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Abstract

A theory for turbulent pipe and channel flows is proposed based on a similarity analysis of the
boundary layer equations. It is argued from dimensional and physical considerations that the proper
scaling for these flows near the wall is
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where y* = y/n, 7 = v/usx and RT = (u«R/v). Over most of the flow the appropriate scaling is the
velocity deficit given by
U-U.
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where § = y/R, u. is the friction velocity and U, is the velocity at the centerline. In the limit as Rt — oo,
these reduce to the familiar law of the wall and velocity deficit law respectively.

The fact that both these profiles describe the entire flow for finite values of RY, but reduce to inner
and outer profiles in the limit, is used to determine their functional forms in the ”overlap” region which
both retain. To leading order the profiles in this overlap region are given by
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Unlike the classical theory, the parameters B, B,, and 1/x depend on RT, but are asymptotically
constant and satisfy the constraint
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*This paper was prepared for presentation at Disquisitiones Mechanicae at the University of Illinois, Department of Theo-
retical and Applied Mechanics, Urbana, Ill, Oct 24-26, 1996.



The corresponding friction law is given by
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The variation of k with R is described to an excellent approximation by the semi-empirical relation
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where o and A must be determined from the experimental data. It follows from the constraint that
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The experimental data from the superpipe experiment are carefully examined and shown to be in near
perfect agreement with the new theory. The asymptotic values of the paremeters are given by B;o = 6.5,
Booo = —1.95, and ko = 0.447, while those describing the Reynolds number dependence are given by
A = —0.668, « = 0.44. Thus the last term in the friction relation dies off very slowly with Reynolds
number, and is negligible only when Rt >> 10°. It is interesting that the value of « is almost identical
to that which arises in a similar term for a power law description of the turbulent boundary layer.

Finally, it is suggested that there exists a mesolayer in the region approximately defined by 30 <
yt < 300 in which the energy dissipation evolves from v¢®/y® to ¢°/y. Thus the Reynolds stress and
mean flow equations retain a Reynolds number dependence, even though the terms explicitly containing
the viscosity are negligible. A simple turbulence model suggests that a term Co;y™ ~! should be added
to the overlap velocity profile to account for this effect. Because of the mesolayer, the overlap solution is
clearly evident only beyond y* > 300, well outside where it has commonly been sought.



Contents

1 Introduction 3
2 Scaling Laws for Turbulent Pipe and Channel Flow 4
3 The Overlap Layer: An Application of Near-Asymptotics 6
4 A Solution for the Reynolds Number Dependence 12
5 The Effect of Reynolds Number on the Overlap Range 15
6 A Mesolayer Model 17
7 The Velocity Data 19
8 Summary and Conclusions 25
9 Acknowledgements 25

1 Introduction

Pipe and channel flows have recently become the subject of intense scrutiny, thanks in part to new experi-
mental data which has become available from the superpipe experiment at Princeton (Zagarola and Smits
1996, Zagarola 1996). In spite of the facts that the scaling laws were established for pipes and channels more
than 80 years ago (Stanton and Pannell 1914, Prandtl 1932) and that the now classical theory of Millikan was
offered in 1938 for the friction law and velocity profiles, the subject has remained of considerable interest.
Examples from the last 30 years alone include the analyses of Tennekes (1968), Bush and Fendell (1974),
Long and Chen (1981), and Panton (1990). All of these were essentially refinements on the original Millikan
theory in which the essential functional form of the friction and velocity laws was logarithmic, and only the
infinite Reynolds number state was considered.

Recently Barenblatt 1978, 1993 has suggested that the velocity profiles of pipe, channel and boundary
layer flows were power laws. George and his coworkers (George and Bower 1988, George 1990, 1994, George
and Castillo 1993, George et al. 1993) have argued that both the velocity and friction laws for boundary layers
are power laws; but that pipes and channels are logaritmic. Their work on boundary layers has recently been
summarized in George et al 1996. Specifically, using the averaged equations and an Asymptotic Invariance
Principle, they deduced that the proper scaling velocity for the outer part of the boundary layer was Uo, but
the inner region was scaled by u.. The velocity profiles in the Reynolds number dependent overlap region
were derived as
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where n = v/u, and where C;, C,, and v were functions of §%, asymptotically constant, and satisfied the
constraint equation,
dy dInC,/C;
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where 61t = uxb/v. The friction law was given by

R ™)

U G

The Reynolds number dependence of the parameters was established using the necessary conditions for
similarity and experimental data. In particular,

InC,/Ci = (7 — Yoo) Iné6* + A (8)
and dh
T T T et (9)

where the best choice for h = h(§%) was given by

h(8%) = ﬁmm (10)

The values for the constants were determined from the data to be Yoo = 0.0362, Cyroo/Cico = exp(hes) =
0.0164, C, = Choo = 0.897, A = =291, and o = 0.46. The theory was in excellent agreement with the
boundary layer data, once the effects of the mesolayer (described later) were accounted for.

The purpose of this paper is to apply the same methodology to pipe and channel flows, and to compare
the theory with the new experimental data. The important difference from the other efforts mentioned above
is that the effects of finite Reynolds number are explicitly included.

2 Scaling Laws for Turbulent Pipe and Channel Flow

The streamwise momentum equation for a fully developed two-dimensional channel flow at high Reynolds
number reduces to

1dP 0 oU
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Like the boundary layer, the viscous term is negligible everywhere but very near the wall, so that the
core (or outer) flow in the limit of infinite Reynolds number is governed by
1dP 0

+ - <uv> (12)
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In the limit of infinite Reynolds number, the inner layer is governed by

. < uv > —H/a—U (13)
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This can be integrated from the wall to obtain

o <uv > —H/%—Z (14)
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where u, is the friction velocity. It is obvious that the inner profiles must scale with u, and v since these
are the only parameters in the inner equations and boundary conditions. Hence, there must be a law of the
wall (at least for a limited region very close to the wall).

