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Introduction ,

The experimentalist who is involved in dynamic flow measurement is almost al-
ways interested in some type of random signal processing. This interest can
arise because the flow itself is random, as in turbulent flow. Or it can arise from
concern about whether measured data represent real flow phenomena or mere-
ly statistical fluctuations in the data. These interests can occur simultaneously.
For example, in the problem of determining periodicities in the turbulent
flow behind a moving blade row the question of distinguishing between fluctua-
tions in the data and the true spectral peaks is crucial to the experiment.

In this review article, attention will be confined to the problem of measuring
and interpreting statistics (to the second moment) of a stationary random sig-
nal. After an introduction to the nature of stationary processes, we shall re-
view the great strides of the last two decades in the processing of discretely
sampled signals. The advances of the last decade in the understanding of ran-
domly sampled data will be reviewed and these technigues will be compared to
the even more recent advances in understanding the burst-processor laser-Dopp-
ler anemometer. Finally, some new ideas for measurement using both continu-
ous and random sampling will be introduced.

No attempt will be made to be comprehensive, either in the sense of covering
all topics of interest or in the sense of providing detailed references to the
material. Rather, the approach adopted is tutorial and is intended to both in-
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troduce the material and provide a framework for subsequent learning. This
article should be viewed in the context of the other articles in this volume
which also address topics relevant to signal processing and interpretation —
especially the review articles by Buchhave, Kovasznay and Van Atta.

The historical roots of this presentation are many, but particular credit must be
given to the excellent articles on the subject found in references (1) - (5). In no
sense should this article be viewed as a substitute for careful reading of these
and the other references.

The Ensemble Average

The concept of an ensemble average is familiar in some sense to every layman,
To compute such an average we simply add the individual realizations of the
process (supposed random) and divide by the number of realizations; that is,

1

=X x (1]
N i=1 "

where X, is the ""average’’ computed on the basis of N realizations and the x,
denote the individual realizations.

™Mz

Xy =

By the very act of using such an algorithm, the layman is expressing a belief
that a true average exists and that the computed number X, is representative
of it. He even has a primitive idea of convergence in that he believes that the
more realizations he has, the better will be his estimate of the true value. |f
X denotes the true average, we express this convergence formally as

lim Xn =X (2]

N —>o0

The fact that these concepts are widespread is probably an expression of a
basic belief (conditioned or inherited) that there is some underlying order in
the universe; in effect, we insist that even random events are orderly.

We can quantify the above ideas by noting that since our estimator X, given
by equation [1] is the sum of random variables, it is itself a random variable.
Therefore, we can define the variance of X, as ‘

var { Xy }=1(X, —%)? (3]

where the overbar denotes the true ensemble average and is assumed to exist.
The question of convergency can now be expressed as: Does the variance of
estimator, X, become vanishingly small as the number of realizations, N, be
comes large?
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)
lim  var{Xy} >0 (4]

N—m

It is easy to show (and is well-known) that if the samples are identically distrib-
uted and are statistically independent, then

1
var {X} = i {x} (5]
where VAR {x } is the mean square fluctuation in the ensemble given by

var {x} = (x—X)? =0 ? {6l

If an acceptable fluctuation in our estimate is given by € where

X
ZEvar{ N , (7]

then for N realizations,

1 o,
€=—= *|——
VN | X
Thus the variability of our estimator is proportional to the relative fluctuation
of the random variable itself (o /X) and is inversely proportional to the square
root of the number of independent samples. Clearly the estimator given by
equation [1] converges as N —oo if the samples are identically distributed and

independent.

(8]

We have assumed to this point that the estimator converges to the true mean.
When this is not true the estimator is said to be biased. Examples of biased
estimators will be introduced later.

Time Series, the Time Average, and the Ergodic Hypothesis

Let us now imagine a continuous signal u({t) which is random. By this we mean
both that the time evolution of a single signal can not be predicted by a de-
terministic function of time nor can the value at a particular time be predicted
for an ensemble of realizations. If we further imagine a number of different
experiments all evolving under the same physical constraints, we can immedia-
tely apply our concept of an ensemble average and speak of the ensemble aver-
age at a particular instant in the evolution of the process. The conditional and
periodic averages discussed elsewhere in this volume are simply variations on
this ensemble average approach.
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In many situations in which flow measurements are to be undertaken it is in-
convenient, or impossible, to carry out a number of indepe_ndent experiments.
In such situations a time average defined by

T
U, =—11_— /u(t)dt (9]

is often employed with the hope that U, will approach the true average as the
length of the integration interval increases. That is, we hope that

lim U,=17

T oo T (10]
It is obvious that this operation of time averaging makes no sense unless the
averages themselves are independent of time — at least in the measurement
interval. When U is time-independent, we say that the process is statistically
stationary and have some reason to believe that the operation of time averaging

might make sense. Our hopes can be summarized in the. ergodic hypothesis
which for our purposes can be stated as:

The Ergodic Hypothesis
Time averages converge to a mean value as the averaging time becomes large.
Moreover, the time average always converges to the same value regardless of
when the averaging process is initiated. Volumes have been written about the
ergodic hypothesis. For the physical scientist, however, it is simply a statement
that the world is working as we think it should.

The ergodic hypothesis has a number of implications about the nature of
random time series. Of particular interest to us are the following:

(il Random variables must become uncorrelated (and, in fact, statistically
independent) at large time delays.
Symbolically,

u(t) u (t+7) > 0 as7 oo ‘ (11]

(i)} An integral scale exists and is a measure of the memory of the process
(time to lose correlation).

For our purposes, the integral scale can be defined from the autocorrelation as:
(==}

T, =/pu(r) dr [12]

o
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where g, (7) is the autocorrelation coefficient defined by

0,2 p,(r)=[ult) =TI [u(t) —u] =B, (7) [13]

where

0,2 = [u(t) —T]? = var {u} [14]

AU

\

o r
T

Fig. 1. Typical autocorrelation showing integral scale from equation 12

From Fig. 1, T, is seen to be the intersection with the time delay axis of a
rectangle having unit height and area equal to that under autocorrelation co-
efficient curve. The figure makes it clear that T is a measure of the time over.
which the signal is correlated, as required.

We note that other integrals scales can be defined; all of these will be about the
same. Also, if we generate a new process from u(t), say F[u(t)], the integral
scale of F will be no larger than that of the original process.

The Convergence of Time Averages
We are now prepared to answer the two major questions of random signal

processing:

1. Do my time averages converge to the correct value?
2. At what rate do my time averages converge?

ul(t)

t

0 T
Fig. 2. llustration that the time average is a random variable (shaded area).
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The operation of time averaging which we have defined is illustrated in Fig. 2
by the area bounded by the random signal and the averaging interval. It is clear
that our estimator U is also a random quantity. The answer to the first ques-
tion is easily obtamed by ensemble averaging U . Since the signal is assumed
stationary the operations of ensemble averaging and integration commute and
we have

1 [ — _
UT=F/°u(t)dt=u

Thus in our previously accepted terminology: U;is an unbiased estimator of u.
We answer the question of convergence as before by examining the variance of
U;.

var{UT} = [U; —1]? =—// [u(t) — @] [u(t’) —T] dtdt’ (18]

The integrand is just the autocorrelation of the signal u(t) given by equation
[13]. After a partial integration (see ref. 3) we have

2 var{u} T T
var {UT}=-—?——-fp(T)[1_—_—I:] dr [16]

Since p > 0 as T becomes large, this reduces to

2var{u}/

var {U;} = o, (1) dT—z_rLL var{u} [17]

The relative error in the estimator is then given by

2=var{UT} 2T, variul (1] o (- 2T, o [(19]
€ -62 T 'GZ T U

The analogy between equations [19] and [8] is obvious. In effect, the number
of independent samples in our average is

T
N = — [ 20]
2T -

u
Thus segments of our time record of two integral scales in length contribute to
the average as though they were statistically independent. This is illustrated in
Fig. 3.

