions. Therefore, there is a family of equilibrium similarity
solutions for the governing equations of the two-point velocity correlation tensor in
the wake, and thus, the large-scale structures present in the self-similar wake may
depend on the source conditions used to generate the flow.

2.1. Implications for the spectra and the proper orthogonal decomposition (POD)

The existence of the equilibrium similarity solutions for the two-point velocity
correlations has implications on how the energy is distributed amongst the different
scales of motion in the flow, and thus on the representation of this energy distribution.
For example, when the two-point velocity correlations have equilibrium solutions, it
follows immediately that one-dimensional spectra in the x1-direction given by
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where k1 and k̃1 = k1δ are the dimensional and similarity wavenumbers, respectively,
in the x1-direction. It also follows that the one-dimensional spectra in the x3-direction
can be written as
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where k3 and k̃3 = k3δ are the physical and similarity wavenumbers in the x3-direction.
The same can be shown for the representation of the different motions in the

inhomogeneous direction using the proper orthogonal decomposition (POD). In the
POD, the turbulent motions are represented by orthogonal functions that are solutions
to the integral eigenvalue problem given by (Lumley 1970)∫ ∞
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Here, ∗ denotes the complex conjugate. (The separations in the x1- and x3-directions
have been set to zero in these equations for simplicity, but these separation distances
could easily have been included or the POD could easily have been applied after the
two-point velocity correlation had been Fourier transformed in these directions.)

When the two-point velocity correlations have similarity solutions, these equations
can be written as [
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s
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where

φn
i (x2) =

[
δ−1/2

]
χn

i (η) (2.35)

and

Λn(t) =
[
U 2

s δ
]
Λ̃n. (2.36)

The ratios, Qi,j
s /U 2

s , are constants that would depend only on the growth-rate
parameter, β . Thus, the motions can be represented in similarity variables in the
inhomogeneous direction just as with the spectra in the homogeneous directions.

3. Comparison with data
It can only be determined by examining experiments whether actual flows evolve

in a manner consistent with the similarity solutions outlined in § 2, and whether flows
generated with different source conditions would or would not approach different
solutions. The predictions of the similarity analysis are compared here with data
from direct numerical simulations (DNS) of temporally evolving wakes computed by
Moser & Rogers (1994) that had a Reynolds number based on the initial mass flux
deficit of 2000. The first simulation was initiated using two independent realizations
from a DNS of a turbulent flat-plate boundary layer (Spalart 1988) and thus, is
analogous to the wake behind a flat plate with turbulent boundary layers. Moser &
Rogers also performed two forced wake simulations where the streamwise and cross-
stream velocity components of the two-dimensional modes (with k3 = 0) in the initial
conditions were amplified by a factor of 5 and 20, respectively, producing large-scale
structures that persisted into the far field. Following the convention in Moser et al.
(1998) the three simulations are referred to as the ‘unforced’, ‘forced’, and ‘strongly
forced’ wake simulations. Moser et al. found that the ‘unforced’ wake simulation
and the ‘forced’ wake simulation had extended periods during which the single-point
moments evolved in an approximately self-similar manner. The third ‘strongly forced’
wake did not have an extended self-similar period, so this simulation is not considered
here.

The profiles of the turbulence Reynolds stresses in the unforced and forced wake
simulations were also approximately self-similar, though there was some variation

from self-similarity in the profiles of u2
2, particularly for the forced wake simulation.

Moser et al. also examined separately the contributions from the coherent two-
dimensional motions in the spanwise direction (with k3 < 4k1) and the incoherent
more three-dimensional motions (with k3 > 4k1). (This division is consistent with
the two-point similarity theory outlined here.) They found that the profiles of the
contribution from the incoherent motions (with approximately 80 % and 50 % of the
total turbulent kinetic energy in the unforced and forced wakes, respectively) collapsed
when they were plotted in similarity variables; the profiles for the contribution from
the coherent motions did not. As noted in Moser et al., McIlwain, Ewing & Pollard
(1997) found most of the energy in these coherent motions was from motions with
k3 = 0 and the lowest wavenumbers in the streamwise direction. Thus, it was thought
that the deviation from self-similar behaviour in the wake may be due to the effect
of the finite size of the computational domain used in the simulations.