Because there is no imposed condition on the velocity, except at the wall, an outer scaling velocity must
be sought from the parameters in the outer equation itself. Since there are only two, —(1/p)dP/dz, the
externally imposed pressure gradient, and R the channel half-width, only a single velocity can be formed;

namely,
RdP\'?
e 1
. < pdw) (15)

Unlike the developing boundary layer, the channel flow is homogeneous in the streamwise direction, so
there is an exact balance between the wall shear stress acting on the walls, and the net pressure force acting
across the flow. This equilibrium requires that

u? = _Rdb (16)
p dz
which is just the square of equation 15 above ; thus, U, = u,. Therefore, the outer scale velocity is also
uy, and the outer and inner velocity scales are the same. Thus channel and pipe flows are fundamentally
different from boundary layer flows where asymptotic Reynolds number independence demands that the
inner and outer scales for the mean velocity be different (George et al 1993).

It is obvious that since the length scales governing the inner and outer equations are different, no single
scaling law should be able to collapse data for the entire flow. Moreover, since the neglected terms in both
the inner and outer equations above depend on the ratio of length scales (v. Tennekes and Lumley 1972),
then neither set of scaling parameters will be able to perfectly collapse the data in either region at finite
values of R = Ru./v. The Asymptotic Invariance Principle of George 1994 states that the appropriate
choices for scaling are those which lead to similarity solutions of the inner and outer equations separately in
the limit for which those equations themselves are valid, namely RT — oo.

Thus the appropriate inner and outer scaling laws for the velocity profile are

o= Sy, RY) (1)
and U_U
— = [, R*) (18)

where the outer velocity has been referenced to the velocity at the centerline, U,, to avoid the necessity of
accounting for the change over the inner layer. The only other difference from the boundary layer is that
the outer length scale is some measure of the width of the channel, say the half-width (or pipe radius), R.
Note that both of these describe the entire velocity profile as long as Rt = wu,R/v, the ratio of outer to
inner length scales, is retained. This is because they represent the same solutions of the complete governing
equations for given R, but have been simply scaled differently.



If the scaled profiles above are indeed proper scaling laws, then they should by the Asymptotic Invariance
Principle (AIP) become asymptotically independent of R* in the limit of infinite Reynolds number; i.e.,

lim f;(y*, RY) —  fico(y")
hmfo(yaR-l-) - fooo(y)

as RT — co. In fact, these limiting profiles should be solutions to the inner and outer equations respectively,
which are themselves valid only in the infinite Reynolds number limit.

Figures 1 and 2 show the mean velocity profile data from the superpipe experiment (Zagarola 1996, see
also Zagarola and Smits 1996) in both inner and outer variables. Note the excellent collapse very close to the
wall y* < 10 in inner variables and over the core region (7 > 0.1). Note also that the region of approximate
collapse in inner variables (Figure 1) increases from the wall with increasing Reynolds number, as does the
inward extent of the outer variable collapse (Figure 2).

Unlike most boundary layer measurements, the shear stress for the superpipe data has been independently
determined from the pressure gradient. The close proximity of the data near the wall to the exact solution
valid there (ut = y*) gives considerable credibility to the velocity measurements, even without correction.
The direct determination of the shear stress from the pressure drop down the pipe (without choosing it to
collapse the ‘log’ layer which can only be assumed to collapse) is especially important since there is some
evidence of a lack of complete collapse of the data in Figure 1 outside of yt = 10, especially for the lowest
Reynolds numbers. The lack of collapse is even more apparent for the outer scaling in Figure 2 inside of
y =~ 0.1 which includes all of the overlap region discussed below.

3 The Overlap Layer: An Application of Near-Asymptotics

It is obvious that since the outer and inner profiles scale differently and the ratio of length scales is in
fact the Reynolds number, then the region between the two similarity regimes cannot be Reynolds number
independent, except possibly in the limit of infinite Reynolds number. The actual mean velocity profile
at any finite Reynolds number, however, is the average of the instantaneous solutions to the Navier-Stokes
equations and boundary conditions. And this profile, whether determined from a real flow by measurement,
a DNS simulation, or not at all, exists, at least in principle, and is valid everywhere regardless of how it
is scaled. Therefore both scaled forms of this solution, f;(y*, Rt) and f,(y, Rt) (equations 17 and 18
respectively), represent the velocity everywhere, at least as long as the Reynolds number is finite. In fact,
the parameter RT uniquely labels the fanning out of the inner scaled profiles in the outer region and the
outer scaled profiles near the wall in Figures 1 and 2.

Thus, f; and f, are quite unlike their limiting forms, f;o, and f,o,, Which are only infinite Reynolds
number solutions for the inner and outer equations respectively. If f; and f, are considered instead of f;o,
and f,eo (as is usually done), the problem of determining whether an overlap region exists is quite different
from the usual asymptotic matching where infinite Reynolds number inner and outer solutions are extended
and matched in an overlap region if one exists. Therefore, the objective here is not to see if f; and f, overlap
and match them if they do. Rather, it is rather to determine whether the fact that these scaled finite Reynolds
number solutions (to the whole flow) degenerate at infinite Reynolds number in different ways can be used to
determine their functional forms in the common region they describe in the limit. The methodology outlined
below (termed Near-Asymptotics) is an extension of Intermediate Asymptotics (v. Barenblatt 1978), and
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is necessary because the traditional approach cannot account for the possibility of the matching parameter
tending to zero, as might be the case.