Fia. 3. Seaments of statinnarv randnm nrorece illictrating nieces of the record



The results given in equations [19] and [20] occur over and over again in the
analysis of time series. We only assumed that the signal u(t) was stationary.

Another example which jeads to a similar result is the time average estimator
for the autocorrelation defined by

1 T-—I71

By (M =1 j u(thu(t+r) dt [21]
T Jo

Note at the outset that this estimator is biased since

e Tl

B, (1) == f a(Qu/tHr) dt = B(r) [22]
TJo T

Clearly this bias could have been avoided by dividing by T—|ri instead of T.
It will be seen in the following paragraphs that the unbiased estimator does not
converge for large time lags and is therefore unsuitable; hence, the widespread

use of the biased estimator.

The variance of our estimator(s) can be computed in the following manner:
T—l7l

—_— 1
var {B;} = [B4\T) — B(r)]12 = F‘jf:'(t)u'(t‘l’ﬂu'(g Ju' (t, +7)dtdt, (23]

where the primes denote only the fluctuating values. By assuming that the
fourth order moments of u{t) are jointly Gaussian

uulu”uﬂl - uul.u"uH’ + uuH‘uluIH + quH.quH [24]

—

and modelling the autocorrelation of u(t) as a simple exponential
p, 1) = exp{ —lri/ Tu} [25]

it can be shown that (see ref. 1)

var{By} = %" var {u} [26]

The relative error is then

2 var{B.} ;3’&.[‘ ]2 [27]

B2(7) T Lo,

since var {u} = B(o). Thus the relative accuracy to which we have determined
the autocorrelation with this estimator decreases with increasing time lag since
the autocorrelation goes to zero. Alternately, the larger the lag at which we
want to compute the autocorrelation, the longer we must average.
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A similar derivation reveals the reason for.zbandoning the unbiased estimator
(see ref. 1). The occurrence of a term T-[r} in the denominator of equation
[27] increases the relative error with time lag. As long as the largest time lag of
interest is much less than the averaging time, there is no significant difference
between the biased and unbiased estimators.

Spectral Estimates From Finite Record Lengths

We first consider the problem of Fourier decomposing a stationary random sig-
nal (of infinite record length). Originally this subject was approached through
the use of Fourier-Stieltjes integrals which, to the uninitiated, appeared strange
and complicated. The subject has now been considerably simplified, thanks to
the introduction of generalized functions into the Fourier analysis. For a com-
plete review, the interested reader is referred to the comprehensive monograph
by Lumley (ref. 4).

The Fourier transform of a signal u(t) in the usual sense is defined by
[ ]
A 1 ,
uw) = -—-/e"‘" u(t)dt [28]
27
00

For this transform to exist, u(t) must satisfy a number of conditions including
smoothness and vanishing at infinity (see any standard calculus text). The in-
verse transform is given by
o0

utth = e i) do [29]

—OQ
Stationary random functions of time do not, in general, satisfy the necessary
conditions for their Fourier transform to exist in the above sense. However, if
one agrees to work in the domain of generalized functions so that our signal of
infinite length is approached as the limit of a sequence of functions whose
Fourier transforms exist, then we can define the Fourier transform of the
stationary random signal as the limit of the Fourier transforms of the membets
of the sequence. Under a set of conditions which need not concern us here,
this limit can be assumed to exist. Hence, we can write the Fourier transform
of u(t) as in equation [28] and denote it by U(w), if we agree to say that this
is the Fourier transform of u(t) in the sense of generalized functions. This
seems a small price to pay since once we have made this qualification we can
treat G{w) as though it were an ordinary Fourier transform (for our purposes.
at least).

it should be obviousAthat for any given realization of u(t), there will be a pu
ticular realization of u{w). In other words, if u(t) is random, so must be ulc.)



Since ult) is assumed stationary (eg. u(t) u(t+7) is function of 7 only), itis
reasonable to expect some constraints on the expected values of the Fourier
transforms. 1t can be shown that a consequence of stationarity is that the
Fourier coefficients are uncorrelated at different frequencies; that is

M)W =0 ; wkw’ (30]
In fact, we can write

Hw)bw') = Slw)slw—w') [31]
where S{w) is the spectrum of the signal u(t) and 8{w—cw') is the familiar Dirac

delta-function.
It is well-known and follows immediately that the spectrum is the Fourier

transform of the autocorrelation

1 e
Slw) = ——f e'“” B(r) dr [32]
27
—00
and that the autocorrelation is the inverse Fourier transform of the spectrum
o0
B(r) =[ e~ 9T S{w)dw [33]
—00

By evaluating the last equation at 7=0 we have
B(0) = 0? =/S(w)dw [34]
-—c0

Thus, as is well known, the integral of the spectrum over all frequencies yields
the variance (or mean square) of the signal.

Now that we are assured (in principle, at least) that a spectrum exists, we turn
to the problem of its estimation from a finite length of record. Equation [28]
suggests that an appropriate estimator for the Fourier transform U{w) might be

A 1 : iw

up (w) = .Z_wuj_le Tu(t)dt [35]
2
The interval (——;, -21:) has been chosen instead of (0,T) for symmetry and sim-
plicity with no loss of generality.

That this is a good choice is confirmed by the fact that the average value of the
spectral estimator defined by

27 —L—— (36]
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does reproduce the correct value of spectrum as T becomes large. This is easily

seen by carrying out the operations implied by equations [35] and [36] to ob-
tain

T
. 71
Splw) = ~— [ e Bir) -[1 ~=t ]dr [37)
Clearly from equation [37],
lim  S;(w) = S(w) [38]
T oo
and the estimator is unbiased.
Cn(f- k/50)
G N = 50
we—e-au N=100
e theoretical spectrum
3.0

20

——

U U 3

0

4 S f

Fig. 4. Spectral estimates for two different record lengths of white noise signal
illustrating 100 % relative error (adapted from ref. 1).

Unfortunately, unlike our previous estimators we have a problem with the
variability of S;{w). This is illustrated in Figs. 4 and 5 taken from ref. (1)
which show both the true spectrum and the estimated spectrum. It is clear
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that the scatter is unacceptable and that things do not improve with increasing
record length.
Cu('=k/100)

14

12
G N = 400

e th@oretical spectrum

10

Y T v

o R 2 3 4 5 ficps)

Fig. 5. Spectral estimate for filtered noise signal illustrating 100 % relative
error (adapted from ref. 1)

To see why this is so we compute the variance of our estimator. By assuming
that fourth-order moments of u(t) are jointly normal, we can obtain (see ref. 1)

)

var { S (w)} = [S(w)]? [39]

It immediately follows that the relative error is unity!

