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STEPHAN GAMARD and WILLIAM K. GEORGE
Department of Mechanical and Aerospace Engineering, State University of New York,
Buffalo, NY 14260, U.S.A.

Abstract. A Near-Asymptotics analysis of the turbulence energy spectrum is presented that accounts
for the effects of finite Reynolds number recently reported by Mydlarski and Warhaft [21]. From
dimensional and physical considerations (following Kolmogorov and von Karman), proper scalings
are defined for both low and high wavenumbers, but with functions describing the entire range of the
spectrum. The scaling for low wavenumbers uses the kinetic energy and the integral scale,L, based
on the integral of the correlation function. The fact that the two scaled profiles describe theentire
spectrum forfinite values of Reynolds number, but reduce to different profiles in the limit, is used to
determine their functional forms in the “overlap” region that both retain in the limit. The spectra in
the overlap follow a power law,E(k) = Ck−5/3+µ, whereµ andC are Reynolds number dependent.
In the limit of infinite Reynolds number,µ → 0 andC → constant, so the Kolmogorov/Obukhov
theory is recovered in the limit. Explicit expressions forµ and the other parameters are obtained, and
these are compared to the Mydlarski/Warhaft data. To get a better estimate of the exponent from the
experimental data, existing models for low and high wavenumbers are modified to account for the
Reynolds number dependence. They are then used to build a spectral model covering all the range
of wavenumbers at every Reynolds number. Experimental data from grid-generated turbulence are
examined and found to be in good agreement with the theory and the model. Finally, from the theory
and data, an explicit form for the Reynolds number dependence ofφ = εL/u3 is obtained.

Key words: energy spectrum, isotropic, overlap region, near asymptotics, energy decay, Reynolds
number effect.

1. Introduction

In 1941 Kolmogorov [15] introduced his ideas for the similarity of small scale
turbulence and the inertial subrange. This was subsequently extended to the energy
spectrum by Obukhov [22] who first derived the famousk−5/3-law. In spite of the
modifications by Kolmogorov himself [16], and apart from recent questions about
universality, for more than fifty years this theory has been widely discussed and
more or less accepted. An often overlooked assumption in Kolmogorov’s theory,
however, is the necessity of “a sufficiently large Reynolds number” before the as-
sumptions can be expected to hold. This qualification is especially relevant since
there are few spectral measurements which unequivocally show ak−5/3 spectral
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range. And even those were made at very high Reynolds numbers, well above those
for which the theory is commonly applied.

In 1996, Mydlarski and Warhaft [21] proposed, on experimental grounds, that
the exponent in the inertial subrange in fact was not the−5/3 proposed by
Kolmogorov, but rather a function of the Reynolds number that perhaps went to
−5/3 in the limit of infinite Reynolds number. For all the Reynolds numbers of
their experiments, the spectrum rolled-offmore slowlythank−5/3; moreover, the
lower the Reynolds number the greater the difference.

As noted above, there have been numerous theoretical attempts to modify the
exponent in the power law, first suggested by Kolmogorov [16] himself, mostly to
account for internal intermittency (see [4] for a review). But these deviations from
thek−5/3 behavior can not explain the Mydlarski and Warhaft observations, since
all arguments for internal intermittency cause the spectrum to roll-offfaster than
k−5/3, not slower.

Recently George [6, 8] (see also [9]) proposed two ideas which allow treatment
of finite Reynolds number effects in turbulent flows when infinite Reynolds num-
ber forms of the equations are available. The first is the Asymptotic Invariance
Principle (AIP) which states that properly scaled solutions at infinite Reynolds
number must be similarity solutions to the limiting equations themselves. Thus the
determination of scaling parameters is determined by the equations themselves,
not by ad hocarguments. The second is the methodology of Near-Asymptotics
which provides a means to find overlap solutions at finite Reynolds number when
inner and outer forms of the limiting equations are available. These ideas were
successfully applied to a number of wall-bounded turbulent flows.

