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• The spatial resolution of a parallel-wire probe is studied to evaluate the 
effect of finite wire spacing and wire length on the measurement of 
turbulence derivative quantities. The study considers the measurement of 
velocity and temperature derivatives in an isotropoic field. Different spec- 
tral models are used for each case to determine if the amount of spatial 
filtering is sensitive to changes in the shape of the three-dimensional 
spectrum that is being measured. The data demonstrate that the separation 
distance is the critical dimension in probe design if the wire length and 
separation are of comparable magnitude. The amount of spatial filtering 
predicted is highly sensitive to the spectral model for separation distances 
greater than 2-3 times the Kolmogorov length scale. 
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I N T R O D U C T I O N  

Direct measurements of the velocity dissipation rate, scalar 
dissipation rate, and mean square vorticity in a turbulent 
flow require the determination of a number of spatial 
derivatives. It is common to use a difference method with 
a multisensor (typically hot wires) probe to directly mea- 
sure the derivatives. However, the finite dimensions of the 
measuring device introduce spatial filtering, so it is impor- 
tant to understand the effect of this filtering on the 
measured quantity. It is evident that it is not the absolute 
size of the probe that is important but the size of the 
probe relative to the smallest scales. In this paper the 
dimensions of the probe are measured in terms of the 
smallest dynamically significant scale, the Kolmogorov 
length scale. 

Spatial filtering of velocity derivative measurements was 
initially investigated by Wyngaard [1, 2] and more recently 
by Antonia et al. [3, 4] and others. The spatial filtering of 
scalar measurements was investigated by Wyngaard [5], 
Browne et al. [6], and Antonia and Mi [3]. Wyngaard [2] 
demonstrated that the spatial filtering introduced by the 
finite dimensions of the probe affects the measurement of 
the smaller turbulent scales more significantly than it 
affects the measurement of the larger turbulent scales. 
Hussein and George [7] and Champagne [8] found this to 
be critical for the velocity gradients because these gradi- 
ents are strongly dependent on the smallest scales of 
motion. The same is true for the measurement of the 
scalar gradients. 

In the previous studies (e.g., [1-6]), empirical spectral 
data or Pao's [9] and Corrsin's [10] spectrum functions 
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have primarily been used to model the turbulence. It is 
widely believed that the latter spectrum functions do not 
roll off fast enough at high wavenumbers. If so, the error 
due to spatial filtering is significantly overestimated. In 
addition, Ligrani and Bradshaw [11] noted that Wyngaard's 
analysis was limited in the sense that it examined only a 
single spectrum model whereas in real flow situations, 
such as a boundary layer, the nature of the turbulence 
may vary significantly from point to point. These issues 
prompted Antonia et al. [3, 4] to use direct numerical 
simulation measurements from a channel flow and three- 
dimensional spectrum functions, determined by measuring 
one-dimensional spectra using the isotropic relationships, 
to model the turbulence. They concluded that the attenu- 
ation was weakly dependent on the model of the three- 
dimensional spectrum. In addition, using measurements 
and data from direct numerical simulation for a channel 
flow, Antonia et al. [4] noted that the amount of attenua- 
tion increased near the wall of the channel and suggested 
that Wyngaard's analysis was not valid in this region 
because it could not predict this increase. 

The objective of this paper is to examine the sensitivity 
of spatial filtering to changes in the spectral model in 
addition to the effects of the finite wire separation and 
wire length of the probe. To accomplish this, additional 
spectrum functions are used in the calculations for both 
the velocity and temperature derivatives. The effect of the 
model for high-wavenumber regions on the attenuation of 
the derivative measurements is examined by using Lin's 
[12] spectrum function for the velocity derivative calcula- 
tions and Hill's [13] scalar version of the spectrum for the 
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scalar derivative calculation. Lin's and Hill's spectrum 
functions roll off more quickly at the higher wavenumbers 
than Pao's and Corrsin's spectrum functions. In addition, 
a composite spectrum [14] is added in the velocity deriva- 
tive calculations to consider the effects of finite Reynolds 
number and the energy-containing range on the derivative 
measurements. 

In the current analysis, it is assumed that the hot wires 
measure only the streamwise component of velocity at the 
two points; the effect of cross-flow contamination is ne- 
glected. (Other velocity components and different wire 
configurations will be considered in a subsequent paper.) 
The difference between the velocities at these two points 
in space, x a and xb, is 

THE ATI 'ENUATION OF VELOCITY 
DERIVATIVE MEASUREMENTS 

To determine how the separation distance affects the 
velocity derivative measured with a parallel-probe hot 
wire (shown in Fig. 1), the two wires are initially modeled 
as zero-length wires, so there is no spatial averaging due 
to finite wire length. Finite-length effects are added later, 
and the attenuation of the derivative measurement is 
calculated as a function of wire length for two different 
separation distances. Calculations are carried out for all 
of the spectral models to determine the sensitivity of the 
error to the spectral model utilized. 

Filtering Due to Finite Separations 

The zero-length parallel-wire probe measures the velocity 
at two points in the field, which can be labeled x a and x b 
(for finite-length wire, the points x a and x b correspond to 
the center of each wire in Fig. 1). The velocity derivative is 
estimated by taking the difference in velocities at the two 
points and dividing this by the distance between the 
points. In the limit of zero separation, this is the definition 
of the exact derivative at a point. What follows is a 
mathematical derivation of this derivative estimate in 
Fourier space, which parallels the derivation of Wyngaard 
[2]. 

For a homogeneous random field, the velocity can be 
represented, using the notation of George and Lumley 
[16], by its inverse Fourier transform (in the sense of 
generalized functions [15]), 

u(x )  = f e k ~ a ( k ) d k ,  (1) 

where k is the wavenumber vector. The current analysis 
assumes that Taylor's frozen field hypothesis is valid at all 
wavenumbers of the turbulence. Thus the temporal varia- 
tions measured by the hot wire are the result of a frozen 
homogeneous field being eonvected over the hot wires 
with a fixed mean convection velocity U. 

~ t~ x1,U x3@ 
S e p a r a t i o n  
D i s t a n c e  = A 

L e n g t h  = le 

Figure 1. Geometry of the parallel-wire probe. 

[Ul(X a) -- Ul(Xb)] ~ f c, l (k)[e '*xa - e;¢~ xbq dk. (2) 

Dividing this velocity difference by the separation distance 
between the points yields an estimate of the derivative. 
Using this expression, it is possible to calculate the mean 
square of the estimated velocity derivative for a finite 
separation as 

[/,/l(Xa ) -- Ul(Xb)] 2 

Ix a - Xb} 2 

1 
- I X a  - -  HLei 'Xa - -  - -  e - i , ' . x q  

× ~ l ( k  ) ~ T ( k ' ) d k d k ' .  (3) 

For a homogeneous field, nonoverlapping Fourier coeffi- 
cients are uncorrelated [16], so that 

~ l ( k ) ~ t T ( k ' ) d k d k '  = ~11(k)8(k '  - k )  d k d k ' .  (4) 

Therefore the equation for the measured derivative be- 
comes 

- x b ) ] }  

[Ul(Xa) -- /,/l(/b)] 2 

IXa -- Xbl 2 

{2 -- 2Cos[k" ( / a  
f j(I)11(k ) ]X a -- Xbl 2 dk. ( 5 )  

This expression is valid for an arbitrary separation direc- 
tion. Hereafter this study considers only probes with wires 
separated in the x 2 cobrdinate direction, which is normal 
to the mean flow direction. Since the three-dimensional 
velocity spectra examined in this study are isotropic, this 
derivative is equivalent to the measured derivative in any 
direction normal to the flow. In the remaining portion of 
the paper A is used to represent the magnitude of the 
separation distance between the wires, Ix a - Xb[. 

