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Abstract. A Near-Asymptotics analysis of the turbulence energy spectrum is presented that accounts
for the effects of finite Reynolds number recently reported by Mydlarski and Warhaft [21]. From
dimensional and physical considerations (following Kolmogorov and von Karman), proper scalings
are defined for both low and high wavenumbers, but with functions describing the entire range of the
spectrum. The scaling for low wavenumbers uses the kinetic energy and the integral. sbaksgd

on the integral of the correlation function. The fact that the two scaled profiles describstitiee
spectrum foffinite values of Reynolds number, but reduce to different profiles in the limit, is used to
determine their functional forms in the “overlap” region that both retain in the limit. The spectra in
the overlap follow a power lawg (k) = Ck—5/3+1t \wherey andC are Reynolds number dependent.

In the limit of infinite Reynolds numbey, — 0 andC — constant, so the Kolmogorov/Obukhov
theory is recovered in the limit. Explicit expressions foand the other parameters are obtained, and
these are compared to the Mydlarski/Warhaft data. To get a better estimate of the exponent from the
experimental data, existing models for low and high wavenumbers are modified to account for the
Reynolds number dependence. They are then used to build a spectral model covering all the range
of wavenumbers at every Reynolds number. Experimental data from grid-generated turbulence are
examined and found to be in good agreement with the theory and the model. Finally, from the theory
and data, an explicit form for the Reynolds number dependenge=of L /u3 is obtained.

Key words: energy spectrum, isotropic, overlap region, near asymptotics, energy decay, Reynolds
number effect.

1. Introduction

In 1941 Kolmogorov [15] introduced his ideas for the similarity of small scale
turbulence and the inertial subrange. This was subsequently extended to the energy
spectrum by Obukhov [22] who first derived the famauas/3-law. In spite of the
modifications by Kolmogorov himself [16], and apart from recent questions about
universality, for more than fifty years this theory has been widely discussed and
more or less accepted. An often overlooked assumption in Kolmogorov’s theory,
however, is the necessity oh“sufficiently large Reynolds numbdrefore the as-
sumptions can be expected to hold. This qualification is especially relevant since
there are few spectral measurements which unequivocally shiow’# spectral
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range. And even those were made at very high Reynolds numbers, well above those
for which the theory is commonly applied.

In 1996, Mydlarski and Warhaft [21] proposed, on experimental grounds, that
the exponent in the inertial subrange in fact was not ##'3 proposed by
Kolmogorov, but rather a function of the Reynolds number that perhaps went to
—5/3 in the limit of infinite Reynolds number. For all the Reynolds numbers of
their experiments, the spectrum rolled-afore slowlythan k—%3; moreover, the
lower the Reynolds number the greater the difference.

As noted above, there have been numerous theoretical attempts to modify the
exponent in the power law, first suggested by Kolmogorov [16] himself, mostly to
account for internal intermittency (see [4] for a review). But these deviations from
the k> behavior can not explain the Mydlarski and Warhaft observations, since
all arguments for internal intermittency cause the spectrum to rofasterthan
k=53, not slower

Recently George [6, 8] (see also [9]) proposed two ideas which allow treatment
of finite Reynolds number effects in turbulent flows when infinite Reynolds num-
ber forms of the equations are available. The first is the Asymptotic Invariance
Principle (AIP) which states that properly scaled solutions at infinite Reynolds
number must be similarity solutions to the limiting equations themselves. Thus the
determination of scaling parameters is determined by the equations themselves,
not by ad hocarguments. The second is the methodology of Near-Asymptotics
which provides a means to find overlap solutions at finite Reynolds number when
inner and outer forms of the limiting equations are available. These ideas were
successfully applied to a number of wall-bounded turbulent flows.

This paper theoretically justifies Mydlarski and Warhaft's conclusions by ap-
plying the AIP and Near-Asymptotics to the spectral energy equation for isotropic
turbulence. The results will be seen to be in remarkable agreement with the data,
thereby providing additional confirmatidrom the governing equatiorfer both
the experiments and the methodology. An interesting (and perhaps even surprising)
outcome of this work will be an analytical expression for the Reynolds number
dependence of the important ratig/ = L /u® whereL is the physical integral
scale.

2. Theoretical Analysis
2.1. BASIC EQUATIONS AND DEFINITIONS

Following Batchelor [2], we will use the energy spectrum functibik, ¢), defined
by integrating the energy tensdr; over spherical shells of valuési.e.,

Ek.1) =% / / @, (k) dor (k). &)

k=l
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where @& (k) is an element of surface in wavenumber space at radigsk, and
®;; is the trace of the Fourier transform of the two-point velocity correlation tensor
given by

(k) = B 3/// e T u,(x)u;(x +r)dr. ()

Note thatE (k, ¢t) is a scalar function of only the magnitude= |k|, hence the
directional information has been removed. Also, hereafter the time-dependence of
E will be suppressed and it will be written simply &gk).

The integral ofE over all wavenumberk yields the turbulence energy:

o0

1
0

The rate of dissipation of turbulent kinetic energy per unit mass (or simply the
dissipation rate)g, is related to the energy spectrum by

£ = ZU/kZE(k) dk. (4)
0

For isotropic turbulent flow the energy equation reduces to a balance among
simply the time rate of change of the energy spectréif oz, the energy transfer
between different wavenumbefs, and the viscous dissipationy2°E, i.e.,

? = T(k) — 2vk? E(k). (5)

The energy spectrum typically rises from zerdkat 0 to a peak value at a
wavenumber near the inverse of the integral scale defined below, then rolls-off for
higher wavenumbers. Hence the energy is dominated by wavenumbers around the
peak. Viscous stresses dominate the highest wavenumbers and make the primary
contribution to the dissipation integral.