This paper theoretically justifies Mydlarski and Warhaft’s conclusions by ap-
plying the AIP and Near-Asymptotics to the spectral energy equation for isotropic
turbulence. The results will be seen to be in remarkable agreement with the data,
thereby providing additional confirmationfrom the governing equationsfor both
the experiments and the methodology. An interesting (and perhaps even surprising)
outcome of this work will be an analytical expression for the Reynolds number
dependence of the important ratioL/l = εL/u3 whereL is the physical integral
scale.

2. Theoretical Analysis

2.1. BASIC EQUATIONS AND DEFINITIONS

Following Batchelor [2], we will use the energy spectrum function,E(k, t), defined
by integrating the energy tensor8ii over spherical shells of valuesk, i.e.,

E(k, t) = 1

2

∫
k=|k|

∫
8ii(k) dσ (k), (1)
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where dσ (k) is an element of surface in wavenumber space at radiusk = k, and
8ii is the trace of the Fourier transform of the two-point velocity correlation tensor
given by

8ij (k) = 1

8π3

∫ ∞∫
−∞

∫
e−ik·r ui(x) uj (x + r) dr. (2)

Note thatE(k, t) is a scalar function of only the magnitudek = |k|, hence the
directional information has been removed. Also, hereafter the time-dependence of
E will be suppressed and it will be written simply asE(k).

The integral ofE over all wavenumbersk yields the turbulence energy:

3

2
u2 = 1

2
uiui =

∞∫
0

E(k) dk. (3)

The rate of dissipation of turbulent kinetic energy per unit mass (or simply the
dissipation rate),ε, is related to the energy spectrum by

ε = 2ν

∞∫
0

k2 E(k) dk. (4)

For isotropic turbulent flow the energy equation reduces to a balance among
simply the time rate of change of the energy spectrum,∂E/∂t , the energy transfer
between different wavenumbers,T , and the viscous dissipation, 2νk2E, i.e.,

∂E(k)

∂t
= T (k)− 2ν k2 E(k). (5)

The energy spectrum typically rises from zero atk = 0 to a peak value at a
wavenumber near the inverse of the integral scale defined below, then rolls-off for
higher wavenumbers. Hence the energy is dominated by wavenumbers around the
peak. Viscous stresses dominate the highest wavenumbers and make the primary
contribution to the dissipation integral.

2.2. THE LENGTH SCALES

2.2.1. The Integral Length Scale

There exists much confusion about which scales are really appropriate to the de-
scription of the energy spectrum at large scales. We shall refer to the large scale
we consider most important as thephysical integral scale, L, and define it from the
integral of the longitudinal velocity correlation:
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− Longitudinal integral scale:

L ≡ 1

u2
1

∞∫
0

u1(x, y, z, t)u1(x + r, y, z, t) dr. (6)

− For isotropic turbulence,L can equivalently be obtained from the energy
spectrum function as:

L = 3π

4

∫∞
0 E(k)/k dk∫∞

0 E(k) dk
. (7)

Thus,L is completely determined onceE(k) is given.
It is important to note that the “physical” integral scale differs from the “pseudo”

integral scale (l ' u3/ε) often found in the literature (and used by Mydlarski and
Warhaft as well). It will be argued below that the ratioL/l = φ is Reynolds number
dependentand constant only in the limit of infinite Reynolds number; i.e.,

L

l
= εL

u3
≡ φ(R). (8)

2.2.2. The Kolmogorov Microscale

The other important length scale of importance to the analysis presented below
is the Kolmogorov microscale,η. Using Kolmogorov’s second hypothesis which
implies that the only parameters in the equilibrium rangein the infinite Reynolds
number limitareε and the viscosityν, it follows that the length scale is given by:

η =
(

ν3

ε

)1/4

. (9)

This scale is characteristic of the high wavenumber part of the spectrum since it is
of the order of the smallest eddies found in homogeneous turbulence.