The exact mean square derivative (i.e., zero separation 
limit) is given by [17] 

dull2= dk. (6) 

If the term multiplying the three-dimensional velocity 
spectrum in Eq. (5) is Taylor expanded about k2A = 0, it 
is easy to see that the leading term of the expansion 
multiplied by the three-dimensional spectrum is equal to 
Eq. (6), that is, 

1 -- Cos(k2A) [ (k2A) 2 ] 
A2 = (k2)2 1 1 ~  + "'" " (7) 

Therefore Eqs. (5) and (6) are equal in the limit of zero 
separation distance. Comparing the results for finite sepa- 



ration distances yields the attenuation of the measured 
derivative due to the finite separation of the hot wires. 

Velocity Spectrum 

The three-dimensional velocity spectrum ~i, for a homo- . J. 
geneous flow is defined as the three-dimensional Fourier 
transform of the two-point velocity correlation; that is, 

1 
dPiy(k) = ~ fui(x)uj(x + r)e i(k'r) dr, (8) 

where u i are components of the velocity vector u = 
(u 1, u 2, u 3) and k = (k 1, k 2, k 3) is the wavenumber vector. 
The three-dimensional spectrum can be defined in terms 
of the three-dimensional spectrum function (also referred 
to as the spectrum function), E(k), which is given by [18] 

1 
E(k) = ~ f fl~l=k*ii(k)do'(k) (9) 

where k is the magnitude of the wavenumber k and the 
integration is carried out over spherical shells of radius k 
in wavenumber space. The three-dimensional spectrum 
for isotropic turbulence is related to E(k) by 

E(k) .  2 
~i j  4---'~( k ~ij -- kikj)" (lO) 
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The models of the spectrum function used in the current 
analysis are shown in Fig. 2. Pao's [9] model for the 
three-dimensional spectrum function is given by 

/~(k) = ot]c-5/3exp[--3ot~:4/3], (11) 

where k = k~ and /~(k) = E(k ) /u~  are the wavenum- 
ber and spectrum function nondimensionalized by the 
Kolmogorov length scale ~7 = (~'3/8)1/4 and the Kol- 
mogorov velocity scale u k = 0,z)1/,4, where z, is the kine- 
matic viscosity of the fluid and e is the dissipation per 
unit mass. a is the Kolmogorov constant, and it is chosen 
as 1.6 in the current analysis, which is within the range of 
accepted values. 

Pao's spectrum is known to be physically unrealistic in 
the viscous dissipation range (approximately k > 0.1), and 
it has a tendency to overestimate the energy in that region 
(see [19]). A second model that rolls off faster in this 
region was proposed by Lin [13] and is given by 

/~(~) = Ot(~-5/3 + ~- l )exp[_ot(3~4/3  + ~2)] .  (12) 

Three different values of a are chosen in this study for 
Lin's spectrum--l .5 ,  1.65, and 1.8--to determine if the 
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Figure 2. Velocity spectrum functions used to model the three-dimensional spectrum. 
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amount of spatial attenuation is sensitive to the choice of 
this quantity. 

The previous spectral models are infinite Reynolds 
number models of the equilibrium range of turbulence, so 
they do not include a model of the energy-containing 
eddies. To examine the effect that the model of energy- 
containing eddies has on the measurement of the velocity 
derivative, a composite spectrum suggested by Hellend et 
al. (see [19]) is included. The derivation of the equations 
for this composite model is included in Appendix I. The 
spectral model combines yon Karman's [20] and Pao's [9] 
spectra and is given by 

E ( k )  = o/ ~ I1 - - 1 - { k ( g / / ~ ) ) 2 ]  17/6 exp - /3~4 /3  , 

L J 
(13) 

where c~ is a model constant defined to be 1.6 is this 
analysis and L is a length scale characteristic of the 
energy-containing eddies. For a given choice of L/'rl it is 
possible to calculate the other model constant /3 by 
satisfying the dissipation equation ([18]) 

z~ 
e = 2Ufo k2E(k) dk. (14) 

The Reynolds number for the spectrum can be character- 
ized by the turbulence Reynolds number based on the 
Taylor microscale A; that is, 

R% = uA/u ,  (15) 

where u 2 = (uiui)/3. For isotropic turbulence, the rela- 
tionship between the turbulence Reynolds number based 
on the Taylor microscale and the spectrum function is 
given by 

20 ) l/2 fo~F~(~:) dk. (16) R% = \ ~ -  

Therefore, once a value of L/71 is chosen, the corre- 
sponding value of/3 can be calculated using Eq. (14), and 
the turbulence Reynolds number based on the Taylor 
microscale can be determined from Eq. (16). The value of 
the parameters L/'q,  /3, and R% for the spectrum func- 
tions used in this analysis are included in Table 1. 

The one-dimensional spectrum of the turbulence, 
Fi}(kl) , is the spectrum usually available to the experi- 
menter. The one-dimensional spectrum is related to the 
three-dimensional spectrum ~ij by 

Fi}(t,1) = f f , t , i ~ ( k )  dk: dk 3. (17) 

The one-dimensional spectra, normalized by Kolmogorov 
variables ff~l = Fll/U~,'q corresponding to the spectrum 
functions above are illustrated in Fig. 3. The spectra in 
this figure are the positive wavenumber portion of the 

Table 1 

L / "q fl Re;~ 
31.6 1.464 28.8 

178 1.582 118 

whole line spectrum. They are representative of the whole 
line spectrum, since the one-dimensional spectrum is an 
even function for i = j. Note that there are substantial 
differences between the one-dimensional spectra for Lin's 
function and the one-dimensional spectrum for Pao's 
function. It is clear that the one-dimensional spectra of 
the models that incorporate Pao's spectrum function to 
model the high-wavenumber region do not roll as quickly 
as the models that incorporate Lin's spectrum function in 
this region. In addition, it should be noted that the one-di- 
mensional spectrum of the composite spectrum levels off 
in the low-wavenumber region in a manner that is consis- 
tent with measured one-dimensional spectra while the 
one-dimensional spectra of the other two models continue 
to rise. 

