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A theory for turbulent pipe and channel flows is proposed which extends the classical
analysis to include the effects of finite Reynolds number. The proper scaling for these
flows at finite Reynolds number is developed from dimensional and physical consider-
ations using the Reynolds-averaged Navier-Stokes equations. In the limit of infinite
Reynolds number, these reduce to the familiar law of the wall and velocity deficit law
respectively.

The fact that both the scaled profiles describe the entire flow for finite values of
Reynolds number but reduce to inner and outer profiles is used to determine their func-
tional forms in the “overlap” region which both retain in the limit. This overlap region
corresponds exactly to the constant Reynolds shear stress region (30 < y* < 0.1R*
approximately where Rt = u, R/v). The profiles in this overlap region are logarithmic,
but in the variable y + a where a is an offset. Unlike the classical theory, the additive
parameters, B;, B,, and log coefficient, 1/k, depend on Rt They are asymptotically
constant, however, and are linked by a constraint equation. The corresponding friction
law is also logarithmic and entirely determined by the velocity profile parameters, or vice
versa.

It is also argued that there exists a mesolayer near the bottom of the overlap region
approximately bounded by 30 < yt < 300 where there is not the necessary scale separa-
tion between the energy and dissipation ranges for inertially-dominated turbulence. As a
consequence, the Reynolds stress and mean flow retain a Reynolds number dependence,
even though the terms explicitly containing the viscosity are negligible in the single-point
Reynolds averaged equations. A simple turbulence model shows that the overlap param-
eter a accounts for the mesolayer, and because of it a logarithmic behavior in y applies
only beyond yt > 300, well outside where it has commonly been sought.

The experimental data from the superpipe experiment and DNS channel flow are
carefully examined and shown to be in excellent agreement with the new theory over the
entire range from 1.8 x 102> < Rt < 5.3 x 10°. The Reynolds number dependence of all
the parameters and the friction law can be determined from the single empirical function,
H = A/(In R*)*, just as for boundary layers. The Reynolds number dependence of the
parameters dies off very slowly with increasing Reynolds number, and the asymptotic
behavior is reached only when Rt >> 10°.

1 This paper was prepared for Disquisitiones Mechanicae at the University of Illinois, De-
partment of Theoretical and Applied Mechanics, Urbana, Ill, Oct 24-26, 1996.
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1. Introduction

Pipe and channel flows have recently become the subject of intense scrutiny, thanks in
part to new experimental data which has become available from the superpipe experiment
at Princeton (Zagarola and Smits 1996, Zagarola 1996). In spite of the facts that the
scaling laws were established for pipes and channels more than 80 years ago (Stanton and
Pannell 1914, Prandtl 1932) and that the now classical theory of Millikan was offered in
1938 for the friction law and velocity profiles, the subject has remained of considerable
interest. Examples from the last 30 years alone include the analyses of Tennekes (1968),
Bush and Fendell (1974), Long and Chen (1981), and Panton (1990). All of these were
essentially refinements on the original Millikan theory in which the essential functional
form of the friction and velocity laws was logarithmic, and only the infinite Reynolds
number state was considered. The difficulties presented by the experimental data have
recently been extensively reviewed by Gad-el-Hak and Bandyopadhyay (1994).

Barenblatt (1978, 1993) has suggested that the velocity profiles of pipe, channel and
boundary layer flows were power laws. In contrast, George and his coworkers (George
and Bower 1988; George 1990, 1995; George and Castillo 1993, 1997; George et al. 1992,
1996) have argued that the overlap velocity profile and friction law for boundary layers are
power laws, but that the corresponding relations for pipes and channels are logarithmic.

Specifically, George and Castillo (1997) used the Reynolds-averaged Navier-Stokes
equations and an Asymptotic Invariance Principle to deduce that the proper scaling
velocity for the outer part of the boundary layer was Uy, the free stream velocity. In
the inner region, however, the proper scale velocity was u,, the friction velocity, just as
in the classical Law of the Wall. Since the ratio of u,/Us varied with Reynolds number,
so did the velocity profiles in the Reynolds number dependent overlap region. These were
derived using Near-Asymptotics as

eyt +aty (L.1)

*

and
Ul _ Co(y+a)” (1.2)
Uso
where y* = y/n,n = v/u., ¥ = y/é where é is the boundary layer thickness (chosen
as 8g g9 for convenience). This overlap region was shown to correspond exactly to the
region of approximately constant Reynolds stress region of the flow, 30 < yT < 0.16%.
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The parameter a represents an origin shift, and was shown to be related to the existence of
a mesolayer in the region approximately given by 30 < yT < 300 in which the dissipative
scales are not fully separated from the energy and Reynolds stress producing ones. The
parameters C;, C,, and v were functions of §t, asymptotically constant, and satisfied
the constraint equation,

dy  dInC,/C;
dlné+  dlné+

where 67 = u,6§/v. The friction law was given by

Iné*

(1.3)

te _ Coge (1.4)

U G

The constraint equation was transformed by defining a single new function h = h(Iné%)
so that
InCy/Ci = (¥ — Yoo ) In 6T + h (1.5)

and
B dh
T T Tt
The function h — ho, was determined empirically to be given by

(1.6)

A
h(6T) = hoo = ——— 1.
(6) = ho = i (1.7
where heo = In(Coeo/Cioo) and a > 1 is a necessary condition.
It followed immediately that
aA
SV 1.
VYo = gtyiee (1.8)
g_ _ g: expl(1 + a)A/(In §+)%] (1.9)
and
o 3__00(5+)‘”°° exp[A/(In§+)?] (1.10)

The values for the constants were determined from the data to be yo = 0.0362, Coo0 /Cico =
exp(heo) = 0.0164, C, & Coeo = 0.897 (s0 Cioo = 55), A = 2.91, and a = 0.46. Also it
was established from the available data that at was nearly constant and approximately
equal to —16.

The purpose of this paper is to apply the same methodology to pipe and channel flows,
and to compare the resulting theory with the new experimental data. The important
difference from previous efforts mentioned above will be seen to be that the effects of
finite Reynolds number are explicitly included and the mesolayer is accounted for.

2. Scaling Laws for Turbulent Pipe and Channel Flow

The stream-wise momentum equation for a fully developed two-dimensional channel
flow at high Reynolds number reduces to

1dP 0 oU
_ —_ 2.1
0= - + ” < —uv > +v ” ( )

Like the boundary layer, the viscous term is negligible everywhere except very near the
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wall, so that the core (or outer) flow in the limit of infinite Reynolds number is governed

by

1dP 0
0= - 4+ 2 ~_ 2.2
>z + By < —uv > (2.2)

In the limit of infinite Reynolds number, the inner layer is governed by
0 oUu

0= 2 _ - 2.3
By < —uv > +4v 2y (2.3)

This can be integrated from the wall to obtain
u? =< —uv > —I—V%—Z (2.4)

where u, is the friction velocity defined as u? = m /p. As the distance from the wall

is increased, the viscous stress vanishes and < —uv >— uZ, but only in the infinite
Reynolds number limit. At finite Reynolds numbers the outer flow is reached first and
the convection terms reduce the Reynolds shear stress before it can reach the limiting
value.

It is obvious that the inner profiles must scale with u, and v since these are the only
parameters in the inner equations and boundary conditions. Hence, there must be a law
of the wall (at least for a limited region very close to the wall). This should not be taken to
imply, however, that u2 is an independent parameter; it is not. It is uniquely determined
by the pressure drop imposed on the pipe, the pipe diameter and the kinematic viscosity.