2.2.3. The Reynolds Number

We define a Reynolds number,R, based on the ratio of the length scales given by:

R = L

η
. (10)

Note that this differs from the definition of Reynolds number ofRl = ul/ν used in
many texts (cf. [26]). HereRl = (R/φ(R))4/3.
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2.3. SIMILARITY CONSIDERATIONS

2.3.1. Similarity Scalings for Low and High Wavenumbers

A dimensional analysis of the energy spectrum shows its proportionality to the
product of a length and the square of a characteristic velocity. Following Batchelor,
it has been customary to scale the spectrum in two ways:

− Low wavenumber (or energy variables) usingu andL (or l); say

k̄ = kL,

fL(k, R) = E(k, t)

u2L
. (11)

− High wavenumber (or Kolmogorov variables) usingη, uη ≡ (νε)1/4; say

k+ = kη,

fH(k+, R) = E(k, t)

u2
ηη

= E(k, t)

ε1/4ν5/4
. (12)

The first form of Equation (11) was originally suggested by von Karman and
Howarth [27], while the latter was first proposed by Obukhov [22].

Note that it is commonly assumed that the Kolmogorov scalecollapsesthe
spectral data at high wavenumbers, regardless of the Reynolds number. This cannot
be exactly the case, however, since the whole idea of an equilibrium range in the
spectrum at high wavenumbers is predicated on the separation of scales [2]. The
Kolmogorov scaling can at most represent an infinite Reynolds number limit to
which finite Reynolds number spectra asymptote as the turbulent Reynolds number
increases. Thus, regardless of which set of parameters the spectrum is scaled by,
either retain a Reynolds number dependence for finite values ofR. It is this weak
(and asymptotically vanishing) dependence on Reynolds number which is explored
in the analysis below, and which will be seen to be responsible for the observations
of Mydlarski and Warhaft [21].

It is important to note that bothfL and fH represent exactly the same
spectrumsince, at least at finite Reynolds number, they are just different non-
dimensionalizations of the same function. Because of this it follows immediately
that:

fL(k, R) = R−5/3 φ2/3 fH(k+, R). (13)

In the limit of infinite Reynolds number however,fH becomes independent of
R and loses the ability to describe the low wavenumber spectral behavior. Similarly
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fL becomes independent ofR but loses the ability to describe the dissipation range.
But both retain an inertial subrange in the limit, ak−5/3 range which extends to
infinity for the low wavenumber scaled forms and to zero for the high. This has
long been recognized and is represented in most texts (cf. [26]).

This can be argued in a slightly different way. In the limit of infinite Reyn-
olds numberfL and fH are similarity solutions of different limiting forms of
Equation (5). (This is straightforward to show by substituting the low and high
wavenumber scaled versions of Equations (11) and (12) in Equation (5), and car-
rying out the limit asR → ∞.) For finite values ofk, the low wavenumber form
reduces in the limit to a simple balance between the temporal decay and the spectral
transferto the high wavenumbers, sayεk. The high wavenumber form reduces to
the familiar local equilibrium range [2], where there is simply a balance between
the dissipation and the spectral transferfrom the low wavenumbers, but this is just
εk. Since all of the energy dissipated in this limit must come via the spectral flux
from low wavenumbers, thenεk = ε (but only in the limit). Thus for the low
wavenumbers in the limit of infinite Reynolds number, the only parameters are
the energy,u2 and the dissipation,ε. And for the high wavenumbers the only
parameters are the dissipation,ε, and the kinematic viscosity,ν. Henceu2 and
ε alonegovern the low wavenumber spectrumexactlyin the limit, while ν andε

alonegovernexactlythe high. Thus in the limit of infinite Reynolds number, both
the von Karman/Howarth and Kolmogorov scalings become exact and independent
of Reynolds number, i.e.,

lim
R→∞

fL(k, R) = fL∞(k) only,

and

lim
R→∞ fH(k+, R) = fH∞(k+) only.

This is, of course, the whole idea behind scaling in the first place; namely that the
spectra should collapse, at least in the limit. And in this case they do since they
are similarity solutions to equations which themselves become independent of the
Reynolds number in the limit asR = L/η → ∞. This is, in fact, the Asymptotic
Invariance Principle of George [8].