Attenuat ion of  the Mean Square Derivat ive  

Figure 4 illustrates the attenuation that occurs in the 
measured derivatives for the two different infinite 
Reynolds number models of the equilibrium range. The 
values of the measured derivatives have been normalized 
by the value of the exact derivative (i.e., the derivative that 
would be measured by a probe of zero dimension) to 
illustrate the relative attenuation. There are several im- 
portant points to note from this graph. The relative error 
that occurs in the measured derivative is strongly depen- 
dent on the choice of the model of the equilibrium range 
of the three-dimensional spectrum function. The error in 
the normalized derivative measurement for Lin's spectrum 
is significantly less than the error for Pao's spectrum. The 
faster rotloff of Lin's spectrum function in the dissipation 
region is the direct cause of this reduction. Finally, Lin's 
model distributes relatively more of the spectral density of 
the three-dimensional derivative spectrum at smaller val- 
ues of k 2 where the attenuation caused by the measuring 
technique is smaller. This reduces the amount of attenua- 
tion in the mean square derivative measurement. 

It is clear from this analysis that the amount of attenua- 
tion is sensitive to the shape of the velocity spectrum 
function in the high-wavenumber region and the sensitiv- 
ity increases as the separation distance between the probes 
increases. The three curves in Fig. 4 that use Lin's model 
demonstrate that the attenuation is not strongly depen- 
dent on the parameter c~ in this model. Figure 4 also 
includes data reported by Antonia et al. [4] that were 
calculated using data from a direct numerical simulation 
of a fully developed channel flow. The instantaneous 
velocity field at the centerline of the channel was used to 
estimate the instantaneous velocity derivative with a dif- 
ference technique for various separation distances. The 
correct derivative for zero separation was estimated using 
Chebychev polynomials. The relative attenuation of the 
mean square derivative due to the finite separation of the 
points is the ratio of the variance of these two quantities. 
The data from the direct numerical simulation are in good 
agreement with the curves calculated using Lin's spectrum 
function, indicating that this spectrum function provides a 
reasonable estimate of the error in the derivative mea- 
surements. 

Figure 5 illustrates that the amount of attenuation that 
occurs in the measured derivative is dependent on the 
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Figure 3. Comparison of the one-dimensional velocity spectra. 
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model of the low-wavenumber region when the Reynolds 
number is small. For the cases considered in the figure, 
the value of/3 is less than the value of a,  so the spectrum 
functions roll off more slowly than Pao's function with the 
value of a in the exponential rolloff term. To compensate 
for this effect, the attenuation that occurs for Pao's spec- 
trum function with a equal to each of the values of /3 is 
included as a reference. For the larger Reynolds numbers, 
such as Re A = 118, the attenuation of the measured 
derivative calculated using the composite spectrum func- 
tion is not significantly different from the attenuation that 
occurs for Pao's spectrum function. For smaller Reynolds 
numbers, such as Re x = 28.8, the attenuation of the mea- 
sured derivative is dependent on the model of the low- 
wavenumber region. Decreasing the Reynolds number 
decreases the ratio of the characteristic length scale of the 
energy-containing eddies and the Kolmogorov length scale 
and causes the three-dimensional derivative spectrum to 
extend over a smaller region in wavenumber space. As the 
region shrinks, the effect of the spatial attenuation will 
extend over an increasing portion of the three-dimen- 
sional spectrum if the separation distance between the 
wires in the probe is held at a fixed value relative to the 
Kolmogorov length scale (which occurs in the figures). 
This causes the relative attenuation of the measured 

derivative to increase as Re decreases. In addition, Fig. 5 
demonstrates that the sensitivity of the attenuation to the 
model of the low-wavenumber region increases as the 
separation distance between the wires in the probe in- 
creases. It is important to note that Taylor's frozen field 
hypothesis and the assumption of isotropy are not valid 
for the large-scale motions in high turbulence intensity 
flows. Therefore, the results for the very low Reynolds 
number case yields valuable qualitative information, but 
the results may not be quantitatively accurate because of 
these failures. 

The experimental measurements from Fig. 7 of Klewicki 
and Falco [22] have also been included in Fig. 5. Klewicki 
and Falco carried out measurements in a boundary layer 
at y+=  38 and 58 (y+= yu~./u, where u~ is the friction 
velocity) using two sets of wires centered on a single point. 
One set of wires had a fixed separation distance of approx- 
imately 1 times the Kolmogorov length scale while the 
spacing of the second wire was varied. They normalized 
the root mean square (rms) derivative measured with the 
outer wire by the rms derivative measured using the inner 
wire. The data from this figure have been processed to 
correspond to the quantity plotted in Fig. 5. The experi- 
mental data do not agree with the calculated values at the 
smallest separation distances, but for larger separations 



I x 

there is good agreement. It is interesting to note that the 
attenuation in the experimental data seems to demon- 
strate a dependency on the location in the boundary layer, 
indicating that the attenuation is dependent on Re since 
the turbulence Reynolds number in the boundary layer 
increases with y+. Antonia et al. [4] also reported this 
phenomenon for derivative measurements near the wall of 
a channel flow. For larger separation distances (i.e., A > 
47/), they noticed that the amount of attenuation in- 
creased significantly as the probe was moved closer to the 
wall when the ratio of the separation distance of the 
probe and the local Kolmogorov length scale was con- 
stant. This is the outcome that the analysis using the low 
Reynolds number spectrum predicts. 

The analysis of the probe spatial filtering demonstrates 
that the separation distance should be minimized to mini- 
mize the error introduced by the transducer. In real 
experiments there is a lower limit to this separation due to 
the noise in the experimental setup [3]. This problem is 
addressed further in a later section. 

Inferring Attenuation from One-Dimensional  Spectra 

Normally the only spectral measurements that an experi- 
mentalist will have available are one-dimensional spectra 

of the quantity that is measured. The measured one- 
dimensional spectrum of the derivative of the u I compo- 
nent with respect to xz, F1,2;1,2,.can be related to a 
measured three-dimensional spectrum by 

2 
Fll,2; 1,2(kl)m = " ~  ff~11(k)[1 - cos(k2A)] dk2 dk3, 

(18) 

where the term inside the integration is the spatially 
filtered three-dimensional spectrum. This spectrum was 
calculated for a number of separation distances using 
Lin's spectrum with a = 1.65. 

The spectra are illustrated in Fig. 6 on a traditional 
log-log plot together with the exact one-dimensional spec- 
trum of the derivative 

= a :3 (19) FI,2; 1,2(kl)ext 
It is clear from this figure that the measured one-dimen- 
sional spectra are attenuated at high wavenumbers and 
that the amount of attenuation at any particular 
wavenumber k 1 increases as the separation distance in- 
creases. 

A question that can be asked is whether this plot of the 
one-dimensional spectrum yields a proper picture of the 
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Figure 4. Attenuation of velocity derivative measurements due to the finite separation of zero-length wires for the 
high-wavenumber models. 



filtering process and whether it is possible to determine a 
cutoff frequency from this type of figure. To answer this 
question it is necessary to look at the three-dimensional 
spectra of the measured derivative and the exact deriva- 
tive. This is straightforward when it is recognized that Eqs. 
(5) and (6) are integrations of the measured and exact 
three-dimensional derivative spectra over the wave space. 
Therefore the normalized attenuation that occurs in the 
three-dimensional wavenumber space is the ratio of the 
measured and exact three-dimensional spectra 

Measured 2(1 --  COS[k2A])  

Unattenuated A2 (k2)2 

1 
= 1 ~ ( k / A ) 2  + .-- ;  (20) 

where the final set of terms in the equation are the Taylor 
expansion of the ratio about k 2 = 0. 