Data from four times during the self-similar period in each wake are examined here
to determine whether measures of the two-point velocity correlation were evolving
in a manner consistent with the equilibrium similarity solutions deduced in § 2. The
one-dimensional spectra of the u1 and u2 components in the streamwise direction
along the centreline of the ‘unforced’ and ‘forced’ wake at the different times are
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Figure 1. One-dimensional spectra, F 1
11 and F 1

22 at the centreline of the (a) unforced and (b)
forced wake simulations at the times when δ/δo were , 3.594 and 5.306; , 4.008 and
6.037; , 4.446 and 6.636; and , 4.884 and 7.235, respectively. The straight lines here

are proportional to k
−5/3
1 .

shown in figure 1. The spectra here have been averaged in the spatially homogeneous
x3-direction that was not transformed. There appear to be short ranges of k

−5/3
1 in

the spectra from both wakes. These ranges are of greater extent in the forced wake
because the turbulence Reynolds numbers of this flow is greater. The spectra from
the forced wake also have a larger energy content in the low wavenumber region
because of the organized structures present in this wake owing to the initial forcing.
The spectra in both wakes decrease in magnitude and shift to lower wavenumbers as
the wakes evolve, as predicted in the analysis.
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Figure 2. Scaled one-dimensional spectra, (a) F̃ 1
11, (b) F̃ 1

22, (c) F̃ 1
33, and (d) F̃ 1

12 at two
cross-stream locations in the unforced wake when δ/δo = , 3.594; , 4.008; ,
4.446; and , 4.884, respectively.

The one-dimensional spectra of the fluctuating velocity components and the cross-
spectra in the streamwise and lateral directions of the unforced wake, scaled using
similarity variables, are shown in figures 2 and 3. The one-dimensional spectra from
the different times collapsed for most wavenumbers. There was some scatter at
the highest wavenumbers caused by the change in the effective resolution of the
computational grid as the small-scale motions grew in size, or by a change that
was made during the simulation to a coarser grid once the small-scale motions were
sufficiently large. There was also scatter at the lower wavenumbers, though much
of this seems to be due to uncertainty in the computed spectra. In particular, the
lengths of the computational domain in the lateral and streamwise directions are
approximately 5 and 10 times the integral length scale, respectively. Thus, there
are only approximately 2 to 5 independent measures of the large-scale motions in
each direction resulting in an uncertainty in the spectra of 45–70 % (cf. George,
Beuther & Lumley 1978). This is reflected more significantly in the cross-spectra than
the scalar spectra, as expected. The uncertainty in these spectra are much larger than
the uncertainty in the spectra presented in the previous experimental investigations
of the two-point similarity (e.g. Gordeyev & Thomas 2000; Gamard et al. 2004).
Here, though, unlike in those experimental investigations, essentially the full range of
motions are resolved in the homogeneous directions, making it possible to examine
whether the different scales of motion in the flow are evolving in a manner consistent
with the similarity theory. In particular, Moser et al. (1998) found that the ratio of
the energy in the coherent and incoherent motions (defined in the manner outlined
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Figure 3. Scaled one-dimensional spectra, (a) F̃ 3
11, (b) F̃ 3

22, (c) F̃ 3
33, and (d) |F̃ 3

12| at two cross-
stream locations in the unforced wake when δ/δo = , 3.594; , 4.008; , 4.446;
and , 4.884, respectively.

above) changed slowly over time in the unforced wake, indicating that these different
motions were not evolving in complete equilibrium in this flow. The results here,
though, show the spectra collapse surprisingly well, indicating that the turbulent
motions in the unforced wake are evolving in a manner approximately consistent
with the equilibrium similarity solutions deduced for the two-point equations.

The one-dimensional spectra of the fluctuating velocity and the cross-spectra in the
streamwise direction of the forced wake, scaled using similarity variables, are shown
in figure 4. The spectra collapse over a wide range of wavenumbers. There is more
scatter in the low-wavenumber region of the streamwise spectra. Much of this again is
likely statistical uncertainty in the computed spectra, but there seems to be a systemic
change in the low-wavenumber range of F 1

22 that is not consistent with the similarity

solutions, similar to the profiles of u2
2 in Moser et al. There is better collapse of the

spectra in the x3-direction, such as those shown in figure 5, in part, because much
of the deviation from self-similar behaviour occurred in the two-dimensional modes
with k3 = 0, which are not shown in these spectra. The collapse of the spectra over
most wavenumbers in both directions is a good indication that most of the motions
in the forced wake are evolving in a manner consistent with the proposed equilibrium
similarity solutions over the period considered here.