Because there is no imposed condition on the velocity, except for the no-slip condition
at the wall, an outer scaling velocity must be sought from the parameters in the outer
equation itself. Since there are only two, —(1/p)dP/dz, the externally imposed pressure
gradient, and R the channel half-width, only a single velocity can be formed; namely,

RdP\'?
= (R4 29

Unlike the developing boundary layer, the fully-developed pipe or channel flow is ho-
mogeneous in the stream-wise direction, so a straightforward similarity analysis using
the z-dependence to establish the scaling parameters is not possible. However, because
of this stream-wise homogeneity, there is an exact balance between the wall shear stress
acting on the walls, and the net pressure force acting across the flow. For fully-developed
channel flow, this equilibrium requires that

9 RdP )
ul = — s (2.6)
which is just the square of equation 2.5 above; thus, U, = u,. Therefore, the outer scale
velocity is also u, and the outer and inner velocity scales are the same. The factor of
two which appears in the corresponding pipe flow equilibrium can be ignored in choosing
the scale velocity, so the same argument and result apply to it as well.

Thus channel and pipe flows differ from boundary layer flows where asymptotic Reynolds
number independence and stream-wise inhomogeneity demand that the inner and outer
scales for the mean velocity be different (George and Castillo 1997). This consequence
of homogeneity on the governing equations themselves is fundamental to understanding
the unique nature of pipe and channel flows. Homogeneity is the reason these flows
show a logarithmic dependence for the velocity in the overlap region and for the fric-
tion law, unlike boundary layers which are characterized by power laws because of their
inhomogeneity.
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It is obvious that since the length scales governing the inner and outer equations
are different, no single scaling law should be able to collapse data for the entire flow.
Moreover, since the neglected terms in both the inner and outer equations above depend
on the ratio of length scales (v. Tennekes and Lumley 1972), then neither set of scaling
parameters will be able to perfectly collapse the data in either region at finite values of
R* = Ru./v. The Asymptotic Invariance Principle (or AIP, George 1995) states that
the appropriate choices for scaling are those which lead to similarity solutions of the
inner and outer equations separately in the limit for which those equations themselves
are valid, namely Rt — co. Thus the appropriate inner and outer scaled versions of the
velocity profile are

© = Sl R) (2.7)

and

S = R (23

*

where the outer velocity has been referenced to the velocity at the centerline, U, , to avoid
the necessity of accounting for viscous effects over the inner layer when the limits are
taken later. The outer length scale is some measure of the diameter of the pipe (say the
pipe radius) or the width of the channel (say half-width). Both of these will be denoted
as R in the remainder of the paper.

Note that the fact that the inner and outer equations are themselves only strictly valid
in the limit as RT — co means that no scaling law can perfectly collapse the data except
i this limit since no similarity solutions exist except here. In fact, both equations 2.7
and 2.8 describe the entire velocity profile as long as Rt = u, R/v, the ratio of outer to
inner length scales, is retained. This is because they represent the same solutions to the
complete governing equations for a given RT, but have simply been scaled differently.

Properly scaled profiles should by the Asymptotic Invariance Principle (AIP, George
1995) become asymptotically independent of RT in the limit of infinite Reynolds number;
ie.,

lim f;(y*, RY) = fioo(y™)
lim f,(7, RY) = fooo (¥)

as Rt — co. In fact, these limiting profiles should be solutions to the inner and outer
equations respectively (i.e., equations 2.3 and 2.2), which are themselves valid only in
the infinite Reynolds number limit.

Figures 1 and 2 show the mean velocity profile data from the Princeton superpipe
experiment (Zagarola 1996, see also Zagarola and Smits 1996) in both inner and outer
variables. Note the excellent collapse very close to the wall for y* < 100 in inner variables,
and over the core region for ¥ > 0.3. Note also that the region of approximate collapse
in inner variables (Figure 1) increases from the wall with increasing Reynolds number,
as does the inward extent of the outer variable collapse (Figure 2). Finally note that the
inner scaling does not collapse the data at all where the outer scaling collapses it best,
and vice versa. Both the region of approximate collapse and the region of no collapse at
all are manifestations of the dependence of the scaled profiles on Rt as argued above.

Unlike boundary layer experiments, the wall shear stress for the fully-developed pipe
flow can be determined from the pressure drop down the pipe alone, entirely independent
from the velocity profile measurements. The direct determination of the shear stress from
the pressure drop without choosing it to collapse a ‘log’ layer which can only be assumed
to collapse (the so-called Clauser method) is especially important since, as noted above
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FiGURE 1. Velocity profiles in inner variables

there is evidence of a lack of complete collapse of the data in Figure 1 outside of y* = 100,
especially for the lowest Reynolds numbers. The lack of collapse is even more apparent
for the outer scaling in Figure 2 inside of ¥ & 0.3 which includes all of the overlap region
discussed below.

3. The Overlap Layer: An Application of Near-Asymptotics

It 1s obvious that since the outer and inner profiles scale differently and the ratio of
length scales is in fact the Reynolds number, then the region between the two similarity
regimes cannot be Reynolds number independent, except possibly in the limit of infinite
Reynolds number. The actual mean velocity profile at any finite Reynolds number,
however, is the average of the instantaneous solutions to the Navier-Stokes equations
and boundary conditions. And this profile, whether determined from a real flow by
measurement, a DNS simulation, or not at all, exists, at least in principle, and is valid
everywhere regardless of how it is scaled. Therefore both scaled forms of this solution,
fi(yT, R*) and f,(y, R*) (equations 2.7 and 2.8 respectively), represent the velocity
everywhere, at least as long as the Reynolds number is finite. In fact, the parameter Rt
uniquely labels the fanning out of the inner scaled profiles in the outer region and the
outer scaled profiles near the wall in Figures 1 and 2.

Thus, f; and f, are quite unlike their limiting forms, f;o, and f,,, which are only
infinite Reynolds number solutions for the inner and outer equations respectively. If
Ji and f, are considered instead of fioo and foeo (as is usually done), the problem of
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F1GURE 2. Velocity profiles in outer variables

determining whether an overlap region exists is quite different from the usual asymptotic
matching where infinite Reynolds number inner and outer solutions are extended and
matched in an overlap region if one exists. Therefore, the objective here is not to see if
fi; and f, overlap and match them if they do. Rather, it is rather to determine whether
the fact that these scaled finite Reynolds number solutions (to the whole flow) degenerate
at wnfinite Reynolds number in different ways can be used to determine their functional
forms in the common region they describe in the limit. The methodology, termed Near-
Asymptotics was first utilized by George 1995 (see also George and Castillo 1997), and
1s necessary because the traditional approach cannot account for the possibility of the
matching parameter tending to zero, as might be the case. It also makes the results easier
to compare to experiments since most are carried out far from asymptotic conditions.

The fact that analytical forms for these Reynolds number dependent solutions are
not available, and they are only known in principal turns out not to be a significant
handicap. There are several pieces of information about the two profiles which can be
utilized without further assumptions. They are:

e First, since both inner and outer forms of the velocity profile must describe the flow
everywhere as long as the ratio of length scales, RT = R/n, is finite, it follows from
equations 2.7 and 2.8 that

ﬁ + 1,7, RY) = fiy*, RY) (3.1)
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where g(R*) is defined by
g(RY) = u. /U, (3.2)

e Second, for finite values of RT, the velocity derivatives from both inner and outer
forms of the velocity must also be the same everywhere. It is easy to show that this
implies that

_afo o+ afz

(3.3)

for all values of RT and .

e Third, as noted above, in the limit both f, and f; must become asymptotically
independent of R*;ie., f,(¥, RT) — fooo(¥) and fi(y™, RT) — fic(yT) as RT — .