There are a number of important observations that can 
be made from this ratio of the measured three-dimen- 
sional derivative spectrum to the exact three-dimensional 
derivative spectrum for ~ U l / / O X 2  . The attenuation of the 
three-dimensional spectrum is a function of k 2 only and is 
independent of k 1 and k 3. Therefore, the spatial filtering 
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due to the finite separation is equivalent to applying a 
filter to the exact three-dimensional spectrum that filters 
only the three-dimensional spectrum function in one di- 
rection. The leading order error term of the Taylor series 
for this ratio is (k2A)2//12 for k2A < 1, so the attenuation 
of the measured three-dimensional spectrum is small un- 
less k z is on order of 1/A. Since the filtering process is a 
function of only k2,  the cutoff wavenumber (e.g., the 
wavenumber where the local attenuation level is a certain 
percentage of the actual value) should be a value k 2 that 
is dependent on only the definition of the cutoff frequency 
and the dimensions of the probe relative to the scales in 
the flow. 

The value of the one-dimensional spectrum for a given 
value of k 1 is determined by integrating all of the spectral 
density in wavenumbers k with a streamwise component 
equal to  k I [see, e.g., eqs. (14) and (15), where the 
integration is o v e r  k 2 and k 3 with fixed kl]. This leads to 
the aliasing problem described by Tennekes and Lumley 
[21], which arises because a function of the vector k is 
mapped onto a function of the scalar k r As a result, the 
one-dimensional spectrum a t  k I is aliased from higher 
wavenumbers k > k 1 [i.e., on a plane of fixed k 1, the 
wavenumber k = (klk 1 + kEk 2 + k3ka )1/2 > kl]. In addi- 
tion, since the finite dimensions of the probe filter the 
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Figure 5. Attenuation of velocity derivative measurements due to the finite separation of zero-length wires for the finite 
Reynolds number models. 
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three-dimensional spectrum as a function k2, the energy 
that is being aliased from the higher wavenumbers will be 
attenuated by different amounts. Therefore, the attenua- 
tion of the one-dimensional spectrum occurring at any 
value of k 1 will depend not only on the dimensions of the 
probe and the definition of the cutoff frequency, but also 
on the particular three-dimensional spectrum that is being 
measured because it is a function of the way in which the 
spectral density is distributed on the plane of fixed k 1 (i.e., 
how much of the relative spectral density occurs in regions 
where the attenuation is large). This point is illustrated in 
Fig. 7, where the ratio of the measured one-dimensional 
spectrum to the exact one-dimensional spectrum is plotted 
as a function of the wavenumber k 1 for Lin's spectrum 
function and the composite spectrum function with a 
Reynolds number of 28.8 (analogous to the plot Wyngaard 
[2] used to illustrate this point for a vorticity probe). 

Figure 7 illustrates that the attenuation of the one- 
dimensional spectrum occurs over a large range of the 
nondimensional wavenumber and increases as the 
wavenumber increases. A close examination of the log-log 
plot for the attenuated one-dimensional spectra (i.e., Fig. 
6) reveals that there is attenuation of the one-dimensional 
spectra at the low value of klr/, but it is easy to overlook 

this in a log-log format and misinterpret the nature of the 
attenuation process. In addition, the figure demonstrates 
that the amount of attenuation that is occurring in the 
one-dimensional spectrum is dependent on the three- 
dimensional spectrum of the turbulence. Thus, it is in 
general not possible to calculate a proper cutoff frequency 
using the conventional one-dimensional spectrum of the 
derivative in the x 2 direction, which is independent of the 
three-dimensional spectrum that is being measured. 

Filtering D u e  to Finite  Wire Length 

In reality, wires have a finite length, which increases the 
attenuation of the measured velocity derivative. Wyngaard 
[1] derived an expression for the attenuation of velocity 
measurements due to the finite length of a single wire. If 
the temperature of the wire is approximately constant 
along its length and the turbulence intensity is small, the 
effect of the wire can be closely estimated by line averag- 
ing the velocity along the length of the wire, 

l r x a + l / 2  ~ x , 
U ( X a )  = z ~ J .  U [ $ )  a S ,  
- I l l  x a -  1 / 2  

(21) 
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where x~ is the midpoint of the wire, 1 is a vector parallel 
to the wire, and u is used to denote the velocity measured 
by the wire. T h e  integration is a line integration that is 
parameterized to follow the wire. The expression for the 
inverse Fourier transform (in the sense of generalized 
functions) for the measured velocity becomes [1] 

sin(k- 1/2) 
u(x  a) = fei~"~,a(k) dk. (22) 
- k.  U2 

In this study the two wires are parallel to each other, so 
the vectors along the wires are parallel in space. As a 
result, the expression for the mean square measured 
derivative with the finite-length wires requires the addi- 
tion of one extra factor to the integral in Eq. (5) [2] 

[ u ( x ~ )  - U ( X b ) ]  2 

Ix, - Xbl 2 

1 
-- ]Xa _ Xbl2 jePH(k){2 - 2cos[k .  (x a - Xb)]} 

(sin(k'l/2)) 2 
× -k ~ 1-~ dk. (23) 
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The symbol le is used to represent the physical length of 
the wire. For the geometry analyzed in this paper, the 
wavenumber parallel to the wire is k 3. Therefore the 
amount of filtering that occurs at any point in the mea- 
sured three-dimensional spectrum due to the averaging 
along the length of the wire depends only on the value of 
k 3 and the length of the wire. The normalized attenuation 
of the three-dimensional spectrum, at any wavenumber, 
due to the finite wire separation and wire length is 

Measured 2[1- cos(k2A)] ( sin(k31e/2) ) 2, 
(24) 

Exact A2 ( - -~2)  2 k 3 l e /2  

where the first portion of the term is the filter due to the 
finite separation and the term in large parentheses is the 
filter due to the finite length of the wire. 

A physical interpretation of the filtering due to the 
finite length of the wire can be illustrated quite easily 
using the diagram in Fig. 8. Wire 1 in this figure has 
disturbances (the solid lines represent the peaks of the 
disturbances) with only one wavenumber component k 1 
moving across a wire. It is clear that the wave disturbances 
cause the velocity at each point on the wire to vary 
uniformly and the averaging by the wire will not affect the 
measured value of the amplitude. Wire 2 represents the 
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Figure 8. Illustration of the effect of line averaging on distur- 
bances with different wavenumbers. 

case of a disturbance with only one component k 3 being 
convected across the wire. In this case there are many 
oscillations of the velocity along the length of the wire and 
the averaging effect of the wire will result in a measured 
amplitude that is much smaller than the amplitude of the 
wave in the flow. Of course, in turbulence most of the 
disturbances have all three wavenumber components, but 
the principle is the same: the amount of attenuation that 

occurs in the three-dimensional spectrum due to the finite 
wire length is a function of the wavenumber parallel to 
the direction of the wire, k 3 in this case. 