2.2. THE LENGTH SCALES
2.2.1. The Integral Length Scale

There exists much confusion about which scales are really appropriate to the de-
scription of the energy spectrum at large scales. We shall refer to the large scale
we consider most important as thRysical integral scaleL, and define it from the
integral of the longitudinal velocity correlation:
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— Longitudinal integral scale:

e¢]

/Ml(X, v,zZ, Dur(x +r,y,z,t)dr. (6)
0

L=

Sl =

— For isotropic turbulencel. can equivalently be obtained from the energy
spectrum function as:

_ 3n Jy E()/kdk

4 [FERdk 0
Thus,L is completely determined onde(k) is given.
It is important to note that the “physical” integral scale differs from thegudd
integral scalel(~ u3/¢) often found in the literature (and used by Mydlarski and

Warhatft as well). It will be argued below that the rafig/ = ¢ is Reynolds number
dependenand constant only in the limit of infinite Reynolds number; i.e.,
L

L
7= “;—3 = ¢(R). ®)

2.2.2. The Kolmogorov Microscale

The other important length scale of importance to the analysis presented below
is the Kolmogorov microscale;. Using Kolmogorov's second hypothesis which
implies that the only parameters in the equilibrium raingéhe infinite Reynolds
number limitaree and the viscosity, it follows that the length scale is given by:

3\ 1/4
=(%) - ©)
&€

This scale is characteristic of the high wavenumber part of the spectrum since it is
of the order of the smallest eddies found in homogeneous turbulence.

2.2.3. The Reynolds Number

We define a Reynolds numbeR, based on the ratio of the length scales given by:

R=—. (10)
]

Note that this differs from the definition of Reynolds numbeRpt= ul/v used in
many texts (cf. [26]). Her®, = (R/¢(R))*/>3.
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2.3. SMILARITY CONSIDERATIONS
2.3.1. Similarity Scalings for Low and High Wavenumbers

A dimensional analysis of the energy spectrum shows its proportionality to the
product of a length and the square of a characteristic velocity. Following Batchelor,
it has been customary to scale the spectrum in two ways:

— Low wavenumber (or energy variables) usingnd L (or); say

k=kL,
E(k,t)

futk, R) = T

(11)

— High wavenumber (or Kolmogorov variables) using:, = (ve)*4; say

kT =kn,
fukt, Ry = &0
b u%n
E(k,1)
= o1/ 5/4° (12)

The first form of Equation (11) was originally suggested by von Karman and
Howarth [27], while the latter was first proposed by Obukhov [22].

Note that it is commonly assumed that the Kolmogorov scaldapsesthe
spectral data at high wavenumbers, regardless of the Reynolds number. This cannot
be exactly the case, however, since the whole idea of an equilibrium range in the
spectrum at high wavenumbers is predicated on the separation of scales [2]. The
Kolmogorov scaling can at most represent an infinite Reynolds number limit to
which finite Reynolds number spectra asymptote as the turbulent Reynolds number
increases. Thus, regardless of which set of parameters the spectrum is scaled by,
either retain a Reynolds number dependence for finite valu®s kifis this weak
(and asymptotically vanishing) dependence on Reynolds humber which is explored
in the analysis below, and which will be seen to be responsible for the observations
of Mydlarski and Warhaft [21].

It is important to note that bothf; and fy represent exactly the same
spectrumsince, at least at finite Reynolds number, they are just different non-
dimensionalizations of the same function. Because of this it follows immediately
that:

fuk, R) = R™*¢?3 fu(k*, R). (13)

In the limit of infinite Reynolds number howevef;; becomes independent of
R and loses the ability to describe the low wavenumber spectral behavior. Similarly
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f1 becomes independent &fbut loses the ability to describe the dissipation range.
But both retain an inertial subrange in the limitka®2 range which extends to
infinity for the low wavenumber scaled forms and to zero for the high. This has
long been recognized and is represented in most texts (cf. [26]).

This can be argued in a slightly different way. In the limit of infinite Reyn-
olds numberf; and fy are similarity solutions of different limiting forms of
Equation (5). (This is straightforward to show by substituting the low and high
wavenumber scaled versions of Equations (11) and (12) in Equation (5), and car-
rying out the limit asR — o0.) For finite values ok, the low wavenumber form
reduces in the limit to a simple balance between the temporal decay and the spectral
transferto the high wavenumbers, say. The high wavenumber form reduces to
the familiar local equilibrium range [2], where there is simply a balance between
the dissipation and the spectral trandfem the low wavenumbers, but this is just
ex. Since all of the energy dissipated in this limit must come via the spectral flux
from low wavenumbers, theg, = ¢ (but only in the limit). Thus for the low
wavenumbers in the limit of infinite Reynolds number, the only parameters are
the energyu? and the dissipations. And for the high wavenumbers the only
parameters are the dissipatian,and the kinematic viscosity;. Hencex? and
¢ alonegovern the low wavenumber spectrieractlyin the limit, while v ande
alonegovernexactlythe high. Thus in the limit of infinite Reynolds number, both
the von Karman/Howarth and Kolmogorov scalings become exact and independent
of Reynolds number, i.e.,

IJEnOO frk, R) = froo(k) only,
and
Jim (7, R) = fuoo (k) only.

This is, of course, the whole idea behind scaling in the first place; namely that the
spectra should collapse, at least in the limit. And in this case they do since they
are similarity solutions to equations which themselves become independent of the
Reynolds number in the limit a8 = L/n — oo. This is, in fact, the Asymptotic
Invariance Principle of George [8].

Obviously f; (k) and fy (k™) can not have the same functional dependence
onk, except possibly in an overlap region (the so-caitesttial subrangg. In fact,
as is well known, at low wavenumbergy, — K+~ while for high wavenum-

bers fi o — T [26]. It will be seen to be possible below using the methodology
of Near-Asymptotics to extend this reasoning to finite Reynolds numbers, and
deduce the Mydlarski and Warhaft results from first principles without additional
assumptions.
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2.4. MATCHING OF THE TWO PROFILES

The low and high wavenumber spectra have been scaled with different scales.
But the ratio of those scales is Reynolds number dependdwrefore,at finite
Reynolds numbers, there cannot exist any region in which either scaling is truly
Reynolds number independenite that this does not mean the scaled spectra will
not collapse approximately, only that perfect collapse can be achieved only in the
limit. It is this lack of perfect collapse at finite Reynolds numbers which is the key
to understanding the analysis below.

