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Abstract

A theory for the zero pressure-gradient turbulent boundary layer is proposed based on a similarity
analysis of the boundary layer equations. The Asymptotic Invariance Principle (AIP) requires that
properly scaled profiles reduce to similarity solutions of the inner and outer equations separately in the
limit of infinite Reynolds number. The inner profiles scale with v and u. as in the classical analysis.
The outer flow, however, requires two velocity scales, u« and Uy, in addition to é, the boundary layer
thickness. The velocity deficit law, in particular, scales with Uy instead of u. as in the classical analysis.

The fact that both inner and outer scaled profiles describe the entire boundary layer for finite values
of 6%, but reduce to inner and outer profiles in the limit, is used to determine their functional forms in
the “overlap” region which both retain. Since the ratio of scales, ux/Ux, is Reynolds number dependent,
so must be the “overlap” region. To leading order the profiles in this overlap region are power laws, as is
the friction law. The three parameters in these power laws depend on §1 (or Rg), but are asymptotically
constant and are linked by a constraint equation.

Application of the AIP to the Reynolds stress equations is used to determine the proper scaling laws
for many of the turbulence quantities in the inner and outer layers. A surprising result is that in the
outer layer (and overlap region) some of them scale with both u, and Us, hence they are never Reynolds
number independent, except in the limit. Other consequences of the theory are that the asymptotic
values of 6,/8 and 6/6 are non-zero constants. By considering when the Reynolds stress and energy
dissipation become Reynolds number independent, it is possible to estimate that the asymptotes for cy,
df/dz, and v should not be reached until Ry > 10°, which is beyond the range of existing experiments.

Finally, it is suggested that there exists a mesolayer in the region approximately defined by 10 <
yt < 300 in which the energy dissipation evolves from v¢®/y® to ¢°/y. Thus the Reynolds stress and
mean flow equations retain a Reynolds number dependence, even though the terms explicitly containing
the viscosity are negligible. A simple turbulence model suggests that a term proportional to y* ~! should
be added to the overlap velocity profile to account for this effect. Because of the mesolayer, the overlap
solution is clearly evident only beyond y* > 300, well outside where it has commonly been sought.

The abundant experimental data are carefully examined and shown to be in reasonable agreement
with the new theory. Further it is shown that all of the data can be described with just three constants
and a semi-empirical equation for the variation of y with 6.

*This paper was presented at the Reynolds Symposium on Turbulence, Asilomar, CA in April 1993. It is a revised and
expanded version of the paper by George et al. 1992 at the 13!” Symposium on Turbulence, Rolla, Mo. Sept. 1992.
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1 Prologue

This is a paper about the zero-pressure gradient turbulent boundary layer, and aside from a brief appendix
on channel flow, it is only about the zero-pressure gradient boundary layer. There are a number of other
wall-bounded flows that are at least as interesting: pressure-gradient boundary layers, pipe and channel
flows, and wall jets, to name but a few. But the esssential difficulty of the subject is contained in the zero
pressure gradient boundary layer, and any general principles which apply to it should be applicable to all —
if they are in fact principles and general.

This paper is a review, but not in the traditional sense. It does not attempt to exhaustively list the huge
body of work on even the zero pressure gradient boundary layer. To attempt to do so would be redundant
in view of the excellent reviews of the past few years which have done exactly that (cf. Sreenivasan 1989,
Gad-el-Hak and Bandyopadhyay 1994 and Smits and Dussauge 1996). Nor does this paper focus on the
inadequacies of the data or the classical theories; these have been exhaustively treated in the same references
and others. Instead this paper establishes a methodology for evaluation of theory and experiment which is
based entirely on the averaged Navier-Stokes equations. No empirical scaling laws are proposed, but some
general principles for deriving them are set forth. Application of them provides both the context for review
of old ideas and for the evolution of new ones. The result of this critique and innovation is a comprehensive
theory for the zero pressure gradient turbulent boundary layer, the methodology for which can be easily
extended to other flow situations.

2 Introduction

There are few problems in turbulence which have been more generally regarded as solved than the scaling
laws for the zero-pressure gradient boundary layer. The analysis of channel and pipe flow by Millikan



(1938) which matched inner and outer scaling laws (the Law of the Wall and the Velocity Deficit Law) to
obtain logarithmic velocity and friction laws is widely considered to be classical. Similarly, the extensions
by Clauser (1954), Hama (1954), Coles (1962) and others of Millikan’s arguments to boundary layers with
pressure gradients, roughness and compressibility have been accepted virtually without question for the past
four decades. An important reason for this has been the apparent agreement of experimental data with the
theoretical results. On the other hand, perhaps the editor’s note to the paper of Long and Chen (1981) gives
a clue that dissent has simply been suppressed by not publishing it.

There are a number of features of the Millikan/Clauser theory which, if not unsatisfying, are at least
interesting. Among them:

e (i) The velocity profile disappears in the limit of infinite Reynolds number (i.e., U/Uy = 1);

e (ii) The outer length scale is not proportional to any integral length scale, and in fact blows up relative
to them as the Reynolds number becomes infinite (i.e., /6, and 6/6 — c0); and

o (iii) The shape factor approaches unity in the infinite Reynolds number limit (i.e., H = 6./0 — 1).

While these might be considered plausible if the limit is approached by increasing the free stream velocity
or by decreasing the viscosity, they seem less reasonable if the limit is approached by simply increasing the
streamwise distance (i.e., by proceeding along the plate). In addition, a practical objection can be raised
because the logarithmic forms permit only empirical models for the streamwise development of the boundary
layer parameters.

It might be argued that some free shear flows (like wakes) share these characteristics; however, this
is of small comfort since the very essence of a boundary layer is the continuing loss of momentum to the
wall. Experimentally there are also reasons for concern, since no shape factors below about 1.16 have been
reported, and boundary layer profiles seem to collapse as well with momentum and displacement thicknesses
as with the boundary layer thickness determined from the profile (e.g., §p.99). Nonetheless it has somehow
been possible to live with these ‘problems’. Clauser (1954) and Tennekes and Lumley (1972), for example,
use the displacement thickness as the outer length scale in the analysis of equilibrium boundary layers,
even though its use is inconsistent with the Millikan/Clauser analysis (see (ii) above). Acceptance of these
ambiguities can in part be understood because of the relatively limited range of Reynolds numbers at which
experiments have been performed, but in larger part it probably should be attributed to the absence of
rational alternative theories. This is somewhat surprising since an even more fundamental objection can be
raised to the classical theory: It begins with two scaling ‘laws’, only one of which (the Law of the Wall) is
derivable from the equations of motion; the other (the Velocity Deficit Law) is empirical.

This paper reconsiders first the theoretical foundations of the laws on which the Clauser/Millikan analysis
is based, and shows one of them (the velocity deficit law) to be inconsistent with similarity of the outer
equations of motion. Then it examines the consequences of an alternative formulation of the outer scaling
law which s consistent with similarity in the limit of infinite Reynolds number. When combined with the
Law of the Wall, this new deficit law is shown to lead to velocity and friction laws which are power laws.
The new theory removes some of the troubling aspects of the earlier theory; in particular, the outer length
scale can be identified with either the momentum or the displacement thicknesses, and the asymptotic shape
factor is greater than unity. The theory proposed here can be extended to boundary layers with pressure
gradient, surface roughness, compressibility, thermal effects and buoyancy; these will be reported elsewhere.



Part 1
Theoretical Considerations

3 Governing Equations and Boundary Conditions

The equation of motion and boundary conditions appropriate to a zero pressure gradient turbulent boundary
layer (with constant properties) at high Reynolds number are well-known to be given by (Tennekes and
Lumley 1972)
ou ou 0 oUu 0
Ua—$+va—y:%—<‘uv>+1/8—y:|—{8?[<U2>—<t12>]} (1)
where U — Uy, as y — oo and U = 0 at y = 0. The < v > term arises from the substitution for the
pressure from the integral of the y-momentum equation (v. Tennekes and Lumley 1972). Both of the terms
in curly brackets are of second order in the turbulence intensity and are usually neglected; they are kept
here since, unlike the other neglected terms, they do not become vanishingly small as the Reynolds number
increases.

The presence of the no-slip condition precludes the possibility of similarity solutions for the entire bound-
ary layer. If the viscous term is simply neglected, the solutions lose the ability to satisfy the no-slip condition,
so there is no boundary layer and no drag — which is precisely what classical laminar boundary theory was
invented by Prandtl to avoid. Thus the zero pressure gradient boundary layer is another classical singular
perturbation problem where an inner length scale must be defined to insure that the viscous term survives
near the wall, even in the limit of infinite Reynolds number — in effect a boundary layer inside of a boundary
layer (cf. Tennekes and Lumley 1972). The result is that the turbulent boundary layer itself is governed
by two distinct regions: An outer region comprising most of the boundary layer where the single point
Reynolds-averaged equations are effectively inviscid; and an inner region very close to the wall where only
the viscous term is dominant.

So solutions are sought which asymptotically (at infinite Reynolds number) satisfy the following outer
and inner equations and boundary conditions:

2

o Outer Region

oU ou 0 0 9 9
U87+V8—y—@[—<ut>]—{a%r[<u >— < >]} (2)
where U — Uy, as y — oo.
e Inner (or near wall) region
0 ou
0—8—y|:—<u’t’>+l/a—y:| (3)

where U =0 at y = 0.

The neglected terms in both inner and outer equations vanish identically only at infinite Reynolds number
(v. Tennekes and Lumley 1972). ! However, there is nothing in the development of these equations which

1This can most easily be shown a posteriori by substituting the scaled solutions into the full equations, then using the
friction law to get the asymptotic dependence.



precludes their approximate validity from the time the flow begins to develop unsteady disturbances, as long
as the Reynolds number is large.
Equation 3 for the inner region can be integrated directly to obtain

8U ™W _ 9

<UU>+V@y_ P = u; 4)
where T is the wall shear stress and wu. is the corresponding friction velocity defined from it. It is clear
that in the limit of infinite Reynolds number, the total stress is constant across the inner layer (but only in
this limit), and hence its name “the Constant Stress Layer”. It should be noted that the appearance of u,
in equation 4 does not imply that the wall shear stress is an independent parameter (like v or Uy, ). It enters
the problem only because it measures the forcing of the inner flow by the outer; or alternatively, it can be
viewed as measuring the retarding effect of the inner flow on the outer. Thus u, is a dependent parameter
which must be determined by matching solutions of the inner and outer equations.

It is also interesting to note that the inner layer occurs only because of the necessity of including viscosity
in the problem so that the no-slip condition can be met. The outer layer, on the other hand, is dominated
by inertia and the effects of viscosity enter only through the matching to the inner layer. Thus the outer
flow is effectively governed by inviscid equations, but with viscous-dominated inner boundary conditions set
by the inner layer.

4 The Velocity Scaling Laws

It has been customary to seek solutions to the governing equations which depend only on the streamwise
coordinate through a local length scale é(x) , v. Monin and Yaglom 1971. The only parameters arising in
the governing equations and boundary conditions are the free stream velocity, U, , the kinematic viscosity,v,
and the friction velocity, u,. Of these, the latter is clearly a dependent parameter, and hence determined by
the rest; i.e., vy, = ux(Ux,é,v). From the Buckingham Pi Theorem and dimensional considerations alone
it follows immediately that there are only two independent dimensionless ratios. Convenient choices are
ux/Us and u,8/v, so the functional dependence of the former on the latter can be written as

Uy o Ccr _ + [
— == =g(6
oo =\ g =9 @) ()
where s
st =20 _ st 6
: (©)
and
Tw u?

— *

Y=z T ©

Note that a consequence of equation 5 is that either (but not both!) u, or U can be used be for scaling as
long as 6% is retained and is finite.

The limiting value of u, /Uy will be seen to of considerable interest, both in its own right, and because

it determines if 6% — oo and Ux8/v — oo as Usez /v — co. For the moment, it will be assumed that this is

the case, so that any of the limits can be used interchangeably. It will be possible to showa posterior: that



this assumption is consistent with the derived friction law, the momentum integral equation, and a boundary
layer which continues to grow while the skin friction becomes vanishingly small.

Since there are no other independent parameters, the local mean velocity profile must described by
U ="U(y,6Uc,v). Application of the Buckingham Pi theorem and using equation 5 yields a number of
possibilities, all of which describe the variation of the velocity across the entire boundary layer. Among them

are: »
Lo (Z ) ©
Ul ;*Uoo =1, (L.6%) (10)

It is of particular interest to investigate the behavior of the scaled profiles as 6T becomes large, or
other Reynolds numbers for that matter (e.g., Usoé/v or Usoz/v). Thus in the limit as é7 — oo, the only
dimensionless profiles of interest will be those which produce finite values of the scaled velocity (the left hand
side) for finite values of the scaled distance from the wall (the remaining argument on the right hand side).
For example, if equation 8 becomes asymptotically independent of 6%, it loses its only link to free stream
velocity, and can at most describe a limited region very close to the wall, i.e.,

L[] w

This is, of course, the familiar Law of the Wall expressed in inner variables as originally proposed by Prandtl

(1932).
A similar limiting argument for f, and F, yields two quite different candidates for an outer profile;
namely,
U - Uoo Yy
e T 12
=t () (12
and U_U
Uy = Fooo (6) (13)

Both cannot, of course, be Reynolds number independent (and finite) in the limit if the ratio u. /Uy continues
to vary (as the Millikan/Clauser theory requires, see below).

The first form given by equation 12 has only been fleetingly considered by the fluid dynamics community,
and discarded in favor of the second alternative. Millikan, for example, appears to have considered it
briefly, noted that it leads to self-preserving power law solutions of the outer equations, and then dismissed
these solutions as interpolation formulas. Clauser (1954) (see also Hinze 1975) plotted only the highest
and lowest Reynolds number data of Schultz-Grunow (1941) in deficit form and concluded that the collapse

?Note that since ux/Us and 8§t (or ux6/v) are related by equation 5, only the later need be retained in equations 8 — 10.
This fact seems to have escaped Monin and Yaglom 1971 who dismiss a separate dependence on ux/Us, only on empirical
grounds.



using equation 12 was not as satisfactory as that obtained using the deficit form of equation 13. There is
no evidence that either of these conclusions has been refuted, or even questioned (even though there were
numerous other Schultz-Grunow profiles at intermediate Reynolds numbers which showed a clear trend with
increasing Reynolds number toward the highest).

The second form given by equation 13 is the traditional choice. It was originally used by Stanton and
Pannell (1914) for pipe flows and adapted by von Karman (1930) to the boundary layer. Clauser (1954),
following Millikan (1938), matched the ‘inner’ scaling of equation 11 to the ‘outer’ scaling of equation 13 in
the limit of infinite Reynolds number to obtain the familiar inertial sublayer profiles as

v_i, <g) + B (14)

Ue K n
U-Us 1 Y
— = (5) 4B (15)
and a friction law given by
Uso 2 1
=,/—==Iné* +(B; - B, 1
2= = et + (B B (16)

where &, B;, and B, are presumed to be universal constants. (Actually Millikan only analyzed the pipe and
channel flows, but indicated that a boundary layer application would follow. One can presume that this
second paper was the 1954 Clauser paper.) Note that in the limit as §* — oo, equation 16 requires that
ux/Us — 0 for finite values of the constants.

By substituting the inner and outer scaling laws into the defining integrals for the displacement and
momentum thicknesses, Clauser (1954) showed that

O Uy

5 =AM (7
¢ Uy Uy
5= [1 — A, Uoo] (18)

where A; and As should be universal constants which can be evaluated from integrals of the outer velocity
profile function. It follows that the shape factor is given by the asymptotic relation
by Uy

H="=[-A
7 = | U

[ (19)

Thus as 6t — 0o and u,/Us, — 0 (if it in fact does), H — 1.

The underlying assumption of the above matching is that the inner and outer scaling laws used for
the profiles, in fact, have a region of common validity (or overlap) in the limit as 6t — co. Long and
Chen (1981) have remarked that it is indeed strange that the matched layer between one characterized
by inertia and another characterized by viscosity does not depend on both inertia and viscosity, but only
inertia (hence the term ‘inertial sublayer’, Tennekes and Lumley 1972). They further suggested that this
might be a consequence of improperly matching two layers which did not overlap. The fact that the limiting
ratio of the outer length scale é to both of the commonly used integral length scales, 6. and 8, is infinite
lends considerable weight to their concern. In particular, this implies that from the perspective of the outer



flow, the boundary layer does not exist at all in the limit of infinite Reynolds number. If one imagines
approaching this limit along a semi-infinite plate where the boundary layer continues to grow, the outer
length scale increases faster than any dynamically significant integral length. This is particularly troubling
since 6 itself is unspecified by the theory and can not be related to physically measurable length scales except
through the degenerate expressions above.

Theoretical objections notwithstanding, there has been widespread acceptance (canonization might be
more accurate) of the Millikan/Clauser theory because it is believed to be consistent with the experimental
data. This has never been entirely true, and as better data have been acquired it has become even more
evident to be false. Even Coles (1956), whose careful determinations of the constants are the most often cited,
expressed puzzlement at the apparent failure of the outer velocity profile (the ”wake” constant in particular)
to achieve Reynolds number independence when scaled with u,. The recent careful review of Gad-el-Hak
and Bandyopadyhay (1994) lists a number of experiments where persistent Reynolds number trends in the
mean profile deficit are observed, even at relatively high Reynolds number. And there have been nagging
problems in trying to reconcile direct measurements of wall shear stress (either by sensors on the wall or
direct measurements in the linear layer) with the shear stress inferred from the logarithmic region using the
"accepted” constants, the so-called Clauser method (v. Section 22 for a detailed discussion). Finally, when
the same scaling arguments are extended to the higher order turbulence moments (second moments and
above), they fail to collapse the data outside of the viscous sublayer (y* > 10 or so) (v. Gad-el-Hak and
Bandyopadyhay 1994). In fact, when applied to quantities like the temperature field in the forced convection
boundary layer, they seem to fail completely (v. Bradshaw and Huang 1995).