Figure 9 demonstrates the effect of using finite-length 
wires in a probe for separation distances of 1 and 3 times 
the Kolmogorov length scale. This figure demonstrates 
that the additional attenuation that occurs in the mea- 
sured derivative due to the finite length of the wires is 
dependent on the model of the spectrum of the high- 
wavenumber region, with Pao's spectral model yielding 
the higher error, as expected. For Lin's spectrum function, 
probes with small wire lengths of 3-4 times the Kol- 
mogorov length scale add only 2-3% additional error. It is 
clear that if the wire length and the wire separation are 
approximately equal (for this geometry and these spectral 
models), the separation distance is the critical dimension 
in determining the amount of attenuation. It is possible to 
understand why the wire length adds a small amount of 
additional attenuation for these models. Recall that dif- 
ferentiating with respect to x 2 is equivalent to multiplying 
the three-dimensional velocity spectrum by k~. This has a 
tendency to concentrate the spectral density of the three- 
dimensional derivative spectrum in the region where k 2 is 
large. Therefore a finite-length wire normal to the separa- 
tion distance does not attenuate the spectrum directly 
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Figure 9. Attenuation of velocity derivative measurements due to finite-length wires in a parallel-wire probe with fixed 
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where it is largest. It does have some effect; but the effect 
will not be as direct as that of the finite separation 
attenuation, which increases as the value of k 2 increases. 

Figure 9 also illustrates the attenuation calculated for 
the composite spectrum function with Re = 28.8 and the 
attenuation that occurs in Pao's spectrum with a = 1.464. 
It is clear that the addition of finite-length wires has a 
significant effect on the measured derivative. Although 
the separation distance is the critical dimension that de- 
termines the amount of attenuation if the wire separation 
distance and wire length are equal in magnitude, the wire 
length quickly becomes an important parameter if it is 
much larger than the wire separation. 

TEMPERATURE DERIVATIVE 
MEASUREMENTS 

The method for determining the attenuation of scalar 
derivative measurements follows a pattern similar to that 
of the velocity derivative calculations. Initially, the effect 
of the finite separation of two point wires is determined. 
This is followed by adding the effect of finite wire length. 
Comparisons are made for two spectral models. 

Attenuation Due to Finite Separation 

The derivation of the expression for the attenuation of 
measurements due to finite separation for the scalar field 
is similar to the derivation for the velocity field. The 
expression for the scalar derivative measurement is 

[ 0 ( X a )  - -  0 ( X b ) ]  2 

Ix a -Xbl  2 

J rc~(k ) {2 - 2cos[k .  (x a - xb)]} 
IXa _ Xb[2 dk, (25) 

where ~b is the scalar three-dimensional spectrum and the 
positions of the centers of each of the wires in the probe 
a r e  x a and x b. 

The equation for the exact derivative of the scalar field 
is given by [17] 

dO]== (26) 
dx~] 

where a is used to indicate that there is no summation 
over the index. Since the scalar field is assumed to be 
isotropic in wavenumber space, the mean square exact 
derivative and the mean square measured derivatives are 
independent of the probe orientation in the field. It is 
possible to apply the mean square calculations for one 
separation direction to any separation direction, so the 
calculations are carried out for only one direction in this 
analysis. This obviously is not true for an anisotropic field. 

As for the velocity derivative measurements above, it is 
possible to Taylor expand the term multiplying the three- 
dimensional spectrum in Eq. (25) and note that the first 
term of this expansion multiplied by the three-dimen- 
sional spectrum is equal to the exact derivative in Eq. (26). 
If the separation distance is in the x 2 direction, the 
expansion of the term is the same as for the velocity 
derivative [see Eq. (7)]. Therefore, the equations for the 

exact and measured derivatives of the scalar are equal in 
the limit of zero separation. 

Temperature Spectrum 

The three-dimensional spectrum of the scalar quantity tk 
is the three-dimensional Fourier transform of the scalar 
correlation function in a homogeneous field; that is, 

1 
ok(k) = ~-~3 f O(x)O(x + r)ei(k'r) dr, (27) 

where 0 represents a scalar quantity, temperature in this 
analysis. It is possible to define the three-dimensional 
spectrum as a function of a scalar spectrum function, 
Eo(k), using the relationship given by 

c o ( k )  = (28) 

where the integration is carried out over spherical shells 
of radius k in wave space. For isotropic turbulence, the 
three-dimensional spectrum is related to E o by 

ok(k) = Eo(k)/47rk 2. (29) 

The previous work (e.g., Wyngaard [2]) used Corrsin's [10] 
spectrum function 

/~0(k) = %/c-5/3 e x p [ -  3 (  a ° ]  ] 2 ~ Pr 1[c4/3j (30) 

in the definition of the three-dimensional spectrum, where 
Eo([c) = Eo(k)(el/3/eo@/3) is the nondimensional scalar 
spectrum function. In this study the value of the Prandlt 
number is 0.72 (air) and the value of a 0 is chosen as 0.66 
to be consistent with the range of values reported by 
Champange et al. [23]. (A derivation of the relationship 
between a 0 and the one-dimensional constant reported by 
Champange et al. [23] is included in Appendix II.) 

Like Pao's spectrum function for the velocity, Corrsin's 
scalar spectrum function is also physically unrealistic in 
the high-wavenumber region, and it has a tendency to 
overestimate the spectrum function in this region. A sec- 
ond spectrum function suggested by Hill [13] is used in the 
analysis. This function, which rolls off faster in the high- 
wavenumber region, is given by 

(31) 

Q is 2.50 as suggested by Hill [13], while a o and Pr are the 
same as above. 

The spectrum functions for the two different models are 
illustrated in Fig. 10, which illustrates that Hill's spectrum 
function rolls off significantly faster than Corrsin's spec- 
trum function in the high-wavenumber region. As for the 
velocity, the spectrum that the experimenter measures is 
the one-dimensional scalar spectrum defined as 

Flo= f f  (k)dk2dg3. (32) 
The one-dimensional spectrum ffff0 = F1o(gl/3/go'q5/3) for 
each of the models is shown in Fig. 11. The spectra shown 
in this figure are the positive-wavenumber portion of the 
whole-line spectrum. 



Attenuation of the Mean Square 
Derivative Measurements 

Figure 12 shows how the normalized measured derivative 
varies with the separation distance of the wires. It is 
evident that the error introduced into the derivative mea- 
surements by spatial filtering increases with separation 
distance. In addition, there is significantly less attenuation 
for Hill's spectrum than for Corrsin's spectrum. There- 
fore, the amount of attenuation that occurs is dependent 
on the shape of the spectrum at the high wavenumbers, 
and the sensitivity increases with separation distance. The 
error in the measured mean square derivative calculated 
using Hill's spectrum is 10% when the separation distance 
between the wires is approximately 3 times the Kol- 
mogorov length scale. 

Interpreting One-Dimensional Spectra 

The interpretation of the measured one-dimensional 
derivative, illustrated in Fig. 13, has many of the same 
problems discussed in the previous section on velocity 
measurements, so an extended discussion is not included 
here. The key problem still exists for these spectra in the 
sense that the measured one-dimensional spectrum is a 
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sum of entities that have been attenuated by different 
amounts (if the separation is not in the x 1 direction), so 
that it is not possible to characterize a cutoff frequency 
using the one-dimensional spectra without knowledge of 
the three-dimensional spectrum that is being measured. 