Now as long as we consider only finite Reynolds numbeigk, R) and
fu(k™, R) represent the spectrum for all wavenumbers. It is only in the limit as
R — oo that f; loses the ability to describe the high wavenumbers Andhe
low. The traditional asymptotic matching begins with the limiting fornis,, and
fHeo, and tries to stretch their region of validity to match them in an overlap region
(if such a region exists). Such an analysis for the energy spectra is presented in
[26], and the resulting “matched region” is the®3-region, or inertial subrange.

If, however, we consider thinite Reynolds number forms instead of the limit-
ing ones, the problem of solving the overlap region can be approached in a different
way. Since bothf; and fy already describe the entire spectrum, there is no need
to stretch their range of validity and match them. They already match perfectly at
all wavenumbers, but have simply been scaled differently. Instead, our problem is
that these finite Reynolds number functions degenerate in different ways at infinite
Reynolds number, one losing high wavenumbers, the other the low. Our objective
is to use this information to determine their functional famthe remaining com-
mon region they describe in this lin{if it exists). This methodology is known as
Near-Asymptoticand was first developed in [8] (see also [9, 10]). In the following
paragraphs it is applied to the energy spectrum.

Even if we do not know the analytical forms ¢f and 15, we can still use their
properties. Both describe the same spectrum, so they must satisfy

W’ L fr(k, R) = (e v)Y* fu(k*, R). (14)
Equivalently, using the definition @& = L/ and defining
eL
u
we can write
frk, Ry = R™P %3 fu(k*, R). (16)

The function¢ (R) is the ratio of the physical integral scalg, to the pseudo-
integral scale] = u®/s. The Kolmogorov reasoning summarized above implies
that¢ — constant in the limit aR — oco. As noted earlier, it is only in this limit
that L and! can be used interchangeably.

To simplify the following expressions, we defigeas

g(R) = R3¢, 17
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Now we can re-write Equation (16) simply as
futk, R) = g(R) fu(k*, R). (18)

As for the spectra themselves, the partial derivatives with respécind R for
both high and low wavenumbers forms of the spectrum must be the same for finite
values ofR. Differentiating with respect té while holding R constant implies:

0 — 0

— (W L) frk, B)| = — (V)Y fu ™, R))| . 19

or (@ DAk R)| = o (VDY fi I (19)
Or in dimensionless form,

E o) _ i oty o)

fi 0k |g  fu OkT|g

We want to examine if there is an overlap region that survives in lfptand
fu whenR — oo and

k — oo,
kt — 0.

Sincek/k* = R, in order to remain in the overlap region in the limit, should it
exist, we need to define an intermediate variakle,

k, = k-R™
= kTR, (21)

We can fix our position in the overlap region, and simultaneously satisfy oo
andk™ — 0 asR — oo if we choose O< n < 1.
Introducingk, in Equation (18):

3 k*
frky R", R) = g(R) fu(k, R, R). (22)

We can now differentiate with respect #at fixedk, to obtain

o of
ok |x

ok

< OR

ok
9R
kn

0fi
okt

0fi
ko oR

oR

dg
—@fH+g|:

} . (23
k+

k

Using Equation (21) and multiplying b®/f;, = R/(g fn):

k dfL k™ ofu
n—-—=| —-(n—1)———
fL 0k | fu 0k™ |,
R [ Lo Lo ”
ng fH OR K+ fL oR x
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Since the first term on the right-hand side is a functionRobnly, we define
y (R) by

Rdg d(ng)

)/(R)Egd—R— dnR (25)
andS; andSy by
7 _ 8In fL(E’ R)
Sp(k, R) = ——mrR L (26)
8Ian(k+’R)
+ = —_JHV® 7
Sy(k™,R) = Ty . 27)
Now Equation (24) can be written as
k dfL kt dfy _
— = =— ——| =y(R)+I[Syk™, R) — S.(k, R)]. 28
7o ok |~ fu 9K, Y(R) + [Su( ) — Sp(k, R)] (28)

As noted earlier, in the limitaR — oo, both f;, and f become asymptotically
independent ofR, each losing in the process the ability to describe part of the
spectrum. Thus, from the definitions §f and Sy, the term in square brackets in
Equation (28) must vanish identically. This leaves only the first term which must
go to a constant, i.e.,

ko
jim <L
R—o0 fL 8k

kT afy

= c = lim y(R) = yu. 29
i Jim y(R) =7y (29)

So there is indeed a common part which survives in this limit. We shall see below
that the constanty,, = —5/3, so the Kolmorogov/Obukhov result is obtained as
the infinite R limit.

The question of most interest, however, is: what happens at large but finite
Reynolds numbers? In other words, is there any wavenumber region where

k afL
fL ok

_ K ofu

= ~ y(R), (30)
o Jfu Okt

R

evenwheny (R)—ys| > 0? If so, we have found the explanation for the Mydlarski
and Warhaft results.

To examine this, we look how§; and Sy are changing with IR. A Taylor
expansion about a given value Bfat fixedk yields:

frtk, R+ AR) — fi(k,R) R
frlk, R) AR’

S, (k, R) ~ (31)
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and
fH(k+’R+AR)_fH(k+7R)i
fu(k*t, R) AR’

Thus S; and Sy represent the relative Reynolds number dependencigs ahd
fu- They must, of course, vanish in the limit of infinite Reynolds number since the
scaled spectra are similarity solutions to the limiting equations. At finite Reynolds
numbers,S; goes from near zero for small valueskofvhere the low wavenumber
scaling is approximately correct, and increases ascomes large since the low
wavenumber scaling does apply at the dissipative scalesSFat is just the op-
posite, large for small™ and decreasing toward zerokasapproaches infinity. The
whole question of whether there is an overlap region at finite Reynolds number then
reduces to whether there is a common region whgge— S;| < y (R). Another
possibility would be thas; = Sy, namely that both scaling profiles have the same
R dependence. We shall assume there is such a region, and show this leads to a
consistent approximation.