In view of the above, it is useful to examine whether u, should be a scaling parameter for the outer flow
at all, especially since there is an alternative which does not use it. First it should be noted that it is only in
the limit of infinite Reynolds number where the inner layer is truly a constant stress layer. Thus, only in this
limit is the shear stress experienced by the outer flow exactly that measured by u? at the wall. At all finite
Reynolds numbers it only approximately measures the effect of the inner layer on the outer. While the use of
Uy as an outer scaling parameter may give reasonable results over a rather large range of Reynolds numbers,
it can not be an appropriate choice for the cornerstone of an asymptotic analysis of the outer boundary
layer. (This has also been pointed out by Panton 1990 who tries to “fix” the problem with a higher order
analysis while retaining the same deficit law.) This is in contrast with fully-developed turbulent pipe or
channel flow where the overall balance between pressure and viscous forces on a section of the flow dictates
that both the inner and outer flow scale with u,, a direct consequence of the streamwise homogeneity (v.
Appendix I for a complete derivation). An obvious inference from these observations is that the wall layers
of these homogeneous flows might be fundamentally different from those of the inhomogeneous boundary
layer, contrary to popular belief (cf. Monin and Yaglom 1972, Tennekes and Lumley 1972).

There have been numerous attempts to place the Millikan/Clauser theory on a more secure footing and
extend it to higher order, especially notable among them: Bush and Fendell 1972, Long and Chen 1981,
and Panton 1990. All began with the same velocity deficit, and therefore will not be considered further
here. In the remainder of this paper, the alternative formulation of the outer profile given by equation 12
and the Law of the Wall will be shown to follow directly from the hypothesis that the outer and inner flow
equations should admit to similarity solutions of the more general type described by George (1989, 1995).
The consequences of matching two regions governed by different velocity scales will be explored, and the
governing relations for a variety of turbulence quantities will be derived. The latter will be seen to give
insight into when similarity should be expected in real boundary layers. Finally, the new theory will be
compared to the experimental data.



5 The Asymptotic Invariance Principle

For reasons that will become clear below, the traditional approach to the boundary layer equations has been
to abandon the possibility of full similarity, and seek instead local similarity solutions of the type described
earlier. As a consequence, the local similarity solutions obtained were not necessarily similarity solutions
of equations 1, 2 or 3 since no effort was made to insure that they were. Instead investigators attempted
to establish their validity by experiment alone; dismissing as unimportant terms in the mean momentum
equations which were inconsistent and ignoring the higher order moment equations altogether.

An alternative approach (which does not seem to have been previously attempted) is to seek full similarity
solutions of the inner and outer equations separately. Since these equations (equations 2 and 3) are themselves
exactly valid only in the limit of infinite Reynolds number, then their full similarity solutions will also be
exactly valid only in this limit. Seen another way, since the equations themselves have neglected terms which
are Reynolds number dependent and lose these terms only in the infinite Reynolds number limit; solutions
to these full equations will likewise be Reynolds number dependent and lose this dependence only at infinite
Reynolds number. This idea will be referred to as the Asymptotic Invariance Principle. (This term appears
to have first been used by Knecht 1990, but with a slightly different meaning.)

The Asymptotic Invariance Principle can be applied to turbulent free shear flows, as well as boundary
layer flows. Similarity solutions for free shear flows (when they exist) are, in fact, infinite Reynolds number
solutions because the equations from which they are derived are strictly valid only at infinite Reynolds
number (cf. George 1989). The difference in application here is that for the boundary layer there will be two
different scaling laws to be applied to the complete solution — one which reduces to a full similarity solution
of the outer equations at infinite Reynolds number, and another which reduces to a full similarity solution of
the inner equations in the same limit. For finite Reynolds numbers, the Reynolds number dependence of the
equations themselves, however weak, dictates that the solutions can not be similarity solutions anywhere.
But, as noted above, this is no different than for free shear flows which only asymptotically show Reynolds
number independence.

In the following sections, the Asymptotic Invariance Principle will be applied to some of the single
point equations governing the zero pressure gradient turbulent boundary layer. In particular, solutions
will be sought which reduce to full similarity solutions of the equations in the limit of infinite Reynolds
number, first for the inner equations and then for the outer. The form of these solutions will determine
the appropriate scaling laws for finite as well as infinite Reynolds number, since alternative scaling laws
could not be independent of the Reynolds number in the limit. Once the method has been established by
application to the equations governing the mean momentum, then the same principle will be applied to
equations governing the Reynolds stress equations and the statistical quantities appearing in them. There
is, of course, no reason why the Asymptotic Invariance Principle can not be applied to equations governing
any statistical quantity, including multi-point equations, and some inferences will be made as to what the
results of such application might be.

6 Full Similarity of the Inner Equations

In keeping with the Asymptotic Invariance Principle set forth above, solutions are sought which reduce to
similarity solutions of the inner equations and boundary conditions in the limit of infinite Reynolds number

10



(i.e., 67 — o0). Solutions will be sought of the form

U = Uy(@)fieoly™) (20)

—u0 = Ry(2)rico(y) (21)
where y
+ =7

vt=o (22)

and the length scale n = n(x) remains to be determined. Note that the subscript ico is used to distinguish

the scaled velocity and Reynolds stress profiles, f;(y*,6%) and r;(y*,é%), which will be used later, from

their limiting forms used here. Obviously f; and r; are dependent on 61, while f;o, and r;, are not.
Substitution into equation 4 and clearing terms yields to leading order in 61,

u? [ R; v ,
7| =[]+ [ 22)
A similarity solution exists only if 5, Uy;, and R,; can be determined so that all the terms in brackets
have the same z-dependence; i.e.,
uZ ] Ry v
o~ =~ | — 24
I:Uszi. |:U522:| |:77Usi:| (2

Since there are three scaling functions to be determined, but only two independent constraints, there is
some arbitrariness in their determination. A convenient choice for 7 is

n=v/Usy (25)

from which it follows immediately that similarity solutions are possible only if the inner Reynolds stress scale
is given by

Ry =U2 (26)

It is now also obvious that the inner velocity scale must be the friction velocity so that

It follows that
n = v/u (28)
Ry = u? (29)

Thus, the integrated inner equation at infinite Reynolds number (i.e., ¥ — oo) reduces to

For finite values of 6T. this is equation is only approximately valid because of the neglected mean convection
terms.

11



The similarity variables derived above are the usual choices for the inner layer, and thus the Law 3 of the
Wallis consistent with full similarity of the inner equations, in the limit of infinite Reynolds number. For any
finite (but large) Reynolds number, solutions for the inner layer will retain a Reynolds number dependence
(as discovered from the Pi-theorem in deriving equation 8) since the governing equations themselves do so.
It is obvious then that it is equation 8 which reduces to the proper limiting form to be a similarity solution
for the inner layer, and thus it must be the real Law of the Wall for finite Reynolds numbers. At finite
Reynolds numbers however, it also describes the velocity profile over the entire layer. These ideas are not
incompatible since in inner variables the outer layer can never be reached in the limit of infinite Reynolds
number (i.e., as é7 — oo, yt — oo for finite values of y).

7 Full Similarity of the Outer Equations

In accordance with the Asymptotic Invariance Principle, solutions will be sought which reduce to similarity
solutions of the outer momentum equation and boundary conditions in the limit of infinite Reynolds number.
It is important to remember that no scaling laws will be assumed at the outset, but rather will be derived
from the conditions for similarity of the equations.

For the outer equations, solutions are sought which are of the form

U—-Us = Uso('l’)fooo(y) (31)
W = Ro(#)ros(Y) (32)

where
¥ =y/6(x) (33)

and Us,, Rs,, and 6 are functions only of x. Note that extra arguments could have been included in the
functional dependence of f,o and r,o, to account for the effect of upstream conditions, etc. The velocity has
been written as a deficit to avoid the necessity of accounting for an offset arising from viscous effects across
the inner layer. This is, of course, is not a problem for the Reynolds stress since it vanishes outside the
boundary layer. As in the previous section, the co has been added to the subscript to distinguish f,, and
Toso from the the 6T-dependent profiles scaled with U,, and R, used later. The V-component of velocity
has been eliminated by integrating the continuity equation from the wall, thus introducing a contribution
from the inner layer which vanishes identically at infinite Reynolds number.
Substitution into equation 2 and clearing terms yields

UL\ & dU., § dU,l ., [Uwds]_.
[(U) U.. dz ]f”" + [UM dr ]f‘m_ [USOE] Yfooo

ds § dU,, T RG]
{E * [Uso dI :|}f000 /0 fooo(g)dg - I:U.320:| Toco - (34)

Note that the streamwise gradient of the normal stresses (i.e., the last term of equation 2) has been neglected
for now, but with no loss of generality. (This will be shown in the next section where the normal stresses
are considered individually).

2The word ‘law’ is formally incorrect since the result has been derived, and no longer depends on experimental results alone
to establish its validity.

12



For a similarity solution to be possible, the bracketed terms must all have the same z—dependence (or
be identically zero). Therefore, it is clear that full similarity is possible only if

Uso 6 dUs, 6 dUs, U\ d6 dé R, (35)
Uy ) Usy dz U, dz Uy, ) de ~ de  UZ ?

It follows immediately from the third and fourth conditions that
Uso = U (36)

Since Uy, is presumed constant, the first two conditons are identically zero and must be removed from further
consideration. The remaining three can be satisfied only if (at least to within a constant of proportionality),

dé
Ryo = U2 —, 37
Thus, the proper velocity scale for the velocity deficit law must be U, and not u, as suggested by Von
Karman (1930) and widely utilized since (eg., Clauser 1954, Coles 1956, 1962).

Thus the limiting form of the outer equation governing the mean flow reduces to

Y R
_yfoool - fooo//o fooo(é)dg = [Wzo/dx] roool~ (38)
This equation will not receive further attention in this paper since it is not possible to close it without a
turbulence model. It is important to note, however, that it has served an extremely important role since it
has determined the outer scaling parameters according to the AIP, and hence the real deficit law.

The analysis above makes it clear that of the possible candidates for an outer scaling law for the velocity,
only the profile represented by equation 9 is Reynolds number invariant in the limit. Therefore this must be
the appropriate scaling for finite Reynolds numbers as well. (This is, of course, the whole idea behind the
Asymptotic Invariance Principle.)

The old deficit profile, equation 10, can not be Reynolds number invariant in the limit (unless u, /Uy is
non-zero in the limit), since F, = (ux/Us)fo. In fact, since f, is Reynolds number invariant in the limit,
it is clear why F, vanishes in this limit if u,/Usx — 0 (as required in the Clauser/Millikan theory and as
derived below). This is precisely objection (i) registered in the Introduction.

The Reynolds stress scale, on the other hand, is not UZ, but an entirely different scale depending on
the growth rate of the boundary layer, dé/dz. In effect, dé/dz is acting as a Reynolds number dependent
correlation coefficient, just as for free shear flows (George 1989). This will be shown later to be related to the
fact that as the Reynolds number increases, less and less of the energy is dissipated at the scales at which the
Reynolds stress is adding energy to the flow so they become effectively inviscid (v. George 1995). It will also
be shown below that R, can be determined by matching the outer Reynolds stress to the inner Reynolds
stress. The need for such a matching is intuitively obvious, since the only non-zero boundary condition on
the Reynolds stress in the outer flow is that imposed by the inner.

Millikan (1938) and others have objected to the type of similarity analysis employed here as leading to
unphysical results for the boundary layer. Certainly there is nothing unphysical about the velocity deficit law
using Uy, in and of itself, and a case for such a deficit law could have been made, even with the data available
at the time (as was suggested earlier). Thus the fundamental basis for this objection must have been the
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condition on the Reynolds stress. However, this would have been a problem only if it were also required or
assumed at the outset that Ry, = U2, for then it would have also been necessary that dé/dz = constant.
Since the boundary layer was believed not to grow linearly, Millikan (and many before and after him as well)
was forced to conclude that full self-preservation (in the assumed sense) was not possible, and therefore had
to settle for a locally self-preserving solution.

George (1989), however, pointed out that (contrary to the conventional wisdom of self-preservation
presented in texts) there is no reason a prior: to insist that Ry, = UZ2,. If this arbitrary requirement is
relaxed, then there is no longer the requirement for linear growth, and both equation 37 and similarity
become tenable. In fact, these conditions require that the outer flow be governed by two velocity scales, U,
and a second governing the Reynolds stress which is determined by the boundary conditions imposed on the
Reynolds stress by the inner layer. It will be shown below that the inner and outer Reynolds stresses can

overlap asymptotically only if

Rgo ~ Ufoj—é ~ u? (39)
which resembles closely the momentum integral equation, both a surprising and gratifying result. More will
be said on this relationship later.

That the outer (and inner) equations admit to similarity solutions (in the sense of George 1989) should
come as no surprise to the experimentalists who have long recognized their ability to collapse the outer mean
velocity data with only Uy and 6. Hinze 1976 and Schlichting 1968, for example, show profiles normalized
by U/Us and plotted as a function of y/8. Even the fact that the outer Reynolds stress scales with u, (but
only to first order) is in accord with common practice, since it is assumed in the old theory — but in a way
which could not account for the observed weak dependence on Reynolds number. Thus one can speculate
that Millikan’s conclusions might have been quite different had he (and several generations after him) not
been locked-in to the too restrictive idea of self-preservation (i.e., single length and velocity scales).

8 Scaling of the Other Turbulence Quantities

For the inner layer, there is only one velocity scale, u,, which enters the single point equations; therefore all
single point statistical quantities must scale with it. This is, of course, the conventional wisdom, but with
an important difference: The inner layer does not include the overlap layer — the region between the inner
and outer regions — which is Reynolds number dependent. This is contrary to the conventional wisdom
of including the overlap layer as part of the wall layer. But since the inner and outer scales are different,
the dependent variables in the overlap layer must be expected to be functions of both, and thus Reynolds
number dependent. (Note that different considerations must be applied to the multi-point equations since
conditions at a point can depend on those at another, and in particular those at a distance.)

From the preceding analysis, it is apparent that the outer layer at finite Reynolds numbers is governed by
not one, but two velocity scales. In particular, the mean velocity and its gradients scale with U, while the
Reynolds shear stress scales with U2 d§/dx ~ u2. Therefore it is not immediately obvious how the remaining
turbulence quantities should scale. In particular, do they scale with Uy or u., or both? If the latter, then
quantities scaled in the traditional way with only one of them will exhibit a Reynolds number dependence and
will not collapse. (Note that if the ratio of velocity scales, u,/Us, is asymptotically constant, this Reynolds
number dependence would appear to reduce with increasing distance downstream and could lead to the
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erroneous conclusion that certain quantities scaled with only one of them take longer to reach equilibrium
than others.)

In view of the possible similarity of the outer equations for the mean flow, it is reasonable to inquire
whether the equations for other turbulence quantities also admit to fully similar solutions. For the outer
part of the boundary layer at high Reynolds number, the equation for < u? > can be written (Tennekes and
Lumley 1972) as

9 < u? > 9 < u? > Ou

= 9 —

v Oz v Oy <p81‘
+ 8%}{—<u2'u >}—2<uv> %—Z—Qeu (40)

where ¢, is the energy dissipation rate for < u? > and the viscous transport term has been neglected. It
might be noted that an order of magnitude analysis reveals the mean convection and turbulence transport
terms to be of second order in the turbulence intensity u'/U, so to first order the equation reduces to simply
a balance among the production, dissipation and pressure strain rate terms. It could be argued that these
second order terms should be neglected in the subsequent analysis, ¢f. Townsend (1975). It is precisely
these second order terms, however, that distinguish one boundary layer type flow from another, or from
homogeneous flows (like channels and pipes) for that matter. Therefore, for a theory which purports to
represent growing shear layers like the wall jet, they must be retained.
By considering similarity forms for the new moments like

%<u2> = Ku(2)k(y) (41)
<P = P (42)
<> = T (@i (43)
v = Dy(z)d(y) (44)

and using R, = U2 dé/dz, it is easy to show that similarity of the < u? >-equation is possible only if

Ky ~ U2 (45)
3 22

Tyzy ~ USO%NUOOuz (47)
3 dé o2

All of these are somewhat surprising: The first (even though a second moment like the Reynolds stress)
because the factor of dé/dx is absent; the second, third and fourth because it is present. The mixed forms
using u, and Uy, instead of dé/dz should be especially useful for scaling experimental data at low to moderate
Reynolds numbers where u,/Us, shows considerable variation.
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Similar equations can be written for the < v? > and < w? >;i.e.,

8 < v?> 8 < v?> Av
= 2 —
U 9 +V By < p@y >
0
+ %{—<'US>—2<]9'U>}—2€U (49)
and
0 < w?> 8 <w?> dw
= 9 —
U o +V By <p 57 >
+ 88_y {— < w?v >} — 2¢y (50)

When each of the terms in these equations is expressed in similarity variables, the resulting similarity

conditions are:

Uso K, dé
D, ~ P, ~ — 51
6 dx (51)
Uso Ky dé
Dy ~ P, ~ — 52
6 dx (52)
Uso Ky dé
Tys ~ — 53
6 dx (53)
Uso Ky dé
Tw2u — 54
6 dz (54)

There is an additional equation which must be accounted for; namely that the sum of the pressure
strain-rate terms in the component energy equations be zero (from continuity). Thus, in similarity variables,

Pu(2)pu(Y) + Lo (2)po(¥) + Pu(2)pu(y) = 0 (55)

This can be true for all ¥ only if
P, ~ P, ~ P, (56)

An immediate consequence from equations 51 and 52 is that

US d§  Usou?

D,~D,~Dy~Dg~—2—~
6 dx 6 (57)
where D; is the scale for the entire dissipation, and
Ky ~Ky,~K,~U2% (58)

Thus all of the Reynolds normal stresses scale with U2, and not with u? like the Reynolds shear stress. Note
that this does not imply that the normal stresses are the same order of magnitude as U2, which clearly can
not be the case, only that there functional dependence on z is the same. It is easy to show that relations
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of equation 58 are consistent with similarity of the neglected normal stress terms in the mean momentum
equation 34; hence the equation for the mean flow is consistent with similarity to the second order, exactly
as is being required here.

The remaining equation for the Reynolds shear stress is given by

U@<uv>+va<uv> _ . 3_u+@ S
Oz Jy Jdy Oz

0 2 2
+ %{—<uv >t —<w (59)

" oy

This does not introduce any new similarity functions, but it does impose a surprising constraint on the ones
which exist already, namely,

ds ds , dé

Ky ~ Reg7 ~ Ufo(a)z ~ule (60)
There is an apparent contradiction between equation 60 and equation 58. However, R, is only asymp-
totically equal to u? (see Section 13 below), so the outer Reynolds stress scale only evolves to this value
with increasing Reynolds number. Obviously, the two conditions together require that in the limit of infinite

Reynolds number,
dé u?

dz

~ constant (61)

It will be argued later that the constant is, in fact, zero, so obviously no scaling can work at finite Reynolds
number, but can only be approached asymptotically. The full implications of this will be considered in more
detail in section 17.