Now the problem is that in the limit as RT — oo, the outer form fails to account for the
behavior close to the wall while the inner fails to describe the behavior away from it. The
question then is: In this limit (as well as for all finite values approaching it) does there
exist an “overlap” region where equation 3.1 is still valid? (Note that boundary layer
flows are quite different from pipe and channel flows since the overlap layer in the latter
remains at fixed distance from the wall for all z because of the stream-wise homogeneity,
as long as the external parameters — like geometry and Reynolds number — are fixed,
while in the former it moves away from the wall with increasing z.)

The question of whether there is a common region of validity can be investigated by
examining how rapidly f, and f; are changing with Rt. The relative variation of f; and
f» with Reynolds number can be related to their Taylor expansions about a fixed value

of RT;ie.,
fily*; RY + ARY) = fi(y*; RY) 1 9fi(y*;R")

Si(RT,y")  (3.4)

AR* fi(y+, RY) T Kyt RY)  ORY ly+
and
fo(; RY + ARY) — f,(y; RY) _ 1 af.(y;RY)| _ + =
AR*f,(7, RY) ~ f.(§, RY)  OR* ‘f So(R".5) (3.5)

Thus S; and S, are measures of the Reynolds number dependence of f; and f, respec-
tively. Both vanish identically in the limit as R* — oco. If y*,,,. denotes a location
where outer flow effects begin to be strongly felt on the inner scaled profile, then for
yt <yt .., Si should be much less than unity (or else the inner scaling is not very use-
ful). Similarly, if ¥,,;,, measures the location where viscous effects begin to be strongly felt
(e.g., as the linear velocity region near the wall is approached), then S, should be small
for ¥ > Yin- Obviously either S; or S, should increase as these limits are approached.
Outside these limits, one or the other should increase dramatically.

The quantities S; and S, can, in fact, be used to provide a formal definition of an
“overlap” region where both scaling laws are valid. Since S; will increase drastically for
large values of y for given Rt and S, will increase for small values of y, an “overlap”
region exists only if there exists a region for which both S; and S, remain small simul-
taneously. In the following paragraphs, this condition will be used in conjunction with
equation 3.1 to derive the functional form of the velocity in the overlap region at finite
Reynolds number, hence the term ‘Near-Asymptotics’.

Because of the movement of the overlap region toward the wall with increasing RT, it
i1s convenient and necessary to introduce an intermediate variable § which can be fixed
in the overlap region all the way to the limit, regardless of what is happening in physical
space (v. Cole and Kevorkian 1981). A definition of § which accomplishes this is given
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by

g=ytR*" (3.6)
or

yt = gRrR*" (3.7)
Since Rt = y* /7, it follows that

y=gRrRt""" (3.8)

For all values of n satisfying 0 < n < 1, § can remain fixed in the limit as Rt — oo while
7 — 0 and y* — oo. Substituting these into equation 3.1 yields the matching condition
on the velocity in terms of the intermediate variable as
1 —1. -
—— + L(RT"T g, RY) = fi(RT"g, RT) (3.9)
g(R*)
Now equation 3.9 can be differentiated with respect to Rt for fized 4 to yield equations

which explicitly include S; and S,. The result after some manipulation is

v (af@) = L RMST RN AT RY) - S, ROLGRY) (3.10)
0y ) g+ K

where
1 Rt d d(1
= _ g _ (1/9) (3.11)
k(R*) g> drRt dInRt

The first term on the right hand side of equation 3.10 is at most a function of Rt alone,
while the second term contains all of the residual y-dependence. Note that the factor of
RT could have been absorbed into the definitions of S; and S, by simply defining them
as the logarithmic derivatives of the inner and outer scaled profiles.

Now 1t 1s clear that if both

RY|S,|f, << 1/k (3.12)
and
RY|Si|fi << 1/k (3.13)

then the first term on the right-hand side of equation 3.10 dominates. If 1/k — 0, then
the inequalities are still satisfied as long as the left hand side does so more rapidly than
1/k. Note that a much weaker condition can be applied which yields the same result;
namely that both inner and outer scaled profiles have the same dependence on Rt; i.e.,
Sifi = Sof, in the overlap range so 1/k is the only term remaining. If these inequalities
are satisfied over some range in y, then to leading order, equation 3.10 can be written

as
_0f, 1

0] o7~ n (3.14)

The solution to equation 3.14 could be denoted as f§” since it represents a first order
approximation to f,. It is not, however, simply the same as f,oo because of the R
dependence of 1/k, but reduces to it in the limit. Thus, by regrouping into the leading
term all of the y-independent contributions, the method applied here has yielded a more
general result than the customary expansion about infinite Reynolds number. (It is also
easy to see why the usual matching of infinite Reynolds number inner and outer solutions
will not work if the limiting value of 1/« is zero, which can not yet be ruled out.)



10 William K. George, Luctano Castillo and Martin Wosnik

From equations 3.3 and 3.14, it follows that

of; 1
T = 3.15
e (3.15)
Equations 3.14 and 3.15 must be independent of the origin for y; hence they must be
invariant to transformations of the forms ¥ — ¥ + @ and y* — yt + at respectively,
where a 1s at most a function of the Reynolds number. Therefore the most general overlap

solutions are of the form,

U-U.,

1

o = LR = s inlg + AR+ Bo(RY) (3.16)
and
o= B R = sl 0 (R4 Bi(R) (3.17)

The superscript ‘(1)” has been dropped; however it is these first order solutions that are
being referred to unless otherwise stated. Thus the velocity profiles in the overlap region
are logarithmic, but with parameters which are in general Reynolds number dependent.
Note that the particular form of the solution In(y+a) has been also identified by Oberlack
(1996) from a Lie group analysis of the equations governing homogeneous shear flows.
It will be argued in Section 7 below that at is closely related to the mesolayer, just as
it is for the boundary layer (George and Castillo 1997). The data will be found to be
consistent with a™ ~ —8.

An interesting feature of these first order solutions is that the inequalities given by
equations 3.12 and 3.13 determine the limits of validity of both equations 3.14 and 3.15
since either S, or S; will be large outside the overlap region. Clearly the extent of this
region will increase as the Reynolds number (or R*) increases.

The parameters 1/k, B; and B, must be asymptotically constant since they occur in
solutions to equations which are themselves themselves Reynolds number independent
in the limit (the ATP). Moreover, the limiting values, ke, Bico, and Bys cannot all be
zero, or else the solutions themselves are trivial. In fact, in the limit of infinite Reynolds
number the energy balance in the overlap range reduces to production equals dissipation;
i.e., ¢t = Pt In section 7 below this will be shown to imply that

dut 1

€_>dy+_fi(y++a+) (3.18)
Since the local energy dissipation rate must be finite and non-zero (Frisch 1995), it follows
that 1/ko must be finite and non-zero. It will be shown below that these conditions
severely restrict the possible Reynolds number dependencies for the parameters x, B;
and B,. (It is interesting to note that the same physical constraint on the boundary
layers results requires that the power exponent, v be asymptotically finite and non-zero
in the limit of infinite Reynolds number.)

The relation between u, and U, follows immediately from equation 3.1; i.e.,

U, 1 1
u—: = m = mlnR-l_ + [BZ(R+) — BO(R+)] (319)

Thus the friction law is entirely determined by the velocity parameters for the overlap
region. However, equation 3.11 must also be satisfied. Substituting equation 3.19 into
equation 3.11 implies that &, B;, and B, are constrained by

g dU/K) __d(Bi — B,) (3.20)
dIn R+ dIn Rt
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But this is exactly the criterion for the neglected terms in equation 3.10 to vanish identi-
cally (i.e., S; fi — Sofo = 0). Therefore the solution represented by equations 3.16 to 3.20
18, indeed, the first order solution for the velocity profile in the overlap layer at finite,
but large, Reynolds number. Clearly when yT is too big or ¥ is too small for a given
value of RT, the inequalities of equation 3.12 and 3.13 cannot be satisfied. Since all the
derivatives with respect to RT must vanish as RT — oo (the AIP), the outer range of
the inner overlap solution is unbounded in the limit, while the inner range of the outer
is bounded only by v = —a.