The fact that analytical forms for these Reynolds number dependent solutions are not available, and
they are only known in prinicipal turns out not to be a significant handicap. There are several pieces of
information about the two profiles which can be utilized without further assumptions. They are:

e First, since both inner and outer forms of the velocity profile must describe the flow everywhere as
long as the ratio of length scales, Rt = R/n, is finite, it follows from equations 17 and 18 that

1 7 RY) = £ (ut Rt
) + fo(y, BT) = fily™, RT) (19)
where g(R*) is defined by
9(RY) = w./U. (20)

e Second, for finite values of RT, the velocity derivatives from both inner and outer forms of the velocity
must also be the same everywhere. It is easy to show that this implies that

_8f0 o+ 8fz
Vay =V ot (21)

for all values of R and y.

e Third, as noted above, in the limit both f, and f; must become asymptotically independent of R¥;
ey fol RY) = Fouo(@) and fi(y*, R¥) = fico(y+) as R¥ — o0,

Now the problem is that in the limit as Rt — oo, the outer form fails to account for the behaviour close
to the wall while the inner fails to describe the behavior away from it. The question then is: In this limit
(as well as for all finite values approaching it) does there exist an “overlap” region where equation 19 is still
valid? (Note that boundary layer flows are quite different from pipe and channel flows since the overlap layer
in the latter remains at fixed distance from the wall for all z because of the streamwise homogeneity, as long
as the external parameters are fixed, while in the former it moves away from the wall with increasing z.)

The question of whether there is a common region of validity can be investigated by examining how
rapidly f, and f; are changing with R*. The relative variation of f; and f, with Reynolds number can be
related their Taylor expansions about a fixed value of Rt;i.e.,

fily"s RY + ARY) — fi(y*; RY) 1 3fi(y*; RY)
AR* fi(yt, RT) T fiyt,RY)  ORT
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and

_=S,(RT,7) (23)
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Thus S; and S, are a measure of the Reynolds number dependences of f; and f, respectively. Both vanish
identically in the limit as R* — co. If y*,,,.. denotes a location where outer flow effects begin to be strongly
felt on the inner scaled profile, then for y* < y*, .., S; should be much less than unity (or else the inner
scaling is not very useful). Similarly, if g,,,;,, measures the location where viscous effects begin to be strongly



felt (e.g., as the linear velocity region near the wall is approached), then S, should be small for § > ¥,,;,,-
Obviously either S; or S, should increase as these limits are approached. Outside these limits, one or the
other should increase dramatically.

The quantities S; and S, can, in fact, be used to provide a formal definition of an “overlap” region where
both scaling laws are valid. Since S; will increase drastically for large values of y for given Rt and S, will
increase for small values of y, an “overlap” region exists only if there exists a region for which both S; and
S, remain small simultaneously. In the following paragraphs, this condition will be used in conjunction with
equation 19 to derive the functional form of the velocity in the overlap region at finite Reynolds number,
hence the term ‘Near-Asymptotics’. This is, of course, Intermediate Asymptotics, but at finite Reynolds
numbers.

Because of the movement of the matched layer toward the wall with increasing R, it is convenient and
necessary to introduce an intermediate variable y which can be fixed in the overlap region all the way to
the limit, regardless of what is happening in physical space (v. Cole and Kevorkian 1981). A definition of §
which accomplishes this is given by

j=y R*" (24)
or

yt = gRr*" (25)
Since ¥ = yt /Rt it follows that

y=gRt""" (26)

For all values of n satisfying 0 < n < 1, § can remain fixed in the limit as RT — oo while ¥ — 0 and
yT — co. Substituting these into equation 19 yields the matching condition on the velocity in terms of the
intermediate variable as ]
— R RY) = fi(RT "y, RY 27
g(R+)+fO( y) ) fl( y) ) ( )
Now equation 27 can be differentiated with respect to Rt for fized § to yield equations which explicitly
include S; and S,. The result after some manipulation is

v (6@{) = L RMSI(t RN LT RY) — 8.5 BY) (5 RY)] (28)
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where
1 Rt dg B d(1/g)

k(R¥) = ¢ dR*  dInR*

(29)

Note that the first term on the right hand side 28 is at most a function of Rt alone, while the second term
contains all of the residual y-dependence.
Now it is clear that if both
RY|S,|f, << 1/k (30)

and

RY|Si|f; << 1/x (31)

then the first term on the right-hand side of equation 28 dominates. If 1/k — 0, then the inequalities are
still satisfied as long as the left hand side does so more rapidly than 1/k. Note that a much weaker condition
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can be applied which yields the same result; namely that both inner and outer scaled profiles have the
same dependence on Rt ie. S;f; = S,f, in the overlap range so 1/k is the only term remaining. If these
inequalities are satisfied over some range in y, then to leading order, equation 28 can be written as

_0fs _ 1

y Wk (32)

The solution to equation 32 can be denoted as f§1) since it represents a first order approximations to f,.
It is not, however, simply the same as f,o, because of the Rt dependence of 1/k, but reduces to it in the
limit. Thus, by regrouping into the leading term all of the y-independent contributions, the method applied
here has yielded a more general result than the customary expansion about infinite Reynols number. (It is
also easy to see why the usual matching of infinite Reynolds number inner and outer solutions will not work
if the limiting value of 1/ is zero.)

From equations 21 and 32, it follows that

+ Of; 1

dy* T (33)

An interesting feature of these first order solutions is that the inequalities given by equations 30 and 31

determine the limits of validity of both equations 32 and 33 since either S, or S; will be large outside the

overlap region. Clearly the extent of this region will increase as the Reynolds number (or R*) increases.
Equations 32 and 33 can be readily integrated to yield (to leading order)

1
NG, RY) = mln§+ B,(RY) (34)

and )
Ot RY) = mlny+ + Bi(RY) (35)

In the remainder of this paper, the superscript (1)’ will be dropped; however it is these first order solutions
that are being referred to unless otherwise stated. Thus the velocity profiles in the overlap are logarithmic,
but with parameters which are Reynolds number dependent.

The parameters 1/x, B; and B, must themselves be asymptotically constant since since the equations to
which they are solutions are themselves Reynolds number independent in the limit (the AIP). Moreover, the
limiting values, Koo, Bico, and B,o, cannot all be zero, or else the solutions themselves are trivial. In fact,
since in the limit of infinite Reynolds number the energy balance in the overlap range reduces to production
equals dissipation (i.e.,

1

+:d+d':—
et = du /dyi) (ﬁy+

) (36)
and the energy dissipation rate must be finite and non-zero, it follows that 1/ks, must be finite and non-zero.
It will be shown below that these conditions severely restrict the possible Reynolds number dependencies for
the parameters.