2 =laLLS_ (w) _ 40
€ [Slo] ? 1 | [40]
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Thus the rms fluctuations are as big as the spectrum!

The reason for the above can be seen by examining equation [37]. We define
a new function h_.(r) by '
1 —

a
T

0 ,'Irl>T

. Irl<T
ho(r) = [41]

and denote its transform by H; (w). Equation [37] can be rewritten as

—_ 1 A

Silw) = E—/ e'“7 ultlu(t+r) hy(7) dr [42]

7r—-—oo

or using Parseval’s theorem

— (e ]

S1(0) =] Stes,) (oo, ) dos, [43]
—c0

Thus, our spectral estimator is viewing the spectrum through a window whose
width is determined by the averaging time T (Acwor=27/T).As T increases,
h; (1) gets wider and H; (w) gets narrower. In the limit as T - o, Hy (w) simply
selects a single realization of the spectrum. While this explains the lack of bias,
it also accounts for the variance since it means that we have used only a single
independent sample for our estimate!

There are two ways in which we can make our spectral estimator converge with
increasing averaging time:

1. We can ensemble average independent estimates of the spectrum based on
non-overlapping record segments. This technique can be viewed as either
doing the experiment many times or as subdividing a long record.

2. We can use the fact that the estimates at different frequencies are un-
correlated when separated by more than Aw; =27/T, and average over
different frequencies. This process is called smoothing. The fact that ad-
jacent estimates are correlated only over Aw; follows immediately from
the fact that the true Fourier coefficients (which are uncorrelated at dif-
ferent frequencies) are seen through the window H; (w) by virtue of the
finite record length.

The rate of convergence due to method (1) is simply the same as that for any
ensemble average (e ~ 1A/N). For method (2) it should be clear that the num-
ber of independent samples making the smoothed estimate depends on the
relative value of the effective window width Aw and the correlation width Ay
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Thus, N ~ Aw/Aw, and the relative spectral error is given by

e =2 [44]
AwT

This does go to zero as T —> o as required.

There are many ways in which the averaging (or smoothing) processes above
can be implemented. All involve the choice of a window in either the time
domain D(7) or the frequency domain, W(w). The smoothed spectrum is then
given by

Sy (w) =% / e'“” B_(r) D(r)dr (45]
where

B, (r) = B(r)h (1) : [46]
or

Sy (w) =[Sa(w1 ) Wlw—w,) dw, (47]

where Sq (w) is the Fourier transform of Bq (7).

TABLE! Lag and Spectral Windows (from Figure 6)

Lag Window Spectral Window Effective
Bandwidth {Aw)

] 17l M M | sin wM m
Rectangu! = = M50 WM K4
ectangular Dn(r) IO, r’>M W, {w) - e M
Irl
Bartlett Dy (r) = R W, (w) = o [sin /2. }2 3n
&%, qr>wm B o | w2 ™
nT
1/2{1+¢ ~}, <
Tukey D, () = L w (w)=-"—"—l“" oM ! 81
‘ T o Jri> M T 2r | wM 1~ (wMm?]  3Mm
1 6'—’" +6{m L
M ml T2
frl s M 3M [sin wM/4 [* 3.77n
Parzen D (1)= 2l1-—-—} — <7< ==
e M|z <i<M Wole) =g | omra M

0 JF>Mm
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1.0
Sy
\\\\\
\\ ~
8 \\(\\
\\&
6} \ \
\
N
N\
N
\\
4t N
\\\ \
AN \
2 N ~N
2 ~,
N Parzen \TMBarﬂen Rectangular
\\\ \
~——
1 L 1 I .1 g o Py o
[} M M 3M AM 5M &M IM 8M . 9M LY u
Some common spectral windows
wif)
M
1.8M
1.6M
Wgifi R g
1.4M L — Wglf} Bartlett
——— —— Wf(i) Tukey
w2mEyf emmm———— Wp(f) Parzen

Some commaon spectral windows

Fig. 6. Lag and spectral windows commonly in use (adapted from ref. 1). For

definitions and effective bandwidths see Table .
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Some sample windows are shown in Fig. 6 in the form in which they are
usually applied to digital data. For analog estimation the window is determined
by the characteristics of the band-pass filter used in the analysis.

That we have not solved all of our problems is illustrated by Fig. 7 from ref. 1
which shows the effect of various window widths on a spectrum estimated
from a fixed length of record. For the narrowest window, the spectrum cannot
be determined because of the variability of the estimator (which peaks are
real?), while for the widest window the spectrum, although smooth, cannot be
believed. Unfortunately, the smoothing process introduces a bias.

80 % confidence interval

Rn(f)

T

PARZEN WINDOW

bandwidth
04} ——
s s e
o2r
‘V’
0.1 1 1 [ ]
0 125 .25 375 5 flcps)

Fig. 7. Spectral estimates illustrating dependence of relative error and bias on
window width (from ref. 1). Solid line is true spectrum.

It is not difficult to show that this bias can be related to the curvature of the
spectrum (ref. 1) and simply places a constraint on the maximum window

width {and minimum averaging iime) which can be used. Approximately we
must have
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d? )
Aw << [S(m)/(g2 S(w)] 8 to avoid bias. (48]

Discretely Sampied Signals

The emergence over the past 30 years of the digital computing machine as a
major experimental tool and especially the rapid advances in mini- and micro-
computer technology of the last decade have made this mode of signal process-
ing the most common. Even on-line hard-wired correlators and spectrum ana-
lyzers are no longer analog devices but rather dedicated microprocessors opera-
ting on digitized inputs.

In the preceding section we have examined the basic character of random
signals and the limitations imposed on our ability to measure them. In this sec-
tion we shall look at the additional problems introduced by digitizing this sig-
nal with a sampling device which takes samples at a fixed rate. We should not
expect that the process of digitization will eliminate any of the considerations
of the preceding section. Rather, the important question is: how much in-
formation is lost in the conversion process?

- We begin by defining a sampling function g(t) which simply selects values of
the process being sampled at programmed times. If we agree that g(t) can be
represented as a generalized function and that we can work with such functions,
then the sampled signal [denoted by u_(t})] is most easily represented as

u, (t) = u(t) g(t) (49]
It is clear that u_(t) only has meaning in the sense of generalized functions.

The question we can now ask is: How much information about u(t) is left in
u, (t)? To answer this we need to select a form for g(t). An appropriate choice
is easilv shown to be

g(t) = AtE 8(t—nAt) [60]

n=—oo

Whether we sum or simply regard g{t} as a sequence is irrelevant since the delta
functions never overlap. The factor At is introduced to keep g(t) dlmensmn
less.

We first compute the time averaged mean value of u, (t).

T

1 At
=2 [51]
U°T T u, (t)dt— u(t)g(t)dt Eﬂu(nAt)
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But T/At is simply the number of samples and we have
1 N

U =U=

_ 52
o N u{nAt) [52]

n=1

which is reminiscent of our ensemble average.