From equations 57 and 48 it follows that

3
D, ~ Yoo (62)
6
The relations given by equations 58 and 62 were assumed without proof in the George 1989 analysis of free
shear flows. The additional constraint imposed by equation 56 was not derived, however, and arises from
the additional information provided by the pressure strain-rate terms.

Before leaving this section it should be noted that conditions for similarity of the turbulence moments
also give a clue as to when, if ever, this asymptotic state might be achieved. Similarity solutions of the
Reynolds stress equations are possible only when D (z) ~ U3/§ where Us; = Uy, for the boundary layer.
There are only two possibilities for this to occur (George 1995):

e i) Either the local Reynolds number of the flow is constant so that the effect of viscosity on the energy
containing eddies (and those producing the Reynolds stress as well) does not vary with downstream
distance; or

e ii) The local turbulence Reynolds number is high enough so that the Reynolds stresses are effectively
inviscid and the relation € ~ ¢3/L is approximately valid (for a physical length L ~ §).

Unlike some flows (like the axisymmetric jet or plane wake) where the local Reynolds number is constant,
for the boundary layer it continues to increase with downstream distance. Therefore the only possibility for
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similarity at the level of the Reynolds stresses is (ii). Thus similarity in the outer boundary layer at the level
of the second order moments can occur only when the turbulence Reynolds number is large enough.

Since the local Reynolds number for the boundary layer continues to increase with increasing downstream
distance, the similarity state will eventually be reached. The higher the unit Reynolds number of the flow
(Uso /v), the smaller the value of  at which similarity of the second order moments will be realized. (Section
11 below will attempt to establish approximate bounds where each part of the boundary layer can be
Reynolds number independent.) It is worth noting that there appears to be nothing in the equations to
indicate whether the similarity state achieved in the outer part of the boundary layer is independent of
upstream effects.

9 The Overlap Layer: An Application of Near-Asymptotics

It is obvious that since both the outer and inner profiles are non-dimensional profiles with different scales and
the ratio of the scales is Reynolds number dependent, then any region between the two similarity regimes
cannot be Reynolds number independent, except possibly in the limit. The actual mean velocity profile at
any Reynolds number, however, is the average of the instantaneous solutions to the Navier-Stokes equations
and boundary conditions. And this profile, whether determined from a real flow, DNS simulation, or not
at all, exists, at least in principle, and is valid everywhere regardless of how it is scaled. Therefore both
scaled forms of this solution, f;(y*,6%) and f,(y, ") (equations 8 and 9 respectively), represent the velocity
everywhere, at least as long as the Reynolds number is finite. In fact, the parameter 6T uniquely labels the
fanning out of the inner scaled profiles in the outer region and the outer scaled profiles near the wall (e.g.,
Figures 1, 2 and 3 of Part II).

Thus, f; and f, are quite unlike their limiting forms, f;o, and f,o,, which are only infinite Reynolds
number solutions for the inner and outer equations respectively. If f; and f, are considered instead of f;o,
and f,eo (as is usually done), the problem of determining whether an overlap region exists is quite different
from the usual asymptotic matching where infinite Reynolds number inner and outer solutions are extended
and matched in an overlap region if one exists. Therefore, the objective here is not to see if f; and f,
overlap and match them if they do. Rather, it is to see whether the fact that these scaled finite Reynolds
number solutions (to the whole flow) degenerate at infinite Reynolds number in different ways can be used to
determine their functional forms in the common region they describe in the limit. The methodology outlined
below (termed Near-Asymptotics) is believed to be new, but is necessary because the traditional approach
cannot account for the possibility of the matching parameter tending to zero, as might be the case.

The fact that analytical forms for these Reynolds number dependent solutions are not available and are
only known in principal turns out not to be a significant handicap. There are several pieces of information
about the two profiles which can be utilized without further assumptions. They are:

e First, since both inner and outer forms of the velocity profile must describe the flow everywhere as
long as the ratio of length scales, 67 = §/np = 6T, is finite, it follows from equations 8 and 9 that

L+ fo(7, %) = g(6%) fily™ . 67) (63)
where g(6%) = u,/Us is defined by equation 5.

e Second, for finite values of 61, the velocity derivatives from both inner and outer forms of the velocity
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must also be the same everywhere. It is easy to show that this requires that

v dfo _y* dfs
L+ fody  fi dyt

(64)

for all values of 6% and y.

e Third, in the limit, both f, and f; must become asymptotically independent of §%. Thus f,(y,é%) —
fooo(¥) only, and f;(y*,6%) — fie(y) only as 67 — oo or otherwise the velocity scales have been
incorrectly chosen. (This is, in fact, the Asymptotic Invariance Principle.)

Now the problem is that in the limit as 67 — oo, the outer form fails to account for the behavior close
to the wall while the inner fails to describe the behavior away from it. The question then is: In this limit
(as well as for all finite values approaching it) does there exist an “overlap” region where equation 63 is still
valid? Since both é and 75 are increasing with streamwise distance along the surface, this “overlap” region
will not only increase in extent when measured in either inner or outer coordinates, it will move farther from
the wall in actual physical variables. (Note that this is quite different from pipe and channel flows in which
the overlap layer remains at fixed distance from the wall for all z because of the streamwise homogeneity, as
long as the external parameters are fixed.)

The question of whether there is a common region of validity can be investigated by examining how
rapidly f, and f; are changing with 7. From the Taylor expansion about a fixed value of 6T,

filyT; 67 + Ast) — fi(yt;6%) 1 Afiyti6T) | _wr 4 )
AS fily*s &%) Ay S T LA (65)
and f ( 5t A6+) f ( 6-}-) 1 af ( (S+)
o] ya + — Jo y, - ° y’ . _
At f,(y;61) ~ fo(7;6%) 06+ ‘y = 5,(6%,7) (66)

Thus S; and S, are measures of the Reynolds number dependencies of f; and f, respectively. Both vanish
identically in the limit as §7 — oco. If yT,,,, denotes a location where outer flow effects begin to be strongly
felt on the inner scaled profile, then for y* < y*,, .., S; should be much less than unity (or else the inner
scaling is not very useful). Similarly, if 3,,;, measures the location where viscous effects begin to be strongly
felt (e.g., as the linear velocity region near the wall is approached), then S, should be small for § > ;.-
Obviously either S; or S, should increase as these limits are approached. Outside these limits, one or the
other should increase dramatically.

The quantities S; and S, can, in fact, be used to provide a formal definition of an “overlap” region where
both scaling laws are valid. Since .S; will increase drastically for large values of y for given §t and S, will
increase for small values of y, an “overlap” region exists only if there exists a region for which both S; and
S, remain small simultaneously. In the following paragraphs, this condition will be used in conjunction
with equation 63 to derive the functional form of the velocity in the overlap region at finite Reynolds
number, hence the term ‘Near-Asymptotics’. Obviously there is a very close relation between the idea of
Near-Asymptotics and Intermediate Asymptotics (Barenblatt 1978), the difference being that the former is
carried out at finite Reynolds number.

Because of the movement of the matched layer away from the wall with increasing x, it is convenient and
necessary to introduce an intermediate variable y which can be fixed in the overlap region all the way to
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the limit, regardless of what is happening in physical space (v. Cole and Kevorkian 1981). A definition of §
which accomplishes this is given by

g=ytet™" (67)
or

yt =g6t" (68)
Since y = yt /61, it follows that

g=g6t" ! (69)

For all values of n satisfying 0 < n < 1, § can remain fixed in the limit as 67 — oo while ¥y — 0 and
yT — co. Substituting these into equation 63 yields the matching condition on the velocity in terms of the
intermediate variable as

L+ £, (567" 67) = g(61) fi (561", 6) (70)

Now equation 70 can be differentiated with respect to 61 for fized § to yield equations which explicitly
include S; and S,. The result is
dg Afi
Jityg {

Ol+fo) 0y O+ fo)| _ dg afi
oy le+ 06t g o6t Iy dé+ oyt

dy* fi
5+a(s—+L7 * o5+

g

Carrying out the indicated differentiation of y* and g by 6% (for fixed g), and multiplying by 67 /(1 + f,)
yields (after some rearranging)

= + 9f + :

(n_ 1) Y 8(1 'tfo) _ny_ ofi _ 6_d_g 5t i of; _ 1 a(l‘i‘fo) (72)
(L+fo) 0y s+ = fi gytls+ g dét fiostly+ 14+ f, 06% g
It follows immediately from equation 64 that
y_o+/f) __ﬁd_g_(ﬁ i% - 1 0(1+f) (73)
I+f, 0y le+ g ds* fi 06T ly+ 1+ f, 06t g
Equation 73 can be rewritten as
y a(l + fO) _ Y _§t(9 —

LA o) - 5t(si- ) ()

where v = v(6%) is defined by
6t dg dIn(1/g)
y=——-"2L = —1%
10T = ST T et (75)
Note that the first term on the right hand side of equation 74 is at most a function of 6 alone, while the
second term contains all of the residual y-dependence.
Now it is clear that if both

8|S, | << v (76)

and
§F1Si| <<y (77)
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then the first term on the right-hand side of equation 74 dominates. If ¥ — 0, then the inequalities are still
satisfied as long as the left hand side does so more rapidly than y. Note that a much weaker condition can
be applied which yields the same result; namely that both inner and outer scaled profiles have the same
dependence on 6%, i.e., S; = S, in the overlap range so v is the only term remaining. (The authors are
grateful to Professor R. Karlsson of KTH/Stockholm for pointing this out.) If these inequalities are satisfied
over some range in y, then to leading order, equation 73 can be written as

7 o1+ fY)

(s
1470 0y s+ =(7) (78

The solution to equation 78 can be denoted as f§1) since it represents a first order approximation to f,. It
is not, however, simply the same as f,o, because of the 67 dependence of v, but reduces to it in the limit.
Thus, by regrouping into the leading term all of the y-independent contributions, the method applied here
has yielded a more general result than the customary expansion about infinite Reynolds number. (It is also
easy to see why the usual matching of infinite Reynolds number inner and outer solutions will not work since
the limiting value of v might be zero.)

From equations 64 and 78, it follows that

vt ofY

FO oyt le+

=7(6%) (79)

An interesting feature of these first order solutions is that the inequalities given by equations 76 and 77
determine the limits of validity of both equations 78 and 79 since either S, or S; will be large outside the
overlap region. Clearly the extent of this region will increase as the Reynolds number (or §%) increases.
Both equations 79 and 78 must be invariant to transformations of the form y — y+ a where a is arbitrary
since the equation must be valid for any choice of the origin of y (The authors are grateful to Dr. Martin
Oberlack, of ITM/Aachen, for this insight). Therefore, the most general solutions are of the form:

L+ f0(@,86%) = Cstg+a ) (80)
fz»(l)(y+,5+) = Cy(5T)yt + a+7(5+) (81)
or in physical variables,
U—-Uy y+a
T S e (52)
U y+a
o = Gl ; ) (83)

Thus the velocity profile in the overlap layer ts a power law with coefficients and exponent which depend only
on Reynolds number, 61 . The parameter at will be found to be nearly constant and related to the mesolayer
discussed below. * In the remainder of this paper, the superscript (1)’ will be dropped; however it is these
first order solutions that are being referred to unless otherwise stated.

Y Earlier versions of this theory (George et al. 1992, George and Castillo 1993) included additive constants which were
believed to be zero only on experimental grounds. The derivation here makes it clear that these constants are indeed zero.
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The relation between u, and Uy, follows immediately from equation 63; i.e.,

of U e Co(8F) Lo
Thus the friction law is also a power law entirely determined by the velocity parameters for the overlap
region. However, equation 75 must also be satisfied. Substituting equation 84 into equation 75 implies that
v, C,, and C; are constrained by

dy  dn[C,/C]
dlné+ —  dlnét

It is immediately obvious that this constraint equation must be invariant to scale transformations of the form
6t — Dé since the physical choice of §* must be arbitrary (e.g., égg, 695, etc.). Thus the Reynolds number
dependence of v and C,/C; must also independent of the particular choice of §, since any other choice (say
from 6g9) would simply be reflected in the constant coefficient D. This fact will be of considerable importance
in relating the boundary layer parameters to other way bounded flows as well (v. George et al. 1997). Also
obvious from equation 85 is that both 4 and C,/C; can be most conveniently expressed as functions of In §¥.

Equation 85 is exactly the criterion for the neglected terms in equation 73 to vanish identically (i.e.,
S; — S, =0). Therefore the solution represented by equations 80 — 85 is, indeed, the first order solution for
the velocity profile in the overlap layer at finite, but large, Reynolds number. Clearly when yt is too big or
7 is too small for a given value of 61, the inequalities of equations 76 and 77 cannot be satisfied. Since all
the derivatives with respect to §* must vanish as é* — oo (the A.L.P.), the outer range of the inner overlap
solution is unbounded in the limit, while the inner range of the outer is bounded only by zero.

The parameters C;(6%), Co(61), 7(61) and a as well as the constant D must be determined either
empirically or from a closure model for the turbulence. However they are determined, the results must be
consistent with equation 85. Also, equations 80 and 81 must be asymptotically independent of Reynolds
number, since f; and f, are. Therefore the coefficients and exponent must be asymptotically constant; i.e.,

Inét

(85)

as 67 — oo. These conditions are powerful physical constraints and together with equation 85 will be seen
to rule out some functional forms for v, like that suggested by Barenblatt 1993 for example (see below).
Therefore it is important to note that they are a direct consequence of the AIP and the assumption that
scaling laws should correspond to similarity solutions of the equations of motion.

It is convenient to write the solution to equation 85 as

Co
2 = expl(y — 700 Inb* + B (86)

where h = h(6%) remains to be determined, but must satisfy

dh dh
— Vo = st — —
T s+ dlno+
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The advantage of this form of the solution is easily seen by substituting equation 86 into equation 95 to
obtain

Uu—* = exp[—7Yeo In 6T + A] (88)
Thus u./Us is entirely determined by v, and h(é%).

It is easy to show the conditions that both C,o, and C;, be finite and non-zero require that:
Either

e C,, C; and ¥ remain constant always;
or

e (i) ¥ — 7Yoo faster than 1/Inét — 0
and

o (ii) h(6*) — ho = constant.

It follows immediately that
C,

C;

Note that condition (i) together with equation 87 requires that dh/dInét — 0 faster than 1/Iné* — 0.

Condition (ii) rules out solutions of the form suggested by Barenblatt 1993 who proposed power law
profiles with ¥ = a/In 6T for which A = Inb—alnln T where Inb is the integration constant. Obviously this
h is unbounded in the limit as 6% — co. Substitution into equation 86 yields C,/C; = b(e/Inét)*. Thus,
either C;, — 0 or C; — oo or both. Both of these are unacceptable alternatives in that they are inconsistent
with similarity of even the mean velocity. >

It is interesting to examine the relation between the asymptotic value of v and u./Us. Since ¥ must
be asymptotically independent of 61, the only possible values for 7., are either a finite constant, or zero.
For the former, u./Us — 0, while for the latter the limiting value is finite and non-zero. Note that both of
these satisfy the condition from Section 8 for similarity of the Reynolds stress equations in the outer layer
(i.e., dé/dx ~ constant).

A zero limit for v itself can be considered by using Equation 88 to obtain

2 = explheo] (89)

U

Uso

= exp[H] (90)

Recall that if v — 0 faster than 1/1né% and h — const as required, this insures a finite asymptotic value
of u,/Us. Hence there is no question about whether the turbulence moments in the outer layer approach
a state of asymptotic similarity; they do, since the limiting value of both dfi/dz and dé/dx is finite. A
finite and non-zero limiting value for u, /Uy is certainly contrary to traditional thinking, and would have
important implications for the engineer.

So there would seem to be a strong argument for 7 — 0. But this presents another problem. In the overlap
region in the limit of infinite Reynolds number, the production of turbulence energy is exactly balanced by

5Barenblatt’s form does produce a logarithmic drag law which is desirable for channel flow, but not necessarily for a boundary
layer. A logarithmic drag law can be obtained for channel flow in another way as shown in Appendix I.
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the rate of dissipation. Thus, in inner variables, et = Pt = 'yC’Z»y‘H_l since < —uv >= u? in this limit. If
there is indeed an energy dissipation law (Frisch 1995) which demands that the local rate of dissipation be
finite and non-zero in the limit of infinite Reynolds number, then 7., must also be finite and non-zero since
C; must be finite and non-zero for similarity as noted earlier. In fact, the data shown in Part Il are most
consistent with a non-zero value of v, but the experimental evidence is not conclusive.

In Part IT it will be found on empirical grounds that the variation of 4 — v, and C,/C; with §% is
described to an very good approximation by

A
h—he = (no¥)" (91)

where « = 0.46, A = 2.90 and D = 1 for é chosen to be dgg. This can easily be shown to satisfy the
constraints above. It follows immediately from equations 87 and 86 that

aA
Y= Yoo = _(ln 6+)1+a (92)
o = o expl(1 + @) /(10 5%)°] (93)
and C
;m = (;:—w[m-% exp[A/(In61)?] (94)

It will be shown in Part II that the data are consistent with Cyoo = 0.897, Cioo = 55 and 7o, = 0.0362.

Before leaving this section it is reassuring to note that in flows where the inner and outer velocity scales
are the same (as for the channel flow of Appendix I), the procedure utilized above leads to the familiar
logarithmic profiles with coefficients which are Reynolds number dependent, but asymptotically constant.
The possibility of Reynolds number dependent parameters for the log law in pipe and channel flows is
certainly contrary to the prevailing wisdom, but consistent with widespread speculation in the experimental
community over many decades. Finally, both the power law profile proposed here and the log profile have
recently been shown by Oberlack (1996) to be consistent with a Lie group analysis of the governing equations
for parallel shear flow. The AIP and Near-Asymptotic analysis used here has supplied the information missing
from the Lie group analysis; namely, where at least two of the particular analytical solutions apply.

10 A New Friction Law

The relation between u,/Us, and §T has already been established by equation 84. This can be rewritten as

u C - C +
* 06+ v _ o —yIné
U _ Ci ‘

a T = (95)

The asymptotic behavior of u,/Us obviously is determined by both v and the ratio C,/C;, which are
themselves interrelated by equation 85.