Equation 3.20 is invariant to transformations of the form Rt — D, RT where D; is a
scale factor which insures that the functional dependence is independent of the particular
choice of the outer length scale (e.g., diameter versus radius). Thus the velocity profile
in the overlap layer is logarithmic, dut with parameters which depend on the Reynolds
number, Dy R*. The functions k(Ds; RT), B;(DsR*) and B,(D;R*) must be determined
either empirically or from a closure model for the turbulence. Regardless of how they are
determined, the results must be consistent with equation 3.20. Obviously the appropriate
form of the independent variable is In D, Rt and not just Rt alone.

4. A Solution for the Reynolds Number Dependence

It is convenient to transform equation 3.20 using

1 1
H(D,R*)= (= — —)InD,R* + (B; — B,) (4.1)
K Koo
where H = H(D;R*) remains to be determined. Tt is easy to show that if H(D;R™")

satisfies

1 1 dH
- =7 4.2
K Koo dln D, Rt (4.2)
then equation 3.20 is satisfied. It follows immediately that
1 . 1
- = Ye = —InD,R" + H(D,R") (4.3)
g U« Koo

Thus the Reynolds number dependence of the single function H(DR}) determines that
of k, B; — B, and g.
The conditions that both B;,, and B, be finite and non-zero require that:
Either
e B;, B, and k remain constant always;
or
e (i) 1/k — 1/Ko, faster than 1/In Dy R*, and
e (ii) H(DsR*) — Ho = constant.
Obviously from equation 4.1,

Hy = Bjoo — Booo (44)

An empirical choice for H(D; RT) — H, satisfying these conditions is suggested by the

boundary layer analysis of George and Castillo (1997); it is,
H(D;R") — Hoo = A (4.5)
[In Dy Rt

Note that conditions (i) and (ii) above imply that a > 0.
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Using this in equation 4.3 yields

U. 1 n A
it In Dy RT + [Bioo — Booo] + TVNGE
As Rt — oo this reduces to the classical solution of Millikan 1938. This is comfort-
ing since Millikan’s analysis is an infinite Reynolds number analysis of inner and outer
profiles scaled in the same way. (Note that this was not true for the boundary layer:
The Clauser/Millikan analysis assumed the same scaling laws applied as for the pipe.
George/Castillo argued from the Reynolds-averaged equations that they had to be dif-
ferent, hence the different conclusions.)

The Reynolds number variation of 1/x and B; — B, can be immediately obtained from
equations 4.1, 4.2 and 4.5 as

(4.6)

1 1 aA

K e  (ID,RT)Te *.7)
and
(Bi = Bo) — (Bios — Bowo) = % (4.8)

Figures 3a and 3b show the friction data of the superpipe experiment of Zagarola and
Smits (1996). As the investigators themselves have pointed out, careful scrutiny reveals
that the data do not fall on a straight line, so a simple logarithmic friction law with
constant coefficients does not describe all the data to within the accuracy of the data
wtself. In particular, a log which attempts to fit all of the data dips away from it in
the middle range. On the other hand, a log which fits the high Reynolds number range
does not fit the low, or vice versa. Figure 3b shows two curves: The first represents a
regression fit of equation 4.6 (also shown on Figure 3a), while the second shows only the
asymptotic log form of equation 4.6. The former provides an excellent fit to the data
for all Reynolds numbers and asymptotes exactly to the latter, but only at much higher
Reynolds numbers. The differences although slight are very important since they entirely
determine (or reflect) the Reynolds number dependence of the parameters 1/, B; and
B,. The latter will be seen later to be especially sensitive to this dependence. Clearly the
proposed form of H captures the residual Reynolds number dependence, while simply
using constant coefficients does not.

The values obtained for the asymptotic friction law parameters using optimization
techniques are koo, = 0.447, Bjoo — Booo = 8.45, while those describing the Reynolds
number dependence are A = —0.668 and o = 0.441. The same optimization techniques
showed no advantage to using values of the parameter D, different from unity, hence
D; = 1 to within experimental error. Note that the values of B;o, and B,s cannot be
determined individually from the friction data, only their difference. Nominal values for
k and B; — B, are approximately 0.445 and 8.20 respectively, the former varying by less
than 0.5% and the latter by only one percent over the entire range of the data. These
values differ only slightly from the values determined by Zagarola (1996) (0.44 and 7.8
respectively) using the velocity profiles alone and assuming that the asymptotic state
had been reached. In fact it will be shown later from the velocity profiles that B; is
independent of Reynolds number and equal to 6.5. Thus only B, significantly changes
with the Reynolds number and then only by about 5% over the range of the data, but
even this variation will be seen to be quite important for the outer profile. Note that the
friction law is independent of the parameter a.

All the parameters are remarkably independent of the particular range of data utilized.
For example, of the 26 different Reynolds numbers available, the highest 15 Reynolds
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FIGURE 3. Variation of U./ux with Rt = Ru./v

numbers could be dropped before even changing the second digit of the values of the
parameters cited above. This suggests strongly, contrary to the suggestion of Barenblatt
et al. 1997, that the superpipe data are in fact a smooth curve, uncontaminated by
roughness. If the analysis developed herein is correct, then the reason these authors had
a problem with the superpipe data is obvious: the data vary logarithmically as derived
here, and not according to their conjectured power law.

For the boundary layer the friction data are not as reliable as those reported here, so
the functional form of A(67) had to be inferred after a variety of attempts to describe
the variation of the exponent in a power law description of the velocity profile in the
overlap region. Interestingly, the value for a obtained here is almost exactly the value
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obtained for the boundary layer data (0.46 versus 0.44). Even more intriguing is that
both of these are nearly equal to the values found for koo and 1/(7e Cico). Tt is not yet
clear whether there is physical significance to this, or whether 1t is just coincidence.

5. Single-point Second-order Turbulence Quantities.

Unlike the boundary layer where the continued downstream evolution imposes certain
similarity constraints, for pipe and channel flows there is only a single velocity scale so
all quantities must scale with it. An immediate consequence of this is that all quantities
scaling with the velocity only will have logarithmic profiles in the overlap region. (It is
straightforward to show this by exactly the procedures applied above to the velocity.)

For example, in inner variables, the Reynolds stress profiles are given by
< —UmUp

< it >t= 7 — Apn(RE)In(y™ 4+ a*) + Bomn (RT) (5.1

As for the velocity, the parmeters Ay, and By, are functions of the Reynolds number
and only asymptotically constant. Note that the offset at has been assumed to be the
same as for the velocity, although this needs to be subjected to experimental verification.
The Reynolds shear stress is particularly interesting since for it more information can
be obtained from the mean momentum equation. In the overlap region in the limit as
Rt — oo, both equations 2.2 and 2.3 reduce to
_0< —uv >

0=""5 (5.2)

or in inner variables,

0 < —uv >t
0= P (5.3)

It follows from substituting the 1, 2-component of equation 5.1 that

Ajia
0= (5.4)
It is immediately clear that equation 5.3 can be satisfied only if A;15 — 0 as RT — oo.
A similar argument for the outer profile implies A,;5 — 0. Thus to leading order,
the Reynolds shear stress profile in the overlap region is independent of y; however, the
remaining parameters B;15 and B,12 are only asymptotically constant. From equation 2.4
it is clear that Bj;» — 1, but only in the limit. Since < —uwv >— u? is also the inner
boundary condition on equation 2.2, B,12 — 1 in the limit also.