The results here, as in Moser et al., suggest that the largest scales of motion
in the forced wake simulation may not be evolving in a manner consistent with
the equilibrium similarity solutions. This may be due to the finite computational
domain size because the use of a computational domain (or experimental facility)
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Figure 4. Scaled one-dimensional spectra, (a) F̃ 1
11, (b) F̃ 1

22, (c) F̃ 1
33, and (d) |F̃ 1

12|, at two
cross-stream locations in the forced wake simulations when δ/δo = , 5.306; , 6.037;

, 6.636; and , 7.235, respectively.

with finite lengths in the homogeneous directions imposes fixed length scales on the
flow. At some point, these fixed length scales will conflict with the constraint from
the similarity analysis that the length scales of the motions must grow continuously
in all three directions as the flow evolves, resulting in deviation from self-similar
behaviour. The constraints for the length scales in the homogeneous directions could
not be deduced from the similarity analysis of the single-point equations. Thus, the
similarity theory for the two-point velocity correlations may be useful in evaluating
when the development of a flow is affected by the finite boundary conditions.

The correlations of the motions in the inhomogeneous direction were examined
here using second-order structure functions given by (Monin & Yaglom 1975)

S2
αα(r1, x2, x

′
2, r3) = (uα − u′

α)
2. (3.1)

The structure function is relatively insensitive to the contribution from scales of
motion larger than the separation distance between the points; thus it reduces the
influence of the largest scales of motion that could be affected by the finite boundary
conditions. The second-order structure functions for u1 and u2 computed at the
centreline and the half-deficit points, η = ±0.5 in the unforced wake are shown in
figure 6. The separation distances between the points in the streamwise and lateral
directions, r1 and r3, were zero for these results. The similarity collapse of the structure
functions is good for small separation distances (
η < 0.4), but deteriorates for larger
separations. The structure functions with larger separations are dominated by the large
scales that are more affected by the limited statistical sample and that are more subject
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Figure 5. Scaled one-dimensional spectra, (a) F̃ 3
11 and (b) F̃ 3

22 at two cross-stream locations in
the forced wake simulations when δ/δo = , 5.306; , 6.037; , 6.636; and ,
7.235, respectively.

to finite domain size. The structure functions for the velocity components in the forced
wake simulation did not collapse as well at large separation distances as those in the
unforced wake, similar to the profiles of the single-point Reynolds stresses.

The similarity of the POD eigenvalues and eigenfunctions (predicted in § 2.1) was
not directly tested using the DNS data because there were only approximately 10
independent measures in each DNS field, which is not sufficient for meaningful
POD analysis. The noise apparent in the cross-spectra and structure functions is
characteristic of this small sample. Further, unlike the Fourier decomposition, the
eigenfunctions determined from the POD are sensitive to this noise, so the uncertainty
in the eigenfunctions and eigenvalues are more difficult to characterize.
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Figure 6. Scaled second-order structure function of the turbulent velocity field for (a) and (b)
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in (b) and (d) in the unforced wake when δ/δo = , 3.594; , 4.008; , 4.446; and

, 4.884, respectively.

4. Further implications of the two-point similarity
In the similarity analysis of the single-point equations, it is assumed that the

pressure–strain and the dissipation terms have equilibrium similarity solutions. These
single-point moments are inherently two-point because the variation in the pressure
is linked to the surrounding flow field and the dissipation depends on the local
velocity gradient. Similarly, it is often assumed that the characteristic length scales
of the turbulent motions can be scaled using a characteristic length of the flow in
this constant-Reynolds-number flow when it is evolving in a equilibrium similarity
manner. These results cannot be derived from the single-point solutions, but can be
derived from the similarity solutions for the two-point velocity correlation tensor.

