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Abstract

An alternative to the traditional forms for hot-
wires calibrations is presented which expresses the
velocity as a function of voltage in the form of a
polynomial

U= g AE" or Res= g A'N?
n nau

n=o n=0

where the coefficients are velocity independent. Theso
forms have the advantage that the velocity can be
calculated directly (and recursively) from the measured
voltages once the coefficlents are determined~—a signi-
ficant advantage for the computer implementation.
Moreover, the coefficients occur linearly and can be
datermined by linear regression. Since the primary
errors in calibration are usually in the determination
of velocity whereas the voltage can be more accurately
determined, the regression is properly directed to
minimize the effect of measurement error—-unlike the
King’'s Law expressions and polynomials expressing vol-
tage as function of velocity. Finally the quasi-
linearization of the above expressions is discussed.

Nomenclature

empirical coefficient

empirical coefficient in eqn. 7,8

empirical coefficient

empirical coefficients in eqn. 10

wire diameter

CTA output voltage

CTA ocutput voltage at hypothetical zero velocity
heat transfer coefficient defined by eqn. 4
thermal conductivity of fluid

Knudsen number, =d/A

exponent in temperature loading factor (eqn. 5,14)
Nusselt number defined by eqn. 2

empirical exponent

empirically determined exponent in eqn. 5
empirically determined exponent in eqn. §
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heat transfer rate per unit area from wire
Reynolds number defined by eqm. 2
fluctuating ambient temperature
film temperature, =(T;+T )2

T temperature of ambient ffuid

kinematic viscosity

mean free path
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Intcoduction

The purpose of this article is to discuss the use
of a polynomial for hot wire velocity calibration and
to present some of its advantages over the more common-
1y used King's Lav type expressions. Yhile some of
these advantages are well-knmown (for example, eoase of
computation on a computer), others are not so well-
known. Moreover, there is a natural hesitancy among
many in the flow measuring community to deviate from
King'’s Law linearization because of its long-standing
acceptance. While this may be reasonable when using
anslog linearizers which one already has at his dispo~
sal, it is suggested here that there are definite
advantages to be gained by using a polynomial scheme—~
both for ease of implementation and accuracy. This tis
especially true when implementing a digital lineariza-
tion or using a gquasi-linearization technique.

Kjng's Law

In 1906 King obtained the following snalytical
solution to the problem of heat transfer from potemtial
flow around a cylinder:

Nu = A + BRe!/2 (1)
where

Nu = %g Nusselt Number (2)
Re = gg Reynolds Number 3)



h = 1}WT Heat Transfer Coefficient (4)
v a

and where d is the wire diameter, k is the thermal
conductivity of the fluid, v is the kinematic viscosity
of the fluid, q, is the heat transfer rate per unit
area from the wire, Ty and T, are the wire surface and
ambient fluid temperatures respectively.

While potential flow around a cylinder has little
to do with the flow around a typical hot wire (10~2 ¢
Re ¢ 100), the form of King's Law has been retained in
many of the subsequent attempts to establish empirical
laws. These are reviewed in detail in McAdams (1954)
and Collis and Williams (1959). A commonly used
expression is a composite of those due to Kramers
(1946) and Collis and Williams (c.f. Hinze 1975);
namely,

T
Nu (f#)" = APr? + B Prd Re” (5)
£

where Pr is the fluid Prandtl number and (T,/T)® is a
loading factor which compensates for the variatiom in
the thermal properties of the fluid in the thermal
boundary layer of the wire. Typically m=0.17, p=0.2,
q=0.33 and 0.45 ¢ n < 0.5, the latter depending on
Reynolds number. Additional terms or alternate expres—
sions are needed at very low Reynolds numbers where the
character of the equations is dominated by viscosity.
An example of the former is the linear term often added
at low velocities; the latter is illustrated by the
Oseen—~type logarithmic calibration used by Collis and
Williams (1959) and George et al. (1977).

In rarefied gases or with very fine wires (less
than 1 pm dia. in air), the fact that the wire diameter
and the mean free path A are of the same order of
magnitude is responsible for a breakdown in the conti-
nuum approximation. This can give rise to & dependence
of the calibration on Knudsen number K=d/A (see for
example, Collis and Williams 1959). Additional prob-
lems can occur at very low velocities where natural
convection from the wire can dominate convective ef-
fects, and effectively limit the lower range of appli-
cability of the calibration. These have been discussed
in some detail by Hollasch and Gebhart (1972) and
Warpinski et al. (1972).