ObviouslyfL∞(k) andfH∞(k+) can not have the same functional dependence
onk, except possibly in an overlap region (the so-calledinertial subrange). In fact,
as is well known, at low wavenumbers,fH∞ → k+−5/3 while for high wavenum-

bersfL∞ → k
−5/3

[26]. It will be seen to be possible below using the methodology
of Near-Asymptotics to extend this reasoning to finite Reynolds numbers, and
deduce the Mydlarski and Warhaft results from first principles without additional
assumptions.
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2.4. MATCHING OF THE TWO PROFILES

The low and high wavenumber spectra have been scaled with different scales.
But the ratio of those scales is Reynolds number dependent. Therefore,at finite
Reynolds numbers, there cannot exist any region in which either scaling is truly
Reynolds number independent. Note that this does not mean the scaled spectra will
not collapse approximately, only that perfect collapse can be achieved only in the
limit. It is this lack of perfect collapse at finite Reynolds numbers which is the key
to understanding the analysis below.

Now as long as we consider only finite Reynolds numbers,fL(k, R) and
fH(k+, R) represent the spectrum for all wavenumbers. It is only in the limit as
R → ∞ that fL loses the ability to describe the high wavenumbers andfH the
low. The traditional asymptotic matching begins with the limiting forms,fL∞ and
fH∞, and tries to stretch their region of validity to match them in an overlap region
(if such a region exists). Such an analysis for the energy spectra is presented in
[26], and the resulting “matched region” is thek−5/3-region, or inertial subrange.

If, however, we consider thefinite Reynolds number forms instead of the limit-
ing ones, the problem of solving the overlap region can be approached in a different
way. Since bothfL andfH already describe the entire spectrum, there is no need
to stretch their range of validity and match them. They already match perfectly at
all wavenumbers, but have simply been scaled differently. Instead, our problem is
that these finite Reynolds number functions degenerate in different ways at infinite
Reynolds number, one losing high wavenumbers, the other the low. Our objective
is to use this information to determine their functional formin the remaining com-
mon region they describe in this limit(if it exists). This methodology is known as
Near-Asymptoticsand was first developed in [8] (see also [9, 10]). In the following
paragraphs it is applied to the energy spectrum.

Even if we do not know the analytical forms offL andfH , we can still use their
properties. Both describe the same spectrum, so they must satisfy

u2 L fL(k,R) = (ε ν5)1/4 fH(k+, R). (14)

Equivalently, using the definition ofR = L/η and defining

φ = ε L

u3
, (15)

we can write

fL(k, R) = R−5/3 φ2/3 fH(k+, R). (16)

The functionφ(R) is the ratio of the physical integral scale,L, to the pseudo-
integral scale,l = u3/ε. The Kolmogorov reasoning summarized above implies
thatφ → constant in the limit asR → ∞. As noted earlier, it is only in this limit
thatL andl can be used interchangeably.

To simplify the following expressions, we defineg as

g(R) = R−5/3 φ2/3. (17)
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Now we can re-write Equation (16) simply as

fL(k, R) = g(R)fH(k+, R). (18)

As for the spectra themselves, the partial derivatives with respect tok andR for
both high and low wavenumbers forms of the spectrum must be the same for finite
values ofR. Differentiating with respect tok while holdingR constant implies:

∂

∂k

(
(u2 L)fL(k, R)

)∣∣∣∣
R

= ∂

∂k

(
(ε ν5)1/4fH(k+, R)

)∣∣∣∣
R

. (19)

Or in dimensionless form,

k

fL

∂fL

∂k

∣∣∣∣
R

= k+

fH

∂fH

∂k+

∣∣∣∣
R

. (20)

We want to examine if there is an overlap region that survives in bothfL and
fH whenR→∞ and{

k → ∞,

k+ → 0.

Sincek/k+ = R, in order to remain in the overlap region in the limit, should it
exist, we need to define an intermediate variable,kn:

kn = k · R−n

= k+ · R1−n. (21)

We can fix our position in the overlap region, and simultaneously satisfyk → ∞
andk+ → 0 asR→∞ if we choose 0< n < 1.