It is immediately obvious that our sampled function indeed retains all the in-
formation on the moments of u(t). It is also obvious from our previous con-
siderations that we can simultaneously minimize the number of data to be
handled while maximizing the convergence rate of the estimator by insuring
that the samples are, in effect, statistically independent by choosing

At=2T, [53]

Thus the optimal sampling rate is one sample for every two integral scales in
time.

iIf we analyze our estimator for the autocorrelation we find that its digital
counterpart is

2

- n —n

N
B, (nAt) = —12— £ uliathul[j+n] At) (54]
T N 1 =1

[}

™M

i

where the time lag is given by nAt.

A detailed analysis of the convergence of this estimator will reveal what we
could have guessed; namely, that all of these time lag products do not con-
tribute to the convergence of the estimator, only those separated by two inte-
gral scales. Thus a much more efficient estimator which would converge at the
same rate would be '

~ 1
B, _(nat) = { ulo)u(nAt) + u(2T,)u(2T + nAt) + [55]

o]

oo tu(2[N'= 1] T,) ul2[N' = 11T, + nAt)}

where N’ =T/2Tu and is, in effect, the number of independent samples. The
algorithm computes a time-lag pair for the appropriate time delay, then leaps
down the record 2T, before computing another. This is illustrated in Fig. 8.

This method of computing the autocorrelation was suggested to this author by
Lumley in 1972 who also showed that a very efficient spectral estimator could
be derived from it. Since this suggestion was unpublished, it has been included
here as Appendix |l with the appropriate credit given.
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u(t)

o— 27,1 |
Fig. 8. lllustration of skip method for computing autocorrelations in which
pairs of samples are taken only every two integral scales.

Spectral Analysis of Discretely Sampled Signals
It is straightforward to compute the Fourier transform (in the sense of genera-
lized functions) of the signal u_ (t). :

A . 1 oo'lw T !
u (w) = onl € u(t)alt) dt [56]
T o
Substitution for g{t) and some manipulation yields the spectrum °f,“o (t) as
S,(w)= %  Slw-—2w,) ‘ [57]
N= - oo
where
27
2w =— (58]
“n T At

Thus our discretely sampled signal produces not only the desired result, S{w),
but an infinity of similar spectra all shifted by frequency w,. The phenome-
non is illustrated in Fig. 9 from ref. (1).

It is clear that if the signal u(t) has spectral components above the frequency

, these components are aliased to lower frequencies with the result that the
desnred spectrum can no longer be distinguished. The phenomenon is called
aliasing and w_, the folding frequency, is called the Nyquist frequency.

The Nyquist criterion can be summarized as follows: The spectral information
in a discretely sampled time signal can be retained only if the sampling rate is
at least twice the highest frequency present in the original signal.

Thus for digital processing of random signals we have conflicting requirements.
We must sample at small time intervals to avoid aliasing, yet the additional data
contribute little to the convergence of our estimators. The ""waste factor”’
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2T , /At which for wide-band signals can be very large indeed.

The problem of processing the large data blocks necessitated by the Nyquist
and convergence criteria has received a large amount of attention since the
infancy of digital processing techniques. As we shall see, there are several
clever algorithms and techniques that have been developed to reduce the com-
putational effort. A number of the commonly used and new approaches are
summarized below.

S{f)

(a) 1 f

Syif)
{b} 1
ol 1 1 f
7z, i;
5410
) /\ /\ | /\
/] 1 1 f
Za 2 A—z—
} Syt
{note aliasing)
@) ‘—/\—"/ << 1 f
1 1
75, a3

Fig. 9. Effect of sampling rate on measured spectra. Original spectrum (upper-
most); aliased spectrum (lowermost) (adapted from ref. 1)

1. The time-lag product approach
This is a direct approach based on a discrete version of the time average
estimator for the autocorrelation, Equation [54]. The spectrum is then
computed by multiplying this autocorrelation by the appropriate lag win-
dow and taking its discrete transform. Reference (6) provides a complete

discussion of the application of this approach.
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The Fast Fourier Transform

This is a very fast and efficient algorithm for computing the Fourier co-
efficients of the signal by utilizing a bit-reversal of the binary address of
the time-series data. The smoothed spectrum is then computed by squar-
ing the coefficients and convolving them with the appropriate window.
The savings over the direct approach is approximately 2n N/N where N is
the number of data points (see ref. (7) for complete discussion).

The Low-Pass FFT

This is a variation on the FFT in which the incoming signal is divided by
frequency into band-limited blocks. The first block might be low-pass
filtered at 0.1 w_, the second at 0.2 _, the third at 0.4 w_, etc.

Each block has a length inversely proportional to the cutoff frequency of
the preceding block; that is, the higher blocks have shorter records.
Each block is processed by the F.F.T. and smoothed by filters whose
width increases with block width. Not only does this technique allow sub-
stantially larger spectral samples to be computed on a fixed core machine,
but a substantial savings in computational costs is achieved, at some in-
creases in experimental complexity. For a complete discussion see refer-
ence (8). ‘

The Auto-Regressive Spectral Technique

Although not in common use in the fluid dynamics community, these
techniques are evolving rapidly elsewhere. Because of this a detailed sum-
mary by Beuther of how these techniques work is included as Appendix
I. In brief, an autoregressive series is fitted to the incoming time-data
which optimizes the ability to predict the next data point. The spectrum
is then simply determined by the coefficients of the autoregression and
the mean-square error in the fit. A bonus is that the spectrum is already
smoothed in a manner which minimizes both bias and relative error and is
thus optimally filtered in some sense. '

The Skip Technique

We have already mentioned this efficient estimator due to Lumley which
utilizes only independent samples of the time-lag products. This method
is described in detail in Appendix li. For most applications to turbulence
measurement it appears to be the most efficient and is particularly well-
suited to small computers.

To conclude this section we note that all spectral estimates must be smoothed
in the same manner as for the continuous signal. The rate of convergence of the
smoothed estimator is again proportional to inverse product of the window
width in frequency space and the averaging time. As for the continuous signal,
bias can result from this smoothing operation.
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Randomly Sampled Data

There is no reason that the process of converting a continuous signal to a digital
one has to be carried out at uniformly spaced time intervals. One of the most
significant advances in signal processing over the past ten years has been the
understanding and appreciation of the merits of random sampling. That is, in-
stead of sampling at uniformly spaced intervals in time, the intervals are them-
selves random and are governed by some statistical process.

The development of the theory of random sampling is due to a number of in-
dependent investigators; among them are Gaster and Roberts, Mayo, Shapiro
and Silverman, and others. For a comprehensive review the reader is referred to
the article in this proceedings by Mayo. Our purpose here is to briefly review
the basic principles and place the theory into the context of the overall prob-
lem of signal processing.

We begin by insisting that our random sampling process be statistically inde-
pendent of the process being sampled. As will be seen later this excludes the
burst-mode LDA from consideration. We choose a sampling function g(t) so

that it selects values of u(t) at random instants in time. The sampled signal is
then given by

u, (t) = u(t) g(t) ' [59]
as before.