It is easy to see from the above conditions on 7 and h(6%) that the asymptotic friction law is a power
law given by
e Cooo =0 (96)

Uso Ci
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Some idea of when this limit might be achieved can be obtained by expanding the exponential of equation 94
in powers of A/(In(6%) to obtain

44 (97)

exp[A/(InéT)*] =1+ o)

Clearly the second term must be negligible for the power law behavior to dominate; thus the limiting power
law behavior is obtained when

Inét >> [A]Y (98)

For the values A and « cited above this would require 6% >> 2.4 x 10*%, or at least an order of magnitude
above the existing experiments (6% a 16,000 is the highest).

The friction laws written above all use u, on both sides of the equation. This can be cast in an alternative
form by eliminating the dependence of the right-hand side of equation 84 on u,; i.e.,

uw. (G, Yty s\ 7/ o

Uoo o CZ' 14 ( )
o 2/(147) 29/ (147)
Co y Uoo5 -y y

()" (5

Unfortunately, because C,/C; is itself a function of Reynolds number, this form is less useful than it might
appear to be. In sections 15 and 24 the relation of Rs to Ry and Rs, will be determined so that the friction
law can be expressed in terms of any of the convenient Reynolds numbers.

11 The Effect of Reynolds Number

The overlap layer identified in the preceding sections can be related directly to the averaged equations for
the mean flow and the Reynolds stresses. Of particular interest is the question of how large the Reynolds
number must be before the boundary layer begins to show the characteristics of the asymptotic state.

The averaged momentum equation from about y* > 30 out to ¥ < 0.1 is given approximately by

0 < uv >

0= 3y

(101)
It has no explicit Reynolds number dependence; and the Reynolds shear stress is effectively constant through-
out this region. Unfortunately many low Reynolds number experiments do not have a region where this is
even approximately true because the convection terms are not truly negligible. Hence it is unreasonable to
expect these experimental profiles to display any of the characteristics of the overlap described above, except
possibly in combination with the characteristics of the other regions. (For example, the composite veloc-
ity profile of section 14 can be used to obtain the Reynolds stress by integrating the complete momentum
equation from the wall.)

Even when there is a region of reasonably constant Reynolds stress, however, this is not the entire story
because of the Reynolds number dependence of < —uwv > itself. Recall that the parameters D;, D,, and
(and the velocity parameters C,, C; and v as well) were only asymptotically constant, and only in the limit
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did # — 0. The origin of this weak Reynolds number dependence can be seen by considering the Reynolds
transport equations. For this “constant shear stress region”, the viscous diffusion and mean convection terms
are negligible (as in the mean momentum equation), so the equations reduce approximately to (Tennekes
and Lumley 1972),

>+ <p
8.Z‘k

Uy oU; 0< u;upus >
>)— | < ujup > ——+ < upuy > — | — —————

&z‘i 81’2 8.1‘2 8$2 ik (102)

O —(<p

where U; = Ué;1. Thus viscosity does not appear directly in any of the single point equations governing this
region, nor does it appear in those governing the outer boundary layer.

In spite of the above, however, viscosity can be shown to play a crucial role in at least a portion of the
constant stress layer, even at infinite Reynolds number. The reason is that the scales of motion at which the
dissipation, ¢;1,, actually takes place depend on the local turbulence Reynolds number, R; = ¢*/ve. Above
R; ~ 5000 approximately® These are effectively inviscid, but control the energy transfer through non-linear
interactions (the energy cascade) to the much smaller viscous scales where the actual dissipation occurs
(v. Tennekes and Lumley 1972). When this is the case, the dissipation is nearly isotropic so € & 2¢8;;.
Moreover, ¢ can be approximated by the infinite Reynolds number relation, ¢ ~ ¢3/L, where L is a scale
characteristic of the energy-containing eddies. The coefficient has a weak Reynolds number dependence, but
is asymptotically constant. Thus, the Reynolds stress equations are effectively inviscid, but only exactly so
in the limit. And in this limit the Reynolds shear stress has no dissipation at all, i.e., €35 = 0. (Note that
these are nearly the same conditions required to observe a k=5/3
1953.)

At very low turbulence Reynolds number, however, the dissipative and energy-containing ranges nearly
overlap, and so the latter (which also produce the Reynolds shear stress) feel directly the influence of viscosity.

-range in the energy spectrum, cf. Batchelor

In this limit, the energy and dissipative scales are about the same, so the dissipation is more reasonably
estimated by ¢ ~ vq?/L?, where the constant of proportionality is of order 10. The dissipation tensor, €;x
is anisotropic and €;9, in particular, is non-zero (Launder 1993). (Hanjalic and Launder 1972, for example,
take €12 = — < ujug > /q%.)

For turbulence Reynolds numbers between these two limits, the dissipation will show characteristics of
both limits, gradually making a transition from € ~ v¢?/L? to € ~ ¢®/L as R, increases. Thus the Reynolds
stresses themselves will feel this directly through their balance equations, and will consequently show a
Reynolds number dependence. Obviously, in order to establish when (if at all) parts of the flow become
Reynolds number independent, it is necessary to determine how the local turbulence Reynolds number
varies downstream and across flow.

Over the outer boundary layer (which is most of it), L &~ 30 and ¢ = 0.1Us. So when U 6/v > 15,000,
the dissipation in the outer flow is effectively inviscid. Alternatively, L =~ 0.36 and ¢ = 2.5u, so this
corresponds to 67 > 5,000. Above these values the mean and turbulence quantities in the outer flow should
show little Reynolds number dependence, and this is indeed the case — when they are scaled properly! This
outer region can, of course, not be entirely Reynolds number independent, except in the limit, and this
residual dependence manifests itself in the overlap layer in the slow variation of v, for example.

8 This insures that the energy-containing scales of motion, say L, are about 20 times larger than the Kolmogorov microscale,
nk since L/ng = (Rt/9)3/47 the energy dissipation is nearly completely controlled by the large energetic scales of motion. The
peak in the dissipation spectrum is at about 67, and most of the dissipation occurs at smaller scales (Tennekes and Lumley
1972). As pointed out by a reviewer, this also insures less than a 1% contribution to the turbulent diffusion.
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The near wall region is considerably more interesting since in it the scales governing the energy-containing
eddies are constrained by the proximity of the wall. Hence, the turbulence Reynolds number, R;, depends
on the distance from the wall, y. Using L ~ y and ¢ ~ 0.4u, yields R; ~ 18yT; so, in effect, y* is the
turbulence Reynolds number. Because of this, two things are immediately obvious:

o First, since a fixed value of y* does not move away from the wall as fast as §, then as the Reynolds
number increases more and more of the boundary layer (in outer variables) will become effectively
inviscid and will be governed by the inviscid dissipation relation. And correspondingly, the mean
and turbulence quantities in the overlap layer will become Reynolds number independent, albeit very
slowly. Clearly this limiting behavior cannot be reached until at least part of overlap layer, say the
inertial sublayer, is governed by the infinite Reynolds number dissipation relation and its coefficient
has reached the limiting value. Obviously this can happen only when there is a substantial “inertial
subrange” satisfying y* > 300 and for which the mean convection terms are negligible, typically
Yy < 0.1. Thus the asymptotic limits are realized only when 300 /u. << 0.16 or u,é/v >> 3000, which
corresponds approximately to Uy, 6/v >> 10,000. Note that a choice of ¥ < 0.15 would bring these
numbers into coincidence with those for the outer flow, but at most all of these choices are approximate.
Regardless, all estimates for where inertial effects dominate the dissipation and Reynolds stress in the
near wall region are near the highest range of the available data which end at about 50,000. Therefore
the inertial sublayer, to the extent that it is identifiable at all, should (and does, as will be seen in
Part II) display a Reynolds number dependence, not only in C,, C;, and v, but correspondingly in the
behavior of < u? >, < uv >, etc.

e Second, there will always be a region, hereafter referred to as the MESOLAYER, © below about
y*t 2 300 in which the dissipation (and Reynolds stress) can never assume the character of a high
Reynolds number flow, no matter how high the Reynolds number for the boundary layer becomes.
This is because the dissipation (and Reynolds stress) can never become independent of viscosity —
even though the mean momentum equation itself is inviscid above yT a 30! This fact is well-known
to turbulence modellers (v. Hanjalic and Launder 1972), but the consequences for similarity theory
and asymptotic analyses do not seem to have been noticed previously. It is particularly important
for experimentalists who have routinely tried to apply asymptotic formulas to this region, wrongly
believing the mesolayer to be the overlap region.

Thus the constant stress layer is really two separate regions, an overlap region and a viscous sublayer,
each having two subregions. The overlap region obtained in the preceding section consists of an inertial
sublayer (y* > 300, ¥ < 0.1) which is nearly inviscid; and a ‘mesolayer’ (30 < y* < 300) in which the
viscous stresses are negligible, but in which viscosity acts directly on the turbulence scales producing the
Reynolds stresses. The viscous sublayer consists of a buffer layer (5 < y* < 30) where the Reynolds stress
and viscous stress both act directly on the mean flow; and the linear sublayer near the wall (y* < 3) where
the viscous stresses dominate. And of these four sub-regions, the inertial sublayer will be the last to appear
as the flow develops or as the Reynolds number is increased. Thus it will be the most difficult to identify
at the modest Reynolds numbers of laboratory experiments. Identification will be easier if the properties of
the mesolayer are known, and accordingly a model for it is presented in the next section.

"This appropriates a term from Long 1976 (see also Long and Chen 1982) who argued strongly for its existence, but from
entirely different physical and scaling arguments which we find untenable. Nonetheless, despite the skepticism which greeted
his ideas, Long’s instincts were correct.
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12 A Mesolayer Interpretation of a™

The role of the parameter a can be better understood by expanding the inner velocity profile of equation 81
for y* >> at. The result is

U o1 _
— = Ciyt" +yCiatyt T + 577 = Daty* 77 4 (103)

U

For y* >> 2]|a™/(1 — )|, this can be approximated by the first two terms as

uﬂ* = Gyt 4 4Cratyt T (104)
It appears from the data that at &~ —37, so that the neglected term is less than 20% for y* > 100.

This form is particularly useful for three reasons: First, it is an excellent approximation equation 81 for
all values of y* > —at. Second, it is easier to incorporate into a composite solution for the inner region
since it does not have the singularity at y* = —a*. Third, it is very close to the mesolayer/overlap solution
derived in Appendix III from a single equation turbulence model; i.e.,

ut = Gyt + Ci/yt (105)

For the data shown in Part II, C,; & —37. The turbulence model essentially regards the dissipation in the
near wall region to be a linear combination of a high Reynolds number dissipation (¢ ~ ¢3/y) and a low
Reynolds number dissipation contribution (e ~ vq%/y?). The first term in equation 105 arises from the high
Reynolds number part, and thus describes the region where the Reynolds stress and dissipation is nearly
inviscid; i.e., above yT > 300. It is clearly responsible for the power law part of the profile. The second term
in equation 105 arises from the low Reynolds number contribution to the dissipation, and only contributes
significantly for y* < 300.

Considerable insight into the role of the a* (or @) in the overlap solution cam be obtained by comparing
the terms of equations 104 and 105. Clearly the two expressions are identical for large values of yT since the
first term dominates. This is the inertial sublayer portion of the profile expected from the arguments above.
The second terms differ only slightly in the exponent of y* (and not at all for the pipe and channel flows
considered in the appendix)®. Obviously this is the mesolayer correction which remarkably is included in the
Near-Asymptotics result of equation 81 with no model at all. By ignoring the slight difference in exponent,
an approximate relation between at and Cy,; can be obtained as

or C
+ o i 107
¢ 7C; (107)

For the range of Reynolds number of the boundary layer data considered in Part II, at &~ C,,; since vC; ~ 1.
The mesolayer parameter, C,,; was found to be constant at approximately —37 so at &~ —37 also.

Because of the difficulties presented by the singularity of equations 80 and refeq:powerin at y = a, only the
expanded forms of equations 104 or 105 will be considered later. These forms will be seen to be considerably

81t might be interesting to explore why the turbulence model and overlap theory differ for one flow and not the other.
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easier to build composite solutions from as well which include the buffer and linear regions as well. Note
that equation 104 can be written in outer variables

U
=Gy +7aCy ! (108)
Uso

where @ = a+/yf/2.

13 The Reynolds Stress in the Overlap Layer

By following the same procedure as for the velocity, the outer and inner Reynolds stress profile functions for
the overlap region can be obtained. For example, the Reynolds shear stress is given by,

(@ 6%) = Do(sH)F+a) ) (109)
LS
n(ti6t) = Dst)wt +at) (110)
where a solution is possible only if
Reo _ Di g4 (111)
Rsi Do
and 43 4 D
+ - Lo
™ Tne® ~ dine* " [Di] (112)

Note that the last equation must also be invariant to transformations of the form § — Dé, just as for the
corresponding velocity constraint. It has been assumed that the scale factor D and the origin shift represented
by a is the same as for the velocity, since any other choice does not seem to make sense physically.

Unlike the velocity, however, more information about the Reynolds stress is available from the averaged
momentum equation for the overlap layer since both equations 2 and 3 reduce to

s—y(— <uv>)=0 (113)

in the limit of infinite Reynolds number. Thus,
BRs Dy +a" " — 0 (114)

and .
BRy Dyt +at"™h =0 (115)

Since both D, and D; must remain finite and be asymptotically constant (if the Reynolds stress itself is
non-zero), these conditions can be met only if

B0 (116)

From equation 30 for large values of yt, the Reynolds stress in inner variables in the matched layer is
given to first order (exact in the limit) by

ri — 1 (117)
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Since Ry; = u?2, this can be consistent with equation 110 only if D; — 1 as 6% — co. It follows immediately

that D
Reo — D—:uf (118)

in the infinite Reynolds number limit, just as suggested in Section 7.

Some insight into the behavior of D,(§%) and D;(6%) can be obtained by introducing the momentum

integral equation defined by
do  u?
— = 11
de UZ (119)

Using this, equation 118 and the similarity relation for R, from equation 37 yields

D,(6%) _ df/dx
Di(8%) ~ db/dx

(120)

The relationship between 6 and 6 will be explored in more detail below, and it will be shown that /6 is
asymptotically constant. Thus the scale for the outer Reynolds stress is asymptotically proportional to u?2
as noted earlier, and the outer layer is indeed governed by two velocity scales. Note that for finite Reynolds
numbers, both D, and D; are Reynolds number dependent. Hence, u2 alone should not be able to perfectly
collapse the Reynolds stress in either the overlap or outer layers, except possibly in the limit of infinite
Reynolds number. This has been observed by numerous experimenters (e.g., Klewicki and Falco 1993) who
show persistent Reynolds number trends in the Reynolds stress measurements.

The interrelation of the Reynolds stress and velocity parameters can be examined by considering the
production term < —wv > 9U/dy . Since this must be the same whether expressed in inner or outer
variables, it follows that

ds
c,D,U%2 —
®dzx

~ C;Dyu? (121)
or asymptotically, D, = C;(D;/C,). The experiments considered in Part II show that C, and D; achieve
a nearly constant value for relatively low values of Ry, while C; only approaches a constant value for much
higher Reynolds numbers. Obviously the outer Reynolds stress parameter, D,, follows the inner velocity,
thus emphasizing the role of the boundary condition provided by the Reynolds stress on the outer flow by
the inner.

14 A Composite Velocity Profile

It is possible to use the information obtained in the preceding sections to form a composite velocity profile

which is valid over the entire boundary layer. This is accomplished by expressing the inner profile in outer

variables, adding it to the outer profile and subtracting the common part (Van Dyke 1964), which is the

profile for the overlap region. Alternatively, the outer profile could be expressed in inner variables, etc.
The composite velocity profile in outer variables is given by

% — 1+ f,(3.84)] +

@t 6t - Gt (122

Ux
(e}
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Recall that f,, f;, C; and v are all functions of 6%, as is u./Us. The mesolayer contribution has been
considered to be part of the inner solution, but could have been included with the common part since it is
known.

The composite velocity solution has the following properties:

o As 6T = §6/n — oo, for finite values of ¥, U/Us, — 1+ fooo (Y). Thus there is a boundary layer profile
even in the limit of infinite Reynolds number and it corresponds to the outer scaling law. This can
be contrasted with the Millikan approach for which U/U,, — 1, a limit remarkably like no boundary
layer at all, even in its own variables.

e AsY — 0, U/Us — (us/Us)fi(yét, 6%) for all values of §*. This is because the small § behavior of
[1+ f,(y,6%)] is cancelled out by the last term leaving only the inner solution.

o As yét — oo for all values of 6%, U/Us — 1 + f,(¥,6F). This is because the large 6 behavior of f;
is cancelled by the last term.

e In the overlap region, only the power law profile remains.

It is an interesting exercise to substitute the composite solution into the full boundary layer equation
given by equation 1. As expected, it reduces to equation 2 for infinite Reynolds number and to equation 3
as the wall is approached. This can be contrasted with the substitution of the Millikan/Clauser log law
plus wake function (v. Coles 1956) in which the outer equation vanishes identically in the limit of infinite
Reynolds number.

An alternative composite solution can be obtained by multiplying the inner and outer solutions together
and dividing by the common part; i.e.,

U [+ fo(y,80)]fi(gs?, 6%)

U o (123)

For the zero pressure-gradient boundary layer, this composite solution is nearly indistinguishable from equa-
tion 122 when plotted against the experimental data.