Another quantity of particular interest is the rate of dissipation of turbulence energy
per unit mass, ¢. In the inner part of the flow, the appropriate dissipation scale can
easily be shown on dimensional grounds to be u?/v since there are no other possibilities.
In the outer layer in the limit of infinite Reynolds number, the dissipation is effectively
inviscid (as discussed in Section 6 below) so it must scale as u?/R. (Note that this only
means that the profiles scaled as ev/u? versus y* and eR/u? versus ¥ will collapse in the
limit of infinite Reynolds number in the inner and outer regions respectively.) Tt is easy
to show by the methodology applied to the velocity and Reynolds stresses above that
the dissipation profile in the overlap region is given by a power law with an exponent of
—1. Thus

N E;(RT)
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and

eR E (Rt
€= —= y (5.6)
uy y+a

where both E, and E; are asymptotically constant. It has again been assumed that the
origin shift a is the same as for the velocity. For the dissipation, this can be justified

using the production equals dissipation limit as shown in the Section 7.

6. The Effect of Reynolds Number on the Overlap Range

The parameters established for the friction law above will be used below to calculate
the values of k, B; and B, for each Reynolds number of the superpipe data. Only either
of the B’s need be established from the experiments since their difference is known from
equation 4.1. Before carrying out a detailed comparison with the velocity data, however,
it 1s 1s useful to first consider exactly which region of the flow is being described by the
overlap profiles. Also of interest is the question of how large the Reynolds number must
be before the flow begins to show the characteristics of the asymptotic state.

The overlap layer identified in the preceding sections can be related directly to the
averaged equations for the mean flow and the Reynolds stresses. From about yt > 30 out
to about the center of the flow, the averaged momentum equation is given approximately

by

O:_ld_P+3<—uu> (6.1)
p dx Oy
It has no explicit Reynolds number dependence; and the Reynolds shear stress drops
linearly all the way to the center of the flow (v. Perry and Abell 1975). Inside about ¥ =
0.1 and outside of yT = 30, however, the Reynolds shear stress is very nearly constant.
In fact, at infinite Reynolds number the pressure gradient term vanishes identically in
the constant Reynolds shear stress region and the mean momentum equation reduces to
0:3<—uv> (6.2)
dy

At finite (but large) Reynolds numbers this region is similar to the developing bound-
ary layer where the Reynolds stress is effectively constant. Obviously the overlap region
corresponds to this constant Reynolds shear stress layer since the Reynolds shear stress
gradient is the common term to both inner and outer momentum equations. Note that
many low Reynolds number experiments do not have a region where the Reynolds stress
is even approximately constant because the pressure gradient term is not truly negligi-
ble. Hence it is unreasonable to expect such experimental profiles to display any of the
characteristics of the overlap described above, except possibly in combination with the

characteristics of the other regions (e.g., through a composite solution).

Even when there is a region of reasonably constant Reynolds stress, however, this is
not the entire story because of the Reynolds number dependence of < —uwv > itself. And
it is this weak Reynolds number dependence which is the reason that x, B;, and B,
are only asymptotically constant. The origin of this weak Reynolds number dependence
(which is well-known to turbulence modelers) can be seen by considering the Reynolds
transport equations. For the same region, y* > 30, the viscous diffusion terms are
negligible (as in the mean momentum equation), so the Reynolds shear stress equations
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reduce approximately to (Tennekes and Lumley 1972),

8ui

aéL‘k

8UZ o< U; UL U >

6:52 B 61‘2 ik
(6.3)

where U; = Ué;1. Thus viscosity does not appear directly in any of the single point

equations governing the overlap region, nor does it appear in those governing the outer

layer.

8uk aUk
>4+ <p >)— <Uiu2>67+<uku2>
L2

0=—(<p Ox;

In spite of the above, however, viscosity can be shown to play a crucial role in at
least a portion of the constant stress layer, even at infinite Reynolds number. The
reason is that the length scales at which the dissipation, ¢;;, actually takes place depend
on the local turbulence Reynolds number, R; = ¢*/ve. For R; > 5000 approximately,
the energy dissipation is nearly completely determined by the large energetic scales of
motion. These scales are effectively inviscid, but control the energy transfer through
non-linear interactions (the energy cascade) to the much smaller viscous scales where
the actual dissipation occurs (v. Tennekes and Lumley 1972). When this is the case,
the dissipation is nearly isotropic so €;; = 2¢8;,. Moreover, ¢ can be approximated by
the infinite Reynolds number relation: ¢ ~ ¢3/L where L is a scale characteristic of the
energy-containing eddies. The coefficient has a weak Reynolds number dependence, but
is asymptotically constant. Thus, the Reynolds stress equations themselves are effectively
inviscid, but only exactly so in the limit. Note that in this limit the Reynolds shear stress
has no dissipation at all, i.e., €15 = 0.

At very low turbulence Reynolds number, however, the dissipative and energy-containing
ranges nearly overlap, and so the latter (which also produce the Reynolds shear stress)
feels directly the influence of viscosity. In this limit, the energy and dissipative scales
are about the same, so the dissipation is more reasonably estimated by ¢ ~ vq?/L?
where the constant of proportionality is of order 10. The dissipation tensor, € is
anisotropic and €;2, in particular, is non-zero. (Hanjalic and Launder 1974, for example,
take €12 = (— < uyus > €/q?).)

For turbulence Reynolds numbers between these two limits, the dissipation will show
characteristics of both limits, gradually making a transition from ¢ ~ vq?/L% to ¢ ~ ¢3/L
as R; increases. Thus the Reynolds stresses themselves will feel directly this, and will
show a strong Reynolds number dependence. Obviously, in order to establish when (if at
all) parts of the flow become Reynolds number independent, it is necessary to determine
how the local turbulence Reynolds number varies across the flow.

Over the outer part of the pipe (which is most of it), L =~ R/2 and ¢ & 3u,.. So when
R* > 3,000, the dissipation in the outer flow is effectively inviscid. Above this value the
mean and turbulence quantities in the core region of the flow should show little Reynolds
number dependence, This is indeed the case as illustrated by Figure 2. The outer region
can, of course, not be entirely Reynolds number independent, except in the limit, and
this residual dependence manifests itself in the overlap layer in the slow variations of &
and B,, for example.

The near wall region is considerably more interesting since in it the scales governing
the energy-containing eddies are constrained by the proximity of the wall. Hence, the
turbulence Reynolds number, R;, depends on the distance from the wall, y. In fact,
R: ~ y* with a coefficient of about 18 (Gibson 1997); so, in effect, y* is the turbulence
Reynolds number. Because of this, two things are immediately obvious:

e First, as the Reynolds number increases more and more of the pipe (in outer vari-
ables) will become effectively inviscid and will be governed by the inviscid dissipation
relation. And correspondingly, the properly scaled mean and turbulence quantities in at
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least the outer part of the overlap layer (say, an INERTTAL SUBLAYER) will become
Reynolds number independent, albeit very slowly. Clearly these limiting values cannot
be reached until the layer is governed by the infinite Reynolds number dissipation rela-
tion and its coefficient has reached the limiting value. Obviously this can happen only
when there is a substantial inertial sublayer satisfying y* > 300 (approximately) and
for which the mean pressure-gradient term is negligible, typically ¥ < 0.1. Thus the
asymptotic limits are realized only when 300v/u, << 0.1R or RT >> 3000. Therefore
below Rt = 30,000 approximately, even this inertial sublayer should display a Reynolds
number dependence, not only in , B,, and B;, but correspondingly in the behavior of
< u? >, < uv >, etc. Note that the lower limit of this inertial sublayer also corresponds
(for the same reasons) to the place where a k—5/3_region should begin to be observed in
the energy spectra.

e Second, at the bottom of the overlap region (or the constant Reynolds shear stress
layer) there will always be a MESOLAYER 1 below about y* & 300 in which the dis-
sipation can never assume the character of a high Reynolds number flow, no matter
how high the Reynolds number becomes. This is because the dissipation (and Reynolds
stress as well) can never become independent of viscosity in this region. Even though
the single-point Reynolds-averaged equations are all inviscid above yt ~ 30, the multi-
point equations are not! This fact is well-known to turbulence modelers (v. Hanjalic and
Launder 1974), but the consequences for similarity theory and asymptotic analyses do
not seem to have been noticed previously. It is particularly important for experimental-
ists who have routinely tried to apply asymptotic formulas to data from to this region,
wrongly believing the mesolayer to be the overlap region.