Introducingkn in Equation (18):

fL(

k︷ ︸︸ ︷
kn Rn,R) = g(R) fH(

k+︷ ︸︸ ︷
kn Rn−1, R). (22)

We can now differentiate with respect toR at fixedkn to obtain

∂fL

∂k

∣∣∣∣
R

∂k

∂R

∣∣∣∣∣
kn

+ ∂fL

∂R

∣∣∣∣
k

= dg

dR
fH + g

[
∂fH

∂k+

∣∣∣∣
R

∂k+

∂R

∣∣∣∣
kn

+ ∂fH

∂R

∣∣∣∣
k+

]
. (23)

Using Equation (21) and multiplying byR/fL = R/(g fH):

n
k

fL

∂fL

∂k

∣∣∣∣
R

− (n− 1)
k+

fH

∂fH

∂k+

∣∣∣∣
R

= R

g

dg

dR
+ R

[
1

fH

∂fH

∂R

∣∣∣∣
k+
− 1

fL

∂fL

∂R

∣∣∣∣
k

]
. (24)
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Since the first term on the right-hand side is a function ofR only, we define
γ (R) by

γ (R) ≡ R

g

dg

dR
= d(ln g)

d lnR
, (25)

andSL andSH by

SL(k, R) ≡ ∂ ln fL(k, R)

∂ ln R

∣∣∣∣∣
k

, (26)

SH(k+, R) ≡ ∂ ln fH(k+, R)

∂ ln R

∣∣∣∣
k+

. (27)

Now Equation (24) can be written as

k

fL

∂fL

∂k

∣∣∣∣
R

= k+

fH

∂fH

∂k+

∣∣∣∣
R

= γ (R)+ [SH(k+, R)− SL(k, R)]. (28)

As noted earlier, in the limit asR→∞, bothfL andfH become asymptotically
independent ofR, each losing in the process the ability to describe part of the
spectrum. Thus, from the definitions ofSL andSH , the term in square brackets in
Equation (28) must vanish identically. This leaves only the first term which must
go to a constant, i.e.,

lim
R→∞

k

fL

∂fL

∂k

∣∣∣∣∣
R

= lim
R→∞

k+

fH

∂fH

∂k+

∣∣∣∣
R

= lim
R→∞

γ (R) ≡ γ∞. (29)

So there is indeed a common part which survives in this limit. We shall see below
that the constant,γ∞ = −5/3, so the Kolmorogov/Obukhov result is obtained as
the infiniteR limit.

The question of most interest, however, is: what happens at large but finite
Reynolds numbers? In other words, is there any wavenumber region where

k

fL

∂fL

∂k

∣∣∣∣∣
R

= k+

fH

∂fH

∂k+

∣∣∣∣
R

≈ γ (R), (30)

even when|γ (R)−γ∞| > 0? If so, we have found the explanation for the Mydlarski
and Warhaft results.

To examine this, we look howSL and SH are changing with lnR. A Taylor
expansion about a given value ofR at fixedk yields:

SL(k, R) ' fL(k, R +1R)− fL(k, R)

fL(k, R)

R

1R
, (31)
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and

SH(k+, R) ' fH(k+, R +1R)− fH(k+, R)

fH(k+, R)

R

1R
. (32)

ThusSL andSH represent the relative Reynolds number dependencies offL and
fH . They must, of course, vanish in the limit of infinite Reynolds number since the
scaled spectra are similarity solutions to the limiting equations. At finite Reynolds
numbers,SL goes from near zero for small values ofk where the low wavenumber
scaling is approximately correct, and increases ask becomes large since the low
wavenumber scaling does apply at the dissipative scales. ForSH , it is just the op-
posite, large for smallk+ and decreasing toward zero ask+ approaches infinity. The
whole question of whether there is an overlap region at finite Reynolds number then
reduces to whether there is a common region where|SH − SL| � γ (R). Another
possibility would be thatSL = SH , namely that both scaling profiles have the same
R dependence. We shall assume there is such a region, and show this leads to a
consistent approximation.

Therefore, we neglect(SH − SL) relative toγ (R) and write simply

k

fL

∂fL

∂k

∣∣∣∣∣
R

= γ (R), (33)

k+

fH

∂fH

∂k+

∣∣∣∣
R

= γ (R). (34)

The solutions to these equations must be recognized as first-order approximations
only, the higher order contributions having been neglected. They do, however, re-
duce to the correct limiting solutions, and retain at least that Reynolds number
dependent part of the solution which is independent of wavenumber. The neglect
of SH − SL must be and can be justifieda posteriori.