Attenuation Due to Finite Length 

The expression for the attenuation due to finite length 
and finite separation distance for the temperature spec- 
trum is 

[ 0 ( . I C a )  - -  0 ( X b ) ]  2 

Ix~ - x.l 2 

1 
- Ixa - Xbl 2 f ~ ( k ) t a  -- 2COS[k" (X  a --  X b ) ] }  

( sin(k'l/2) ) 2 
x -~: ~ dk. (33) 

Figure 14 shows the attenuation of the mean square 
measured derivatives for probes with wires of finite length 
and finite separation distances of 1 and 3 Kolmogorov 
lengths. The error in the measurement is dependent on 
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which spectral model is used, with Corrsin’s spectrum 
giving the larger error. The additional error introduced by 
wire with a length of 3-4 times the Kolmogorov length 
scale is less than 2-3%. Similar to the velocity derivative 
measurements, the separation distance is the more critical 
dimension if the wire length and wire separation are of 
comparable magnitude. 

PRACTICAL CONSIDERATIONS 

The spatial attenuation introduced by the probe is not the 
only consideration in derivative measurements, and there 
are several other issues that must be considered when the 
analysis in this paper is applied to experimental design or 
to interpreting experimental data. A brief review of some 
of these issues is included for completeness (relevant 
references are given for further discussions of the issues). 

Noise 

There is without question a potential downside to the 
reduction in separation distance. Each of the measured 
velocity signals will have electronic and quantization noise. 
Therefore each of the measured velocities can be repre- 
sented as the sum of the velocity determined by the-hot 

105.0 I 

1 03.0 

1Ol.O 

wire and a noise term 

@xa) = u&x,) + n,, u;k,) = +,,) + nb, (34) 

where ue is the total measured signal and u is the signal 
measured by the transducer. Each of the signals has a 
separate component of noise represented by n, and nb. 

The entire signal with the noise included must be used 
to approximate the mean square derivative in the differ- 
ence equation. Therefore, 

du, 2 

i i 

[u;&) - +,)I2 
- = 

Ix, - xb12 . 
(35) 

dx2 m 

Inserting the definitions from Eq. (34) into Eq. (35) im- 
plies that the measured derivative in a real experiment is 

[u,(x,) + n, - tu,t+,) + &)I2 
ix, - +,I2 

h,tx,> - +,)I2 
+ 

n; + n; - 2n,nb 
= 

Ix, - x,,12 I$, - +,I2 
, (36) 

assuming that the velocity measured by the transducer 
and the noise are uncorrelated [if this isn’t true, there are 
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Figure 11. Comparison of the one-dimensional temperature spectra. 
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additional terms in Eq. (36)]. The first term on the right- 
hand side of Eq. (36) is the difference equation written for 
the velocity measured by the transducer. This is the quan- 
tity called the measured mean square derivative in the 
previous sections. If the noise from the two lines is not 
correlated or only partially correlated, the numerator of 
the noise term will be finite for all separation distances. 
As the separation distance approaches zero, the first term 
on the right-hand side approaches the true derivative at 
the point, while the second term becomes infinity. To 
ensure that the total measured quantity estimates the 
velocity or temperature derivative and not the noise, the 
mean square value of the velocity or temperature differ- 
ence should be kept much larger than the mean square 
noise contribution. 

Antonia et al. [3] documented the occurrence of this 
problem experimentally by plotting the left-hand side of 
Eq. (36) versus the separation distance. It was clearly 
evident that the measured derivative approaches infinity 
as the separation distance approaches zero; however, it 
was possible to extrapolate to obtain an estimate of the 
first term on the right-hand side. When such an extrapola- 
tion is not carried out, a minimum separation distance for 
the hot wires must be determined for an experimental 
setup. The magnitude of this distance is totally dependent 

on the quantity of noise in the experimental setup and 
should be determined experimentally for each setup. Fur- 
ther discussion of this topic can be found in Subramanian 
et al. [24] and Klewicki and Falco [22]. 

Relating Measurements at Different Positions in a Flow 

It is clear from the analysis of the velocity derivative 
measurements that the attenuation that occurs in the 
measurement of the derivative is dependent on the 
Reynolds number of the turbulence that is being mea- 
sured. This is an important factor that must be taken into 
account when measurements from two locations are com- 
pared, but there are other important factors that must be 
considered when measurements at different locations are 
considered. 

First, the attenuation of derivative measurements is 
dependent on the size of the probe relative to the flow, 
not just the size of the probe. Normally the probe size is 
fixed, but the Kolmogorov length scale of the flow can 
change between positions in the flow even if the charac- 
teristic length scale of the energy containing eddies is not 
different. This would occur if the Reynolds numbers of 
the flow at the two positions were different. This would 
cause the attenuation to be different at the two positions, 
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that is, 

A = fixed, 

,l=f(Re)=*attenuation=h(A) = g ( R e ) .  (37) 

This effect is distinct from the Reynolds number effect 
discussed earlier and can occur even at high Reynolds 
numbers. This has been discussed for the case of bound- 
ary layer flows in several papers (see, e.g., [11, 25]). It is 
also possible for the Kolmogorov length scale to vary in a 
constant Reynolds number flow such as the far field of the 
axisymmetric jet,. where all of the length scales grow 
approximately linearly with streamwise position. This ef- 
fectively reduces the size of the probe relative to the 
turbulence that is being measured as the probe is moved 
downstream, thereby reducing the amount of attenuation 
that occurs in the measurement. 

Second, if the probe is used in flow where the anisotropy 
of the three-dimensional spectrum varies between points, 
it is quite possible that the amount of attenuation occur- 
ring in derivative measurements could also vary. Since the 
finite dimensions of the geometry filter the three-dimen- 
sional spectrum in specific directions, variations in the 
anisotropy relative to these particular directions will cause 
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variations in the normalized attenuation. This problem 
may be especially prevalent in low Reynolds number flows 
without a significant cascade, since the small-scale mo- 
tions are more likely to be anisotropic and the large 
nonhomogeneous scales may contribute to the derivative 
measurement. 

Data  Correct ion 

We do not recommend the use of the analysis in this 
paper for data correction, since the analysis is carried out 
using assumed forms of the three-dimensional spectrum 
of the turbulence. Determination of the correction factor 
for a particular experiment requires first obtaining the 
three-dimensional spectrum, which is generally impossi- 
ble. The only method presently available uses isotropic 
spectrum relationships to generate a three-dimensional 
spectrum from the measured one-dimensional spectrum, 
but this assumes that the turbulence spectrum in the 
region of interest is isotropic. Moreover, it also assumed 
that an unfiltered one-dimensional spectrum is available, 
which is never true. If, in fact, this method could be used 
to generate a three-dimensional spectrum for the turbu- 
lence, then there is no point in doing the experiment 
because all of the derivatives could be calculated from it. 
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It should also be noted that the analysis in this paper 
considered only isotropic turbulence, so it is not possible 
to determine the effect local anisotropy has on the attenu- 
ation of derivative measurements. Therefore, the analysis 
in the current paper can be used only as an indication of 
the magnitude of the error in these cases as opposed to an 
absolute measure. This is especially true if the experiment 
is at a relatively low Reynolds number. 