Thus, as illustrated in Figure 4, the constant stress layer is really two separate regions,
each having their own unique character: the constant Reynolds shear stress (or overlap)
region and the wiscous sublayer where the viscous stress is also important. FEach of
these has two subregions. The overlap region consists of an inertial sublayer (y* > 300,
y < 0.1) which is nearly inviscid, and a mesolayer (30 < y* < 300) in which the
viscous stresses are negligible, but in which viscosity acts directly on the turbulence
scales producing the Reynolds stresses. The viscous sublayer is comprised of a buffer
layer (3 < y* < 30) where the Reynolds stress and viscous stress both act directly on
the mean flow; and the linear sublayer near the wall (y* < 3) where the viscous stresses
dominate. And of these four regions, the inertial sublayer will be the last to appear as
the Reynolds number is increased. Thus, the overlap layer itself will be most difficult
to identify at the modest Reynolds numbers of most laboratory experiments. unless the
properties of the mesolayer are known. In the next section it will be argued that in fact,
it is the offset parameter at which accounts for it. Thus the inertial sublayer can readily
be identified as the region for which y* >> |aT| and the velocity profile in it is primarily
a log profile in y alone, the contribution of the offset being negligible; i.e., In(y+a) ~ Iny.
Thus a log layer (in y), to the extent that it exists at all, should be sought only outside
of y* = 300. Obviously attempts to identify logarithmic behavior inside yT = 300 from
straight lines on semi-log plots of u™ versus y© make little sense if the theory presented
herein is correct because of the presence of a. They will, of course, always succeed as a
local approximation, but the coefficients so determined will be incapable of extension to

1 This appropriates a term from Long 1976 (see also Long and Chen 1982) who argued
strongly for its existence, but from entirely different physical and scaling arguments which we
find untenable. Nonetheless, despite the skepticism which greeted his ideas, Long’s instincts
were correct.
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FIGURE 4. Schematic showing various regions and layers of pipe and channel flows

higher values of yt as the Reynolds number is increased. And this is indeed the history
of attempts to identify the log layer and its parameters from such data.

7. A Mesolayer Interpretation of a*
The overlap solution of equation 3.17 can be expanded for values of y* >> |a™T]| to

obtain

U U 1 at  lat® 1la*®
Z= Y fyt RY) = {lnyt + B+ - 2 2 7.1
e ML ORI P CEE s RS B8
For y* >> |(2a*|, this can be approximated by the first three terms as
v 1 +
Z =yt 4+ B+ —
K

U kyt

An equivalent expansion in outer variables is given by
U-U,

Ux

) _
=g+ B, + — (7.3)
K KY
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Equations 7.2 and 7.3 are useful for three reasons: First, they are an excellent approx-
imation to the overlap solutions for values of y* > 2|a™| (or ¥ > 2[a@|). Second, they
are easler to incorporate into a composite solution which includes the viscous sublayer
than is the overlap solution itself since they do not have the singularity at y* = —at
(cf. George and Castillo 1997). Third, the inner variable version can be shown to offer a
useful insight into the role of the parameter at as accounting for the mesolayer identified
in the previous section.

In the overlap region (as noted earlier), the turbulence energy balance reduces to
production equals dissipation; i.e., in inner variables, Pt ~ et. This is exactly true in
the limit of infinite Reynolds number, but is approximately true even at finite Reynolds
numbers for 30 < yT < 0.1R*. The overlap solutions for the velocity, Reynolds stress and
dissipation have already been obtained in the preceding sections. It follows immediately
by substitution for Pt and et that

pro_ B2 _ 4+ B (7.4)
k(yt +at) (y+ +at)
It is immediately obvious that the offset parameter at must be the same for both velocity
and dissipation, as assumed earlier. Hence E; = Bj1a/k — 1/k, at least in the limit as
Rt — oo since B;1g — 1.

Therefore (as noted earlier), in this limit the dissipation and velocity derivative profiles

are identical and equal to the derivative of equation 3.17 with respect to yT; i.e.,

+ _ ot + .
€ - .‘i(y+ +a+) 60 fT(y ) (7 5)
where
1
+ = 7.6
= (7.6)
and
+ ~1 +
a a o

where the higher terms in the expansion in a* have been neglected. But this is identical
to the form used by many turbulence modelers for wall-bounded flows (cf. Reynolds
1976, Hanjalic and Launder 1974) to account empirically for the change in the character
of the dissipation near the wall since R; ~ 18yT as noted earlier. Thus the interpretation
of at as a mesolayer parameter is obvious since it, in effect, modifies the dissipation (and
hence the velocity profile) near the wall.

A similar form of fr is obtained if the power law profile of George and Castillo (1997)
for the boundary layer is expanded, even though the form of ¢, is different. However,
interestingly, if the order of argument is reversed and any of the simple dissipation models
(e.g., Reynolds 1976) are used to deduce the mesolayer contribution to the velocity profile
for the boundary layer, they produce a y+_1 additive instead of the y‘m_1 required.
Obviously these simple turbulence models, as currently posed, are consistent with the
theory developed herein only for homogeneous flows; although the difference is slight.

Note that the common practice of choosing the model constants in equation 7.7 to
produce a log profile at y* ~ 30 is clearly wrong if the theory proposed herein is correct,
since this is approximately the location where the mesolayer only begins. As noted in
Section 6, the mesolayer ends about y* = 300 and the inertial sublayer begins. It follows
a*t should be chosen to “turn-off” the low Reynolds number contribution about here (for
increasing y*) and “turn-on” the In y solution.
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8. The Superpipe Velocity Data

Now that the approximate region of validity of the overlap solution has been estab-
lished as 30 < y* < 0.1R™T it is possible to test the theoretical profiles and the proposed
model for the Reynolds number dependence. If they are correct, only an independent
determination of either B; or B, is necessary to completely specify the profile, the rest
of the parameters having been determined from the friction data. Since the very high
Reynolds number superpipe experiments have a substantial range satisfying the condi-
tions for the existence of the inertial sublayer (300 < y* < 0.1R™), it should be possible
to establish the value of B; (or B,) independent from the mesolayer. Also it should be
possible to determine whether the parameter at accounts for the mesolayer behavior, at
least for those data sets where data are available below y* = 300. As shown below, both
of these are indeed the case.