15 The Displacement and Momentum Thicknesses

The displacement thickness, 8., is defined by
Uoo 0 E/ (Uso — U)dy (124)
0

This can be expressed using equation 122 as

5 =5~ IRs™? (125)
o 5 1 I

S 1+ =X 126

5 Il( + Ré*) (126)



where

Ilz/ fo(7,6%)dy (127)
0
I 5/ [fi(yT,67) — Coy™] dyt (128)
0
and the Reynolds numbers Rs and Rs, are defined by
Usd
Rs = 129
5= (129)
and 0 s
Rs, = =7 (130)
v

The integrals I; and I are functions only of the Reynolds number and become asymptotically constant.
The momentum thickness, 8, is defined by

U206 = / U(Uso — U)dy (131)
0
Again using equation 122, the result is
6 1 Uy
5= —(L + I3) — Rs Ig+214+I5U (132)
or 5 )
- = -1 Ux
7= Il+13{1+R9 [12+214+15U00]} (133)
where U6
Ry = » (134)
and -
_ 2
b= [ 1565 4 (135)
0
L= [ 160 - Gt Lt /6% 60yt (136)
0
Is E/ [f:(y+,6%) — Ciyt ] dy* (137)
0

Since uy/Us varies in the limit as (Uso6/r)~7/ (47 and 4 > 0, all terms but the first vanish in the limit
of infinite Reynolds number. Thus, as for the displacement thickness, the momentum thickness is also
asymptotically proportional to the outer length scale, but with a different constant of proportionality. It will
be seen in Part II that this limit is approached very slowly, and the limiting value is achieved at Reynolds
numbers well above those at which experiments have been performed.
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The shape factor can be computed by taking the ratio of equations 125 and 132. The result is

H = 6./0
B L + LRy (138)
(It + Is) + Ry '(Is + 2La + Lsu. /Us)
For large values of Reynolds number, the asymptotic shape factor is easily seen to be given by
I
H 139
- L+ I3 (139)

Note that since f, < 1 always, it follows from their definitions that I; < 0, Is > 0 and |I;| > I5. Therefore
the asymptotic shape factor is greater than unity, in contrast to the old result, but consistent with all
experimental observations.

It is obvious from equations 125 and 132 that both the displacement and momentum boundary layer
thicknesses are asymptotically proportional to the outer length scale (or boundary layer thickness) used in
the analysis. Note that it does not matter precisely how this outer length scale is determined experimentally,
as long as the choice is consistent and depends on the velocity profile in the outer region of the flow (e.g.,
80.99 Or 89.95). This is quite different from the Millikan/Clauser theory (with finite ) where the displacement
and momentum thicknesses vanish relative to the unspecified outer length scale.

16 Streamwise Dependence of the Boundary Layer

The friction coefficient can be written entirely in terms of Ry by using equations 133 and 100; i.e.,

Co
ey = 2 G204 (

i

T Is) (Rp + I + 215)] /04 (140)

where the term involving Isu./Us has been neglected. Also, Iy and Iy are much less than Ry, so that

C, -1 —29/(14~)
~ 9 2/(14) - R 141
e AL [ 5 (Rs)] (141)

This theoretical result provides a point of reference with Schlichting (1968) who noted that a 1/7-power law
fit the velocity profile approximately over a limited range of the data. Using v = 1/7 leads immediately to

cp o~ R$/4 which was the corresponding friction law. Note that for higher Reynolds numbers Schlichting

suggested c; ~ Ré/s which corresponds to v = 1/9, consistent with the idea that 7 is indeed Reynolds
number dependent. The suggested asymptotic value of 7, = 0.0362 gives ¢; ~ RJ%7 as the limiting power
law.
The integral of equation 1 across the entire boundary yields the momentum integral equation for a
zero-pressure gradient boundary layer as w0
1
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Thus the z-dependence of # can be obtained by integrating

1/y

{ ( - ) (2) [+ 85 (L + 210} R VR, = d (143)
L+13)\C,

where R, = Uz /v.

If the values of C;, C,, v and the I’s can be evaluated as functions of Ry, equation 143 can be integrated
numerically to yield the variation of Ry as a function of Ry — R, where R;_ is a virtual origin which will
be determined by how the boundary layer is generated. This will be carried out in Part II using empirical
relations for the parameters. The x-dependence of H, and the other boundary layer parameters can be
similarly determined by substituting the results of the integration into the appropriate equations.

It is interesting to note that if v can be considered to be constant over some range of Reynolds numbers,
then equation 143 can be integrated analytically to obtain

C,\ YO 43y -1 (147)/(1437)
— (& v — R, 144
n=(g) (55 s v e (149

where z; is the virtual origin for the section of the flow under consideration. Thus the boundary layer
thickness is proportional to 2(1%7)/(1+3v) " For example, if y — 1/10, § — 2/ The suggested infinite
Reynolds number limit for 4 corresponds to 6§ ~ %935 Because of the slow approach of ¥ to its limiting
value, a most important experimental clue that the present analysis is correct will be whether the exponent
increases toward unity (or some limiting value close to it, like 0.935) as data points are added from distances

farther from the leading edge, especially if data from points close to leading edge are successively dropped.

17 Is the Power Law the Same as the Log Law?

The asymptotic approach of v to a small value makes it possible to approximately recover the logarithmic
relations of the classical theory. The profiles of equations 80 and 81 can be expanded for small values of v as

U

— = fily*i6h) = Cie"™" x Ci(1 + ylnyt + ) (145)

and U
T =141 1) = Coe?™ ~ C,(1+7yIng +..) (146)

o0

Thus the asymptotic boundary layer profiles would appear logarithmic to leading order, even for finite values
of 7. (The authors are grateful to Prof. Prosperetti of Johns Hopkins University for pointing this out.)

From these “log” profiles and the asymptotic friction value of equation 84 it follows that the effective von
Karman/Millikan “constants” of equations 14 and 15 are given by

1/k = Y00 Cioo (147)

and )
B, = Cio(1 — 149
(1- o) (149
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Thus the Millikan/Clauser log profile result is recovered as the first term in an expansion.

It is easy to see why the mean velocity profile could have been accepted for so long by experimentalists
as logarithmic, since it is very difficult to tell a logarithm from a weak power using experimental data alone
since one can always be expanded in terms of the other. Suppose for the moment that it is indeed the
overlap region which is being examined and that the present theory is correct, but that an experimenter
believed the log theory to be correct with a constant and finite value of k. The values for C; and v at
Ry = 50,000, the limits of experimental data, will be estimated later in Part II to be about 12 and 0.09
respectively. These yield a value of 1/k = 1.1 which is nowhere close to the generally accepted value of
about 2.5, believed to be the asymptotic value for both boundary layers and pipes. Over the range of most
experiments, however, Ry ~ 10* and v &~ 1/7 while C; & 10, which yields about an estimate of 1/x =~ 1.7.
However, the logarithmic expansion converges rather slowly and terms above first order are not negligible
(nor were they in the calculation above). To third order in v Iny*, the effective value of « is given by

1 1 1
—~ Gl +yIny" + S(yIny")’ + (v Iny")’] (150)

Now the presence of yt in this expansion is interesting since it is well-known that attempts to fit the
log law at modest Reynolds numbers depend on where the point of tangency is chosen. If k is evaluated
by fitting a log profile which is tangent to the data at y* = 100 (as suggested by Bradshaw 1993), using
the above values in the expansion yields an estimate of 1/k &2 2.36 or k &2 0.42, which is the value usually
assumed. Most often in practice, the experimenter picks his point to obtain the “right” value of x (hence
its universal value), and accepts whatever value of the other universal (but highly variable!) constant which
comes out. In view of this and equation 150, the seemingly paradoxical variability of B; and constancy of &
is not at all surprising since the ‘right’ point of tangency can always be found.

As noted above, there is considerable debate in the literature about the value of B; with cited values
ranging from 4 to 12 From equation 148 it is equal to C;. C; will be seen later to vary from about 7 to 10
over the range of the low Reynolds number experiments. This is higher than the value of 4.9 suggested by
Coles 1968, but well in the range of recent experiments, some of which also show much higher values and a
Reynolds number dependence (Nagib and Hites 1995). There is no consensus value for the outer ’constant’
B,, and it is seldom reported at all. Perhaps equation 149 suggests a reason for this in that it is quite small
since C, is never very far from unity. Hence estimates for it would vary widely since the errors might be
larger than its value.

In summary, at least some of the general satisfaction (and dissatisfaction as well) with the log law
over the range of most experiments can be explained with the new theory. Even the sensitivity noted by
experimentalists to the choice of the point of tangency can be explained because of the In yT-terms in the
expansion of & for finite values of 4. The power law profiles (and the parameters in them) resulting from
the present theory, if correct, should be much less sensitive to the actual range of the data used, especially
if the limits imposed by the mesolayer are honored.

It must be remembered that the considerations above apply only to boundary layers and other developing
flows, and not to homogeneous wall-bounded flows like pipes and channels. As Appendix I makes clear, these
homogeneous flows are indeed described theoretically by logarithmic profiles. These naturally occuring log
profiles could of course be expanded approximately as power laws, but with all the problems of Reynolds
number dependencies and tangency points noted above. This undoubtedly explains the success of Barenblatt
et al. (1997) in fitting power laws to data of Nikuradse (1932), as well as their difficulty in extending their
results to the much higher Reynolds numbers of the Zagarola and Smits (1996) data.
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Before leaving this section it is interesting to consider one aspect of a finite and non-zero limit for u, /Uc,
however unlikely it may be in view of the requirement for finite local energy dissipation rate discussed earlier.
If both u, and Us were the same in the limit, shouldn’t an asymptotic theory based on either alone (like
the Millikan/Clauser theory) be correct? An asymptotic approach of v to zero indeed makes the expansions
above exact, and the definitions of equations 147 and 148 must be exactly the Millikan/Clauser constants.
The problem is that in the limit as Ry — o0, k& will blow up if ¥ — 0 since Cjo, must be constant (to satisfy
the requirements for similarity of the mean momentum equation).

This unseemly behavior of k is not just a consequence of the theory here but can readily be seen from
the old log friction law of equation 16 by requiring that u./Us be a non-zero constant. In fact, if the
Millikan/Clauser scaling arguments are applied to the turbulence moment equations, then it is easy to show
that similarity of the Reynolds stress equations is possible only if dé/dz = constant and u./Us = constant,
consistent with the analysis presented herein. And the only possibility of satisfying equation 16 with a
finite value of us/Ux is for & to increase without bound, exactly as derived here. Therefore, either the old
theory is not the limit of the new (if u./Us — 0), or it is but with an infinite von Karman constant (if the
limiting value of u,/Us is finite). Obviously the latter possibility makes little sense. Note that precisely the
same arguments lead to a finite limiting value of the von Karman constant for pipe and channel flows (see
Appendix I). Thus the principles are the same; only the results are different, and this is clearly because one
flow is developing in z while the other is homogeneous.

Part 11
Experimental Data

18 Experimental Overview

Before examining the experimental data for the zero-pressure gradient boundary layer, it is useful to review
what should be expected from it. In view of the difficulty of carrying out the experiments, especially close to
the wall and in determining the shear stress, it is unlikely that the data will speak unequivocally. Moreover,
the experimental problem is complicated by the fact that the all important ratio, u./Us, decreases ever
more slowly with increasing Reynolds number, regardless of what its limiting value is. Therefore experiments
at higher Reynolds numbers will be primarily useful for sorting out what the limits are, and less useful for
sorting differences in scaling. Experiments at relatively low Reynolds number will be more useful for the
latter because the greater variation of u./Us will make trends more evident. But even the low Reynolds
number experiments will be of little value for establishing the scaling laws unless the shear stress is directly
determined, and to an accuracy greater than the variation among experiments. Few experiments to-date
satisfy these criteria.

The fact that there are now two competing theories for the boundary layer makes a considerable difference
because the data can usefully sort between them. With only one theory, the experimentalist (who is really at
his best when sorting theories) is under considerable pressure to obtain results which confirm it, particularly
if the theory has been believed to be correct. This has certainly been the case with the “log law” and its
consequences. There is ample evidence in the abundant literature of “creative” data analysis to confirm the
log results, especially with regard to choice of the appropriate value of the wall shear stress (e.g., Coles 1968,
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Fernholz et al. 1995). Coles (1968), for example, not only uses equation 14 to determine the shear stress
from the velocity profile data, but then uses equation 16 to determine the appropriate value of the boundary
layer thickness 6. Thus both of these important parameters are allowed to “float”, a reasonable approach
only if the theory is known to be true and the constants universal. The fact that few experiments using the
values determined in this manner satisfy the momentum integral equation is disturbing, to say the least.

Thus one of the major problems of the present study has been to recognize when data “contamination”
has occurred, to attempt to “decontaminate” the data when possible, and to abandon it when that proved
impossible. Because a certain element of subjectivity is necessary in this process, a careful attempt has been
made to identify precisely what was done so that the reader can judge for himself whether the results here
are reasonable. Final judgment can only await a new round of experiments in which the experimentalist
is unconstrained by the need to agree with either theory. Fortunately a number of such experiments are
in progress. (On-going experiments at Princeton, II'T/Chicago, NASA /Langley, and KTH/Stockholm are
known to these authors.)

The task here is somewhat more complicated than simply showing that the new theory is consistent with
the experimental data. Since there is an existing theory which has been more or less accepted as being cor-
rect, it is also necessary to demonstrate that the data are inconsistent with it. Or failing that, that the new
theory works better. Fortunately the recent review of Gad-el-Hak and Bandyopadhyay 1994, in particular,
considerably simplifies this endeavor. Their paper is a comprehensive evaluation of the experimental contri-
butions over the past 30 years, and conclusively demonstrates the inadequacies of the von Karman/Millikan
scaling laws. In particular, they document the failure to achieve Reynolds number independence of either
the outer scaling for the mean velocity deficit, or of the turbulence quantities outside of the linear sublayer.
Therefore their effort will not be repeated here, and attention will be focused on showing that the data are
at least as consistent with the new theory as with the old. In fact, it will be possible to show that some of
the alleged ‘problems’ with the data disappear when viewed from the perspective of the new theory .

19 The Velocity Deficit Region

Since there is usually little doubt as to the proper value of Uy, in any given experiment, there is no data
manipulation which can be done, particularly if a directly determined length scale (e.g., like ég9) is used.
Unfortunately, as will be seen below, there can be considerable doubt as to the value of u,, and this presents
serious problems to any evaluation of the data. The question of what is the proper value of u, will be
deferred until the next section, except to note that it will often be seen to be in dispute.

Figure 1 shows plots of the data of Purtell et al. 1981 (465 < Ry < 5,100) in the outer variables of
equations 9 and 10 in both linear-linear (leftmost) and semilog (rightmost) plots. For the Ug-scaling shown
at the topmost, the collapse is excellent far away from the wall at all Reynolds numbers, and the point of
departure from the ”asymptote” moves closer to the wall with increasing Reynolds numbers. This is the
expected behavior for an asymptotic outer solution. However, when the Purtell et al. data are plotted in the
usual outer variables using u. determined from the velocity gradient near the wall (bottom figures), there is
an obvious tendency for the collapse to come apart away from the single point where it must collapse because
of the outside boundary condition. That this happens in the heart of the outer flow where an outer scaling
law should work best is at the very least disconcerting from the perspective of the old theory. Absent almost
completely is the expected splitting off toward the wall with increasing Reynolds number. The middle figures
of Figure 1 show the same data, but using values of u, chosen to collapse the log layer. (These are in fact
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the values cited in the paper of Purtell et al.) Even though the data is forced to match at a single point in
the “log” region, the same trends are clearly present.

Figure 2 shows the velocity data of Smith and Walker 1959 (3000 < Ry < 50,000) plotted in deficit
form. The shear stresses used in the bottom figures were determined to make the “log” region collapse (the
Clauser method discussed below) so that the collapse in the traditional scaling is “optimized”. Moreover, the
variation of u. /Uy, is much less than for the Purtell et al. data because of the higher Reynolds number range.
Clauser 1954 plotted only the highest and lowest Reynolds number data of the somewhat less extensive data
of Schultz-Grunow 1941 for the Uy, scaling and concluded the absence of collapse ruled it out as as suitable
scaling law. The wu,-scaled data were plotted only as a shaded area and deemed acceptable. Certainly
if it were expected that the entire velocity profile should be Reynolds number independent, then Clauser’s
conclusion is reasonable. On the other hand, if it had been expected that the outer layer is only asymptotically
independent of Reynolds number, then the U, scaling might have merited further consideration, particularly
since as the Reynolds number increases the remainder of the Schultz-Grunow profiles, like the Smith/Walker
profiles, are clearly moving toward that of the highest Reynolds number, and the region of collapse is moving
toward the wall.

That the old outer scaling in previous works was deemed acceptable is probably due to the moderate
Reynolds number range of the data, the choice of u, to force the “log region” to overlap, the indirect
determination of §, and the mixed (inner and outer) nature of the variables used (i.e., u, and 8). In spite of
this, the outer data normalized by u. do not appear to be consistent with the asymptotic nature of an outer
scaling law. This is closely related to the observations of Gad-el-Hak and Bandyopadhyay 1994 who noted
the failure of the ”law of the wake ” to reach an asymptotic state.

Thus, contrary to previous interpretations, the data would seem to indicate a preference for the new
formulation of the velocity deficit law using Us (equation 9). Further evidence for the new deficit law is
shown in Figure 3 using the recent data of Klewicki 1989. The more limited Reynolds number range of this
data (1,000 < Ry < 5,000) makes the Reynolds number independent range appear to be even larger than
in the other two data sets. It was noted earlier that at these low Reynolds numbers u, /Uy, is varying quite
rapidly so the success of the Uy-scaling is quite impressive. Smith (1994) in one of the first experiments
designed in part to test the theory described herein found similar success for scaling the velocity deficit with

Us from 5,000 < Ry < 13,000.

20 The Near Wall Region

The near wall region can not be addressed without first deciding what values of u, to use for a given data
set. Unfortunately, direct measurements of 7, have, for the most part, not been very satisfactory for a
variety of reasons, not the least of which being that the results did not confirm the Millikan/Clauser theory.
Therefore it has been common practice (since Clauser 1954) to choose values for u, which are consistent with
the “universal” log law results for the matched layer, by which is usually meant the constants chosen from
the more abundant pipe and channel flow data. Coles (1968) notes that the results obtained in this way are
seldom consistent with the momentum integral equation. Nonetheless, in spite of the fact the measurement
errors tend to cancel when the integrals are computed from the velocity profiles and therefore should be more
accurate than the profiles themselves, the friction results calculated from them have been usually discarded
in favor of the Clauser method. Typical of such results is Figure 4 which shows the data of Purtell et al.
1981 in inner variables using the wall stress determined from the Clauser method (bottommost) and from
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the velocity gradient near the wall (topmost). Note the excellent collapse in the “log” region of the former,
but also recognize that the data should collapse best in this region because u, has been chosen to insure that
it does — in fact the choice of the tangency point for the log is obvious from the figure. More interesting,
however, is what has happened to the measurements in the linear layer for small values of y* < 8 or so
where the data do not collapse at all.