PRACTICAL USEFULNESS / SIGNIFICANCE 

The information included in this paper is useful for the 
design phase of an experiment to ensure that the sizes of 
the hot-wire probes used in the experiment are compati- 
ble with the scales of the flow being measured. If they are 
not, the design of the experiment can be altered to ensure 
that the estimate of the error is reasonable, or the experi- 
ment can be abandoned entirely. The techniques outlined 
in this paper only allow the derivation of attenuation 
equations for homogeneous turbulence assuming that 
Taylor's frozen field hypothesis is exact. However, even 
this restrictive model, if properly interpreted, gives the 
experimentalist an intelligent starting point in understand- 
ing how spatial attenuation affects the measurement of 

nonhomogeneous turbulence and a valuable analytical 
tool in experimental design. 

CONCLUSIONS AND DISCUSSION 

It is evident that the finite wire separation distance and 
finite wire length in the parallel-wire probe cause signifi- 
cant attenuation of measured velocity derivatives. The 
curves generated from Lin's and Hill's spectrum models 
offer a realistic estimate of the spatial attenuation error in 
the derivative measurements. A comparison of the mea- 
surements for Pao's and Lin's or Corrsin's and Hill's 
spectrum functions indicate that the error in the measure- 
ments introduced by spatial filtering is quite sensitive to 
the shape of the spectrum at high wavenumbers. An 
examination of the results calculated with the composite 
spectrum function indicates that the attenuation is also 
sensitive to the model of the low-wavenumber region for 
low Reynolds number turbulence, and this effect can 
significantly enhance the amount of error that occurs. In 
addition, the sensitivity of the error to the shape of the 
spectrum increases as the separation distance between the 
wires increases. Therefore, increasing the relative separa- 
tion distances not only increases the error introduced by 
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the parallel hot wire, it also increases the uncertainty 
about the quantity of error. Since the uncertainty in the 
magnitude of the error increases as error increases, it is 
suggested that postprocessing is not a suitable manner of 
handling the spatial attenuation problem. 

For all of the spectral models, the effect of finite wire 
length introduces a smaller error into the calculation of 
the derivatives than the finite separation for a parallel-wire 
probe if the wire length and wire separation distance are 
of comparable magnitude and normal. In the case of low 
Re flow, the rolloff due to the finite wire length was more 
significant than in the high models, indicating that the 
effect of the finite wire length becomes more significant 
for smaller ratios of wire length and separation distances 
when the measurements are made in a flow with a small 
turbulence Reynolds number. 

At small separation distances, measurements of the 
derivative can be overwhelmed by the noise in the experi- 
mental setup. The distance at which this occurs will differ 
from setup to setup and should be determined experimen- 
tally. In addition, a hot-wire probe with fixed dimensions 
will attenuate derivative measurements at two locations by 
different amounts if the Kolmogorov length scale is dif- 
ferent at the two points. The analysis in this paper indi- 
cates a need for careful experimental design and should 
not be used as a substitute for a careful study of the errors 
described. It is also clear from the analysis in this paper 
that one-dimensional spectrum measurements are a poor 
tool for carrying out this analysis. 

RECOMMENDATIONS 

The work outlined in this paper is valuable for assessing 
the attenuation introduced by a parallel-wire probe, but it 
does not automatically follow that the size limitations for 
the parallel-wire probe will apply to other multiwire 
probes. It is necessary to examine each probe to deter- 
mine its characteristics. Two of the authors of the present 
paper have extended the analysis to probes that use two 
cross wires to measure four components of the derivative 
and a nine-wire vorticity probeJ  A number of other inves- 
tigations are included in the references. Experimentalists 
using probes that have not been investigated should carry 
out either an analytical or an experimental investigation 
of their probe. 

We thank J. Citriniti for his suggestions and assistance in editing the 
manuscript. 

APPENDIX I 

The composite spectrum suggested by Hellend et al. [14] is 
a product of von Karman's [20] empirical spectrum func- 
tion for the low-wavenumber region and Pao's [9] spec- 
trum function for the high-wavenumber region. These two 
spectrum functions are infinite Reynolds number models 
of the large-scale and small-scale motions, respectively, so 
neither includes a realistic model of the full range that 
occurs in any finite Reynolds number flow. The product of 

1This analysis will be included in a future publication. 

the two models, given by 

(kL) 4 [ 3 4/3 ] 
E(k)  = 0l~2/3L5/3 exp - -~ / 3 ( k r / )  ], 

[ l  + (kZ)2] 17/6 t 
(AI.1) 

models both regions. The constant a is Kolmogorov's 
constant and is defined as 1.6 in this study. 

To ensure that E(k) is a proper spectrum function, it is 
important to ensure that it satisfies the relationship be- 
tween the dissipation per unit mass, e, and E(k) for 
isotropic turbulence, which is given by [18] 

c~ 

= 2vfn k2Edk. (AI.2) 

Substituting Eq. (AI.1) into Eq. (AI.2) and ~erforming 4 a 
change of variable to /c = kr/(noting that e /3 = v/r /  /3 
from the definition of r/), this yields 

3 4/3 ~6 e x p [ - ~ / 3 ( ~ : ) ]  
1 = 2af0 ~ [ (r//L)2 + ~2117/6 

dk, 

(AI.3) 

Therefore, the model parameter /3 is determined for a 
given choice of L / r / b y  satisfying Eq. (AI.3). 

The turbulence Reynolds number of the spectrum func- 
tion can be characterized by the turbulence Reynolds 
number base on the Taylor microscale, 

Re~ = u A/v ,  (AI.4) 

where u 2 = (u iu i ) /3 .  For isotropic turbulence the Taylor 
microscale is given by [18] 

h 2 = 15VU2/~.  (AI .5)  

This expression can be related to the three-dimensional 
spectrum of the turbulence, E(k), by using the relation- 
ship 

3 
= -- I ~ E ( k )  dk. (AI.6)  uiui 

Jo 
Thus,  

R %  = - -  ( A I . 7 )  

where /c = kr/. The values of L/r~, /3, and R% for the 
spectrum functions used in this analysis are included in 
Table 1. 