The Advantages of a Polynomial

While the above expressions (and others similar to
them) can be used in a variety of applications with
success, they are always awkward and difficult to
implement——both to obtain the calibration curve and to
apply it. The principal reason for this is the manner
in which the voltage depends on the velocity. This is
easily seen by the constant ambient temperature version
of equation (5) which reduces for a given wire to

E% = A + BU® (6)

where E is the bridge top voltage typically measured in
constant temperature anemometer (CTA) applications.

Performing the calibration is complicated by the
fact that the determination of A is not as simple as
measuring BE with U=0, because of the natural comvection
effects mentioned above. This uncertainty is carried

through the analysis since B and n can be determined
only after A is determined and subtracted. Moreover,
it should be noted that fhe usual linear least-squares
type analysis is not applicable to this expression——
firstly because it is not a linear equation, and secon-
dly, because the principal uncertainty in the calib-
ration measurements is usually in U and not in E.

Implementation of even the simple form of King's
Law given in equation (6) is not straightforward
either. Calculating the velocities from the measured
voltage requires a time—consuming process on a compu—
ter, and analog conversion requires sophisticated cir-
cuitry.

The idea and practice of using a polynomial in
both digital and analog linearization is not new.
Cheesewright (1972) discussed digitally linearizing hot
wire signals on a large computer, and commercial poly-
nomial linearizers have been available for a number of
years.

In its simplest form, the velocity is expressed as
the sum of powers of the voltages, that is

U= g AE" (M
n=o

The principal advantages are two-fold: Firstly, a
linear—least squares can be directly applied since the
coefficients occur linearly and since the principal
uncertainty in the observations is on the left, namely
U. Secondly, application of the calibration to mea—
sured data is straightforward and involves only recur—
sive multiplication of the measured voltages.

An alternative form which is equivalent to equa-
tion (7) but is more comvenient for analog implementa—

tion uses the offset voltage E—Eref instead; thus

_ _ n
U= S An(E E ) (8)

n=o

ref

where Ep.¢ can be chosen for convenience. A good
choice for E ¢ is either the ‘zero’ velocity voltage
or a midrange voltage. (Note that for reasons which
will become clear in the next section it is sometimes
preferable to work with equation (7) even if an offset
is used prior to digitization. This is easily accom-
plished by adding the offset to the numbers stored in
the computer.)

Because of the convenience of wusing a linear
least—squares or other statistical algorithm for deter—
mining the coefficients (they can be carried out even
on a hand calculator), it'is no longer necessary to try
to infer or measure the anemometer output at zero
velocity. Thus the calibration can be emtirely perfor—
med in the region where the wire will be used, and the
natural convection regime avoided entirely. (In fact,
this is the manner in which any calibration should be
used, regardless of curve fit used.) B

It is, of course, no surprise that polynomials can
also provide superior fits to the calibration data,
since by increasing the order of the polynomial the
number of adjustable coefficients is also increased.
However, experience in our laboratory indicates that
there is little to be gained by going beyond the fourth
order, i.e.,



4
U=A°+A1E+AZEZ+E3E3+A4E (9)

Independent studies at the Illinois Institute of Tech—
nology by Wleziem (1979) have also shown this choice to
be.superior over a wide range of velocities to other
calibrations commonly in use.

A Polynomial Heat Transfer Law

Equations (7)-(9) have the principal disadvantage
that the coefficients in them are temperature depen—
dent. This can be contrasted with equations (1) and
(5) which are presumed to be valid over a wide range of
temperatures. There is, of course, no reason why a
'heat transfer law’ cannot be postulated which is based
on a power law. Therefore we propose that the Reynolds
number be expressed in half-powers of the Nusselt num-
ber; that is,

Re = ¢ Nu/2 (10)
n=o n

The coefficients C, are now temperature independent and
the temperature dependence enters entirely through the
variations of v and k in the Nusselt and Reynolds
numbers, and through the direct dependence of Nu on
Ty—Ty.

We have had great success in our laboratory with
the fourth order polynomials in Nul/2; that is:

Re = C_+ ClNullz + CNa + C3Nu3/2 + C4Nu2 (11)
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Figure 1, Calibration curve for the DISA 55P76 probe.

The Reynolds number is evaluated at the gas temperature
while the Nusselt number is evaluated at the film
T +T

v
= 2 while =kf.

(Note that Nn1/2¢E for fixed temperature, thus equation
11 reduces to equation 9 for this case.)

temperature (T .); that is v=v_

An example of a single wire calibration (DISA type
55P76 gold-plated 5 um wire) is shown in figure (1). A
second example is the x—wire (DISA type 55P gold-plated
2.5 ym wires) data shown in figure (2). Both of these
cal ibrations were carried ont for conditions correspon—
ding to those present in buoyant plume experiments
where the local flow temperature varied over 20 C and
where flow velocities ranged from 0,12-1.5 m/s.