This problem with the inner scaling has been noted before (e.g., Kline et al. 1967), and it seems to have
been customary to opt for the method which collapses the “log layer”, and rationalize the problems this
presents by assuming the measurements near the wall to be in error. While certainly all measurement sets
are subject to inaccuracies near the wall, the choice represents more an expression of faith in the log law
than a consequence of careful error analysis. In fact, curiously, measurements in the linear regions of pipes
and channels seem to have been routinely made over the past 50 or so years with little difficulty as long as
the ratio of wire diameter to distance to the wall was greater than about 100 (v. Monin and Yaglom 1972,
vol. I, figure 25). Perry and Abell 1975 measure to within 0.4mm with 4pm hot-wires in a pipe flow before
noticing effects of wall proximity. By the same criterion, the data for Purtell et al. should be expected to
be valid to values of y* from 2 to 5 for eight of the 11 data sets. Thus, either hot-wires have behaved very
differently in boundary layers than in pipes, or the experimenters have been unwilling to accept the answers
the wires were providing.

The values of u, from the velocity gradient were made using a linear fit for the data in the region
3 < yt < 6, and points closer to the wall were ignored since they were clearly contaminated by near wall
effects on the wires. (It will be seen below that there is evidence that the shear stress has been underestimated
by about 20% by this method, but with relative errors which are nearly Reynolds number independent.) The
data show clearly that the linear region both exists and the data in it collapse nearly perfectly. Moreover the
extent of the linear region appears to be greater than for pipes and channels, but decreases with increasing
Reynolds number. As expected from the new theory, the data outside the linear layer does not perfectly
collapse in inner variables, but shows the Reynolds number dependence which must be present if the inner
and outer scale velocities are different.

Similar profiles for the near wall region were published by Blackwelder and Haritonidis 1983 who doc-
umented the difference between the shear stress inferred from the velocity gradient near the wall and from
a fit to the “log” region. These systematic differences were typically 15% and are tabulated in Table I of
their paper. Their plot of the velocity profile (normalized using the shear stress determined from the linear
region) is strikingly similar to that of the Purtell data plotted in Figure 4. Of special interest is the fact
that the very near wall data show clearly the onset of the near wall measurement errors well inside the linear
region, except for the highest Reynolds numbers.

In the absence of direct force measurements, the fact that the velocity profile near the wall collapses in
both these data sets using the wall shear stress inferred from the gradient suggests strongly that both the
mean velocity and the shear stress have been reasonably estimated, at least at the lower Reynolds numbers.
A similar inference cannot be made using a value of the stress which collapses a “log” region, since (as
pointed out above) it is based on the assumptions that such a region exists and that the constants describing
it are Reynolds number independent. Clearly the second of these is incorrect if the profiles normalized using
the shear stress inferred from the velocity gradient are correct, and the first may be wrong as well.

The first important inference which can be seen from these figures is that the data collapse (if a cross-over
can be called ‘collapse’) in the “log” region only if the shear stress is calculated from a method which forces it
to by assuming such a layer exists, and then only by compromising the collapse in the linear region. On the
other hand, when the measured shear stress is used, the profiles collapse well very close to the wall, but not
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in the “log” layer. The lack of collapse in the linear layer when the “Clauser method” is used is particularly
serious since there are no adjustable constants or Reynolds number dependencies here: the measurements
must yield ut = yT if they are to be believed.

A second important inference from the figures is that when the data are normalized by a “proper” shear
stress, the point of departure from the linear region moves closer to the wall with increasing Reynolds number
toward what might be a limiting value. This is clear evidence that if there is an intermediate layer outside
the linear region, then it is only asymptotically independent of Reynolds number. The apparent Reynolds
number dependence of the extent of the near-linear region is consistent with the new theory presented earlier
since only this region of the flow is Reynolds number independent in inner variables. Once the mesolayer and
overlap region are entered, neither u, nor U, completely collapse the data (except in the Infinite Reynolds
number limit) until the influence of the inner region has disappeared and the outer flow has been reached.
Many (v. Gad-el-Hak and Bandyopadhyay 1994) have noted similar trends for the turbulence moment data
near the wall, especially < u? > and < —uv >.

21 The Overlap Layer and the Mesolayer

Figure 5 shows log-log (leftmost) and semilog (rightmost) plots in inner variables (using the velocity gradient
at the wall to obtain the shear stress) for a few of the many cases which were considered. It is easy to argue
from the log-log plots that there is evidence in all the data of an extensive power law region ranging from
approximately y* > 50 to ¥ < 0.2. However, as noted in sections 11 and 29, great care must be used before
inferring that this is the overlap region, especially at these low Reynolds numbers. It will be seen later that
indeed it is not. The semilog plots show for comparison the same data in the traditional semi-log plot in
inner variables along with the the traditional log profile (1/x = 2.44, B = 5.0). Obviously an argument for
a log region can also be made, although perhaps not the traditional one.

Spalart 1988 recognized the difficulty of determining functional dependencies from velocity profile plots
and suggested plotting y*dut /dy* versus yt since a constant region of the former would indicate a logarith-
mic variation of U. In view of the possibility of a power law region, a more useful plot is y*dut/dy* versus
ut since it yields a constant value if the relation is logarithmic and a linearly varying region if a power law.
(Note that it does not matter if outer variables are used instead of inner.) Figure 6 shows profiles of ydU/dy
versus U using the data of of Purtell et al. in both inner and outer variables. While the data are subject to
interpretation because of the large scatter, there is some evidence of the power law region in each set, and
certainly considerably more evidence than for a log region. Also evident is the Reynolds number dependence
of the slope and intercept, consistent with the theory and the observations above.

There are several complicating factors in using any of the type of plots above to determine whether there
is a power law region (or for that matter, a log region). The first is that if there is a mesolayer region in
which the power law is modified (as argued earlier), then any data inside y* = 300 approximately must
be excluded. This eliminates all of the Purtell et al. data. The second is that the data outside ¥ ~ 0.1
(or y* & 0.16%) must be eliminated since the convection terms are becoming important. Thus, none of the
velocity data below about Ry = 10,000 can be used — and that is most of the available data. Fortunately, by
constructing a composite solution for the entire profile and applying it to all the data at once, it is possible
to solve for the parameters of the individual pieces, even though they describe regions which are not clearly
visible since they are simultaneously influenced by different physics.

The parameters C,, C; and v were obtained from the measurements by a variety of composite solutions
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and optimizations of increasing sophistication. The latter are outlined in Appendix II. The various compo-
nents of these composite solutions are presented below in Section 23. These composite solutions, together
with the empirical functions for the wake and buffer regions (as defined in section 23 below) made it possible
to use all of the available measurements (including the integral thicknesses) in the optimization. Only the
velocity data of Purtell et al. and Smith/Walker were utilized in these determinations. There was remarkable
consistency in the estimates of both v and C, for all of the methods utilized, especially when the role of
the mesolayer was accounted for. The mesolayer parameter itself was found to be approximately constant
at Cp = —37.
The values of v, C,, C,/C; and C; are plotted in Figure 7 as functions of §7. Note for future reference
that the relation between 67 and Ry is given by
Ry = Uso 06+ (151)

ue §

since §t = ux6/v. The conversion from one to the other can either be done using the data, or the theoretical
relations for u, /Uy and 6/6 determined below; these will be shown later in Figure 17 after the development
of the relationships.

The values of 4 shown in Figure 7 drop rapidly over the same range for which C, shows most of its
variation (Ry < 1000), and then ever more slowly. Whether v would continue to drop beyond Ry > 50,000
can not be determined from the data, which are consistent with both non-zero and zero asymptotic values
of .

The suggestion of Barenblatt (1993) that ¥ = a/Iné% does provide a reasonable fit to the data for 7;
however, the C,/C; = b(e/Iné%)* — which results from the constraint equation — does not. As noted
earlier, this failure can most likely be attributed to the facts that v — 0 is inconsistent with the requirement
for finite energy dissipation, and that C,/C; — 0 does not satisfy the similarity constraint.

A modified form of Barenblatt’s assumption, however, which is consistent with both the Navier-Stokes
equations and similarity is

—aA

T %o = ogyiee (152)

where o > 0 is a necessary condition. Of all the forms tried for which solutions to the constraint equation
could be found, this provided the best fit to all the parameters, and it was used in the final optimization
below.

The parameters, v, C, and C; proved to be strongly interrelated, hence the scatter in the data when
each profile was considered individually. Therefore the final determination of the constants was determined
by including equation 152 and the corresponding solutions for C,/C; and u./Us, together with all the
profiles simultaneously, in the final optimization discussed below. It should be noted that equation 152 is
the only empirical equation that enters the entire theoretical formulation, aside from the interpolations used
to construct the composite profile. Most importantly, it enters at the very end of the analysis, and not at
the beginning as in the classical theory (the assumed velocity deficit law).

C; can be determined either from the inner velocity profile data, or from the friction coefficient by
substituting the data for ¢; and the values of ¥ and C, determined above into equation 99. Unfortunately
it is impossible to avoid confronting the problem of the shear stress. As is clear from the discussion in
the preceding and following sections, there are serious questions about precisely what c; should be, and
those uncertainties directly affect the plots of the velocity data in inner variables. Two different approaches
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were used: The first attempted to directly obtain the wall shear stress from the data using either a direct
estimation of 7, from the velocity gradient at the wall (Purtell et al. data), or from the momentum integral
(Smith/Walker data). The second, which is presented here, used optimization methods which did not depend
on any measurement of the shear stress at all but used the theoretical friction law to determine it. One
advantage of this approach is that the friction measurements can be used as an independent measure of the
success of the theory, since the choice of parameters is independent of them.

The empirical fit to v used above, equation 152, is particularly useful since as noted earlier h(6%) can be
determined from it. From equation 87 it follows that

h = ﬁ + heo (153)
from which C,/C; is given from equation 86 by
o = T expl(1 4+ a)4/(1n84)°) (154)
It follows immediately from equation 88 that
s Cooo cq—7e0 +a
0.~ o exp[(14+ a)A/(InédT)*)] (155)

Therefore a final optimization can be (and was) performed using all of the profiles simultaneously together
with equations 152 to 155 and the semi-empirical composite profile described in the next section (equation
162). The optimal values obtained for the constants were Cyoo = 0.897, Cioo = 55, 700 = 0.0362, A = 2.90,
and o = 0.046. The actual values of the parameters v, C, and C; and C,/C; are shown in Figure 7 by the
solid lines.

The theory in Part I states that the asymptotic value of C, should be constant. This indeed appears to
be the case as shown in Figure 7, and the asymptotic value of C, is reached quite early. The data for C, are
well described over the entire range from 465 < Ry < 48,292 by the expression,

CCO =1+ 0.283 exp(—0.005985%) (156)
The range over which the exponential decay term is important will be seen later to correspond closely to
the range in which the wake function (defined as the outer scaled profile minus the power law) is strongly
Reynolds number dependent. This behavior is consistent with the Reynolds number arguments put forth
earlier for when the outer flow can begin to be Reynolds number independent.

Combining equation 156 with equation 154 leads immediately to an explicit relation for C;. (Note that C,
could have been assumed constant for all but the lowest Reynolds numbers without significantly changing the
results.) These parameters were used in the remainder of this paper for calculating all the velocity profiles,
shear stress and integral parameters presented later.

Figures 8 and 9 show 20 of the Purtell et al. and Smith/Walker profiles in outer variables; together
with the composite and mesolayer profile of equation 105 using only the parameters determined above and
equations 152 — 156. The two vertical dashed lines on each plot mark the limits of the mesolayer model
(30 < y* < 300). Note that for two lowest Reynolds numbers (Re = 465 and Re = 498), the entire outer
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region is contained within the boundaries of the mesolayer, so for no region of the flow can the turbulence
be described as high Reynolds number. The outer flow develops quickly, however, for Ry > 1000, but it is
only for Ry > 10,000 that the overlap region begins to emerge. The overlap region goes from the upper
extent of the mesolayer to § = 0.1 approximately, the latter denoted by the light dotted vertical line on
the plots for Ry = 13,037 and higher. Aside from the Smith/Walker data closest to the wall (which are
probably in error since they were taken with Pitot tubes and were not corrected), the theoretical relationship
provides an excellent description of the flow from well below the expected limits (y* > 30) to well outside
it for all Reynolds numbers. Especially gratifying is the ability of the mesolayer term to capture the low
Reynolds number behavior. The entire sequence of profiles from very low to very high Reynolds number is
confirmation of the arguments put forth in Section 11.

In spite of the apparent success outlined above, there is still some reason for concern. The Smith/Walker
mean velocity data was taken by Pitot tubes for which the measured mean velocity is known to be in error
due to turbulence and velocity gradient effects. While hot-wires have a smaller error due to the fluctuating
cross-flow, they have other problems which become important as the wall is approached (particularly with
calibration at low velocities and heat loss to the wall). In addition, as noted in Part I, a residual dependence
of the flow on upstream conditions can not be ruled out from the Reynolds averaged equations. In view of
this, the actual values reported need to be refined by further experimentation which takes account of all the
factors influencing their determination.

22 The Data for the Friction Coeflicient

The theoretical friction law is uniquely determined by the ratio C,/C; and by . But these are all deter-
mined by equation 88 once the function A is specified. As noted above, there is considerable confusion and
disagreement about the shear stress, so in the final optimization above, none of the data were considered
reliable and only the theoretical values were used. Thus the theoretical friction law depends only on the
empirical choice of the h — function and the parameters determined from the velocity profiles.

Figure 10 shows u,/Us versus Ry in linear-linear (leftmost) and semilog (rightmost) plots. The theoret-
ical results using equations 151, 155, and the constants determined above are shown by the solid lines. The
experimental data in the topmost plots are from the floating element data of Smith/Walker 1959, the force
balance data of Schultz-Grunow 1941, and the shear stress computed from the momentum integral data of
Wieghardt and Tillman (1944) by Coles (1968). In addition, the data obtained by Spalart (1988) from a
DNS simulation of boundary layers at low Reynolds numbers is also included. The agreement between the
theoretical result and the experiments is especially remarkable since NONE of these data were used in the
determination of the empirical constants. Interestingly, both sets of data using direct measurement have
previously been widely disregarded since they did not agree with the results obtained by applying the Clauser
method to the velocity profile data of the same experiments.

The bottommost figures of Figure 10 show several other data sets which are more or less in agreement
with the theory. There is considerable scatter in the results, especially when the velocity gradient estimates
from the Purtell et al. data and the Blackwelder/Haridonitis data are considered which are consistently
about 15% to 20% low. These low values are due to using values of the velocity to estimate the gradient
above yt = 3 where the Reynolds stress is already beginning to rapidly appear. Similar behavior of plane
wall jet data has been noted by Abrahamsson (1996) using the velocity profile data of Karlsson et al. (1993).
These data were of sufficient quality that the differences in shear stress estimates from the gradient could
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be expressly accounted for by using a Taylor expansion for the velocity at the wall (see below), proving that
the percent error was indeed Reynolds number independent.

Particular attention must be paid to the extensive data of Smith/Walker, both because of its quantity
and the fact that three different methods were used — direct force measurements using a floating element,
calculation from the momentum integral using dfl/dz, and the Clauser method — and, perhaps as important,
the data have been conveniently tabulated in the report so there is no uncertainty as to what they really are.
The ¢; deduced from the Smith/Walker momentum thickness data represents 2df/dx (actually 2d Ry /dRy)
obtained from fits to the measured values of Ry and R,. The values shown are not those presented by
Smith/Walker who fitted a curve to logRg/logR, as a polynomial in R,, and obtained results closer to the
Clauser method than to their floating element results for the lowest Reynolds numbers. The values shown
were obtained by fitting Rs/RL 157 as a polynomial in R,. (The factor of 1.167 was chosen to correspond
approximately to the value of v over the range of the data and the drag law which would result from it
using equation 143.) Both of these relations predict nearly the same values of ¢; over the highest range of
the data, but they diverge for smaller values of Ry. There is a substantial difference in the extrapolations
of these relations to values of Ry < 10%: The log-derived curves bend up rather rapidly like the bulk of
the data reported using the Clauser method, while the alternative fit yields a curve which passes directly
through the lowest Reynolds number velocity gradient estimates of Purtell et al. The obvious conclusion is:
extrapolations of fits to outside the range of the actual data should not be used since almost any desired
result can be obtained.

It should be noted that the Clauser method results are also in close agreement with the theory, but
only over a limited range in Reynolds number. This is not surprising, since as pointed out in section 29,
the log profile (with its eddy viscosity origins) is, in fact, a first approximation to the mesolayer/overlap
result around y* = 100 which is the point most often used in the determination. (In fact, the “effective”
value of the von Karman constant from the parameters obtained above is almost exactly 0.42 at Ry = 10%.)
Unfortunately for very large and very small Reynolds number, the variation of C; and v with Reynolds
number seriously erodes the accuracy of the approximation, so the friction estimates from this method are
not reliable.

23 Empirical Velocity Profiles for the Wake and Buffer Regions.

A velocity profile valid over the entire flow can be obtained using equation 122 if empirical relations are
introduced to account for the variation of f,(y, %) outside the overlap layer and f;(y*,é%) inside it. This
is exactly analogous to the use of the van Driest equation for the mixing length, the arctan profile for the
Law of the Wall, or Coles Wake Function for the outer layer. All seek to use an empirical relation to splice
together the various regions of the flow so that a continuous profile is obtained.

The part of the inner layer between the linear region and the inertial sublayer (the old log layer) has
often been referred to as the buffer layer. The same terminology will be used here to refer to the region of
adjustment from linear to the overlap region. A useful expression which makes this transition smoothly and
in good agreement with the Purtell et al. data is given by

U f) = vt eap(—dy*> ™) + Ciyt (1 4+ yatyt )L — exp(—dy™* ) (157)

U

44



The y+5_7—dependence of the exponentials allows not only the no-slip condition to be satisfied at the wall,
but also the boundary conditions on the first four velocity derivatives if the damping parameter d is chosen

as
Ca Ca
~

1= 56" ¥ O (159

where ¢4 is the coefficient of the fourth order term in an expansion of the velocity at the wall (i.e., ut =
yt + C4y+4 + --+). For the curves shown in this paper d = 0.00002 and the mesolayer constant was Cyy; &
at ~ —37, corresponding to ¢, = —0.00074. The value for c4 is very difficult to determine with any accuracy,
but was estimated from the data of Purtell et al.

For that portion of the boundary layer outside the log layer, Coles 1956 defined a“wake function” to
account for the difference between the actual velocity profile and the log behavior. Similarly, a wake function
can be defined here for the outer flow by subtracting the overlap solution in outer variables from the velocity
normalized by Uy . The resulting wake function is given by

w(y, 6T) = v _ C.y" (159)
Uso
(Note that the term “wake” is probably not a great choice given our new understanding of this region, since
6 is not constant, but continues to increase with z.)