A suitable choice for g(t) is

glt) =8(t—t),i=1,..., oo [60]

where the t, are uncorrelated. If the average sample rate is denoted by v, it is
easy to show that

g=v ' (61]
and
g(t) g{t') = v? + p§(t'—1) o [62]
and

(9-9)(g'—g) = v&(t'—1) (63]
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Since, by hypothesis, u(t) and g(t) are statistically. independent,.it follows
immediately that

u (t) =vu A [64]

ug (8 u) () =22 W(u'(t) + vu? §(t'—1) (65]

An immediate consequence is that the autocorrelation and spectrum of u, (t)
are given by:

B, (r) = v2 Br) + v u? §(r) ' "~ [66]

and

S (w) = v? S{w) +— u? ' (67]
e 27

Thus with the exception of the spike at the origin in the autocorrelation and
the corresponding white noise added to the spectrum, all of the information
contained in the original signal has been retained.

“In practice, the nuisance due to the spike at the origin in the autocorrelation
can be eliminated by simply agreeing that we will never include self-products
when we multiply signals together. It is easy to show that this corresponds to
writing

g(t) g(t') = »? [68]
from which it follows that
B, () =»? B(7) [69]

S, (w) =v? S(w) [70]

9
Thus, by agreelng to remove self-products from any algorithms, we need only
the sample rate to recover the desired information.

To derive practical estimators we turn to time-averaged value of u, (t) and its
moments. For the mean value we have simply

14
= —— = e . 71]
U T/Ouo(t)dt T >: u, [

i=1

where N is the number of samples which arrive in the interval (o, T) and the u,
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are the randomly sampled realizations of the signal. For T large enough, vT=N
and an unbiased estimator for the mean can be written as
1 N
Urg = N u, (72]
i=1
An immediate question is: How does this estimator converge? It is easy to show
in the same manner as before that

2T 1
var{UTR}= = [1+2yTu]-var(u} v [73]
from which it follows that the relative error is
2
62=var{UTR} =2Tu 14 1 . _ciu_ [74]
'0'2 T 2VTu u

Note that as vT—oo, this reduces to our previous result for continuous signals;
while for vT—0 we abtain

1 o 1 o
lim e=y— -—= — = [75]
»T—0 vT u N u
These limits are reasonable since as the sampling rate becomes very high relative
to the time scale of the signal, we reproduce the continuous signal. As the
sampling rate becomes very low, all the samples are, in effect, statistically in-

dependent. ’
A simple estimator for the mean square value of the original signal is given by

2 1 N 76
OTR=NZ [ui_UTR]? (76]
i=1

It is straightforward to show that the relative error is analogous to that in
equation [74].

The best estimator for estimating the autocorrelation and spectrum from the
randomly arriving samples is still a matter of debate (see the article by Mayo in
this volume). The approach adopted here will be to first obtain the spectrum,
and then compute the inverse transform to obtain the autocorrelation.

The finite time estimate for the Fourier coefficients of u, (t) is given by

A 1 (7 1 N
= iWT ! = iwr ' 77
Uy _(w) - /oe u, (t)dt o T €T ult) [77]

i=1
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It follows that a spectral estimator for S_(w) is

lGOT((a)) IZ 1
S = - =
°T(w) 21 T 27T .

(78]

™Mz
Mz

eiw (ti—t‘-) u'(ti)u'(tj)

]
-

#

1j
i
where we have employed our prohibition on self-products.

From equation [78] we can immediately obtain an estimator for S{w), the
desired spectrum, as

N ON ' '

T I ewiy-y) u'(ti)u'(tj) [79]
=1 j=1

i

S o {w)=

1
TR 2m?T

This estimator is unbiased and unaliased. The lack of aliasing is a consequence
of the random sampling and is independent of the mean sample rate. Thus ran-
dom sampling would appear to have significant advantages over the traditional
discrete sampling technique.

The absence of aliasing is not without price, however. The price is the increased
relative error due to the random sampling. It can be shown by assuming that
fourth order moments are jointly Gaussian and by noting that [80]

990" = v 02 [S("- 8 (1" — )+ 8 ("t 1+8(t" )] +02 [S(t—005("'—t')+5(t" )5 (¢ ~1)]

that the relative error of the estimator S; ; (w) is given by

Ez_var{SIB(w)} =[1+S(°) [ 1 ]2

= 81
[S{w)]? Slw) | 2T, (81}

Since the spectrum is assumed to fall as frequency increases, the effect of the
random sampling is to increase the relative error with frequency. Note that as
the sample rate becomes large, the relative error reduces to the result for con-
tinuous signals. Clearly the relative error is never less than unity and is there-
fore unacceptable. Hence we must smooth the estimator as before.

There are several techniques by which the estimator above can be smoothed to
make it converge. These are:

(i) Block Averaging
This approach is certainly the most straightforward to implement and
simply involves averaging the spectral estimators obtained from indepen-
dent record lengths of the process. As in the continuous case, the relative
error is decreased by the inverse square root of the number of indepen-

dent samples.



(ii)

(iii)
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Spectral Window
As for the continuous case this can be done either in the time or frequen-
cy domain. The simplest approach is to insert a lag-window into the
estimator of equation [79] to obtain

N N

T T ewinyty) u'(t'i)u'(tj)D(ti—ti) [82]
i=1 j=1 '

i#j
where D(r ) can be any of the windows already introduced. It is tedious
but straightforward (see ref. 9 or proceed as above) to show that the
relative error is the error given by equation [81] reduced by a factor of
21/AwT where Aw is the effective window width in the frequency do-
main. We have

B 27
AwT

Stamiw) = 2T

S(o) . 1 12

+ [83]
S(w) 20T,

2

€

A similar result is obtained if spectrum estimated by equation [79] is con-
volved with a filter of width Aw. In view of the increased error as fre-
quency increases, this approach can have significant advantages if the win-
dow varies with the frequency at which the spectrum is estimated. Gaster
and Roberts (10) suggest that for power law spectrum a filter whose
width increases logarithmically with frequency would be desirable. Clearly
combinations of all the above approaches could be used to advantage.
The Time-Slot Approximation ' ‘
This is best illustrated by first taking the inverse Fourier transform of
S; g (w) to obtain
N N
Z I ult)uly)s(t—t—7) (84]
i=1j=1

i

Brglr)= 2

1

This represents a collection of random realizations of the autocorrelation.
We now group these realizations into slots of width A7 by defining the
time-slot approximation to the autocorrelation as
(n+¥%)ar
1
B, (nA7) = A B;g (ridr [85]
(n—%)AT
which yields the "“smoothed” autocorrelation as

1 1 N N [86]
B, (nAr) -_A—‘r_(uzf )ii 51 u(ti)u(tj)

i#i



where
(n—-¥)AT < |'ci'——tj | < (n+%)Ar

This algorithm can be directly applied to the incoming data to compute
the autocorrelation which can, in turn, be Fourier transformed to yield a
discrete spectrum. This transform can even incorporate a lag window to
improve convergence in the usual manner.

There is some confusion in the literature as to what constitutes the proper rela-
tive error for spectra computed from the time-slot approximation. The opera-
tion defined by equation {85] is, in fact, a convolution of the autocorrelation
with a time window. In frequency space this means that the spectrum is simply
filtered by the window function which is assumed broadband since the time
window Ar is narrow. Since the variance is proportional to the spectrum
squared, it is reduced by this low-pass filtering, but only at the expense of bias.
Thus the primary cause for convergence is the window used in computing the
smoothed spectrum from the time-slot correlation, and the convergence is
identical to equation [83]. This is, in fact, the conclusion of Mayo from empir-

ical evidence.