Therefore, we negleatSy — S,) relative toy (R) and write simply

Sy(kt, R) ~ (32)

k afL

— == = y(R), 33
fo ok |, y(R) (33)
K ofu|

Tk |, Y (R). (34)

The solutions to these equations must be recognized as first-order approximations
only, the higher order contributions having been neglected. They do, however, re-
duce to the correct limiting solutions, and retain at least that Reynolds number
dependent part of the solution which is independent of wavenumber. The neglect
of Sy — S, must be and can be justifiedposteriori

Integrating Equations (33) and (34) leads immediately\R&ynolds number
dependenpower laws for bothf; and fy, i.e.,

fuk, R) = CL(R) (k)"™®, (35)
fuk™,R) = Cy(R) (k)" (36)
Substituting the definition of (Equation (17)) into Equation (25) yields
y =—-5/3+u, (37)
whereu has been defined to be
2dIng
H=3dmnr (38)
Note sincep — constant aR — oo, this implies thaiw — 0 in the same limit.
But this in turn implies that,, = —5/3, which yields immediately the result

obtained by Obukhov [22], as noted above.
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By using Equation (18), we can expresss:

_ ﬁ _ CL(R) —5/3+1(R)
= T m | %)

Substitutingy (R) = —5/3 4+ u from Equation (25) into Equation (39) shows that
a solution is possible only if

d)/ _dInCH/CL
dinR~ dInR

This equation makes it clear that C; andC; are inter-related, and cannot simply
be chosen arbitrarily. Also, it is easy to show that satisfying this constraint insures
thatSy — S, = 0 for the overlap solution, consistent with the original hypothesis.

Like u, Cy/C can also be shown to be simply relatedgtar). Comparing
Equations (17) and (39), it follows immediately that

Cu
CL

We know from the Kolmogorov argument presented above ¢hat ¢., where
¢ IS an non-zero constant. Algty, andC; must be finite and different from zero
in the limit of infinite Reynolds number; otherwise thealedspectra would either
go to zero or increase without bound. But this is not physically possible, since they
must represent exact similarity solutions of the governing equations in the limit
of infinite Reynolds number. (In other words, the scaling itself would have to be
wrong.) Taking the logarithm of Equation (41) yields
Cy 2

In c, = 3Inqb—i-MInR. (42)
It follows immediately that botkCy /C; and¢ can be non-zero constants in the
limitas R — oo only if © — Ofasterthan ¥/ In R!*

Thus, everything about the Reynolds number dependence is contained in the
unknown functiong (R). If ¢ can be determined, all our functions will be known.
Alternatively, if Cy/C, is determined, then so is. Even the determination of
allows ¢ to be expressed to within an integration constant. This latter possibility is
the approach followed below.

It may seem surprising that the Reynolds number dependence of the overlap
region is intimately linked to the Reynolds number dependenag ef sL/u®.

As noted above, however, the asymptotic constanay dépends crucially on the
Kolmogorov argument relating the spectral flux in the inertial subrange to the exact
dissipation. Therefore it should not be surprising that these break down together at
finite Reynolds number. Nor should it be surprising that a theory which accounts
for the Reynolds number dependence of one, also accounts for the other.

All of the conditions can be satisfied in two ways:

In R (40)

— ¢*2/3RM(R)‘ (41)

* This immediately rules out the “conjecture” of Barenblatt and Chorin [1] who takel1/ In R.
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— Possibility 1 (Reynolds numberindependenbverlap range)
¢ — constant, angk. = 0 and the overlap region is Reynolds number in-
dependent.

Or ¢ must satisfy two conditions as k1 — oo; namely:
— Possibility 2 (Reynolds numberdependenbverlap range)

e Conditionl. ¢ — ¢,, = constant.
e Condition2. u = (2/3)dIn¢/dIn R — O faster than AIn R.

The first possibility leads to a5/3 power-law which is independent of Reynolds
number. Mydlarski and Warhaft [21] have shown, however, that the exponent of
real data is Reynolds number dependent. Therefore it is the Reynolds number
dependent solution of Possibility 2 that is of primary interest here.

3. The Functionu

The functionu can be completely determined only with a closure model for the
turbulence. In the absence of that, we must resort to empirical forms. Even so, we
know a great deal about its behavior. First, it is clear from Equation (40)thai

be most naturally expressed in terms of the argumegt I8econd, Condition 1
above can be satisfied only,if depends on inverse powers offn In fact, if we
expand about the infinite Reynolds number limitmust be asymptotically of the
form:

BA a
u(nR) = In )T [1+InR+---], 43)
where the constartA is chosen of this form for convenience later. Note that Con-
dition 2 can be satisfied only # > 0. The consequences of failing to satisfy either
condition are that similarity cannot be maintained in the overlap region. Clearly
this would be unphysical since both the low and high wavenumber scalings are
similarity solution to the energy equation in the limit.

George and Castillo [9] and George et al. [10] were successful by truncating
Equation (43) at the first term. We shall do the same here, i.e.,

BA

= R (44)

u

where the only adjustable parameters arand . It follows immediately from
Equation (38) that

6 34
N = 2N R

(49)
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Similarly, substitution into Equation (41) implies
Cn _ Cio  [A+PA
C.  Cro (In R)?
Thus all of the Reynolds number dependence of all the coefficients has been de-
termined. Verification that Equations (44) to (46) are consistent with the spectral

dataand determination of the constants is the primary purpose of the data analysis
described below.

(46)

4. The Experimental Data
4.1. ONE-DIMENSIONAL VERSUS THREEDIMENSIONAL SPECTRA

To test and develop further the ideas above we used the raw spectral values (lon-
gitudinal and lateral one-dimensional half-line spegtrabtained by Mydlarski
and Warhaft [21] in a careful series of experiments. These were performed down-
stream of a variety of passive and active grids. The turbulence was effectively
homogeneous across the flow and decayed slowly downstream.

For experimental reasons, a Fourier analysis with respect to one-space co-
ordinate only is sometimes considered. The resulting spectrum function is a
one-dimensional Fourier transform of the velocity correlation tensor:

9]

1 .
Fj(k) = = [ mu;(r1,0,00 e " dry
2 '
—00

- / / @, (ky, ko, k3) di dks. (47)

The superscript 1 im’i} is there to emphasize the fact that the dependence i the
andks-directions vanishes by integration, leaving only one inihelirection. In
the case = j = 1, Fi}(kl) is called thelongitudinal one-dimensional spectrum,
whilei = j = 2 is thelateral one-dimensional spectrum.