4.1. Pressure–velocity correlations

For example, the relationship between the two-point pressure velocity correlations
and the two-point velocity correlations can be deduced from (e.g. Hinze 1975)

∂2pu′
j

∂xk∂xk

= −2
∂Uk

∂xl

∂ulu
′
j

∂xk

−
∂2ukulu

′
j

∂xk∂xl

, (4.1)
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For a free shear flow such as the temporally evolving wake, this can be integrated to
yield

pu′
j

ρ
= − 1

4π

∫
2

[
∂U ′′

k

∂x ′′
l

∂u′′
l u

′
j

∂x ′′
k

]
dx ′′

1 dx ′′
2 dx ′′

3

|x ′′
α − xα| − 1

4π

∫
∂2u′′

ku
′′
l u

′
j

∂x ′′
k ∂x ′′

l

dx ′′
1 dx ′′

2 dx ′′
3

|x ′′
α − xα| , (4.2)

where |x ′′
α − xα| is the magnitude of the distance between the point x ′′

α and xα .
Substituting the similarity solutions of § 2 into this equation yields

pu′
j

ρ
=

1

2π

[
UsQ

2,j
s

] ∫
∂f (η′′)

∂η′′
∂q2,j (ζ

′′ + ζ, η′′, η′, ξ ′′ + ξ )

∂ζ ′′

× l3dζ ′′dη′′dξ ′′[
(l1ζ ′′)2 + (η′′ − η)2 + (l3ξ ′′)2

]1/2
− 1

4π

[
T

ki,j

s,1

]∫ [
δk1

l1

∂

∂ζ ′′ + δk2

∂

∂η′′ +
δk3

l3

∂

∂ξ ′′

]

×
[
δl1

l1

∂

∂ζ ′′ + δl2

∂

∂η′′ +
δl3

l3

∂

∂ξ ′′

]
t1
kl,j (ζ

′′ + ζ, η′′, η′, ξ ′′ + ξ )

× l1l3dζ ′′dη′′dξ ′′[
(l1ζ ′′)2 + (η′′ − η)2 + (l3ξ ′′)2

]1/2
, (4.3)

where ζ ′′ = (x ′′
1 − x1)/δ1, ξ ′′ = (x ′′

3 − x3)/δ3, and η′′ = x ′′
2/δ are similarity variables,

while l1 = δ1/δ and l3 = δ3/δ are the ratios of the length scales. Using the constraints
for T

ki,j

s,1 and Q2,j
s from § 2, it is straightforward to show from the analysis here that

the scale for the two-point pressure velocity correlation, (Π,j

s,1) must be proportional

to U 3
s (t), consistent with the constraint deduced in (2.26). This is not unexpected since

the constraint that divergence of pu′
j must be zero was used in the analysis in § 2. The

result illustrates, however, that the flow must be evolving in equilibrium with itself in
order for there to be a ‘local’ equilibrium.

4.2. Dissipation and the two-point vorticity correlation

Similarly, the relationship between the two-point velocity gradient correlation and the
two-point velocity correlation can be deduced by recognizing that (cf. Hinze 1975)

∂ui

∂xk

∂u′
j

∂x ′
l

=
∂2

∂xk∂x ′
l

(uiu
′
j ), (4.4)

since ui is not a function of x ′
i nor u′

j a function of xi . Substituting the proposed
equilibrium solution for the two-point velocity correlation into this equation and
transforming the derivatives, it follows that

∂ui

∂xk

∂u′
j

∂x ′
l

=

[
Qi,j

δ2

]
hi,j ;k,l(ζ, η, η′, ξ, Re, ∗), (4.5)

where hi,j ;k,l is the resulting equilibrium similarity solution for the velocity derivative
moments. As a result, the dissipation of the turbulent kinetic energy given by

ε = lim
xk→x ′

k

2νsij s
′
ij , (4.6)

where sij is the rate of strain from the fluctuating velocity field, has an equilibrium
similarity solution that can be written in either the form for low-Reynolds-number



302 D. Ewing, W. K. George, M. M. Rogers and R. D. Moser

flows or for high-Reynolds-number flows; i.e.

ε =

[
νU 2

s

δ2

]
dL(η, Re, ∗) =

[
U 3

s

δ

]
dH (η, Re, ∗), (4.7)

where

dL(η, Re, ∗) =
1

Reδ

dH (η, Re, ∗). (4.8)

The most appropriate scale to collapse the dissipation profiles from different wakes
will depend on the Reynolds number of the wakes.