APPENDIX II  

To ensure that the model constants for the scalar models 
are consistent with the constants reported in the litera- 
ture, it is necessary to compare the definitions used to 
define the constants. For example, Champagne et al. [23] 
indicate that the value of the Kolmogorov constant for the 
one-dimensional half-line spectrum, /30, 

oo 

Fl~ = / 3 ° e ° e - l / 3 k 1 5 / 3 '  ~ = fn Fl°*(kl) dkl' 

(An.l) 

is approximately 0.4. The asterisk is used to distinguish 
the half-line spectrum from the whole-line spectrum Fo~o 
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used in this paper. The relationship between the whole-line 
and half-line one-dimensional spectra follows from the 
fact that the whole-line one-dimensional spectrum is real 
and even. Thus, 

-~  = f ~ F o l o ( k l ) d k  1 = 2fo~Folo(kl)dk I . (AII.2a) 

Therefore, 

2Flo ( k  1 ) = Fol~ (k  1 ). (AII.2b) 
In this analysis, the three-dimensional spectrum function 
Eo(k)  is defined such that 

-if7 = f ~ E o (  k ) dk, (AII.3a) 
t l  

where 

Eo(k) = f d~(k), (AII.3b) 

where Eo(k)  is the energy of spherical shells of radius k. 
The three-dimensional spectrum function ~b(k) of an 

isotropic scalar quantity 0 is only a function of the magni- 
tude of the wavenumber vector k (see Appendix 4 of 
Lumley [15]), so it is possible to write the three-dimen- 
sional spectrum function as 

qb( k ) = A (  k ). (AII.4) 

Substituting the equation of the three-dimensional spec- 
trum, Eq. (AII.4), into the second equation in (AII.3) and 
transforming to a spherical coordinate system, so do ' (k )  
= kZsin ~d~odt~ (~ is used in place of the more tradi- 
tional angle 0 to avoid confusion), leads to the expression 

Eo(k)  = f_~ faZ~A(k )k  2 sin ~d~o d~ = 4 ~ k 2 A ( k ) .  

(All.5a) 

Therefore, 

The definition 
trum is 

Eo(k) 
A ( k )  - - -  (AII.5b) 

4rrk 2 • 

of the whole-line one-dimensional spec- 

Folo(kl) = f f~o  qb(k)dk2 dk3 

-2"n"-°°E0[ (O'2 q- kl 2)1/2] 

2 k, k dk,  (AII.6) 

where the first coordinate transformation is to polar coor- 
dinates on the k2k  3 plane and the second is a transforma- 
tion to a new variable k that is equal to (cr 2 + k~) 1/2, 
where k I is a constant. Finally, to determine the Kol- 
mogorov constant for the three-dimensional spectrum, the 

• function Eo(k)  is assumed to be of the form 

Eo(k )  = aoeoe 1 / 3 k - 5 / 3 .  (AII.7) 

Substituting this into Eq. (AI.6) and integrating yields 

3 
Flo(kl)  = -'~OLogog-1/3kl 5/3 (AII.8) 

Equations (ALIA), (AII.2), and (AII.8) yield a relationship 
between the Kolmogorov constant for the three-dimen- 
sionalized spectrum function a and the Kolmogorov con- 
stant for the half-line one-dimensional spectrum flo; that 
is, 

3 
2Fgo(kl) = ~ a o e o e  1/3k15/3  = Fll~ = f loeoe-1/3klS/3,  

(AII.9a) 

SO 
5 

% = ~flo. (AIl.9b) 

Therefore a 0 is set equal to 0.66 in the current analysis. 
It should be noted that there is only one value of a o 

that is the proper Kolmogorov constant of the isotropic 
model, but depending on exactly which definitions are 
chosen it is possible to get several different values of the 
one-dimensional constant. For example, the one-dimen- 
sional constant for the whole-line spectrum is half of the 
constant determined using the half-line spectrum. 

E( ) 
Eo( ) 

Ell 

F t 1,2;1,2 

k 

k 

[, 

k~,kz,  k3 

L 

l 

l 

le 
n 

Pr 

O 

R% 

NOMENCLATURE 

velocity energy spectrum, ( m / s )  2 m 

temperature energy spectrum, K 2 m 

temperature spectrum function 
( =  go e1 /  3 / eo B 5 / 3 ) , dimensionless 
one-dimensional velocity spectrum, (m/s) 2 m 

one-dimensional velocity spectrum 
( 1 2 = Fil/Uk~7), dimensionless 
one-dimensional spectrum of the derivative 

( O~Ul/O~X2)2 , m / s  2 
whole-line one-dimensional temperature 
spectrum, K 2 m 
half-line one-dimensional temperature 
s p e c t r u m ,  K 2 m 
one-dimensional temperature spectrum 
[= Flo(e1/S/eo~75/3)], dimensionless 
wavenumber vector in Fourier space, m -  
magnitude of the wavenumber in Fourier space, 
m - I  
magnitude of the wavenumber in Fourier space 
(=  k~7), dimensionless 
the three components of the wavenumber 
vector in Fourier space, m ' 
characteristic length scale of the energy- 
containing eddies, m 
vector along the two wires relative to the center 
position of each wire, m 
length scale of the turbulence defined by the 
relationship e = u3/l ,  m 
length of the each wire in the probe, m 
noise component of the measured signal after 
conversion to a velocity signal, m / s  
Prandtl number (=  v/cO, dimensionless 
constant included in Hill's energy spectrum, 
dimensionless 
turbulence Reynolds number based on the 
Taylor microscale (=  u A/v), dimensionless 
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r 
$ 

U 
U 

U 

U 1 , / 4 2 , ' U  3 

ue( ) 

a( ) 

u( ) 

U k 

/./~. 

X 

Xl, X 2,  X 3 

X a 

X b  

Y 
y+ 

separa t ion  vector  between two points,  m 
pa rame te r  variable along the wire, m 
means  convection velocity, m / s  
turbulent  velocity vector, m / s  
U 2 = (UiUi ) /3  , m / s  
three  components  of  the velocity vector, m / s  
componen t  of  fluctuating streamwise velocity 
plus the exper imental  noise, m / s  
Four ie r  coefficients of the streamwise 
fluctuating velocity, m 4 / s  
streamwise fluctuating velocity averaged along 
the length of  the wires, m / s  
Kolmogorov velocity [ = (v8)1/4], m / s  
friction velocity in a boundary  layer, m / s  
vector  posi t ion of  an arbi trary point  in physical 
space, m 
the three components  of  the coordinate  system 
in physical space, m 
vector  posi t ion of  the center  of  upper  wire in 
the paral lel-wire probe,  m 
vector  posi t ion of the center  o f  lower wire in 
the parallel-wire probe,  dimensionless  
distance from the wall in a boundary  layer, m 
distance from the wall in a boundary  layer 
( = y u ~ / v ) ,  dimensionless  

Greek  Symbols 
a Kolmogorov constant  energy spectrum, 

dimensionless  
a 0 Kolmogorov constant  t empera tu re  spectrum, 

dimensionless  
/3 o one-dimensional  Kolmogorov constant,  

dimensionless  
A magni tude  of  the separat ion vector  between 

the center  of  the wires in the parallel-wire 
probe,  m 

~( ) Kronecker  del ta  
e dissipation of  turbulent  kinetic energy, m 2 / s  3 

e 0 turbulent  t empera tu re  dissipation, K 2 / s  
~ i /  three-dimensional  spectrum of  the i, j 

componen t  of  velocity, ( m / s )  2 m 3 
~b three-dimensional  spectrum of  the 

tempera ture ,  K 2 m 3 

77 Kolmogorov length scale, m 
A Taylor  microscale,  m 

0( ) t empera tu re  at a point,  K 

Subscripts 
sext indicates the exact value of  a given quanti ty for 

the specified spectrum function 
m indicates a measured  quanti ty 
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