For isotropic turbulence, all of the one-dimensional sped@,are simply
related to the three-dimensional energy spectrum function (or simply the energy
spectrum) E (k). The two of interest here are

9]

1 E® ][, [(k\?]

Fht) = 5 / % 1- (f) dk, (48)
iy L =
1 ER[. (k2]

Flky) = 5 / % 1+ (f) k. (49)

k]_ - -

* The half-line spectrum is simply double whole-line spectrum.
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Also

d /1dF}
Ek)y=k—(==2).
(k) =k dk (k dk ) (50)

It easy to show that, if there is a power law region wheéig) = Ck=5/3#,
then there is a corresponding region in the one-dimensional spectra for which

Fl = Ck 3, (51)
Fj, = Coky 3, (52)
where
C
1= : (53)
C-w&E-w
4
4 e
Cp = 31 (54)
(§ - M)(g )
and
lez 4 u
foo _ 2 _ 1 55
FL, 3 2 (55)

These reduce to the classical relationgias- 0 (cf. [2]).

When considering actual data we shall need also the integral scales defined from
the longitudinal and lateral velocity correlations or corresponding one-dimensional
spectra,F,% (k1), which were what Mydlarski and Warhaft actually measured. These
definitions are:

— Longitudinal integral scale:

e¢]

1
Ly = = [ malx,y, z, Dua(x +r, v, z,1)dr
ug
0

= L lim FL(ky). (56)
u% k1—0

— Lateral one-dimensional spectrum:

e @]

1
Ly = = [ ua(x,y, z, Duz(x +r, v, z,1)dr
us
0

= L lim FLky). (57)
I/t% k1—0
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For isotropic turbulencd. = L, = 2L,, a condition not exactly satisfied by the
data, but easily dealt with as we shall show later. The valuesaxsfre determined
by integrating the one-dimensional spectral data and usiag; + 2¢, whereg,

is defined by:

£y =5 / K2FL (ky) dky. (58)
0

4.2. THE HIGH WAVENUMBER SCALING

The one-dimensional spectral data in high wavenumber variables is shown in
Figure 1.

This is the classical Kolmogorov scaling (Equation (12)), and has been shown
to be reasonably successful at high wavenumbers in many experiments. Such is
the case here. As expected, the scaled spectra clearly separate at low wavenumbers
where the scaling in no longer appropriate. This behavior with Reynolds number
of the spectrum at low wavenumbers is also expected (cf. [26]), and is a direct
conseguence of the arguments presented previously. Note that, contrary to expect-
ations, there is not a consistent trend with Reynolds numbers at low wavenumbers.
This perhaps can be attributed to the difference between the initial conditions for
the various grids.

4.3. THE LOW WAVENUMBER SCALING

The low wavenumber scaling (Equation (11)) needs the integral scale for the
one-dimensional half-line spectrum. Only the pseudo-integral scale was used by
Mydlarski and Warhaft who took = 0.943/¢. Therefore, a determination @f;

and L, was essential. The spectra can not be determined at zero wavenumbers, of
course, because of record length limitations. Moreover, the spectral errors cannot
be removed by the usual smoothing since there are fewer estimates at these low
wavenumbers. The one-dimensional spectra at the ofgia: (0) can be expanded,
however, as

Ff_l = A1 — B; k% + C, k4, (59)
1
F212 = A+ EBZ k%, (60)

where By = B; if the turbulence is isotropic [26]. By fitting the curves to the
measured spectra at the lowest wavenumbers, it was possible to extrapolate to “zero
wavenumber” values without being dependent on simply the lowest wavenumber
data alone. The values of the different integral scales are presented in Table I.

The integral scales do not satisfy the isotropic relations. Therefore, we plotted

the longitudinal spectra usingl/u? L, versusk;L,; and the lateral spectra as
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Figure 1. One-dimensional spectra in high wavenumber scaling.

Table I. The integral scales (in meter).

100 124 174 207 275 330 473

R 50
Lq 0.0226
Ly 0.0076

u3/e  0.0158

0.0648 0.0483 0.0532 0.0500 0.1364 0.1054 0.1218
0.0213 0.0196 0.0180 0.0198 0.0346 0.0356 0.0398
0.0533 0.0581 0.0662 0.0703 0.1253 0.1257 0.1648
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Figure 2. One-dimensional spectra in low wavenumber scaling.

F1,/u? Ly versusk; L. As shown in Figure 2, both show a good collapse except
for the high wavenumbers where the scaling is no longer appropriate. The lack of
a consistent Reynolds numbers’ trend at high wavenumbers outside the collapse
zone is also present here, just as for the high wavenumber scaling.

Figure 3 shows the same spectra non-dimensionalizedmatid! = 0.9u3/¢,
the pseudo-integral scale used by Mydlarski and Warhaft. Although the differences
are slight, the physical integral scdle (or L) is the better choice. Note that either
L or[ could have been used in the analysis above, but the results obtained using
L are more useful since the Reynolds number dependence of thé ydtappears
explicitly in u instead of inSy — S;.
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Figure 3. One-dimensional spectra scaled witand!, the pseudo-integral scale.