The topmost plot of Figure 11 shows the velocity profile data of Purtell et al. and Smith/Walker plotted
as U/Us — C,¥" versus §. The overlap region (or power law layer) manifests itself as the region for which
the velocity difference, U/Us — C,y7, is zero. The sharp drop for small § occurs in the viscous sublayer,
while the region for ¥ > 0.1 approximately is the ‘wake’. Two features are evident: First, clearly there is an
asymptotic wake function for Ry > 3000. Second, as the Reynolds number is reduced below this value, the
wake begins to disappear, and is completely gone by Ry = 500 or so. This second phenomenon was noted
in Figures 8, and has also been observed by others using the “log” formulation (eg. Murlis and Bradshaw
1982). It is due to the effects of viscosity on the outer flow discussed in section 11, and particularly the
failure of the dissipation to achieve a ¢3/L form at these Reynolds numbers.

The bottommost plot of Figure 11 shows that simply dividing the data plotted above by the factor 1 —C,
collapses all the profiles for all Reynolds numbers between Re = 465 and Re = 48,292 onto a single curve,
at least for all values § < 1 (to within the scatter of the data). The large scatter for the lowest Reynolds
number data is because both the wake and the factor 1 — C, are very close to zero. There is no theoretical
justification for this factor, although its use can be motivated by noting that it provides exactly the amount
necessary to adjust the contribution of the power law to unity at ¥ = 1. The previously noted increase
toward unity of C, for small values of Ry insures that the wake vanishes in this limit.

The success of the simple scaling factor above in collapsing the wake to a single curve means that a
single empirical expression to describe this region is possible. Ideally a closed form solution to the outer
similarity equation for the mean flow would be available, say one based on an eddy viscosity, for example.
In the absence of that, a simple (and easily integrable) expression for the wake function which accounts for
the observed behavior is given by

w(7) = (1 - C,)ysin By (160)

The parameter B and the upper limit of applicability of this relation, say y,,, can even be chosen to insure
that U/Us = 1 and dU/dy = 0 at § = y,,,. The disadvantage of this choice is that B depends on Reynolds
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number. An excellent compromise choice for all Reynolds numbers and ¥ < 1 is B = 2.03. The wake profile
of equation 160 with this value for B is plotted together with the data in the bottom figure of Figure 11.
Substitution of equation 160 yields the complete outer velocity profile as

U .
— =C, 5" + (1 —C,)ysin By (161)
U
When combined with equations 122, 157 and the results for parameters determined earlier, an analytical
function for the entire velocity profile can be obtained. The result is (in outer variables)

% = (1= Co)ysin By + 57 {56*eapl~d(36+)" " + Ci(*) [L+ 7a* (75%) ' )[1 — exp{~d(3*)" )]}

(162)
Thus the entire velocity profile is described from 0 < § < 1, or for all values of y out to y = 899, beyond
which the wake function is no longer valid.

Figures 12 through 15 show the velocity data of Purtell et al. and Smith/Walker in outer variables; and
the composite velocity of equation 162 using parameter values obtained in the preceding section. Note that
the roll-off for small values of ¥ in the Smith/Walker data (Figures 14 and 15) is due to their inability to
measure close to the wall, which for some data sets is outside where the buffer region and mesolayer are
located, hence the deviation from the composite solution for the first data point. Also, there is a slight
underestimate (about 5%) around yt = 10 which probably represents a shortcoming of the exponential
interpolation formula from the viscous sublayer to the the mesolayer.

Overall, the agreement of the composite profile must be considered quite good over the entire Reynolds
number range, and throughout the entire boundary layer. And this agreement was assumed in the final
regression which determined the parameters. It is rather remarkable that a theory with only four parameters
and a single empirical function (h) can describe the entire boundary layer, including the shear stress, over
more than two decades in Reynolds number. Recall that the old theory uses only three parameters, BUT
it did not include the mesolayer parameter, AND most importantly, it treated both the shear stress and
boundary layer thickness as variables to be determined for the best fit to each profile. No such juggling is
necessary here, and the results would seem to provide a strong indication that both the theory and empirical
interpolations are consistent with the data.

24 6, and 0

Figure 16 shows é./6, 8/6, and the shape factor é./6 versus both 6% (leftmost) and Ry (rightmost). The
data are from Smith/Walker (1959), Purtell et al. (1981), and Wieghardt (1943). The solid line indicates
the theoretical values obtained by integrating numerically the theoretical profiles shown in Figures 12 - 15.
As before, ¢ is taken to be dg9. Clearly the data and theory are in good agreement. This is not surprising in
view of the excellent agreement between the theoretical and experimental velocity profiles. The consistency
of the results should restore some credibility to the much-maligned 699 as a reasonable length scale. Note,
however, the failure of the data from different experiments to perfectly overlap, indicating perhaps some
residual effect of initial conditions which is also present in the c; data.

It is convenient to have analytical formulae for the integral thicknesses, and this is possible. The em-
pirical profiles given by equations 157 and 161 can be substituted directly into the integrals arising from
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the displacement and momentum integral thicknesses, equations 127, 128, 135, 136, and 137. The major
contribution except for the lowest Reynolds number flows is due to the leading terms so that

)

R

-1 (163)

~ —Il — 13 (164)

r:»|cc°’|*

I and I3 can easily be integrated analytically to obtain

Co
-, = 1-— —(1-0C,)] 165
1 T+ ( s (165)
2C c?
Is =~ 1—-—2 4 =2 4 (1-C,)I;—2I 166
; T+ e + (1= Gl =21 (166)
where
sin B — BcosB
Is = — 5 (167)
1 sin2B cos2B sin2B
b= 6~ ~apr T B (168)
Using B = 2.03 implies that Ig = 0.436 and Iy = 0.290. These values yield
o= 1--Y ou36(1- ) (169)
1 — 1+7 . o
2C C?
Is ~ [1-0582(1-C,)?% - 2 < 170
s~ (1-C- T+ T4 (170)

from which 6,/6 and 0/8 can easily be computed for any value of §t. The results are in near perfect
agreement with both the data and the theoretical curve shown in Figure 16 for 6t > 2000 or Ry > 3000
approximately. Below these values, the neglected terms from the inner region cause both é, and € to be
underestimated.

The asymptotic values of Iy and I3 can readily be estimated using the asymptotic values for v and C,
obtained above. The result is I1o, = —0.0894 and 3., = 0.0128. It follows immediately that asymptotically

bx

< — 0.0894 (171)
0

~ — 0.0767 (172)
H — 117 . (173)

The asymptotic values are well below those values of the data in Figure 16 indicating again that the asymp-
totic boundary layer is reached only at much higher Reynolds numbers than for which data is available.
Interestingly, the asymptotic value of H is very close to those obtained by Kempf (1932) (see also Smith and
Walker 1959) on a pontoon at Reynolds numbers more than an order of magnitude above that of the data
utilized here.
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One advantage of having analytical expressions for 6. /6 and /6 (or I; and I3) is that §* can be computed
for given values of Rs, or Ry. This was done to produce Figure 17 using equations 151, 163, 164 and the
final approximate forms for I; and I3 derived above. Also shown for comparison are the results from the
profile integration. As expected the agreement is excellent above §t > 2000 and Ry = 3000.

Finally, Figure 18 shows Ry versus R, from a numerical integration of equation 143 using equation 88
with the constants determined earlier. Also shown in the figure are the data of Smith and Walker. No
attempt has been made to adjust for virtual origin in « by choosing a non-zero value for R,. Obviously,
the agreement is excellent over the the entire range of the data. Thus, unlike in other theories, momentum
appears to be conserved.

25 The Turbulence Quantities

There have been numerous papers written on the failure of the classical scaling laws to collapse the moments
of fluctuating quantities in the wall region (by which is usually meant the “log” region as well as the buffer
layer between it and the linear layer). Among the most troublesome quantities are the variances of the
streamwise fluctuating velocities and the Reynolds stress (e.g., Klewicki and Falco 1989, Bradshaw 1990,
Spalart 1988). More recently problems with the behavior of two-point correlations in the wall region have
been noted by Blackwelder 1993. Klewicki and Falco conclude:

e “In general, inner variable normalizations of statistical profiles derived from the u and v fluctuations
and the uv shear product do not produce invariant curves in the inner and near-wall regions of the
boundary layer over the given Ry range (1000 < Rs < 5000).”

e “Both the peak value and the yt position of the peak value of the u'/u., v'/u., and < uv > /u?
profiles increased with increasing Ry.”

e “The present measurements support the hypothesis that for yt less than about 50 and with inner
variable normalization, the statistical characteristics of single point spanwise vorticity measurements
are invariant over the given Ry range.”

All of these observations for the single-point statistics are consistent with the theory put forth here.
The reason quite simply is that the mesolayer and overlap layers can not be considered to be Reynolds
number independent in either inner or outer variables for any finite Reynolds number. As a consequence,
any measurements outside the viscous sublayer — roughly the linear region — and inside the deficit region,
should be expected to display Reynolds number dependencies, whatever the quantity measured. For some
quantities, like the mean velocity and vorticity, the Reynolds number dependence of the overlap range is
hardly perceptible; for others, like the Reynolds stresses it is obvious. Since the velocity scale ratio, u./Us,
varies more rapidly as the Reynolds number is reduced, these effects will be more pronounced at lower
Reynolds numbers.

The theory put forth here has suggested that similarity of the turbulence quantities in the outer layer
occurs only at Reynolds numbers high enough for the dissipation and Reynolds stresses to be effectively
inviscid. While it is difficult to quantify this, it is generally assumed in turbulence that this occurs only
when the turbulence Reynolds number, ul/v, is on the order of 10* or larger (cf. Batchelor 1953). Since
u ~ u, and [ ~ @, this requires values of Ry of 10° or larger for these conditions to be met. This is well
beyond the range of any experiments to-date. The theory does suggest, however, some alternatives which
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might work before this is reached. These different scalings for the turbulence quantities in the outer layer
follow directly from the transformed equations and depend on both u, and Us. The normal stresses, for
example, scale as U2, while the Reynolds shear stress scales (to first order) with u?. Note that nothing
should be expected to collapse in the overlap region since it depends on both wu, and Uy, . However the fact
that u./Us varies more slowly with increasing Ry might lead to the erroneous conclusion that an asymptote
is being approached.

Figure 19 shows the rms streamwise fluctuating velocity measurements of Purtell et al. 1981 normalized
by U . It is clear that the collapse is remarkable for ¥ > 0.5 for all Reynolds numbers, and the region of
collapse moves towards the wall with increasing Reynolds numbers (just as for the mean velocity profiles
above). The same data normalized with w, appears in the paper of Purtell et al 1981 and there is little
evidence of even a trend toward collapse in the outer part of the flow. A similar failure of the wu, scaling for
the normal Reynolds stresses in the outer part of the flow was noted by Smith 1994. Even more significantly,
Smith shows that the turbulence production term, < —uv > dU/dy, collapses in the outer region about the
same when normalized by either u?U,, /8 or U2 /8, consistent with the fact that the outer layer is governed
by two velocity scales and similarity is possible only in the limit when their ratio is constant.

Balint et al. 1991 show several attempts to collapse measurements of the mean square vorticity com-
ponents over the outer layer, none of which is very successful. Most interesting though is that when the
outer rms vorticity components were scaled with u2/v the order of the curves was reversed from when they
were scaled with Uy /6. Thus the proper scaling (if there is one at all) is some combination of these. If
the assumption of locally homogeneous turbulence is made, then the mean square vorticity is given by (v.
George and Hussein 1991),

<wiw; >=¢€/v (174)

where € is the rate of dissipation of turbulence energy. Thus the vorticity in the outer layer should scale
with the dissipation. From equations 48, 51 and 52 it follows that the dissipation scales as

dé
D, ~ Ug’;a ~ Usou? (175)

Thus the rms vorticity in the outer region should scale as
< wiwi > (WU Jv8)H? (176)

Figure 20 shows a plot of the vorticity measurements of Klewicki and Falco 1990 using the outer scaling
of equation 176. The values of wall shear stress used were those provided in the paper, and were quite
close to the values computed from the friction law determined herein. The lack of collapse of the lowest
Reynolds number data might be associated with the disappearance of the wake function noted above. In
particular, the Reynolds number dependent constant D, in equation 118 may be sufficiently different from its
asymptotic value at this low Reynolds number so that u? alone is not the right parameter. Alternatively, it
may represent a problem with the flow or the measurements (background vorticity or noise) since a constant
subtracted from this data set yields curves much like those for the velocity deficit (Figure 3). Of course, u,
itself may simply be in error; or the proposed theory incorrect.

The two point velocity correlation measurements in the wall region of Blackwelder (1993) provide further
substantiation for the ideas presented here. Briefly, it is observed that for small values of separation in
horizontal planes, the two point correlations appear to collapse in wall variables, while for large separations
they do not. Moreover, at large separations the magnitudes of the correlations still show a strong Reynolds
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number dependence, even when re-scaled with the usual outer variables, u, and 8. In particular, the amount
of correlation at large separations increases with Reynolds number. This behavior can easily be understood
in the context of the new theory presented here. The large separations are primarily the “foot-print” of the
outer boundary layer motions and so should scale in outer variables. If both inner and outer velocity scales
were the same, then no Reynolds number dependence of the amplitude would be possible and the shape
of the correlation at large separations should be Reynolds number independent. If, on the other hand, the
outer velocity scale for the energy is not uZ, but U2 as suggested earlier, then the shape of the velocity
correlation functions at large separations should exhibit the Reynolds number dependence observed.

The pressure fluctuations on the wall and near it have presented somewhat of a dilemma for the con-
ventional theories because they do not scale in inner parameters, u, and v, alone. From the perspective of
the theory presented here, these represent interesting examples of single point statistics which should not be
expected to scale in local variables. This is because the pressure fluctuations are not governed by the same
equations as the quantities for which the scaling arguments were derived. In fact, they are governed by a
Poisson equation, the solution of which involves both an integral over the entire flow, and one over the wall
(Batchelor 1967). Both of these integrals involve two points, the one under consideration, and the integration
variable. Thus, only a two-point similarity analysis will suffice, and the considerations above are immediately
applicable with the result that both inner and outer scales govern these quantities. Bradshaw 1967 hypoth-
esized the existence of “inactive turbulent motions” and the “splat effect”, the former recognizing that large
energetic scales from outside the wall layer contribute to pressure fluctuations, and the latter accounting for
the effect of the wall through the kinematic boundary condition. The idea of inactive motions is especially
interesting because it anticipates the fact that the kinetic energy and Reynolds stress scale differently in the
outer flow than in the inner. All these ideas follow naturally from the two point similarity considerations
and the AIP, so unlike the classical approach, no new hypotheses need to be invoked to explain them.

Finally, the two point statistics also provide evidence for the mesolayer arguments put forth earlier. The
one-dimensional velocity spectral measurements of Folz et al. (1996) show clearly the emergence of the k—5/3
range for values of y* greater than a few hundred. Similar observations at much lower Reynolds number
have been made by a number of investigators (e.g., Perry et al. 1985, Smith 1994).

26 Summary and Conclusions

A new theory has been set forth for the zero pressure—gradient boundary layer using an Asymptotic Invariance
Principle and Near—Asymptotics. The equations for both the inner and outer regions of the boundary layer
become asymptotically independent of the Reynolds number in the limit of infinite Reynolds number. In this
limit (and only in this limit), these inner and outer equations admit to similarity solutions. These similarity
solutions are used to determine the scaling parameters for finite Reynolds number. The fact that similarity
solutions are strictly valid only for infinite Reynolds number means that no scaling ‘law’ can work perfectly
at finite Reynolds numbers. Moreover, only the proposed scaling can be Reynolds number invariant in the
infinite Reynolds number limit.

The outer boundary layer is found to be governed by a different scaling law than commonly believed. In
particular, the velocity deficit in the outer layer scales as (U — Uy )/Us. (To satisfy Galilean invariance,
Us can be replaced by the difference between the free stream velocity and the velocity of the surface.) The
Reynolds shear stress in the outer layer, on the other hand, scales with U2 dé/dz which to first order is u?

%
so that the outer layer is governed by two velocity scales. The classical inner scaling laws using u, and v
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were found to be consistent with the similarity analysis, except that their region of applicability is less than
previously believed.

By using Near-Asymptotics to examine how the inner and outer scaled velocity profiles behave for fi-
nite Reynolds number, the velocity in the overlap layer was shown to exhibit power law behavior, i.e.,
Uu. = Ciyt” and U/Us = C,y". The parameters C,, C; and 4 are Reynolds number dependent, and
only asymptotically constant. Thus, unlike the earlier theories, the overlap region is not Reynolds number
invariant in either inner or outer variables, except in the infinite Reynolds number limit. The friction law
was also shown to be of power law form; in particular, u, /U, = (C,/C;)6t 7.

New scaling laws for some of the turbulence moments were derived from similarity considerations of the
turbulence Reynolds stress equations. For the turbulence quantities in the outer layer to be asymptotically
independent of Reynolds number, it was shown to be necessary that the asymptotic growth rate of the
boundary layer be constant. Consequences of this are that the friction coefficient must be asymptotically
constant. It was not clear from the theory or the data whether zero was an acceptable value of this constant,
or whether the power exponent was itself asymptotically zero. The requirement for a finite energy dissipation
rate in the limit appears to resolve the question by requiring that the power exponent be asymptotically
non-zero, so the friction coefficient must be asymptotically zero. Regardless, arguments were presented that
these limits are reached well beyond the Reynolds number range of existing experiments, i.e., Ry > 10°.

By considering the role of viscosity in the single point and two point Reynolds stress equations, it was
argued that there exists a Mesolayer in the region approximately defined by 10 < yT < 300. In this region
the overlap solutions alone do not apply because the local turbulence Reynolds number is too low. A simple
turbulence model, valid in the range 30 < yt < 0.161 approximately, was used to derive a correction to the
overlap velocity profile given in inner variables by Cy,;/yT where from the data, C,; &~ —37. This term only
modifies the power law, but never dominates it, so there is no separate y~! layer. Even so, because of the
mesolayer, the overlap region does not even begin to evolve as a distinct region until Ry ~ 10* since below
this value there is no region satisfying 300 < y* < 0.16T, a necessary condition. In view of the simplicity of
the model, better approximations to the mesolayer contribution are probably possible.