The relation between u, and U, follows immediately from equation 19; i.e.,

1 1
ok K(R+)an+ + [Bi(RY) — Bo(R")] (37)
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Thus the friction law is entirely determined by the velocity parameters for the overlap region. However,
equation 29 must also be satisfied. Substituting equation 37 into equation 29 implies that «, B;, and B,

are constrained by
lnR"' d(l/"f) — _d(BZ _BO) (38)
dR* dR*

Equation 38 is exactly the criterion for the neglected terms in equation 28 to vanish identically (i.e.,
Sifi —Sofo = 0). Therefore the solution represented by equations 34 — 38 is, indeed, the first order solution
for the velocity profile in the overlap layer at finite, but large, Reynolds number. Clearly when y* is too big
or § is too small for a given value of R, the inequalities of equation 30 and 31 cannot be satisfied. Since
all the derivatives with respect to Rt must vanish as R — oo (the A.L.P.), the inner range of the outer
overlap solution is unbounded in the limit, as is the outer range of the inner.

Thus the velocity profile in the overlap layer is logarithmic, but with parameters coefficients and exponent
which depend on Reynolds number, R*. The functions x(R*), B;(R*) and B,(R*) must be determined
either empirically or from a closure model for the turbulence. Regardless of how they are determined, the
results must be consistent with equation 38.

4 A Solution for the Reynolds Number Dependence

It is convenient to transform equation 38 using

H(RT) = (l — i) In RY + (B; — B,) (39)

K Keo
where H = H(R™) remains to be determined. It is easy to show that if H(R™) satisfies

1 1 dH
- - 4
K Koo dln Rt (40)

then equation 38 is satisfied. It follows immediately that

1 1
Lol Ly pe + H(RT) (41)
q Uy Koo

Thus the Reynolds number dependence of H(R™) determines that of both x and B; — B,.
It is easy to show that the condition that both B;., and B,,, be finite and non-zero requires that:

e Fither B;, B, and k remain constant always;
or

o (i) 1/k — 1/Ko faster than 1/In R*, and

e (ii) H(RY) — Ho = constant.

Obviously from equation 39,
Ho, = Bioo — Booo (42)
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An empirical choice for H(Rt) — H,, satisfying these conditions is suggested by the boundary layer
analysis of George et al (1993); it is,

A

H(R+)—-Hypo = ———— 43
(14) e (43)
Note that conditions (i) and (ii) above imply that o > 0.
Using this in equation 41 yields
U 1 A
£ = —InR"Y+[Bicxw — Booo _— 44
Us Koo R+ [Bieo I+ [In R+]® (44)

Note that as Rt — oo this reduces to the classical solution of Millikan 1938.
The Reynolds number variationn of 1/k and B; — B, can be immediately obtained from equations 39,

40 and 43 as

1 1 —aA
K Koo  (InRY)H® (45)
and ) 4
(Bi — By) — (Bioo — Bowo) = % (46)

Figures 3a and 3b show the friction data of the superpipe experiment of Zagarola and Smits (1996).
Careful scrutiny reveals that the data do not fall on a straight line, so a simple logarithmic friction law with
constant coefficients does not describe all the data. Figure 3b also shows two curves: The first represents
a regression fit of equation 44 (also shown on Figure 3a), while the second shows only the asymptotic log
form of equation 44.

The former provides an excellent fit to the data for all Reynolds numbers and asymptotes exactly to the
latter, but only at much higher Reynolds numbers. The differences although slight are very important since
they entirely determine (or reflect) the Reynolds number dependence of the parameters 1/, B; and B,. The
latter will be seen later to be especially sensitive to this dependence.

The values obtained for the friction law parameters are koo = 0.447, Bjoo — Boso = 8.45, while those
describing the Reynolds number dependence are A = —0.668 and o = 0.441. Note that the values of B;
and B,s, cannot be determined individually from the friction data, only their difference. The values of ke
and Bje — Boeo differ only slightly from the values determined by Zagarola (1996) (0.44 and 7.8) using the
velocity profiles alone and assuming that the asymptotic state had been reached. All the parameters are
remarkably independent of the particular range of data utilized. For example, of the 26 different Reynolds
numbers available, the highest 15 Reyolds numbers could be dropped before even changing the second digit
of the values of the parameters cited above. This suggests strongly that the data are in fact a smooth curve,
uncontaminated by roughness,; and that the proposed form of H properly captures the shape of the Reynolds
number dependence.

For the boundary layer the friction data were not as reliable as those reported here, so that the functional
form of H had to be inferred after a variety of attempts to describe the variation of the exponent in a power
law description of the velocity profile in the overlap region. Interestingly, the value for a obtained here is
almost exactly the value obtained for the boundary layer data (0.461 versus 0.44). In view of the differing
definitions of the length scales, the physical significance of this, if any, is not yet clear.

13
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5 The Effect of Reynolds Number on the Overlap Range

The parameters established for the friction law will be used below to calculate the values of x, B; and
B, for each Reynolds number of the superpipe data. Only either of the B’s need be established from the
experiments since their difference is known from equation 39. Before carrying out a detailed comparison
with the velocity data, however, it is is useful to first consider exactly which region of the flow is being
described by the overlap profiles. Also of interest is the question of how large the Reynolds number must be
before the flow begins to show the characteristics of the asymptotic state.