4.4. DETERMINATION OF u, Cy AND C; FROM THE DATA

Figure 4 illustrates the Mydlarski and Warhaft conclusions quite simply. When the
spectrum is multiplied byt+5/3, none of the spectra show the flat region implied
by a —5/3 power law. This is consistent with our theory, both that the power
is not —5/3 for any of the data, and that this value can at most be approached
asymptotically. Nonetheless, there is always some subjectivity in the determination
of u. Mydlarski and Warhaft [21] chose the best exponentp enable}.F2, to
achieve a constant plateau. (Note tha —5/3 + «.) They did not, however,
utilize the isotropic properties of their spectra; and thus, cited two different values
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Figure 4. One-dimensional spectra in high wavenumber scaling muItipIieﬁ*@g.

for w: one for the longitudinal part of the spectrum and one for the lateral part.
In our analysis of the same data, we treated the longitudinal and lateral spectra
together using the isotropic conditions above. This, in effect, doubles the amount
of data that can be used and reduces the statistical error. Two different methods
were applied to the data to obtain independent estimates of the parametgyfs
andC; (and from themA andg in Equation (44)):

Method 1begins with plots in inner and outer variables of

ﬁ_dFlll (61)
Fjy dky’

and
ka dFy, (62)
F3, dky

where the derivatives were computed directly from the data. It is easy to show that
in the power law region (if there is one) these are equal 533 + u. A typical

result is illustrated in Figure 5. Ongeis found in this manner, the values 6f;,
andC,, are read on the curves &t (k*1)%3* andfia (k1)%3*, similar to

the approach of Mydlarski and Warhatt.

Method 2was developed to deal with the fact that both of the above methods have
difficulty distinguishing unambiguously precisely what data should be included in
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the overlap region. This is because both the low and high wavenumber regions
have some residual influence on it, especially at the lowest Reynolds numbers.
This is a common problem in applying any asymptotic theory to real data, and is
illustrated by Figure 6 which plots the result of applying Method 2 to the high and
low wavenumber semi-empirical spectral models discussed in the Appendix.

Also plotted is the composite spectrum obtained by multiplying them together
and dividing by the common part. (These spectral models are discussed in detail in
the Appendix to avoid interrupting the main theme of this paper.) While the high
wavenumber model asymptoteskto’ 3+ at low wavenumbers, and the low to the
same at high wavenumbers, their product never achieves this value — exactly like

the real data!
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Figure 6. Derivation ofu using (k™ /fy)(3fg/0kT) = —5/3 4+ u(R) for R, = 473 using
semi-empirical spectra models.

To avoid this problem we have used the composite spectral model to fit the
entire spectrum for every Reynolds number. This was done using an optimization
routine, first to find the optimum values pf Cy andC; for each spectrum sep-
arately, then to optimize the constants in Equations (44) and (46) above. The fits
of the composite model to all the Mydlarski/Warhaft spectra (high wavenumber
variables) are shown in Figures 7 and 8.

Over the entire range of Reynolds numbers, the agreement between model and
experimental is spectacular, as are the same spectra in low wavenumber variables.
The values ofx are summarized in Table 11, together with the original Mydlarski

and Warhaft values.
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Figure 7. The composite model for the first four Reynolds numbers.

5. Evaluation of the Spectral Theory

Equations (44) and (46) were applied to the values foung fa@ry,, andC; . Then,
those values were used as starting points to optimize the spectral fit to the original
data. We found the optimal choice of constants to be

A=422 B=0.87, (63)
so thatu is given by:
3.69

w(R) = (64)

(|n R)1.87'
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The corresponding result far; /C; is:
Cy Cpso 7.91
— = exp 0.87 (65)
CL Croo (In R)

With Croo/Croo = 0.59. (Note thatCy,, # Cio as in the analysis of Tennekes
and Lumley [26] because the infinite Reynolds number limiL ¢t is not exactly
unity.)

The values forw andCy/Cy from the spectral fit are quite close to the ones
found with the data analysis alone (cf. Table Il). The only major discrepancies



466 S. GAMARD AND W.K. GEORGE

Table Il. Summary on the values @f.

Present work Warhaft and Mydlarski
Ry, Data Composite
analysis spectrum AB/In RITF w1 o

50 0.43 0.13 0.25 0.37 0.57
100 0.19 0.19 0.19 0.37 0.37
124 0.18 0.18 0.18 0.17 0.27
174 0.14 0.14 0.15 0.15 0.21
207 0.13 0.13 0.14 0.15 0.21
275 0.11 0.02 0.11 0.13 0.21
330 0.11 0.09 0.11 0.11 0.15
473 0.11 0.11 0.10 0.09 0.11

Table Ill. Implementation of the model = 3.69/(In R1-87).

R) 50 100 124 174 207 275 330 473

m 025 019 018 0.15 014 011 011 0.10
Cy/CL 575 421 408 354 340 278 277 255

were for R, = 50 andR, = 275. It is our opinion that there is no real overlap
region for theR, = 50 data. Moreover, the problem with tiRg = 275 spectra can
probably be attributed to the lack of isotropy.

The values for the particular Reynolds numbers of interest have been included
in Table III.

We summarize results fqr in Figure 9, and foilCy/C; in Figure 10. These
figures also include the earlier values found by Mydlarski and Warhaft [21]
for the longitudinal one-dimensional spectrum. We have also added Barenblatt
and Chorin’s hypothesis [1] to emphasize its non-fit, which is not too surpris-
ing since it contradicts both the Kolmogorov and von Karman/Howarth scalings
simultaneously in the limit a& /n — oo.

Figure 10 shows€’; /C,, as a function of R for the two one-dimensional spectra.
The scatter in the values is due to the fact that the coefficigr{or Cy) is highly
dependent on the value af a small change i can give an important difference
in the value ofC. Clearly the theory and the proposed model are both consistent
with the experimental data; moreover they have the correct asymptotic limits.
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6. The Function¢ (R)

A somewhat surprising benefit of the spectral analysis was a determination of the
Reynolds number dependence of the length scale fatio = ¢(R). This has
relevance, not only to the present analysis, but to many types of turbulence models
(cf. [17, 18]).

From Equations (45) and (63) it follows immediately that:

[0 6.34
- - S 66
N exp{ (in R>°~87} ©9
The valuep,, can immediately be obtained from Equation (41) as

C —3/2
Do = { H°°} =2.20. (67)
CLoo
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This result is shown in Figure 11, along with the valueg. of! and 2.,/ obtained
earlier. Note that for isotropy2 = L1 (hence the factor 2). As noted earlier,
however, the integral scales did not satisfy the isotropic relations. Therefore we
have also plottefl., +2(2L,)]/3! which is an attempt to produce a better estimate
for comparison by averaging the longitudinal integral scale with the other two,
assuming the latter to be equal.