14

12¢-
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0 0.2

Fig.
10).
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10. Spectrum of sine wave from random samples (2mv/w = 1.7)(from ref.
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Examples of spectra computed by Gaster and Roberts from randomly sampled
data are shown in Figs. 10 and 11. In Fig. 10, a sine wave is sampled so that the
mean sample rate is less than the Nyquist frequency. Clearly the expected peak
is reproduced. In Fig. 11, a low-passed noise is sampled so that the mean
sample rate corresponds to the breakpoint in the spectrum. Although the in-
creased variability at the high frequencies is obvious, the spectrum is accurately
reproduced.

10

Sif*)
o

" 001}~
exact spectrum

.simulation estimates

0.001 N 1 1 1
0.1 1 10 100

Fig. 11. Spectrum of low-passed noise (v/f, = 1)(from ref. 10).

- The Burst-Mode Laser Doppler Anemometer

The purpose of this section is not to discuss the burst-mode LDA as a tool for
flow measurement but rather to concentrate on the interesting signal analysis
problems it presents. The phrase “burst-mode LDA’’ is used to refer to an LDA
operating in such a way that for most of the time there are no scattering par-
ticles in the measuring volume and there is never more than one particle at a
time. As the particles arrive randomly in time, the processor measures their
velocity and makes this data available as a digital word for further processing.
As we shall see, the processor must also provide other information if the signal
is to be interpreted correctly. For a complete description of this instrument the
reader is referred to the review article by Buchhave in this proceedings and to
references (11) and (12).
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The randomly arriving particles do, in fact, randomly sample the flow velocity.
Unlike the sampling scheme just discussed, however, the sampling process is
not independent of the process being sampled. This is easily seen if one con-
siders that the particles are assumed randomly distributed at statistically in-
dependent locations in space and carried to the measuring volume by the flow,
Thus, arrival time and flow are correlated.

We can correctly analyze this instrument if we design a sampling function
which samples the velocity at the spatial location of the particle. This was done
in references (12) and (13) with the following result: the sampled velocity is
given by

u,(t) = / U(atlg, (alwix(a,t)]d’a (87]

all space

where U(a,t} is the Lagrangian velocity of the flow which the particles are as-
sumed to follow, the function w(x) accounts for the fact that the measuring
volume is of finite extent, andg, (a)is a random function which accounts for
the presence or absence of a particle at a particular Lagrangian coordinate.

Because of the motion the particle is moved by the flow to a location given by
T
x = x(a,t) =/U(§,'t1 )dt, [88]
o : ’
Thus, when the partiéle wanders into the measuring volume, the function w(x)
""turns on’’ the signal u_(t). A typical scattering volume is shown in Fig. 12 and

the signal uo(t) resulting from the randomly arriving particles is shown in Fig.
13. ‘

Fig. 12. Schematic showing measuring volume defined by laser Doppler ane-
mometer.
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Fig. 13. Typical velocity signal as sampled by individual and randomly arriving
particles.
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By a series of arguments (see reference (13)), we can transform the dependence
on Lagrangian coordinates to Eulerian (or spatial} ones and write

u,(th= f ulx,t) wix) gx,td’x [89]
all space

where u(x,t) is the velocity at the point X and g(x,t) has the following statistical
properties: )

glx,t) =p - (90]
gixt) glx’0) = plx—x' = U-[r—thh + e | [91]
and p is the average number of particles per unit volume.

We compute the moments of uy(t) directly as

u, = f E—({,B;EE) wix)d®x [92]

all space
B (r)=u, (thu, (t') ‘=ﬂy_(x,t)u(_>g',t') glx,tg(x’,t') - wix)wix')d?xd>x’ [93]
all space

where we have used the fact that velocity and the occurrence of a particle in
space are independent. It follows immediately that (see ref. (11))

u,(t) = (Vi u | [94]
and |

- - . P T R 195]
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where we have assumed that the effect of averaging the velocity and its space-
time correlation over the scattering volume is negligible. The functionp (7 ) is
easily shown to be a "'spike-like’” function of width proportional to the mean
transit time of particles crossing the volume.

Since uV corresponds to the expected number of particles in the volume and
is assumed small, the "'spike-like’’ term will dominate the spectrum in the same
manner the self-product terms dominated the random time sampling process
discussed earlier. The “'cure’’ here is the same as before: we agree to never in-
clude self-products in any computation. This corresponds to eliminating the
delta function in equation [91] yielding

alx,t) glx’,t') = p? (96]
from which it follows that

B, (r) = (uV)2B(7) [97]
and |

S, (w) = (uV)?S(w) (98]

Thus the moments and spectra are completely recoverable, in principle, from
the information available from the particles. That complete flow statistics
could be obtained from the randomly arriving particles was suspected long be-
fore it was proven in 1975 (see for example ref. (14)). Unfortunately it was not
until after this (and from this} that correct estimators were formulated (see
ref. (11), (12) and (13)}).

The mean value can be calculated from the time integra! as before:

1 (7
U°T =?]0 u, (t)dt

1 t1+At1 t2+A12 tN+AtN [99]
=;Uu°(t)dt+[uo(t)dt+....+fu°(t)dt}
“I t2 tN

where the t, are the arrival times and the At, are the residence times or times
that the signal is on.

If we assume that the velocity is relatively constant while the particle is traver-
sing the volume, this immediately yields a practical estimator for the mean
velocity as
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N
Zi u; Ati
(=
Urge N [100]
T At

i=1
where in the denominator we have used the fact that as the number of realiza-

tions becomes large, the ‘on-time’’ is given by

N
uVT = I At [101]
i=1 '
A similar analysis for the mean square fluctuating velocity yields
N
z (ui—U)zAti [102]
o2 —i=1
TBP N

z At

i=1
it is easy to show that the relative error in the estimator is the same as for the
randomly sampled case discussed earlier if the mean sampling ratev is inter-
preted as the mean data rate given by

Veff = (“V)/Tp [103]

where T_ is the average particle residence time and is approximately given by
d/u where d is the effective width of the measuring volume.