The overlap layer identified in the preceding sections can be related directly to the averaged equations
for the mean flow and the Reynolds stresses. From about y* > 10 — —20 approximately, out to about the
center of the flow, the averaged momentum equation is given approximately by

_3<uv>_ld_P (47)

0=
Jy p dx

It has no explicit Reynolds number dependence; and the Reynolds shear stress is drops linearly all the way
to the center of the flow. Inside about §¥ = 0.1, however, the Reynolds shear stress is nearly constant. In
fact, at infinite Reynolds number the pressure gradient term vanishes identically and the mean momentum
equation reduces to
0 < uv >
dy

At finite (but large) Reynolds numbers this region is similar to the developing boundary layer where the
Reynolds stress is effectively constant. Obviously it it reasonable to expect the overlap region to more or less
correspond to this constant stress layer. (Note that many low Reynolds number boundary layer experiments
do not have a region where this is even approximately true because the convection terms are not truly
negligible. Hence it is unreasonable to expect such experimental profiles to display any of the characteristics
of the overlap described above, except possibly in combination with the characteristics of the other regions.)

Even when there is a region of reasonably constant Reynolds stress, however, this is not the entire story
because of the Reynolds number dependence of — < uv > itself. And it is this weak Reynolds number
dependence which is the reason that &, B;, and B, are only asymptotically constant. The origin of this weak
Reynolds number dependence (which is well-known to turbulence modellers) can be seen by considering the
Reynolds transport equations. For the same region, y* > 10— —20, the viscous diffusion terms are negligible
(as in the mean momentum equation), so the equations reduce approximately to (Tennekes and Lumley

1972),

0= (48)

8UZ o< U; UL U2 >
>+ <p - —

€ik
61‘2 8352 !

0=—(<p >)— | < wug > g%—l— < ugpusg > (49)
where U; = Ué;1. Thus viscosity does not appear directly in any of the single point equations governing this
region, nor does it appear in those governing the outer boundary layer.

In spite of the above, however, viscosity can be shown to play a crucial role in at least a portion of the
constant stress layer, even at infinite Reynolds number. The reason is that the scales of motion at which
the dissipation, €1, actually takes place depend on the local turbulence Reynolds number, R; = ¢*/ve. For
R; > 1000 approximately, the energy dissipation is nearly completely controlled by the large energetic scales
of motion. These are effectively inviscid, but control the energy transfer through non-linear interactions (the

15



energy cascade) to the much smaller viscous scales where the actual dissipation occurs (v. Tennekes and
Lumley 1972). When this is the case, the dissipation is nearly isotropic so €;; & 2¢é;;. Moreover, € can be
approximated by the infinite Reynolds number relation: € ~ ¢3/L where L is a scale characteristic of the
energy-containing eddies. The coefficient has a weak Reynolds number dependence, but is asymptotically
constant. Thus, the Reynolds stress equations are effectively inviscid, but only exactly so in the limit. Note
that in this limit the Reynolds shear stress has no dissipation at all, i.e., €15 = 0.

At very low turbulence Reynolds number, however, the dissipative and energy-containing ranges nearly
overlap, and so the latter (which also produce the Reynolds shear stress) feels directly the influence of
viscosity. In this limit, the energy and dissipative scales are about the same, so the dissipation is more
reasonably estimated by ¢ ~ vq?/L?, where the constant of proportionality is of order 10. The dissipation
tensor, €, is anisotropic and €13, in particular, is non-zero (Launder 1993). (Hanjalic and Launder 1972, for
example, take €15 = (— < ujuz > /¢?)e.)

For turbulence Reynolds numbers between these two limits, the dissipation will show characteristics of
both limits, gradually making a transition from € ~ vq?/L? to € ~ ¢®/L as R; increases. Thus the Reynolds
stresses themselves will feel directly this, and will show a strong Reynolds number dependence. Obviously,
in order to establish when (if at all) parts of the flow become Reynolds number independent, it is necessary
to determine how the local turbulence Reynolds number varies downstream and across flow.

Over the outer boundary layer (which is most of it), L & R/2 and ¢ &~ 3u.. So when R* > 7,000, the
dissipation in the outer flow is effectively inviscid. Above this value the mean and turbulence quantities
in the core region of the flow should show little Reynolds number dependence, This is indeed the case as
illustrated by Figure 2. The outer region can, of course, not be entirely Reynolds number independent,
except in the limit, and this residual dependence manifests itself in the overlap layer in the slow variations
of k and B,, for example.

The near wall region is considerably more interesting since in it the scales governing the energy-containing
eddies are constrained by the proximity of the wall. Hence, the turbulence Reynolds number, R;, depends
on the distance from the wall, y. In fact, R; ~ y* with a coefficient of about 3; so, in effect, y* is the
turbulence Reynolds number. Because of this, two things are immediately obvious:

e First, as the Reynolds number increases more and more of the pipe (in outer variables) will become
effectively inviscid and will be governed by the inviscid dissipation relation. And correspondingly, the
mean and turbulence quantities in the overlap layer will become Reynolds number independent, albeit
very slowly. Clearly these limiting values cannot be reached until the entire overlap layer is governed
by the infinite Reynolds number dissipation relation and its coefficient has reached the limiting value.
Obviously this can happen only when there is a substantial range satisfying y* > 300 and for which the
mean convection terms are negligible, typically ¥ < 0.1. Thus the asymptotic limits are realized only
when 300v /u, << 0.1Ror Rt >> 3000. Therefore the overlap layer below approximately RT = 30, 000
should display a Reynolds number dependence, not only in &, B, and By, but correspondingly in the
behavior of < u? >, < uv >, etc.

o Second, there will always be a MESOLAYER !, below about yt = 300 in which the dissipation can
never assume the character of a high Reynolds number flow, no matter how high the Reynolds number

1This appropriates a term from Long 1976 (see also Long and Chen 1982) who argued strongly for its existence, but from
entirely different physical and scaling arguments which we find untenable. Nonetheless, despite the skepticism which greeted
his ideas, Long’s instincts were correct.
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becomes. This is because the dissipation (and Reynolds stress as well) can never become independent
of viscosity — even though the mean momentum equation itself is inviscid above yt a 10! This
fact is well-known to turbulence modellers (v. Hanjalic and Launder 1972), but the consequences for
similarity theory and asymptotic analyses do not seem to have been noticed previously. It is particularly
important for experimentalists who have routinely tried to apply asymptotic formulas to data from to
this region, wrongly believing the mesolayer to be the overlap region.