The theoretical curveith constants determined only from the specinas reas-
onably well at high values aR, but goes in the wrong direction for low values. It
will be argued below that the low Reynolds number behavior of the data is because
of the nature of the dissipation at low wavenumbers. Therefore we have also plotted
the limiting form for small values and a composite of both the high and low forms
together. These are discussed in the next paragraph.
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Table IV. Values ofg from data and model of Equation (70).

R 50 100 124 174 207 275 330 473

Data 122 097 075 059 059 084 0.60 0.57
Model 1.11 062 0.60 058 058 0.64 0.64 0.68

It is well known (cf. [26]) that in the limit aR — O,
2

. u

Jelinog = Dvﬁ. (68)
It follows immediately that

: D¥?

imd =&z ©9)

A simple composite form, reminiscent of those commonly used in turbulence
modeling (cf. [11]) can be created by combining the two expressions, i.e.,

D32 6.34
¢comp= ? + 220 exp{—w} . (70)
This is the limiting form plotted in Figure 11a with = 215. The values are found

in Table IV. This does a reasonably good job of describing the experimental data
(in spite of the lack of isotropy), except for tiig from the problematicaR; = 275

grid. A most striking feature of the composite curve is thas nearly independent

of R for R > 200. This apparent cancellation of competing effects explains the
willingness of the turbulence community to assuid ~ constant (cf. [2, 25]).
Figure 11b shows the semi-empirical relation of Equation (70) plotted together
with data from Sreenivasan [25]. The agreement at low wavenumbers is excellent;
only the high Reynolds number asymptotes differ. It might be significant, however,
that all of those data were taken from the controversial experiment of Kistler and
Vrebalovich [14].

A major contributor to the scatter in all the plots might be the tendency of
grid-generated turbulence to fall into the form of similarity decay described by
George [7]. A consequence of this is that the energy decays s¢ethai®)R, =
constant, but where the constant is determined by the upstream conditions. There-
fore, the farther the measuring point downstream, the higher the valge(fof
fixed initial conditions). In general, the higher the Reynolds number of the grid,
the higher the constant, but also the slower the variatioR;adownstream. Thus,
unless the grid geometry and measuring point relative to it were fixed (i.e., fixed
x/M), this effect will act to produce artificially high values @f especially for
small R. This is consistent with what is observed, but is impossible to quantify
without further experimentation.
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7. Conclusions

In the previous sections, we have developed a theory for the energy spectrum at
finite Reynolds numbers. We considered two ranges of wavenumbers (classified
as low and high), and have defined the appropriate length scales for each region:
the physical integral scale, that we believe is the appropriate length scale for the
low wavenumber region, and the Kolmogorov scalgfor the high wavenumber
region.

Based on the energy equation and on its evolution at infinite Reynolds numbers,
we have derived the appropriate parameters for the two regions of interest. Those
parameters arg ande for the low wavenumber region (also being the region con-
taining the energy), andande for the high wavenumber one (being the dissipation
region). We can then scale the entire spectrum for the whole range of wavenumbers,
at least at finite Reynolds number. Only in the limit of infinite Reynolds numbers
do they lose the ability to describe the entire spectrum, one losing the low, the other
the high range of wavenumbers.

For finite Reynolds numbers the two differently scaled energy spectra must still
represent the same spectral function. We were able to use this fact with Near-
Asymptotics to determine the conditions for and properties of an overlap region
shared by the two similarity functions that survive in the limit of an infinite Reyn-
olds number. We proved that the spectrum should follow a powerklaim the
overlap, where the exponemt,= —5/3 + u, is Reynolds number dependent but
goes to—5/3 in the limit of infinite Reynolds number, thus recovering in the limit
the Obukhov/Kolmogorov result.

To verify the above theory, we needed a set of isotropic decaying or grid turbu-
lence data which covered a wide range of Reynolds numbers. Such a set already
existed from the experiments of Mydlarski and Warhaft [21]. When their data
was plotted in both low and high wavenumbers variables, we found a near perfect
collapse in the expected regions, proving that the appropriate length scale for low
wavenumbers is really the physical integral sdal@nd that the exponent is indeed
Reynolds number dependent.

The data foru, however, contained some scatter, and left some doubts con-
cerning its value. We therefore developed an empirical spectral model allowing a
Reynolds number dependent exponent in the overlap region. To do so, we created
a multiplicative composite spectrum based on a low wavenumber model (exten-
ded from a von Karman one) and on a high wavenumber one (extended from a
Lin/Hill version). This composite model was then applied on the data sets for
a better evaluation ofi. The results mostly confirmed our previous estimates
(and those of Mydlarski and Warhaft as well). We then optimized the choice of
w = BA/(In R)**# (where A and 8 were the only free parameters) to fit this
composite spectrum to all the spectral data.

The theory also predicted other functional relationships including the coeffi-
cients for the power law region and the behaviorot= ¢L /u®. All predictions
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were well-confirmed by the theory. When the low Reynolds number asymptote
was used to create a composite equationgfaovering all Reynolds numbers, it
became clear why most experimentalists believe this ratio to be nearly constant for
all but the lowest Reynolds numbers.

It remains to relate the conclusions of this Near-Asymptotic analysis to a full
similarity analysis of decaying turbulence for fixed initial (or upstream) conditions.
It is not clear, for example, whdocal similarity theoriedike that discussed here
apply, and wherfull similarity takes over. It appears, however, that the former
determines the value of the constants for the latter, but this will require further care-
ful study. Of particular utility would be experiments which carefully distinguish
between development downstream with fixed upstream conditions, and families of
experiments where only the upstream Reynolds number was varied with all other
features fixed.

Acknowledgements

We would like to express our gratitude to Professors L. Mydlarski (McGill Uni-
versity) and Z. Warhaft (Cornell University), both for sharing their data and for
their encouragement during the course of this work. The bulk of this work and the
details for most of it can be found in the MS Thesis of SG at SUNY/Buffalo. We
would like to acknowledge the support of the National Science Foundation during
part of this work.