It also follows that the two-point correlation of the vorticity has an equilibrium
similarity solution of the form

ωiω
′
l = εijkεlmn

∂uk

∂xj

∂u′
n

∂x ′
m

=

[
Qi,l

δ2

]
vi,l(ζ, η, η′, ξ, Re, ∗). (4.9)

(Note, that this is true, independent of any assumptions about local homogeneity,
e.g. that ωiωi = 2νsij sij .) Thus, all of the two-point statistical measurements of the
structures in the temporally evolving wake should evolve in an equilibrium similarity
manner, whether they are characterized using the velocity field or the vorticity field.

4.3. Length scale and velocity scales

The existence of two-point equilibrium similarity solutions in the temporally evolving
wake implies that all of the dynamically relevant length scales in the flow should
grow at the same rate. This can be shown for a number of length and velocity scales
commonly used to characterize turbulent motions. For example, the integral length
scales, used as measures of the energy-containing scales of motion (Monin & Yaglom
1975), can be written as

L1
αα =

1

u2
α

∫ ∞

0

uα(x1, x2, x3, t)uα(x
′
1, x2, x3, t) dr1 (4.10)

= [δ1]
1

kαα(η)

∫ ∞

0

qα,α(ζ, η, η, 0) dζ, (4.11)

L2
αα = [δ]

1

kαα(η)

∫ ∞

η′
max

qα,α(0, η, η′, 0) dη′, (4.12)

L3
α,α = [δ3]

1

kαα(η)

∫ ∞

0

qα,α(0, η, η, ξ ) dξ, (4.13)

where kαα(η) is the similarity solution for the single-point moment, u2
α .

Similarly, the Taylor microscales, often thought of as the scale of the vorticity in
the flow (Tennekes & Lumley 1972), given by

λγ
α,α(x2) =

⎡
⎣−2u2

α

(
∂2Rα,α

∂x ′2
γ

∣∣∣∣
xβ=x ′

β

)−1
⎤
⎦

1/2

(4.14)
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can be written as

λ1
α,α = [δ1]

⎡
⎣−2kαα(η)

(
∂2qα,α(ζ, η, η, 0)

∂ζ 2

∣∣∣∣
ζ=0

)−1
⎤
⎦

1/2

, (4.15)

λ2
α,α = [δ]

⎡
⎣−2kαα(η)

(
∂2qα,α(0, η, η′, 0)

∂η′2

∣∣∣∣
η=η′

)−1
⎤
⎦

1/2

, (4.16)

λ3
α,α = [δ3]

⎡
⎣−2kαα(η)

(
∂2qα,α(0, η, η, ξ )

∂ξ 2

∣∣∣∣
ξ=0

)−1
⎤
⎦

1/2

. (4.17)

Finally, the Kolmogorov length and velocity scales, which are measures of the smallest
scales of motion, can be written as

ηk =

(
ν3

ε

)1/4

∝
(

ν3δ

U 3
s

)1/4

=
1

Re
3/4
δ

δ, (4.18)

uk = (εν)1/4 ∝
(

U 3
s ν

δ

)1/4

=
1

Re
1/4
δ

Us. (4.19)

Thus, all of the length and velocity scales are proportional to the single-point length
and velocity scales in the temporally evolving wake. As a result, measures of the
small-scale motions will probably collapse when scaled with Kolmogorov variables,
even for wakes with finite Reynolds numbers.

The Taylor microscale is often used to characterize the length scale of the turbulence
in direct numerical simulations because it is the length scale that can be most accur-
ately computed in these simulations. The change in the Taylor microscales computed
from the u1 components in the unforced and forced wake simulations, normalized by
the similarity length scale, are shown in figure 7. The scaled Taylor microscales do
not appear to remain constant as predicted in (4.15) and (4.17), particularly in the
forced wake where the scaled microscales appear to decline as the wake thickens. The
variation is relatively small in magnitude (approximately 15 % in the worst case), and
there is significant statistical uncertainty in the Taylor microscale determined from
the DNS fields, perhaps as high as 25 %. Thus, it is not possible to make a definitive
statement regarding the scaling of the microscale in the DNS. If the trend in the
scaled microscale is real, it may be an effect of finite domain size on the large scales.
This would be consistent with the experience of Wang & George (2002) who found
that the restrictions on the domain size in DNS of isotropic turbulence resulted in an
under prediction of the Taylor microscales that worsened as the flow evolved and the
length scale of the turbulence increased. This effect in the wake simulations would be
more prevalent at the half-width where the large-scale motions reside.