Thus the constant stress layer is really four separate regions, each having their own unique character. The
overlap layer (y* > 300, ¥ < 0.1) obtained in the preceding section which is nearly inviscid; an ‘in-between
layer’ or mesolayer (10 < y* < 300) in which the viscous stresses are negligible, but in which viscosity acts
directly on the turbulence scales producing the Reynolds stresses; a buffer layer (5 < y* < 10) where the
Reynolds stress and viscous stress both act directly on the mean flow; and the real viscous sublayer, the
linear region near the wall (y* < 5) where the viscous stresses dominate. And of these four regions, the
overlap layer will be the last to appear as the flow develops or as the Reynolds number is increased. Thus,
the overlap layer will be the most difficult to identify at the modest Reynolds numbers of most laboratory
experiments. ldentification will be easier if the properties of the mesolayer are known, and accordingly a
model for it is presented in the next section.

6 A Mesolayer Model

It was Long 1976 (see Long and Chen 1982) who first argued for the existence of a mesolayer — but on very
different physical grounds. He did not consider the turbulence energy equation, but instead only the mean
momentum equation. From it he argued that some residual viscous stress must be retained in addition to
the Reynolds stress, and used this to define a meso-length scale which varied as the square root of the flow
Reynolds number. All subsequent deductions were based on matching four flow regions, one of which was
characterized by this new length scale. The suspicion that a new layer involving viscosity and inertia was
needed between the overlap and viscous layers has proven to be quite insightful. The arguments, however, can
not be justified since there is simply no physical basis for arguing that the viscous stress must be important
in the equations for the mean flow. In fact it is negligible outside of yT ~ 10. It was argued in the preceding
section that viscosity enters the dynamics of the mesolayer only through its effect on the energy cascade, and
that is reflected in the nature of the dissipation, and in turn in the component Reynolds stress equations.

It is easy to show that no new length scale is necessary to account for this dissipation effect. The whole
reason for the existence of this mesolayer is that the local turbulence Reynolds number near the wall can
never be large enough for the dissipation to become inviscid. Near the bottom of the constant stress layer,
the scales of the energy-containing eddies and those at which the energy is dissipated will be nearly the same
size, and in this limit € ~ vq?/L? where L is typically about equal to y, the distance from the wall. At the
outer part of the constant stress layer, the required scale separation will have been achieved — if the flow
Reynolds number is high enough — so the dissipation is nearly inviscid and thus ¢ ~ ¢3/y. The essence
of the mesolayer is that neither of these limits applies and a transition from one to the other is occuring.
Thus in the mesolayer, vq?/y? ~ ¢3/y, and it follows immediately the length scale for the mesolayer is just
proportional to y ~ v/q & v/u,. But this just says that the mesolayer length scale is proportional to the
viscous one. It does show clearly, however, that the mesolayer is bounded by relatively fixed values of yt
as argued earlier, the slight variation being due to the fact the ratio q/u. has a weak Reynolds number
dependence (for a given of y*) and is constant only in the limit.
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In the mesolayer, the nature of the dissipation is changing with distance from the wall as the local
Reynolds number, yT, increases. And it is this evolution from low to high Reynolds number dissipation
which provides a clue for building a model for at least part of the mesolayer. Note that the analysis below
is a physical model based on an assumed form of the dissipation, and is therefore quite distinct from the
AIP and Near Asymptotics approach described earlier. It will be shown, however, to be consistent with the
latter, and to lend considerable insight into it.

Since it is the dissipation itself which creates the mesolayer, it is reasonable to begin by assuming a form
for how the dissipation changes with Reynolds number, and then pursuing its logical consequences. A simple
model incorporating both the high and low Reynolds number dissipation limits is

3 2

€= cqu —}—Cgl/% (50)
For very high values of ¢L/v the first term dominates, but the second overwhelms it when ¢L/v << ¢a/¢1.
Variations on this idea have appeared in numerous low Reynolds number turbulence models (c.f. Hanjalic
and Launder 1973, Reynolds 1976, Rodi 1993). Since only the near wall region is of interest, it is appropriate

to take L = y, as done by many single equation turbulence modellers for the near wall region.
As long as 0.1Rt > y* > 30 approximately, the kinetic energy equation for the turbulence reduces to
simply a balance between production and dissipation, the turbulence transport terms being negligible; i.e.,

- <uv> v =c (51)
dy
The turbulence transport terms are certainly not negligible in the region 10 < y* < 30 which is also part
of the mesolayer, so any success of the model in this region must be regarded as fortuitous. (The authors
are grateful to Drs. M.M. Gibson and W.P. Jones of the Imperial College of London for helpful discussion
about this region.)
Now consistent with the single equation turbulence model is the assumption that the Reynolds stress can
be modelled with an eddy viscosity acting on the mean velocity gradient; i.e.,

d
— < uv>= th—g (52)
The usual choice of turbulence modellers is (Rodi 1993)
4
vy = cgq? (53)

Substituting the dissipation and Reynolds stress models into the energy balance of equation 51, dividing
by ¢*/e¢, and taking the square root yields
C2 v
21 = 54
<03) y? (54

oU cl)q
— ==X+
dy <63 Yy

dut c1 q 41 I y-2 .
= (0) () () %)

or in inner variables,



Obviously it is the factor q/u, which determines whether the first term on the right hand side integrates to a
logarithm or a power law (or something else). For boundary layer flows, George et al. 1996 have shown this
to depend on a power of yT, consistent with the power law velocity profile. Pipe and channel flows, however,
show a logarithmic dependence for all quantities. If the additive constant in the logarithm dominates so that
q/ux itself is nearly constant, then the first term yields the logarithmic overlap profile derived earlier plus
an additional term due to the low local Reynolds number; i.e.,

1 -
ut = [;ln +B]+ Coyt ™

(56)
where the parameters ¢1, ¢2 and c3 have been collected into 1/, B; and C,;. Note that the second term is
unaffected by the behavior of q/u.; hence there is reason to hope that it may be the same for all wall-bounded
flows. (Note that equation 56 can also be derived using only the overlap characteristics without reference

to an eddy viscosity model.)