The curves shown in figures (1) and (2) were
obtained by a linear regression fit to the calibration
data. Generally, it was possible to achieve a maximum
relative deviation (between predicted and measured
velocity) of 0.5% which was well within the accuracy of
the velocity measurement in the calibrator. Note that
it is important in most cases to minimize the relative
error in the curve fitting, and not the absolute error,
since otherwise large errors can result at the lower
velocities.
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Figure 2. Calibration curve for the DISA 55P gold-
plated probe.



Because of slight differences in length and diame-
ter, the calibrations for the two wires do not coin-
cide. These parameters were not measured directly and
there was undoubtedly some deviation from the manu-
facturers stated values, Since the wires are calib-
rated individually, this is not important, although it
would be if a general result (as for a wire of infinite
length) were desired. Two parameters which were diffi-
cult to measure directly were the sensor resistance and
the coefficient of thermal resistivity (and hence the
exact wire temperature), the former, since there was no
sure way to short the probe without breaking it, and
the latter because of a slight dependence on annealing
history. Therefore these parameters were adjusted for
each wire to give the best collapse of the data at all
temperatures. A typical variation was less than a five
percent.

While there may be other polynomial expressions
which c.n be used successfully, the use of polynomials
in Nul/2 fatticularly convenient for digital apaly-
sis since Nn 2.F, the anemometer bridge voltage. The
kinematic viscosity and the thermal conductivity for
gair are conveniently calculated from the empirical
expressions

- (E;L_,1-7 (12)
ref ref

and

kk - (TT )0.7 (13)
ref ref

or alternate expressions. The wire temperature T, is
fixed by the feedback amplifier (constant temperature
mode) and T, can be separately measured by a parallel
resistance wire, thermocouple, or thermistor. Note
that care must be taken in the probe design to ensure
that the thermal sensor is not contaminated by the
thermal wake of the velocity wires, and yet that all
the sensors are close enough to be measuring the same
fluctuation.

In the experiments of Beuther (1980) and Shabbir
(1987) uvsing x-wires, both the ambient temperature and
the velocity anemometer bridge voltages were sampled
simultaneously and equation (11) was used to calculate
the instantaneous cooling velocities onm each wire.
This information was subsequently combined with the
angle calibration to yield the two desired instanta-
neous velocity components. By first calculating Nul/2,

and then simply using recursive multiplication, the

calculation could be rapidly performed.

The effect of including a temperature loading
factor in the Nusselt number, i.e.

Re = i C [N (__)0 17]n/2 (14)
n=

has also been investigated. This approach was not as
successful as the simpler and more direct approach
outl ined above, and is not recommended.

A Quasji-Linear Technigue

Over the past forty years it has been rather

common to avoid analog linearization entirely and work
only with averaged signals. Such a procedure is called
quasi-linearization and is justified by expanding equna-
tion (6) about average values. Thus,

2
(B+e)? = (1 + &) = A + B(B+u)®
£
- 1| n(n-1) n
~ A+ o1+ OO ] (15)

where terms above nle2 have been neglected. By sub-
tracting this equation from the instantaneous equation,

2

squaring and averaging, expressions for U and u” in

terms of E and ez can be obtained (c.f. Corrsin and
Uberoi 1949, Rao and Brzustowski 1969). Such expres—
sions are, of course, valid only as long as uzlﬂz is
truly negligible; in other words, only in low inten—
sity turbulent flows.

Unfortunately for many flows of interest n2/U2
is not negligible——for example, the turbulent jet——and
the only recourse is to linearize before averaging.
The polynomiasl calibration scheme proposed above opens
a new possibility for quasi-linearization which does
not require that powers of the turbulence intensity
remain small, but only the less restrictive condition

that powers of e2/E2 remain small. This represents
a substantial improvement because typicslly

(16)

s [Pl
Wl

This is because of the anemometer offset voltage Eo

which is included in E is usually much larger than 02.

From equation (9) for a constant temperature flow,
it follows from decomposing E and U into mean and
fluctuating parts and averaging that

= A v AR AE + D) ¢ A (B 43R+ )
+ A E + 62 + 4’ + o) 1)

By subtracting this from equation 9, an equation
for the fluctuating velocity can be obtained as:

—e2)+(e2-e2)]

= A1e+A2[ZEe+(ez-:E)]+A3[3E2e+3E(e2

A4[6§2(ez-ez)-4E2e+4E(03-es)+(c4-e4)] - (18)

If we assume all terms above the second order to be

negligible, equation (17) for the mean velocity reduces
to

TZa + AR+ A2E2(1+e2/E2) + A3i3(1+3e2/E2)



+ A4E4(1+6e2/§2) (19)

Typically in the experiments described later, E = 3.4v
while erpg ~ 100 mv, so the neglected terms are at most
3% of the second order terms which are themselves less
than 1% of zeroth order terms and could alsoc be neglec—
ted.