Fig. 14. Computation of the autocorrelation from burst processors using only
the overlap times. The middle trace is the upper trace displaced by amount T as
shown
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An estimator for the autocorrelation is more difficult to interpret since both
u, (t) and u, (t+7) must on "on’’ to contribute to the time integral. This is
illustrated in Fig. 14. A time-siot approximation to the autocorrelation is easily
shown to be given by
1 N N

—— X X uu At.

i i
NA’@. A) jaqjey T

' i#j

where At“. is the overlap time and only those NAT realizations satisfying

B (nAT) = (104]

(n-g—)Ar< Iti -t I<(n +21)A7'

can contribute. It can be shown (most directly by transforming the spectrum
derived below) that an estimator which is easier to implement is given by

1 T N N
B;s(nA7) = ———[————N J Z T uy; AtAt [105]
7 . .
(E Ati)z i=1 j=1

i=1 i

A direct Fourier transform can be defined from equation [35] as

T/2
A . .
u (w)=— e'“Ty_(t)dt [106]
°r 2n J 2
which is approximately given by
’ 1 N
U, (w)=-— X eivy yAt [107]
T 2” i=1 E [

(The neglected variation of t in the interval (t, t, +Ati) can be shown to be
equivalent to low-pass filtering at the inverse residence time, which introduces
no further approximations than have already been made).
From this a spectral estimator is readily calculated to be
T NN {108]

" vZ ,E g wit—t) uu At A,
2m(Z At )2 i

=1 ! i#j
It is tedious but straightforward to show that the relative error of this estima-
tor is also given by equation [81] with » given by equation [103]. As might be
expected the convergence of the smoothed estimator is given by equation
[{83].
The preceding analysis of the LDA along with experimental evidence is given
in a series of recent papers (ref. (12), (15}, (11)). Also included in the latter
is a detailed description of the hardware and software for implementing these

S{wi=
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algorithms and an assessment of the errors resulting from ignoring the need for
residence time information.

Mixed Mode Data Processing

L R N

Fig. 15. Photagraph showing simultaneous use of LDA and hot-wire anemom-
eter

Our success with randomly sampled data leads as to inquire whether a mixed-
mode signal processing system might be possible. An example of where such
a mode might be desirable is illustrated in Fig. 15 which shows the simultan-
eous use of a laser Doppler system and a hot-wire anemometer to measure
cross-correlations. The primary advantage of such a system over conventional
hot-wire techniques is that there is no wake generated by the upstream probe.
Moreover, the use of a downstream hot-wire instead of another LDA consider-
ably reduces experimental complexity and cost.

To analyze this problem we assume the upstream LDA to be operating in the
burst mode analyzed earlier. We note that any signal generated at the hot-wire
probe by the scattering particles will be uncorrelated with the velocities and
can be treated as noise (for example, water drops will be rapidly evaporated
causing random spikes in the signal).

The mode of data analysis is the following: We continuously monitor the hot-
wire signal. When the LDA receives a burst, we measure the particle’s velocity
and residence time, and send a delayed ’‘freeze’’ command to the hot-wire
monitor. We then compute an instantaneous realization of the space-time
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cross-correlation at a// time lags of interest by multiplying the single LDA rea-
lization by the appropriately delayed hot-wire signal. Each succeeding particle
arrival is treated in the same manner and the accumulated realizations of the
correlation are averaged to yield the time-averaged cross-correlation.

For simplicity, we consider only the case where the LDA and hot-wire are mea-
suring the same velocity. Extension of the analysis to spatially separated sig-
nals is straightforward. The analytical statement of the procedure described
above is then

1 (T
C,fr= = /o u, (1) ulttr)dt [109]
where u_ (t) is the LDA burst signal given by equation [89], u(t) is the hot-wire
signal, and the interval (0,T) is determined by the first and last burst, {Note:
t+7>T and t+r<lo are allowed).
It is easy to show that

1
L 110
Crlr) == Cylr) [110]

and that this is an unbiased estimator of the cross-correlation. Hence an algo-
rithm consistent with the approximations in u, (t) of the preceding section is

§ ug (tJultnAr) At, (111]
C; (nAr) = =

MZ

At

i=1
It remains to examine the convergence of our estimator C; . Proceeding as be-
fore we write

.
1 —
var {C (7)} =(#—V—T—)—2—//o ug (thu, (t Jult+rlu(t, +7) dtdt, — [C(n)]%  [112]

By substituting for u_ (t), the integrand is readily obtained as

u, (thug (t, Jult+riult, +7) [113]

= /] ulx, tulx’,t Julx, t+rulx ,t, +7) wix)w(x'),g(x,tg(x, t,)-d*x d*x’

all space

where g(x,t) g(x',t') is given by equation [91].

After considerable manipulation, it can be shown that the relative error is given
by



ez_variCI(T)i _!_21 1 N 1 ] (114]

Clemr T T |p2n) v, T

where v is given by equation [103]. Comparison of this with equation [27]
shows that the added variability is measured by the second term which is in-
dependent of the lag. Thus for modest sampling rates relative to the integral
scale, the estimate converges nearly as well as for the continuous case.

A similar convergence criterion can be shown to exist if the randomly sampled
signal is randomly sampled in time instead of a burst LDA signal. Moreover, it
is straightforward to derive convergence criteria for smoothed spectral estima-
tors using the previously illustrated techniques.

A Final Word

In this paper we have reviewed the development of our current understanding
of random signal analysis. We have concentrated on the estimation of mean
quantities by time average with particular attention to the problems of bias and
convergence. Of particular interest because of its recent development, has been
the randomly sampled process which holds considerable promise for applica-
tion as digital transducer components become more common.

We have entirely avoided the practical and theoretical problems which arise
from questions relating to frequency response, dynamic range, quantization
error and noise. All of these play a significant role in real processing. For more
information on this subject the interested reader is referred to refs. {(5) and (7).
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'y Appendix | by Paul D. Beuther

Appendix |: Autoregressive Spectral Estimation
by

Paul D. Beuther
State University of New York at Buffalo

Introduction
One of the major difficulties in estimating the spectrum of a turbulent process

is reducing the variance in the spectral level. This variance is a statistical conse-
quence of the Fourier transformation from time domain to frequency domain.
Consider a stationary process, Y (t), which has a ""true’’ spectrum, F{w). It can
be shown that for a finite time segment, Y (t),t=0,T, the sample spectral density
F;{w) is unbiased (F1(w) = F(w)), but it is not consistent (VAR F_(w)#0).
In fact, VAR(F_ (w))~ [F(w)]?! Without some type of smoothing, a typical
spectrum appears to be mostly noise.

Since the expected value for F(w) = F{w), one could certainly average many
independent spectral realizations to obtain a better estimate for F(w). How-
ever, in many cases it is impractical to obtain and analyze the necessary amount
of data. In some experiments many realizations of the same event are not pos-
sible. In these situations other techniques are needed. Due to recent advances,
autoregressive techniques are some of the most powerful methods available.

Theory of Autoregressive Spectra
A time series, Y (t), can be represented as a sum of its weighted past plus some
random “shock”’, e(t). This can be represented mathematically as

Y(t) =a*(1) Y(t—1) + a*(2) Y{t=2) +. ..+ ¢(t). (1]

However, it is more common to define the process in the following manner:
o0
Y{h+ 2 Y(t~)) alj) = e(t) where alj) = —a*(j). (2]
i=1
In practice there is an order p such that, for [>p, al(j) = 0. This is called a pth
order autoregression and is written as:

p
Y{t)+ 2 Y(t—j) alj) = elt). [3]
i=1
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Techniques for determining p will be discussed in detail later. Since a(j) = 0 for
j<0 and j>p, equation 3 can be rewritten as:

+oo

Z  alj) Y{t—j) = e(t) where a(0) = 1. (4]
j=—oo

The LHS is merely a convolution of a and Y which can be transformed to a fre-
quency domain to read

Folw)  Fy(w)=F (w). (5]

F, (w), F, (w), and F_(w) are the spectral density functions for a(j), Y(t) and
€(t) respectively. From this it is easy to obtain an expression for the spectrum
of Y: ’

Folw) (6]

F,(w)= F o)

e(t) is a random process, so F_{w) is a constant equal to the residual variance
02. By substituting for F.{w) and F_(w) equation 6 becomes:
52
Fy (o) =—5—p (7]
Z aljleh I
i=0
Calculating the a's for a pth Order Autoregression
The set of coefficients, a(j), can be calculated from the covariance function
R(7). Transforming equation 4 into time-lag products results in the set of
equations known as the Yule-Walker equations. 8]
T=1

p
. ) ~ 1

Z Rlr—jalj)=0628(r) 7=0,1,2,...p where Ri(r) = T Y(t) Y(t—1).

i=0 t=0

This is a set of p linear equations with p unknowns, and can be solved by one
of several means in a straightforward manner.