Thus the additional contribution of the mesolayer to the velocity profile (in inner variables) is Cmiy“'_l.

The parameter C,,; must be negative and should be nearly constant. For the boundary layer profiles it
appears that this is indeed the case and C),; & —37. This value will be used in the next section without any
attempt to optimize it for the pipe flow data. It is important to note that because of the relative values of
B; and C}y;, there is no region where the second term dominates, at least where the assumptions are valid.
Therefore there will be no y+_1—layer, only a modified log region. Moreover, because of this, the first term in
equation 56 will be clearly visible only when the second is negligible. Since this is not the case for many of
the low and moderate Reynolds number experiments, it will not be possible to even identify the parameters
B;, B,, and k for most of the data without first accounting for the mesolayer contribution.
Equation 56 can be expressed in outer variables as

U-U, 1 Cmo
= “InR*+ B, + = (57)
U K ]
where .
Cmo = miR+_ (58)

Obviously if Cyy; is constant, Cy, 1s not.

Before leaving this section it might be noted that it should be possible to calculate values for the pa-
rameters using the values for ¢1, ¢3 and ez from the many turbulence models which have determined them.
Unfortunately, all have been chosen to conform to the old log law, and at distances from the wall which are
well inside the mesolayer defined here (eg. Reynolds 1976). If the above arguments are indeed correct, then
these model constants should be re-evaluated.

7 The Velocity Data

Now that the approximate region of validity of the overlap solution has been established as 300 < y* < 0.1R*
it is possible to test the theoretical profiles and the proposed model for the Reynolds number dependence. If
they are correct, only an independent determination of either B; or B, is necessary to completely specify the
profile, the rest of the parameters having been determined from the friction data. Also it should be possible
to determine whether the proposed mesolayer model is reasonable, at least for those data sets where data
are available below yt = 300.
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For all of the data sets it appears B; = 6.50 is nearly optimal (at least for values of Rt < 850, the
lowest available from the superpipe experiment), so that for the remainder of this paper it will be assumed
that B; = Bjco. This value is very close to the value of 6.3 determined by Zagarola and Smits (1996a) by
assuming & fixed at 0.44. Since the difference, B;o, — Booo = 8.45, was established from the friction data, it
follows immediately that B,eo = —1.95.

The constancy of B; implies that it is B, which shows all the Reynolds number dependence of the
difference given by equation 46. Figures 4 and 5 show the theoretical variation of 1/k and B, with Reynolds
number (equations 39 and 40. Clearly both converge very slowly to their asymptotic values. This slow
approach has far more relative effect on B, than it does on 1/k, however, since B, has achieved only 85%
of its asymptotic value at Rt = 105. The observed variation of 1/x and B, and the constancy of B; can be
contrasted with the boundary layer results of George et al 1996 in which C,, the outer coefficient was nearly
constant while the power exponent v and the inner coefficient C; varied over the entire range of Reynolds
numbers available.

The relative behavior of B, and B; means that the outer profile scaling shows more variation with
Reynolds number in the overlap region than does the inner where only x varies. This undoubtedly explains
a great deal of the problems historically in establishing what B, is and in determining whether the outer
scaling is correct. And it might also explain the conclusion of Zagarola and Smits (1996) that a different
scale for the outer flow is required, especially if attention is focussed on the overlap region instead of the
core region of the flow.

of the superpipe data in inner and outer variables respectively, together with the overlap solution using
equations 34 and 35 and the model equations 45 and 46. The vertical lines on each profile show the
suggested bounds for the mesolayer model (30 < y* < 300 or 30/R*T < 7 < 300/R*) and the overlap region
(300 < y* < 0.1R* or 300/R* <y < 0.1). Note that because of the varying Reynolds number, the limits
depending on RT are different for each profile. As noted above, the boundary layer value for the mesolayer
parameter of C,,; = —37 was used.

The overlap plus mesolayer solution provides an excellent fit to the data from 70 < yt < 0.1R* for
the entire range of Reynolds numbers available. The mesolayer term captures well the point of departure
from the overlap solution, as well as the deviations from it below y* = 300, even for the lowest Reynolds
number where there is no overlap region at all. It does not, however, describe the profile down to yt = 30
as expected, since the velocity data bend away from the overlap plus mesolayer solution back to the overlap
solution alone below about y* = 80 — 90. This may indicate that the lower limit on the proposed mesolayer
model is higher than believed, or it may simply represent a problem with the data used here which were
not corrected for the various sources of error near the peak in the turbulence intensity (Smits, private
communication). The corrections which were applied by Zagarola (1996) to some of the data were primarily
important below y* = 100 and move the data close to the mesolayer/overlap result. The excellent agreement
for 100 < y* < 300, however, suggests that both the form of the mesolayer model and the boundary layer
value for C),; are essentially correct. The agreement between experiment and theory is particularly gratifying
in view of the fact that the velocity data were only used to establish B;, the remaining parameters having
been entirely determined by the friction data.

It is easy to see how the deviations from the log law due to the mesolayer could be viewed as a separate and
distinct region. For example, Zagarola and Smits (1996) argue that the region 50 < y* < 500 is described by
a 1/7 power law with a coefficient of 8.7, and not the logarithmic profile (with constant coefficients) which
fits the inner solution between 500 < y* < 0.1RT. If a power law is fitted to data generated by the overlap
plus mesolayer profile proposed herein using the constants determined above, it produces almost exactly the
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same 1/7-power and 8.7 coefficient over the same range. Thus it is clear that the same phenomenon is being

described.