Appendix: Empirical Spectral Models

It has been customary to consider two classes of spectral models: a low wavenum-
ber one and a high wavenumber one. Traditionally, a low wavenumber model
should roll off ak~%2 and never reach the dissipation range. An example is the
von Karman model considered below. The high wavenumber model, by contrast,
starts a2 then rolls off exponentially with increasing wavenumbers.

Our goal in this Appendix is to modify two of these existing infinite Reynolds
number models to incorporate the effect of finite Reynolds number. Then following
Driscoll [3] or Helland et al. [12], we will then “marry” these two models to create
a composite model to cover all the wavenumber range.

A LOW WAVENUMBER MODEL

At low wavenumbers, the energy spectrum starts from zero wavenumbér as
where 1< n < 4 [7]. Von Karman and others have gotten reasonable agreement
with grid generated turbulence by using= 4 and the following functional form:

x4

(71)
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wherex = k/k,, B andk, must be determined. Note that tkfedependence at low
wavenumbers has little effect on the one-dimensional spectrum, and other values
could be used.

To incorporate the finite Reynolds number form in the matching region, we
simply modify the above model:

x4

Elow(x) = B—(l n x2)17/6*li/2'

(72)

If we assume isotropy, we can relate to Fj;. Moreover, we can determ-
ine B andk, if we use the relations betweerf and the integral scale angl,
(since, at low wavenumbers? and L, are the proper scaling parameters). It is
straightforward to show that

T (2-4
ke — \/— (le MZ)’ (73)
LiT(3-%)
whereT is the Euler—Gamma function.

Therefore, the one-dimensional low wavenumber form of the one-dimensional

longitudinal spectrum becomes

l/t2 L]_

—5/6411/2

Fiiky) = —= (L+xf) (74)

This model is valid for low wavenumber scaling; hence, kd., —
oo (0r x1 — 00),

2 —5/3+n

uLy (ki L -

F, — ! (lel> (model limit),
2 e 1

= u?L1Cpq1 (kg L)~ (power form)

Clearly these two equations require:
1
Cr1== (ke L1)**7*, (75)
v

where bothu andC;; depends on the Reynolds number. A fit to the set of data at
R, = 473 can be seen in Figure 12 (upper).

A HIGH WAVENUMBER MODEL

There are numerous examples of high wavenumber spectral models. Monin and
Yaglom [20], for instance have an extensive review. We will consider in this work
an improvement of the Lin/Hill model, which seems to reproduce the spectral be-
havior the best. This model originated from Corrsin and Pao’s [23, 24] ideas on
modelinge, as a function off andk, in addition tos. Later on, Lin [19] improved
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Figure 12. Low and high wavenumber models implemented separatety at 473.

the model to better simulate the spectral behavior at high wavenumbers. Finally
Hill [13] extended slightly the model.

It is straightforward to modify the Lin/Hill spectrum to include the modified in-
ertial subrange. The details are in [5]. The resulting functional form for the energy
spectrumk at high wavenumbers is:

i 42/3, 5 4 —5/3+u SRR S
Ei . =a(l+k kT exp| —2 . 76
high o (l+ ) p o 4/3+M+2+M (76)

Note that the model reduces to the overlap power law form wher> 0 as
required. Its substitution into the dissipation integral also yields the correct dissip-
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ation, and this fact was used by us to determine the coefficients in a manner similar
to that used by Lin and Hill.

Finally, using the isotropic relation betwed#}; and E, we can implement the
model for the one-dimensional spectrum. Figure 12 (lower) shows a comparison of
the modified Lin/Hill one-dimensional spectrum and the Mydlarski/Warhaft data
for R, = 473. The discrepancy at low wavenumbers is expected since the model
is not valid there. The slight discrepancy at high wavenumbers is probably more
due to the effect of measurement errors at these very low spectral values than to
the model. Most importantly, the model captures the power law region and the high
wavenumber departure from it accurately; and that is its primary reason for being
introduced here.

A COMPOSITE MODEL

We now have two models for two different scaling regions, and a common overlap
region (see Figure 12). We can therefore build a composite model to describe the
spectrum in thevhole range of wavenumbely combining these two models. The
simplest way to do this would be to simply add them, then subtract the common
part. Unfortunately this possibility is precluded because the Lin/Hill spectrum is
not integrable (nor our modification of it as well) because of the low wavenumber
asymptote. (Note that only the energy is infinite, the dissipation is finite.) This
problem can be resolved by using the other common approach to building a com-
posite spectrum; namely, multiplying the two spectra together and dividing by the
common part.

We define the composite model as the product of the low wavenumber and the
high wavenumber models and divide by the common part. Note that there are two
ways of expressing the common part, so

(W? L) Eyow(k) * (e v®)Y* Ef (k™)
W2 L) Cy, (k)=5/3+

: (77)

Ecomposite:

or
(W? L) Eow(k) * (8 )4 Ef (k™)

(e U5)1/4 Cy (k+)*5/3+“
It is easy to see from this why the multiplicative form leads to a useful result; the
singularity in the high wavenumber of the modified Lin/Hill model when— 0

is removed by thé&* term from the low wavenumber form.
The model must satisfy three different constraint equations:

Ecomposite=

1. The kinetic energy:

oo

guz :/E(k) dk.

0
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2. The integral scale:

B 3_nf0°° E(k)/k dk
YT 4 [P EGk)de

3. The dissipation rate:

P =2v/k2E(k)dk.
0

Note that the constants determined for the high and low wavenumber models
separately by using these constraint equations are not valid for the composite
model. To determine the constants in the composite model, the three constraint
equations must be applied to the composite model itself. These integrals, un-
fortunately do not have an analytical solution, so all integrations must be done
numerically.

To fit the composite spectrum to each measured spectrum, only two parameters
need to be specifie@t and eithetCy, or C, (depending on whether the data were in
high or low wavenumber variables). To begin, we used the valuasfofind with
Method 1; then we allowed the different constants in the model to vary to insure
that the three constraint equations above were satisfied. This allowed the model to
initialize the constants for the next search based on the valpefadind with the
data. The final step was to let all the constants atiange to optimize the fit with
the data while still verifying the constraint equations. The resulting fits were shown
earlier in Figures 7 and 8. For all spectra the agreement is more than satisfactory.
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