Deciding the Order p

There are two methods for determining the order p. The first was developed by
Akaike (16), the second by Parzen (17). Both yield approximately the same
result, but the theory behind each is quite different in approach. The Akaike
method assumes that a given time series is a product of an autoregressive pro-
cess, with a ""true’ order p. Choosing p reduces to minimizing the function
AlIC(m), defined by

AIC(m) = Ln(&fn)+2_r—m : [9]
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m is order, T the total number of points, and 33“ the residual variance for order
m. The Parzen approach assumes that the given time series is actually the pro-
duct of an infinite autoregressive process. The goal is to find the best estimate
of this infinite series, which can be reduced to minimizing the function
CAT (m), defined by

a2

o m
CAT(m)=1——22 +—. _ [10]
o T
m is the order, o? = ;—_T? 02 is the “unbiased” estimator of the residual

variance and o2, is the residual variance of an infinite order autoregression.
Substituting for 31 equation [10] can be rewritten as:

1T ™ /T— 1 T-m 1
CAT(m) =— X (———‘ ;;—>— L [11]
T i=1 T 0] T o},

In practice the two methods give approximately the same order. It can be

shown that the Akaike method is an upper bound of the Parzen criterion.

Extension of autoregressive techniques to multidimension time series is straight-
forward (see refs. (16) - (21)). However, the solution to the regression equa-
tions is more involved and may require more computer memory than some
laboratory mini- and micro-computers have.
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Appendix l1:
Computation of Spectra and Cross Spectra
by a Skipping Technique
by

John L. Lumley
Cornell University

It is straightforward to show (Lumley (4}, for example) that if the mean of a
quantity is computed by integrating in time over an interval of length T, the
mean square relative error is given by (asymptotically)

T
where a? is the relative fluctuation level of the quantity being measured, and T
is the integral scale. On the other hand, if N independent estimates of the same
quantity are made, the mean square relative error is given by

2 8 (2]

Comparison of [1] and [2] indicates that the interval T may be considered to
contain T/2T = N independent estimates. Evidently one point in each interval
of length 2T will produce just as fast a convergence of the statistics. The extra
points included in the integral over 2T do not improve the convergence, since
they are not independent — they do not give new information.

This concept may be immediately applied to the measurement of spectra. Sup-
pose it is desired to measure the spectrum of a process having no energy above
a frequency 1/n. The lowest frequency desired is 1/7, where it is presumed
that 7 = T. A tape of length T is taken, sufficient to provide the required ac-
curacy by [1] and [2], and digitized at the Nyquist frequency 2/n, providing
2T/n points. At each lag, T/2T multiplications are required, followed by T/2T
additions, or T/T operations; there are 27/n lags, for a total of 27T/Tn opera-
tions to produce the correlation. This must now be transformed by a fast
Fourier transform of 27/n points. If we indicate the number of operations re-
quired for this by FFT(27r/n), the total number of operations is

2rT/Ty + FFT(2r/n) 3]

This may be compared with other ways of obtaining the spectrum. For ex-
ample, each block of 27/n points could be transformed by FFT, requiring



798  Appendix 11: Computation of Spectra and Cross Spectra by a Skipping Technique

(T/T)FFT(27/n) operations; then each Fourier coefficient must be squared, re-
quiring 2T/n operations; then the squared coefficients at each frequency must
be added together, requiring (27/7}T/7) = 2T/n operations. This gives a total of

AT/n + (T/7)FFT(27/n) (4]

operations.

Still another way would involve taking the FFT of the entire tape, FFT(2T/n),
squaring the coefficients obtained, for 2T/ operations, and adding each group
of T/7 together to form 27/n block averages, requiring 2T/n operations, for a
total of

4T/n + FFT(2T/n)
We may compare these by writing directly

T 4T
LA 3
- + FFT(27/7) (3]
4
A L FFT(27/7) - “
n T
4T (5]

—;2— + FFT{T/7)(27/7))

Now, ordinarily 7/2T ~ 1, while T/r ~ 102, so that it is evident that method
[3] is the cheapest. The ratio can be estimated from the expression FFT{n}) ~
n log,n, from which approximate expressions for [3], [4] and [5] may be
derived; setting 7/2T = C, we have

aT 2 2 aT .

C—-+~II092~Z~C- (3]
n n n

AT T 27 27 (41
— 4 - - Iogz—

n T n n
4T T 27 2r 2T T (5)’
-+t = — Iog2 - +— Iogz*

n T N n T

If C =1, the relative cost differences are

4’ -3 2r (6]
Bl 1/2 log, n

[5]" - (3]'_ 27 (7]
3 =1/2 log, .



In turbulent flows 7/n ranges from 10 to 10%; T/r will ordinarily be at least
10? (for 10 % accuracy); thus 2 X 103 > 27/ > 20, 2 X 10° > 2T/n = 2 X10°.

Thus roughly,

14— [31" _ .
<——/— <b. 8
2< 3l 5.5 (8]
N ) Ml (9]

(31’

and the right-hand side of [9] may be even higher if greater accuracy is de-
sired.

Hence, under the worst circumstances, the proposed method, leading to [3], is
1/3 the cost of the next best method, and may be far cheaper. It should be
noted that tape reading times and storage requirements are the same for all
methods; the proposed method gives a bonus, in the form of the correlation.
This would only be obtained at extra cost in the other methods.

it must be noted that there may be other reasons for computing the Fourier
coefficients than obtaining the spectrum, such as determining higher order
statistics of the Fourier coefficients. In such a case, there is, of course, no sub-
stitute for the FFT. In addition, if it is desired to compute correlations to very
long lags (C >> 1), corresponding to very low frequenciesk, the relative costs
change, and [4]’ may be less expensive than [3]’ (although it is clear that
[5]’ will always be more expensive than [4] ).

* a typical need in calculating derivative spectra.



800 William K. George, Jr.
Acknowledgements

The author is grateful to P. Buchhave and P. Beuther for many helpful dis-
cussions and for their assistance in preparing the manuscript, to the organizing
committee of DFC 78 for the invitation to participate, to DISA Electronics
for their contributions to a stimulating and pleasureable experience, and to
E. Graber for typing the manuscript.

The support of the U.S. National Science Foundation, Engineering, Fluid
Dynamics Program and the U.S. Air Force Office of Scientific Research, Aero-
space Sciences Branch, is gratefully acknowledged.