8 Summary and Conclusions

The Asymptotic Invariance Principle, the deductions from Near-Asymptotics, and the Mesolayer model
have provided an excellent description of the entire range of data for the superpipe experiment from 30 <
yT < 0.1RT. Of the six parameters needed to describe the flow, four had to be determined from the data
(Koo = 0.447, Bjoo = 6.5, Byoo = —1.95, and A = —0.668), and are probably unique to pipe flow. The
mesolayer parameter, C,,; = —37 and the parameter describing the Reynolds number dependence, a = 0.44,
appear to be the same as for the boundary layer. The possible universality of the latter two is particularly
interesting, especially given the agreement between theory and experiment.

Finally, it should be noted that for their boundary layer data analysis, George et al 1996 used a procedure
which was the reverse of that used here. There a series of careful attempts was first made to obtain directly
the variation of the parameters from the velocity profiles, then the friction law was inferred and shown to
be in agreement with direct measurements. The fact that the procedure followed here has been equally
successful lends credibility to both analyses, especially in view of the importance of the subtle difference in
the friction law between the model proposed here and a simple log law with constant coefficients.

9 Acknowledgements

The authors are particularly grateful to Professor L. Smits and Dr. M. Zagarola for making their work
available to us, and to M. Wosnik for helping to analyze the data.

References

[1] Barenblatt, G.J. (1978) Similarity, Self-similarity, and Intermediate Asymptotics, Plenum, NY.

[2] Barenblatt, G.J. (1993) Scaling laws for fully developed shear flow. Part 1, Basic hypotheses and
analysis. J. Fluid Mech., vol. 248, 513 —520.

[3] Barenblatt, G.J. and Prostokishnin, V.M. (1993) Scaling laws for fully developed shear flow. Part
2, Processing of Experimental Data. J. Fluid Mech., vol. 248, 513 —520.

[4] Cole, J.D. and Kevorkian, J. (1981) Perturbation Methods in Applied Mathematics, Springer, NY.

[5] Gad-el-Hak, M. and Bandyopadhyay, P.R. (1994) Reynolds Number Effects in Wall-Bounded Flows,
Applied Mech. Rev., 47, 307 —3365.

[6] George, W.K. (1995) Some New Ideas for Similarity of Turbulent Shear Flows, Proc. of Lisbon Conf.
on Turbulence and Turbulent Heat Transfer, Hanjalic and Pereira, eds., Elsevier, Amsterdam.

[7] George, W.K. (1989) Self-Preservation of Turbulent Flows and Its Relation to Initial Conditions
and Coherent Structures, in Advances in Turbulence (George and Arndt, eds.), 39 — 73, Hemisphere,
NY.

25



[8] George, W.K. (1995) Some New Ideas for Similarity of Turbulent Shear Flows, Proc. 1994 Conf. on

Turbulence and Turbulent Heat Transfer, Hanjalic and Peira, eds, Elsevier, Amsterdam.
[9] George, W.K. and Bower,D (1988) APS/DFD Meeting, Buffalo, NY.
[10] George, W.K. (1990) ASCE Mtg, San Diego.

[11] George, W.K., Knecht, P. and Castillo, L. (1992) The Zero-Pressure Gradient Boundary Layer
Revisited, 13th Symposium on Turbulence (Reed, X.B., ed.), Rolla, Mo.

[12] George, W.K., Castillo, L. and Knecht, P. (1992) The Zero-Pressure Gradient Boundary Layer
Revisited, 13th Symposium on on Turbulence (Reed, X.B., ed.), Rolla, Mo.

[13] George, W.K., Castillo, L. and Knecht, P. (1993, revised 1996) The Zero-Pressure Gradient Boundary
Layer, Reynolds Symposium on Turbulence, Asilomar, CA, April.

[14] George, W.K. and Castillo, L. (1993) Boundary Layers with Pressure Gradient: Another Look at
the Equilibrium Boundary Layer, Near Wall Turbulent Flows, (So, R.M.C. et al. editors), 901 — 910,
Elsevier, NY.

[15] Hanjalic, K. and B.E. Launder (1974) Contribution towards a Reynolds stress closure for low-
Reynolds number turbulence, Imp.Coll. Rept. HTS/74/24.

[16] Knecht, P. (1990) An Investigation of the Matched Layer in a Turbulent Boundary Layer with Zero
Pressure Gradient, MS Thesis, Dept. Mech. & Aersp. Engr., SUNY /Buffalo, Buffalo, NY.

[17] Long, R.R. (1976) presentation at Naval Hydrodynamics Mtg., Wash., DC., June.

[18] Long, R.R. and Chen, T.-C. (1981) Experimental Evidence for the Existence of the ‘Mesolayer’ in
Turbulent Systems, J. Fluid Mech., 105, 19 — 59.

[19] Monin, A.S. and Yaglom, A.M. (1971) Statistical Fluid Mechanics, MIT Press, Cambridge, MA.

[20] Millikan, C.M. (1938) A critical discussion of turbulent flows in channels and circular tubes, Proc.
5th Int. Congr. Appl. Mech., 386 — 392, Wiley, NY.

[21] Panton, R.(1990) Scaling Turbulent Wall Layers J. Fluids Engr., 112, 425 — 432.

[22] Prandtl, L. (1976) Zur Turbulenten Stroemung in Rohren und laengs Platten, Ergeb. Aerod. Versuch
Goettingen, IV Lieferung, 18. (1932)

[23] Reynolds, W.C. (1976) Computation of Turbulent Flows, Ann. Rev. of Fluid Mech., 8, 183 —208.

[24] Stanton, T.E. and Pannell, J.R.(1914) Similarity of motion in relation to the surface friction of
fluids, Phil. Trans. Roy. Soc. A, 214, p 199.

[25] Tennekes, H. and Lumley, J.L. (1972) A First Course in Turbulence, MIT, Cambridge.

[26] Tennekes, H. (1968) Outline of a Second-Order Theory of Turbulent Pipe Flow,ATAA Jour., 6, 1735
- 1740.

26



[27] Zagorola, M.V. (1996) Ph.D Dissertation, Princeton U.

[28] Zagorola, M.V. and Smits, A.J. (1996) Scaling of the mean velocity profile for turbulent pipe flow.
draft document.

27