The theory was shown to be in general agreement with the bulk of the experimental data. From a single
empirical relationship, h = A/(In é*)*, determined from the data, both the power, v, and the ratio C,/C;
could be calculated analytically from a constraint relationship between v and C,/C; . The asymptotic value
of C, = 0.897 is achieved in the experiments at about Ry ~ 3 x 103, so beyond this the variation of C; is
known to within the accuracy and extent of the data. Thus the variation of all the parameters with Reynolds
number is known, and the shear stress as well. The asymptotic values of v., = 0.0362 and Cj,, = 55 are
achieved at Reynolds numbers well beyond the range of the data. It is likely that the precise values for these
parameters will change as better experiments become available.

The introduction of empiricism for the Reynolds number dependence of the power v (or h) at the very
end of the analysis must be contrasted with the traditional log theory where it appears at the very first step
with the assumption of a velocity deficit law on which all subsequent arguments depend. It seems likely
that even h can be determined from symmetry considerations in the future. It is clear, however, that the
proposed form for h(§%) can not be exactly right, since the constants A and « depend on the definition of é.
An intriguing and invariant possibility is the h = A’/(Iné%/6F)* where 6} is determined in some way by
the initial (or upstream) conditions. There is some evidence among the different experiments for such a weak
dependence on upstream conditions (e.g., the imperfect overlap of the skin friction, the integral boundary
layer parameters, and even the values of v, C, and C; between the Smith/Walker and Purtell experiments),
but it was not possible to quantify this in the present study.
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The power law dependence of the matched region derived here was suggested by Barenblatt (1978, 1993)
from very different considerations. Unlike Barenblatt’s inferences, however, the theory here suggests that
pipe and channel flows will not show this behavior, and in fact the new theory allows a clear distinction to
be made between the pipe or channel flow, and boundary layers (see Appendix I). Since the former must
satisfy the homogeneous integral momentum equation, the pressure gradient and wall shear stress are not
independent, and thus only one can enter the scaling (contrary to the assumption of Tennekes 1968, see also
Tennekes and Lumley 1972). As a consequence, u, is the correct scaling velocity for the core region and
Millikan’s analysis of it is correct. Thus the pipe is governed by a log law (even though it does not have
a constant stress layer), while the zero pressure-gradient boundary layer is governed by a power law (even
though it does).

It appears that the streamwise homogeneity of the pipe or channel flows dictates log layers, while the
inhomogeneity of the boundary layer dictates power laws. Moreover, the Reynolds number of the flow does
not change with downstream distance for the pipe/channel, but it evolves continuously in the boundary
layer. As a consequence, the overlap and mesolayer regions are slowly moving away from the wall in physical
variables, and the distance from the wall alone cannot characterize variations within it as for the pipe/channel.
Prandtl’s hypothesis that y, the distance from the wall, is the only length scale in the matched layer is thus
only an approximation for boundary layers, while it is an exact asymptotic limit for pipe and channel flows.

That the boundary layer is only weakly inhomogeneous accounts for the fact that the log results have
been close enough to be rationalized as correct. It is clear from the above that the wall layers of boundary
layers and pipe/channel flows must be fundamentally different, however close they might be in practice.
Because of the long period of time (more than 60 years) the log law theory has been believed to apply
to turbulent boundary layers, it is natural to expect some resistance to any new theory which challenges
it, no matter how well reasoned or argued. Part of the reason for acceptance of the old theory is that it
has been believed to have been more or less consistent with the experimental velocity data which seemed
to exhibit a logarithmic region. (Other philosophical reasons have arisen to justify it, like the principle of
Reynolds number invariance, but it is the data itself which has been at the root of the faith.) It is, therefore,
incumbent on any new theory to not only be internally consistent, but to explain how so many could have
been so wrong for so long in believing the old. The paper has attempted to do both. At the very least, it is
hoped that a strong motivation has been provided for a new generation of experiments over the entire range
of Reynolds numbers.
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28 Appendix I: Turbulent Pipe and Channel Flow

It has been commonly assumed that turbulent channel and pipe flows have certain features in common
with boundary layer flow; in particular the Law of the Wall, which has generally been taken to include the
overlap region. It is the purpose of this brief discussion to show that this is not true, at least as far as the
overlap region is concerned, since unlike boundary flows, these confined flows are indeed characterized by
a logarithmic matched layer. The streamwise momentum equation for a fully developed two-dimensional
channel flow at high Reynolds number reduces to

1dP
+ ﬁ — < uv > —|—I/a—U (177)

OI_EE dy dy

Like the boundary layer, the viscous term is negligible everywhere but very near the wall, so that the core
(or outer) flow in the limit of infinite Reynolds number is governed by
1dP 0
————+ —— < uv> 178
p dx + Jy (178)
while the inner layer is governed to first order by equation 3.

It is obvious that the inner profiles must scale with u, and v; hence, a law of the wall (but not neces-
sarily the same one). Because there is no imposed condition on the velocity, except at the wall, an outer
scaling velocity must be sought from the parameters in the outer equation itself. Since there are only two,
—(1/p)dP/dx and R the channel half-width, only a single velocity can be formed; namely,

dP 1/2
U, = <_§E) (179)

0=

where R is the channel height (or pipe radius).

Unlike the developing boundary layer, the channel flow is homogeneous in the streamwise direction, so
there is an exact balance between the wall shear stress acting on the walls, and the net pressure force acting
across the flow. This equilibrium requires that

RdP
2
u; = ——— 180
which is just the square of equation 179 above. Therefore, the outer scale velocity is also u,, and the outer
and inner velocity scales are the same.
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Thus the appropriate outer and inner scaling laws for the velocity profile are

) (151)
and U
— = fily*, BY) (182)

where the outer velocity has been referenced to the velocity at the centerline, U,, to avoid the necessity of
accounting for the change over the inner layer. The only other difference from the boundary layer is that
the outer length scale is some measure of the width of the channel, say the half-width. As a consequence,
the appropriate Reynolds number is Rt = u, R/v.

By defining
u
Rt)=_—= 183
9(R7) = = (183)
the matching condition on the velocity becomes
1 n—1 n
——— "+ fo(R*" g, RY) = fi(RT"g, RT 184
o) ( ) = fi( ) (184)

where the symbols RT, , and n have the same meanings as for the boundary layer discussed in the main
body of the paper. Equating the velocity derivatives implies that

6fo — y+ 8fz
Jy dy*

] (185)

Taking the partial derivative of equation 184 with respect to Rt for fixed 4 leads after some manipulation

to
_(of.\ _ mtdg ., [(af of,
(%), =" {(am)yﬁ(am)y} .

Since, as before both f, and f; must become asymptotically independent of R* (or else the scaling is
wrong), to leading order,

of, 1
7 == 187
T oy = w (187)
and of .
+ 20 -
3t~ n (188)
where . R 4
=_t 49
K(RT) = ¢* dR* (189)
It follows immediately that
1
(7, RY) = Ing + B, (R 1
fo(y, RY) PSR (RT) (190)
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1

Sl 1) = k(RT)

Iny™ + B;(RT) (191)

and
1 1
ok mzmﬁ + [Bi(RT) — Bo(R™)] (192)

These are exactly the Millikan results (equations 14 — 16), but are more general since the parameters &, B;,
and B, need only be asymptotically constant. As for the boundary layer, they are easily shown to be subject
to a constraint given in this case by

InR+ d(1/k) d(B; — B,)

ARt — dR+ (193)

Thus the inner profile is quite different from that of the zero pressure-gradient boundary layer. This
should come as no great surprise, since with the exception of the linear sublayer where ut = y* for any
flow, the two flows are driven by very different mechanisms — the boundary layer by momentum transfer
from the external flow, the channel flow by a pressure gradient. Obviously even the relatively small effect
of this gradient on the near wall flow of the latter is quite different from having no gradient at all. Perhaps
more importantly, for fixed Reynolds number, the matched layer remains at the same distance from the wall
regardless of streamwise position because the flow is homogeneous in that direction.

It is easy to show that solutions to equation 193 must be of the form

1 1
B, — B; = <E - K—) In Rt — H(RT) (194)

where H(R*) must satisfy

1 1 dH

= 4 195

K Ke dlnRt (195)
It follows that

U. 1 "

—=—mImR"+H (196)

Us Koo

These ideas have recently been applied by George and Castillo (1996) to the Princeton superpipe ex-
periment (Zagarola 1996). The empirical function was found to be H — (Bjeo — Bosw) = A/(In R*)® where
a =044, A =—-0.0668, Bijso = 6.5, Byoo = —1.95, and ko, = 0.447.

29 Appendix III. A Mesolayer Model

It was Long 1976 (see Long and Chen 1982) who first argued for the existence of a mesolayer — but on very
different physical grounds. He did not consider the turbulence energy equation, but instead only the mean
momentum equation. From it he argued that some residual viscous stress must be retained in addition to
the Reynolds stress, and used this to define a meso-length scale which varied as the square root of the flow
Reynolds number. All subsequent deductions were based on matching four flow regions, one of which was
characterized by this new length scale. The suspicions that a new layer involving viscosity and inertia was
needed between the overlap and viscous layers has proven to be quite insightful. The arguments, however, can
not be justified since there is simply no physical basis for arguing that the viscous stress must be important
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in the equations for the mean flow. In fact it is negligible outside of yT ~ 10. It was argued in the preceding
section that viscosity enters the dynamics of the mesolayer only through its effect on the energy cascade, and
that is reflected in the nature of the dissipation, and in turn in the component Reynolds stress equations.

It is easy to show that no new length scale is necessary to account for this dissipation effect. The whole
reason for the existence of this mesolayer is that the local turbulence Reynolds number near the wall can
never be large enough for the dissipation to become inviscid. Near the bottom of the constant stress layer,
the scales of the energy-containing eddies and those at which the energy is dissipated will be nearly the same
size, and in this limit € ~ vq?/L? where L is typically about equal to y, the distance from the wall. At the
outer part of the constant stress layer, the required scale separation will have been achieved — if the flow
Reynolds number is high enough — so the dissipation is nearly inviscid and thus ¢ ~ ¢3/y. The essence
of the mesolayer is that neither of these limits applies and a transition from one to the other is occurring.
Thus in the mesolayer, vq?/y? ~ ¢3/y, and it follows immediately the length scale for the mesolayer is just
proportional to y ~ v/q & v/u,. But this just says that the mesolayer length scale is proportional to the
viscous one. It does show clearly, however, that the mesolayer is bounded by relatively fixed values of y*
as argued earlier, the slight variation being due to the fact the ratio q/u. has a weak Reynolds number
dependence (for a given of y*), and is constant only in the limit.

In the mesolayer, the nature of the dissipation is changing with distance from the wall as the local
Reynolds number, yT, increases. And it is this evolution from low to high Reynolds number dissipation
which provides a clue for building a model for at least part of the mesolayer. Note that the analysis below
is a physical model based on an assumed form of the dissipation, and is therefore quite distinct from the
AIP and Near-Asymptotics approach described earlier. It will be shown, however, to be consistent with the
latter, and to lend considerable insight into it.

Since it is the dissipation itself which creates the mesolayer, it is reasonable to begin by assuming a form
for how the dissipation changes with Reynolds number, and then pursuing its logical consequences. A simple
model incorporating both the high and low Reynolds number dissipation limits is

¢ g°

€e=c1— + cav—s 197
17 + ¢ I (197)
For very high values of ¢L/v the first term dominates, but the second overwhelms it when ¢L/v << ¢3/e1.
Variations on this idea have appeared in numerous low Reynolds number turbulence models (cf. Hanjalic
and Launder 1973, Reynolds 1976, Rodi 1993). Since only the near wall region is of interest, it is appropriate

to take L = y, as done by many single equation turbulence modellers for the near wall region.
As long as yt > 30, the kinetic energy equation for the turbulence reduces to simply a balance between

production and dissipation, the turbulence transport terms being negligible; i.e.,

—<uv>a—U:€ (198)
dy
The turbulence transport terms are certainly not negligible in the region 10 < yt < 30 which is also part
of the mesolayer, so any success of the model in this region must be regarded as fortuitous. (The authors
are grateful to Drs. M.M. Gibson and W.P. Jones of the Imperial College of London for helpful discussion
about this region.)
Now consistent with the single equation turbulence model is the assumption that the Reynolds stress can
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be modelled with an eddy viscosity acting on the mean velocity gradient; i.e.,

dU

— < uv >= I/td—y (199)
The usual choice of turbulence modellers is (Rodi 1993)
¢
v = 3 (200)
€

Substituting the dissipation and Reynolds stress models into the energy balance of equation 198, dividing
by ¢*/¢, and taking the square root yields

oU cl)q <cz) v
()L, (e2y¥ 201
Oy (Cs Yy c3) y? ( )
dut [ q 41 €2\ -2
= () () (2) (202)

Obviously it is the factor ¢/u, which determines whether the first term on the right hand side integrates to
a logarithm or a power law (or something else).

or in inner variables,

It is easy to show that in the overlap region (just as for the Reynolds shear stress considered earlier),
q?/u? = C'q(6+)y+a. 9 The overlap velocity power law can be recovered in the limit of large y* if o = 27,
which is, in fact, consistent with the eddy viscosity and dissipation modeling assumptions above. Substitution
into equation 202 and integration yields immediately,

—1
ut = Coyt” + Criyt

(203)
The integration constant has been taken as identically zero to correspond to the previously derived overlap
layer as y* — oo, and the other parameters have been collected into C;(6%7) and C,;. The second term is
unaffected by the behavior of q/u.; hence there is reason to hope that it may be the same for all wall-bounded
flows. (Note that equation 203 can be derived using only the overlap characteristics without reference to

an eddy viscosity model.)

Thus the additional contribution of the mesolayer to the velocity profile (in inner variables) is C’miy“'_l.

The parameter C,,; must be negative and should be nearly constant. It will be seen later in Part II that that
because of the relative values of C; and C),; there is no region where the second term dominates, at least
where the assumptions are valid. Therefore there will be no y+_1—layer, only a modified power law region.
Moreover, because of this, the first term in equation 203 will be clearly visible only when the second is
negligible. Since this is not the case for many of the low and moderate Reynolds number experiments, it will
not be possible to even identify the parameters C;, C,, and v for most of the data without first accounting
for the mesolayer contribution. (Note that similar considerations for a channel or pipe flow yield a similar
term added to the log profile.)

?This is a consequence of the fact that the inner and outer scales are different. Pipe and channel flows, however, show a
logarithmic dependence for all quantities.
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Rk X By comparing the second terms of equations 104 and 105, and ignoring the slight difference
in exponent (since 7 << 1), an approximate relation between a* and C,,; can be obtained as

le' ~ ”yCZ'Cl+ (204)

or C
+ o Zmi 205
RETe? (205)

For the range of Reynolds number of the KEP data (and the boundary layer data as well), a* & C,,; since
vC; = 1. The mesolayer parameter, C,,; was found by GCK to be constant at approximately —37 which
corresponds to at ar —37 also. FhFkrrrIREEE

Equation 203 can be expressed in outer variables as

= O+ O™ (206)
where o
C’mo = Cmi6+_1 ;* = Cmi??6+_(1+’y) (207)

Obviously if C,; is constant, C;, 18 not.

Since the constant stress layer for much of the data under consideration extends to only values of y* of
a few hundred, inclusion of the mesolayer profile into the data analysis significantly modifies the conclusions
about where the power law overlap region is located, as well as the values deduced for the parameters C,,
C;, and 7. Both the inner and outer expressions will be utilized in the Part II to analyze the velocity profile
data.

Before leaving this section it is interesting to note that equation 202 offers another insight as why the
familiar log profile has survived so long. Suppose there were a region in the boundary layer for which
production were not only approximately equal to the dissipation, but for which the ratio ¢/u. were also
approximately constant. If this region were at sufficiently large values of yt for the second term to be
relatively small, then to a first approximation dut/dyT ~ 1/y*. Thus the profile corresponds exactly
to that originally deduced by Prandtl (1932) from an viscosity hypothesis. These assumptions above are
satisfied only over a narrow region for boundary layer flows (50 < y* < 150), but this is exactly the region
where the log law is known to work best in boundary layer flows (Bradshaw and Huang 1995). These same
authors note the seemingly paradoxical facts that the log profile is remarkably ‘resilient’, but its range of
validity does not seem to increase with increasing Reynolds number like a proper overlap solution (or like
pipe or channel flow). In fact, the overlap plus mesolayer profile derived above and the old log law are nearly
indistinguishable over this limited range. All of these observations are consistent with the interpretation
that the boundary layer ‘log region’ is in fact just a portion of the mesolayer. Thus Prandtl’s log law is
preserved, but only as an approximation over a limited range. Clauser’s identification of this region with
Millikan’s matched layer is, however, clearly incorrect.

30 Appendix IV: Optimization Method of Data Analysis

In order to use all of the available information to determine C,, C;, v, and Cy,; the following formal
optimization was utilized. The optimization is based on the composite profile of equation 162. This was
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used to calculate the integral thicknesses from equations 125 and 138. It was assumed that the shear stress
measurements were unreliable, and so it was calculated using the theoretical relation, equation 84, as part
of the optimization (except as noted below).

For the initial optimizations, one with the mesolayer term and the other without, the objective function
to be minimized for each profile was

U

obj = ABS( - 1) (208)
comp
subject to the following equality constraints
by
Hl = =1 (209)
6*theor
6
H2 = =1 (210)
6theor
H
H3 = =1 211
]]fheor ( )
Side constraints imposed on the design variables were:
Co, > 0 (212)
C; > 0 (213)
> 0 (214)

This method had the considerable advantage of not depending on any c; measurements or linear layer
velocity measurements. However, for the Smith/Walker data there were not sufficient points near the wall
to determine the shear stress in this manner, Therefore for this data (only) an additional constraint was
added; i.e.,

Hi=—2 =1 (215)

Cftheor

where the values of c; used were determined from the momentum integral as described in the text. The
result of this data was used to determine the form of the h-function as h = A/(Iné*)*

The final optimization eliminated the integral and shear stress constraints and used instead the empirical
h-function (with undetermined coefficients) and the resulting exact solutions for v and C,/C;. The values of
the parameters A, «, Cyo0, Cioo, and 7o, Were optimized by considering all of the profile data simultaneously,
hence the smooth curve in Figure 7.
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