By squaring and averaging equation (18) for the
fluctuating velocity, and again ignoring terms of order
higher than the second, the mean square fluctvating
velocity can be shown to be,;iven by

= [a + a8 4 As(aizz) + A4(4l_33)] e? (20)

Additional terms in 33/83 could be retained; however,
in many applications this seems unnecessary as this

quantity is almost always small compared to ezlEz.

Equations (19) and (20) make it clear that accu-
rate measurements of the mean and rms turbulent veloci-
ties can be made with the quasi-linearization technique
by measuring only the mean and rms anemometer voltages.
This is true even in flows of relatively high turbu-
lence intensities (u'/u ~ 1), because of the relatively
low valuwe of e'/E. Thus, the polynomial linearization
scheme possesses significant advantages when quasi-
linearization techniques must be used.

Quasi-linearization in the Presence of Temperature

Fluctuations

The same ideas expressed above can be applied to
the general heat transfer law, equation (11), to yield
a quasi-linear result which is valid, even when the
temperature is also fluctuating. This follows by ave-
raging equation (11) to obtain

= 3/2 2
+ BzNu + ByNu + B4Nu (21)
If we ignore the temperature dependence of the fluid
properties and restrict ourselves to only modest tempe-—
rature fluctuations (relative to the absolute tempera-
ture, ~ 300°K typically), we can write the Nusselt

number as

Re =B + B Na/2
o 1

Ng = —12 (22)

where C; includes the missing terms from equations (2)
and (4), and is assumed constant, and E; denotes the
anemometer output.

Expanding, we have

(E_+e )’
No = C R (23)

(1,-T) [1—(;:_—'}) ]
{

where t represents the fluctuating temperature. Note
that the average wire overheat ratio is given by
(T'—I?/T and is normally greater than 0.5.

By expanding the denominator in a binomial expan-
sion, and neglecting all terms of order higher than the
second, it is straightforward to show that the terms of
equation (21) are represented by the following expres—
sion

Nu;7i =

- ) —
(clEi)nlz [1 + n(;—l) ° 2 tey

() +53- —— 1] @4
T, -T 2 2 (r-DE ]
n w a

from which Re can readily be evaluated. The mean
velocity can be calculated immediately from

= _ v
T =7 (Re) (25)
The expression for n2 is given by
= Yol(w - o2 ) + By(d® - Na?) +
— — — —2
B§(Nu3 M2 4 Bi(Nu‘ - M2 ) 4+
—_ e —-—= (26)
28,8, 2 - 12 W+ 23133(an nl/2 No3/2y 4
28,8, (No>/2 - Nal’2 Nu?) + 28,8, (a2 - Na Ma¥/2) &+
184 283
28,8, (N’ - Nu o’ M) + 28,8, (Na?/2 - Ng¥/2 M) |
Similarly ;: is given by
1/2 ety 3/2
o 2
ut = — [BlNu t + BzNut + BsNu t + B4Nn t] (27)

Thus a single anemometer used in conjunction with
a fast thermometer (e.g., a resistance wire), D.C. and
rms vol tmeters, and either a multiplication circuit or
summing or differencing amplifiers can yield accurate
measurement of not only U and “2 but also T, t2 and ut,
even when the turbulence intensity is relatively high.
A procedure for doing this which was implemented by
Ahmed (1980).

Table I shows an evaluation of the guasi-lineari-
zation based on (11). The results were obtained in a
buoyant plume by direct linearization of the data using

(é; U(n/s) ut
U |Digital Quasi- % Error | Digital Quasi— % Error
Tech. Linearization Tech. Linearization

.336| .7650 .7259 -5.10 1.145 1.081 ~-4.41
.330§ .7468 «7185 -6.05 0.881 0.824 —6.46
4761 .558 .518 -7.16 1.398 1.282 -8.29
.652} .342 .328 -4.10 0.883 0.776 T-12.1
.940] .115 .1086 -5.50 0.174 0.128 -26.0

Table I. Comparison of gquasi-linearization results
with those computed from instantaneous

measurements in a turbulent plane.



equation (11), and by qnni-linelrization. Even the
second order moments are seen to be accurately measured
for all but the highest turbulence intensities, a real
surprise considering the total disregard of the third:
moments.
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