Integrating Equations (33) and (34) leads immediately toReynolds number
dependentpower laws for bothfL andfH , i.e.,

fL(k, R) = CL(R) (k)γ (R), (35)

fH(k+, R) = CH (R) (k+)γ (R). (36)

Substituting the definition ofg (Equation (17)) into Equation (25) yields

γ = −5/3+ µ, (37)

whereµ has been defined to be

µ = 2

3

d lnφ

d lnR
. (38)

Note sinceφ → constant asR → ∞, this implies thatµ → 0 in the same limit.
But this in turn implies thatγ∞ = −5/3, which yields immediately the result
obtained by Obukhov [22], as noted above.
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By using Equation (18), we can expressg as:

g(R) = fL

fH

= CL(R)

CH(R)
R−5/3+µ(R). (39)

Substitutingγ (R) = −5/3+ µ from Equation (25) into Equation (39) shows that
a solution is possible only if

ln R
dγ

d lnR
= d lnCH/CL

d lnR
. (40)

This equation makes it clear thatµ, CH andCL are inter-related, and cannot simply
be chosen arbitrarily. Also, it is easy to show that satisfying this constraint insures
thatSH − SL ≡ 0 for the overlap solution, consistent with the original hypothesis.

Like µ, CH/CL can also be shown to be simply related toφ(R). Comparing
Equations (17) and (39), it follows immediately that

CH

CL

= φ−2/3Rµ(R). (41)

We know from the Kolmogorov argument presented above thatφ → φ∞ where
φ∞ is an non-zero constant. AlsoCH andCL must be finite and different from zero
in the limit of infinite Reynolds number; otherwise thescaledspectra would either
go to zero or increase without bound. But this is not physically possible, since they
must represent exact similarity solutions of the governing equations in the limit
of infinite Reynolds number. (In other words, the scaling itself would have to be
wrong.) Taking the logarithm of Equation (41) yields

ln
CH

CL

= −2

3
ln φ + µ ln R. (42)

It follows immediately that bothCH/CL andφ can be non-zero constants in the
limit asR→∞ only if µ→ 0 fasterthan 1/ ln R!?

Thus, everything about the Reynolds number dependence is contained in the
unknown function,φ(R). If φ can be determined, all our functions will be known.
Alternatively, if CH/CL is determined, then so isφ. Even the determination ofµ
allowsφ to be expressed to within an integration constant. This latter possibility is
the approach followed below.

It may seem surprising that the Reynolds number dependence of the overlap
region is intimately linked to the Reynolds number dependence ofφ = εL/u3.
As noted above, however, the asymptotic constancy ofφ depends crucially on the
Kolmogorov argument relating the spectral flux in the inertial subrange to the exact
dissipation. Therefore it should not be surprising that these break down together at
finite Reynolds number. Nor should it be surprising that a theory which accounts
for the Reynolds number dependence of one, also accounts for the other.

All of the conditions can be satisfied in two ways:
? This immediately rules out the “conjecture” of Barenblatt and Chorin [1] who takeµ ∼ 1/ ln R.
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− Possibility 1 (Reynolds numberindependentoverlap range):
φ → constant, andµ = 0 and the overlap region is Reynolds number in-
dependent.

Or φ must satisfy two conditions as lnR→∞; namely:

− Possibility 2 (Reynolds numberdependentoverlap range):

• Condition1. φ→ φ∞ = constant.
• Condition2. µ = (2/3)d ln φ/d ln R→ 0 faster than 1/ ln R.

The first possibility leads to a−5/3 power-law which is independent of Reynolds
number. Mydlarski and Warhaft [21] have shown, however, that the exponent of
real data is Reynolds number dependent. Therefore it is the Reynolds number
dependent solution of Possibility 2 that is of primary interest here.