5. Summary and concluding remarks
The governing equations for the two-point correlations of the turbulent fluctuating

velocity in the temporally evolving wake were analysed and it was found that
these equations admit equilibrium similarity solutions for finite-Reynolds-number
wakes. The two-point velocity correlations could be written as a product of a time-
dependent scale and a function dependent only on a single set of similarity variables.
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Figure 7. Change in the Taylor microscale determined from the spectra of u1 in the
(a) unforced and (b) forced wake at ◦, η = 0; �, η = 0.25; and �, η = 0.5.

The equilibrium similarity solutions for the single-point equations in the temporally
evolving wake given by Moser et al. (1998) are consistent with the similarity solutions
for the two-point velocity correlation tensor deduced here. The similarity solutions for
the two-point velocity correlations are more general, and they can be used to verify
the scales for the pressure–strain terms and the dissipation terms in the single-point
equations, which are inherently two-point quantities.

Physically, the production and dissipation of energy at the different scales of
motion in the flow as well as the energy transfer between the different scales of
motion are in equilibrium when the flow is evolving in a manner consistent with
the proposed equilibrium similarity solutions. Since the local Reynolds number does
not change as the flow evolves downstream, the characteristic length scales in all
three directions and all of the dynamically important length scales in the flow are
proportional. The one-dimensional Fourier spectra and the orthogonal functions and
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eigenspectra deduced from the proper orthogonal decomposition could be written in
an equilibrium similarity form when the two-point velocity correlation tensor has an
equilibrium similarity solution.

Like the earlier single-point analysis, it was found that the governing equations
for the equilibrium similarity solutions could not be reduced to a form that was
independent of a growth-rate-dependent parameter. Thus, there is not a single
‘universal’ solution that describes the measures of the large-scale structures, and
the large-scale structures at long times may depend on how the flow is generated.
It was not possible to determine from the analysis whether wakes generated from
different initial conditions would or would not approach different solutions, only that
the equations allow for different similarity states. Experiments, however, show a clear
dependence. As noted by George (1989) and in Moser et al. (1998), the differences
in the similarity solutions for wakes do not appear in the mean velocity profiles or
even in the properly scaled profiles of the Reynolds shear stress, but do appear in the
growth rate and higher-order moments that incorporate more information about the
underlying turbulent structures.

The predictions of the similarity analysis were compared to data from two direct
numerical simulations of temporally evolving wakes examined by Moser et al. (1998).
The one-dimensional spectra computed from these simulations collapsed reasonably
well over the entire range of scales when they were scaled in the manner predicted by
the equilibrium similarity analysis. The correlation in the inhomogeneous direction
was examined using structure functions to reduce the effect of the largest scales of
motion. These functions collapsed for most of the scales of motion in the flow over
the time interval examined here. Thus, the equilibrium similarity solutions for the
two-point correlation do seem to describe the evolution of the turbulent motions in
the similarity region of the temporally evolving wake.

The periodic boundary conditions used in these simulations (or the finite facility size
in experiments) impose fixed length scales on the problem that are not consistent with
the equilibrium similarity solutions that require the length scales in all directions to
grow as the flow evolves. At some point this affects the dynamics of the largest scales
of motion and causes a deviation from the predictions of the equilibrium similarity
analysis. Such a deviation from the equilibrium similarity solutions was observed here,
and in the single-point profiles. Overall, though, the collapse of the data was good,
indicating that most of the motions seem to evolve in a manner consistent with the
equilibrium similarity solutions, even when the largest-scale motions are affected by
the finite boundary conditions. The departures from equilibrium similarity may be a
useful indicator of when the finite domain and periodic boundary conditions of the
computations affect the solution.

The work here was part of the PhD dissertation of D. E. Earlier versions of some
parts of the analysis and results have been presented in Ewing et al. (1995, 1996)
and Ewing (2001). The work was supported in part by the Center for Turbulence
Research at Stanford University and the National Science Foundation.
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