For all of the data sets it appears B; = 6.5 is nearly optimal (at least for values of
R* > 850, the lowest available from the superpipe experiment), so that for the remainder
of this paper it will be assumed that B; = B;s. This value is very close to the value
of 6.3 determined by Zagarola and Smits (1996a) by assuming & fixed at 0.44. Since
the difference, Bjoo — Bosw = 8.4D, was established from the friction data, it follows
immediately that B,oc = —1.95. (Note, however, that the DNS channel data below

suggest that B,oo = —2.1 and B;s, = 6.35 might be more appropriate, but the evidence
is not conclusive yet.)
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FIGURE 5. Variation of 1/x — 1/k with RY, koo = 0.447

The constancy of B; implies that it is B, which shows all the Reynolds number de-
pendence of the difference given by equation 4.8. Figures 5 and 6 show the theoretical
variation of 1/k and B, with Reynolds number (equations 4.1 and 4.2). Clearly both
converge very slowly to their asymptotic values. This slow approach has far more rel-
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ative effect on B, than it does on 1/k, however, since B, has achieved only 85% of its
asymptotic value at RT = 10°. The observed variation of 1/x and B, and the constancy
of B; can be contrasted with the boundary layer results of George et al. 1996 and George
and Castillo 1997 in which C,, the outer coefficient was nearly constant while the power
exponent v and the inner coefficient C; varied over the entire range of Reynolds numbers
available.

The relative behavior of B, and B; means that the outer profile scaling shows more
variation with Reynolds number in the overlap region than does the inner where only &
varies. This undoubtedly explains a great deal of the problems historically in establishing
what B, is and in determining whether the outer scaling is correct. And it might also
explain the conclusion of Zagarola and Smits (1996) that a different scale for the outer
flow is required, especially if attention is focussed on the overlap region instead of the
core region of the flow.

Figures 7 and 8 show representative velocity profiles of the superpipe data at high and
low Reynolds numbers respectively. The profiles scaled in inner variables are shown in
the upper plots, and the same data scaled in outer variables is shown in the lower plots.
Also shown for each profile are the overlap solutions of equations 3.16 and 3.17 together
with equations 4.7 and 4.8. The vertical lines on each profile show the suggested bounds
for the two sublayers of the overlap region; in particular, the mesolayer (30 < y* < 300
or 30/R*T <7 < 300/R*) and the inertial sublayer (300 < y* < 0.1R* or 300/RT <y <
0.1). Note that because of the varying Reynolds number, the limits depending on R*
are different for each profile. Note also that for the highest Reynolds number plots the
data were not measured close enough to the wall to see any of the mesolayer; however
they do show clearly the inertial sublayer. For the lowest Reynolds numbers, enough
of the near wall region was resolved to see clearly the mesolayer, but the extent of the
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inertial sublayer was limited or non-existent. The theoretical profiles were computed
using the measured value of Rt and assuming a* = 0, —8, and —16 (or @ = 0, —8/R™,
and —16/R+). As noted above, the value of B,o, = —1.95 is determined since B;, has
been chosen as 6.5 and B;o, — B,oo = 8.45 was established from the friction data earlier.
Therefore there are no adjustable parameters in the outer scaled plot if at is determined
from the inner. Thus these outer profiles provide a completely independent test of the
theory (and the data as well).

The value of aT = 0 corresponds to the inertial sublayer solution only, and as expected
describes the data well only in the range of 300 < y* < 0.15R*. The boundary layer
value of at = —16 (from the power law) is clearly too large, but then there is no reason
to expect it to be the same since the homogeneous pipe and inhomogeneous boundary
layer flows are fundamentally different, at least in the outer and overlap regions. The
best fit to the DNS channel flow data (see below) above y* =~ 30 is also at = —8. Tt
is possible to fit the data to substantially lower values of y* by using different values
of at, but there appears to be no theoretical justification for doing so. Note that the
Pitot tube used to make the pipe velocity measurements could be as much as much as
two percent too high at y* = 30 because of the local turbulence intensity there (since
Unmeas /U & 1+ [< u? > + < v? > + < w? >]/2U?). Hence, more confidence can be
placed in the DNS data than in the low Reynolds number pipe flow measurements near
and inside y* = 30. In spite of this, the agreement between experiment and theory over
the entire overlap range is particularly gratifying since the velocity data were only used
to establish B; and a¥, the remaining parameters having been entirely determined by
the friction data.

It is easy to see how the deviations from the log law due to the mesolayer contribution
of at could be viewed as a separate and distinct region. For example, Zagarola and
Smits (1996) argue that the region 50 < y* < 500 is described by a 1/7 power law with a
coefficient of 8.7, and not their logarithmic profile (with constant coefficients) which fits
the inner solution between 500 < y* < 0.1R*. If a power law is fitted to data generated
by the overlap profile proposed herein using the constants determined above, it produces
almost exactly the same 1/7-power and 8.7 coefficient over the same range. Thus it is
clear that the same phenomenon is being described.

9. Channel versus Pipe Flow

Although both fully-developed channel and pipe flows are homogeneous in the stream-
wise direction and both scale with u,, there is no reason, in principle, to expect the
outer flow or overlap profiles of channel flow to be the same as for pipe flow. The former
is planar and homogeneous in planes parallel to the surface, while the latter is axially
symmetric. However, in spite of the fact that the geometries are different, the averaged
equations for each flow are nearly the same, differing only in the turbulence and viscous
transport terms.

The inner regions of both flows have long been known to be quite close (v. Monin
and Yaglom 1971). In fact, they must be exactly the same in the limit as the ratio of
the extent of the viscous sublayer to the pipe radius (or channel half-width) diminishes
to zero, and this always happens in the limit of infinite Reynolds number. Therefore 1t
is reasonable to hypothesize that the inner regions of both flows be the same. Then the
only differences between channel and pipe flows must appear in the outer flow. If this 1s
true, then all of the parameters governing the inner region (including the overlap region
in inner variables) must be the same for both pipe and channel flows. In particular, the
parameters k and B; must be the same, as well as their dependence on Reynolds number.
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Hence even the empirical constants A and « must be identical. Only the parameter
B, and the scale constant D, can be different. Moreover, since equation 3.20 must be
satisfied, the channel flow value of B, can at most differ by an additive constant from the
pipe flow value, since any other difference would affect the Reynolds number-dependent
relation between x and B; — B,.

Figure 9 shows the mean velocity profile data from the channel flow simulations of
Kim et al. (1987) and Kim (1989) at values of RT = 180 and 395, where R in this case
is taken to mean the channel half-width. Also shown is the as yet unpublished profile of
Kim (1997) at RT = 595.1 As before the profiles scaled in inner variables are presented
in the upper figure, and the same data in outer variables in the lower. By the criteria
established earlier, there should be no region which is described by a simple logarithmic
profile alone without the mesolayer contribution, even at the highest Reynolds number.
In fact, as is clear from the vertical lines on the plots, there should not even be a mesolayer
region in the lowest Reynolds number profile (since 0.1 Rt < 30).

Nonetheless, the theoretical overlap solution, equation 3.17, with ezactly the parameter
values used above for the superpipe data fits all three sets of data in inner variables nicely
over the very limited range 30 < y* < 0.1R*. (In fact, the theoretical curve appears
to work well to values of y* substantially closer to the wall even though its use below
y*t = 30 can not be justified theoretically, at least by the arguments presented earlier.)
It is not even necessary to adjust the scale factor D; which was chosen as unity, just as
for the pipe data. This agreement is all the more remarkable because all of the constants
have been obtained from the superpipe experiment and at much higher Reynolds number.

The theoretical outer velocity profile uses the pipe values for all constants except
for B,so as noted above. Since B,y 1s quite small for the channel flow, even small
uncertainties about its value have a relatively large effect on the outer profile. Therefore
the approach taken here has been to first determine B;o, — Byoo from the channel friction
data, then use the value of B;o, from the superpipe (since they should be the same as
noted above) to determine B,s for the channel. Thus the channel flow velocity data
scaled in outer variables provide a completely independent test of the theory. Unlike
the superpipe data, however, there is much less DNS data available so a sophisticated
optimization is not possible. However, there is only a single parameter which needs to
be determined. Note that the experimental channel flow data has been avoided entirely
because of uncertainties about the shear stress (v. Kim et al. 1987).

The best overall fit to the friction data, U,/ ux, is achieved by choosing B;e —Booo = 7.0
with the relative errors being 0.18%, 0.57%, and 1.2% for the Reynolds numbers of 595,
395, and 180 respectively. It follows that B,o, = —0.5.

As shown in the lower figure of Figure 9, equation 3.16 provides a reasonable fit to
the higher Reynolds number profiles over same region as for the inner scaling. The fit
is especially impressive since there has been no effort to optimize the fit to the velocity
profile data. (Recall that all constants but one were determined by the superpipe and
even the remaining one was chosen from the friction data!) A near perfect fit (not
shown) to the two higher Reynolds number profiles can be achieved, however, by using
B,o = —0.65, but the friction estimates increase to 0.089%, 1.3%, and 2.0% respectively
if B; is maintained at 6.5. On the other hand, if the value of B;, i1s reduced to 6.35, then
both the better friction prediction and the better outer profiles fits can be maintained
simultaneously (since Bjint — Booo = 7.0 is maintained), but with little relative change
to the inner profile. Note that such a value for B; would be very close to the value
of 6.3 suggested by Zagarola and Smits (1996). The authors have resisted the urge to

i The authors are very grateful to Professor Kim for making this data available to us.
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re-analyze the pipe flow data until higher Reynolds number DNS data confirm the need
to do so, but it is clear that the only other effect would be to change the pipe flow value
of Byoo from —1.95 to —2.1 which would scarcely be noticeable in the plots.

All of the errors between the calculated and DNS values of U./u, are within the
uncertainty of the DNS data itself which is estimated at one to two percent. The reason
for the larger discrepancy between the lower Reynolds number profiles is probably that
the theory is simply being stretched to Reynolds numbers below where it can reasonably
be expected to apply. (As noted above, there is not even a region satisfying the conditions
for an overlap in the RT = 180 profile since 0.1 Rt < 30!) Regardless of the reason, it is
clear that the value of B,s 1s substantially lower for the channel than for the pipe, but
this was expected since, as noted above, the differences between the two flows should show
up here. Moreover, also as expected, this appears to be the only place these differences
show up.

The success of the theory developed herein in accounting for the channel flow data
using the pipe flows constants should give considerable confidence in the entire theoret-
ical approach. Moreover, it provides an independent confirmation of the values of the
constants and the empirical function utilized for the Reynolds number dependence.

10. Summary and Conclusions

The Asymptotic Invariance Principle and the deductions from Near-Asymptotics, to-
gether with the recognition of the existence of a mesolayer, have provided an excellent
description of the mean velocity and skin friction data from fully-developed channel and
pipe flows over more than three and a half decades in Reynolds number. Specifically the
theory describes the velocity profile in the region 30 < y* < 0.1R* (or 30/R* <37 < 0.1)
for the superpipe experiment (850 < Rt < 530,000) and the low Reynolds number DNS
data as well (RT = 180, 395 and 595). Of the six parameters needed to describe the flow,
four could be determined only from the friction data only. Three of these (koo = 0.447,
A = —0.67 and o = 0.44) were determined from the superpipe experiment alone, but
probably apply to any stream-wise homogeneous wall-bounded flow. The difference pa-
rameter which appears in the friction law, B;oo — Booo, 18 different for pipes and channels
(even though B is the same). From the superpipe experiment, Bjco — By = 8.45,
while from the DNS channel data it was estimated to be 7.0. Both pipe and channel data
sets were consistent with constant values of B; = B;oo = 6.5 and at = —8. It follows
that the outer parameter B,o, = —1.95 for the pipe flow, and —0.5 for the channel flow.
A case can also be made that the limiting values of B,o, should be —2.1 and —0.65
corresponding to Be, = 6.35, but a final decision can probably not be made until higher
Reynolds number DNS data becomes available.

Unlike the boundary layer where both Reynolds number effects and the mesolayer were
of equal importance in understanding the data, for pipe and channel flows the Reynolds
number dependence was found to be slight. In fact, only B, shows significant variation
over the range of the data, and then only about 5%. The von Karman parameter, &,
variation was only about 1%; and both B; and at were constant to within the accuracy
of the data.

On the other hand, the mesolayer concept (and a® in particular) proved crucial in
understanding where the theory applied and in understanding why previous attempts
to verify the log law were less than totally satisfactory. In particular, the overlap mean
velocity profile was found to not be a simple logarithm in y, but instead a logarithm
in y + a. The most important consequence of this is that attempts to establish Iny
behavior using velocity profile data inside y* = 300 are doomed to failure and the
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results misleading unless the mesolayer (and a in particular) are explicitly accounted for.
This, of course, explains much of the confusion in the literature about precisely what
the log parameters were and where the theory applied — not only was the wrong profile
being used, but it was being applied to the wrong region.

It should be noted that for their boundary layer data analysis, George et al. 1996
and George and Castillo 1997 used a procedure which was the reverse of that used here.
There a series of careful attempts was first made to obtain directly the variation of the
parameters from the velocity profiles, then the friction law was inferred and shown to
be in agreement with direct measurements. The fact that the procedure followed here
has been equally successful lends credibility to both analyses, especially in view of the
importance of the subtle difference between the friction law proposed here and a simple
log law with constant coefficients.

There are a number of interesting questions which remain. One of these is whether
the mesolayer parameter a® is indeed constant as it appears that it might be. This will
require accurate measurements of the velocity profile near yT = 30 at considerably higher
Reynolds numbers than has been possible to-date. Note that the problem is not with
the overall flow Reynolds number (which in the superpipe was certainly adequate), but
with the inability to resolve the flow near the wall at the higher Reynolds numbers due
to probe size limitations. An obvious solution is a bigger pipe so less absolute resolution
is required at a given Reynolds number — a Mega-Pipe perhaps (or maybe a Mighty
Duct!).

Another question arises from the Reynolds number dependence itself which is nearly
negligible for the channel and pipe flows, but crucial for the boundary layer flows. Is this
a subtle consequence of the homogeneity of the former and inhomogeneity of the latter,
or is it simply a reflection of the differing inner and outer velocity scales for the boundary
layer with the consequent Reynolds number dependence? Or are these the same thing?

Then there is the fact that the parameter, a, which accounts for the Reynolds number
dependence is nearly the same as for the boundary layer, and tantalizingly close to
Koo and the boundary layer value of 1/(760Cooo). The possible universality of these is
particularly interesting, especially given the agreement between theory and experiment
for both the homogeneous and inhomogeneous flows. A consequence of this is that the
dissipation profiles for the pipe and the infinite Reynolds number boundary layer are
nearly identical throughout the overlap region, even though they differ substantially for
the finite Reynolds numbers of experiments. And, of course, this raises the whole question
of the functions H (for the pipe and channel) and h (for the boundary layer) which
contain the essential Reynolds number dependence of the flow: Can they (or alternatives)
be derived directly from the underlying physics of the flow, perhaps through symmetry
considerations of the turbulence dissipative scales or from the multi-point equations?

In conclusion, unlike the classical boundary layer theory which was shown by George
and Castillo (1997) to be fundamentally flawed, the same approach has been able to show
that the classical theory for pipe and channel flows is really pretty good. The present
analysis has, from purely deductive reasoning using the Reynolds-averaged Navier-Stokes
equations, been able to identify why the classical results were not totally successful, and
also to account for both the recent DNS and superpipe observations. Thus it would seem
that the Navier-Stokes equations indeed apply to turbulence, hardly a novel idea to most,
but reassuring nonetheless.
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