3. The Functionµ

The functionµ can be completely determined only with a closure model for the
turbulence. In the absence of that, we must resort to empirical forms. Even so, we
know a great deal about its behavior. First, it is clear from Equation (40) thatµ will
be most naturally expressed in terms of the argument lnR. Second, Condition 1
above can be satisfied only ifµ depends on inverse powers of lnR. In fact, if we
expand about the infinite Reynolds number limit,µ must be asymptotically of the
form:

µ(ln R) = βA

(ln R)1+β

[
1+ a1

ln R
+ · · ·

]
, (43)

where the constantβA is chosen of this form for convenience later. Note that Con-
dition 2 can be satisfied only ifβ > 0. The consequences of failing to satisfy either
condition are that similarity cannot be maintained in the overlap region. Clearly
this would be unphysical since both the low and high wavenumber scalings are
similarity solution to the energy equation in the limit.

George and Castillo [9] and George et al. [10] were successful by truncating
Equation (43) at the first term. We shall do the same here, i.e.,

µ = βA

(ln R)1+β
, (44)

where the only adjustable parameters areA andβ. It follows immediately from
Equation (38) that

ln
φ

φ∞
= − 3A

2(ln R)β
. (45)
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Similarly, substitution into Equation (41) implies

CH

CL

= CH∞
CL∞

exp

[
(1+ β)A

(ln R)β

]
. (46)

Thus all of the Reynolds number dependence of all the coefficients has been de-
termined. Verification that Equations (44) to (46) are consistent with the spectral
dataanddetermination of the constants is the primary purpose of the data analysis
described below.

4. The Experimental Data

4.1. ONE-DIMENSIONAL VERSUS THREE-DIMENSIONAL SPECTRA

To test and develop further the ideas above we used the raw spectral values (lon-
gitudinal and lateral one-dimensional half-line spectra?) obtained by Mydlarski
and Warhaft [21] in a careful series of experiments. These were performed down-
stream of a variety of passive and active grids. The turbulence was effectively
homogeneous across the flow and decayed slowly downstream.

For experimental reasons, a Fourier analysis with respect to one-space co-
ordinate only is sometimes considered. The resulting spectrum function is a
one-dimensional Fourier transform of the velocity correlation tensor:

F 1
ij (k1) = 1

2π

∞∫
−∞

uiuj (r1, 0, 0) e−ik1r1 dr1

=
∫ ∞∫
−∞

8ij (k1, k2, k3) dk2 dk3. (47)

The superscript 1 inF 1
ij is there to emphasize the fact that the dependence in thek2

andk3-directions vanishes by integration, leaving only one in thek1-direction. In
the casei = j = 1, F 1

ij (k1) is called thelongitudinal one-dimensional spectrum,
while i = j = 2 is thelateral one-dimensional spectrum.

For isotropic turbulence, all of the one-dimensional spectra,F 1
ij are simply

related to the three-dimensional energy spectrum function (or simply the energy
spectrum),E(k). The two of interest here are

F 1
11(k1) = 1

2

∞∫
k1

E(k)

k

[
1−

(
k1

k

)2
]

dk, (48)

F 1
22(k1) = 1

4

∞∫
k1

E(k)

k

[
1+

(
k1

k

)2
]

dk. (49)

? The half-line spectrum is simply double whole-line spectrum.
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Also

E(k) = k3 d

dk

(
1

k

dF 1
11

dk

)
. (50)

It easy to show that, if there is a power law region whereE(k) = Ck−5/3+µ,
then there is a corresponding region in the one-dimensional spectra for which

F 1
11 = C1k

−5/3+µ

1 , (51)

F 1
22 = C2k

−5/3+µ

1 , (52)

where

C1 = C

(5
3 − µ)(11

3 − µ)
, (53)

C2 = (4
3 − µ)C

(5
3 − µ)(11

3 − µ)
(54)

and

F 1
22

F 1
11

= 4

3
− µ

2
. (55)

These reduce to the classical relations asµ→ 0 (cf. [2]).
When considering actual data we shall need also the integral scales defined from

the longitudinal and lateral velocity correlations or corresponding one-dimensional
spectra,F 1

ij (k1), which were what Mydlarski and Warhaft actually measured. These
definitions are:

− Longitudinal integral scale:

L1 = 1

u2
1

∞∫
0

u1(x, y, z, t)u1(x + r, y, z, t) dr

= π

u2
1

lim
k1→0

F 1
11(k1). (56)

− Lateral one-dimensional spectrum:

L2 = 1

u2
2

∞∫
0

u2(x, y, z, t)u2(x + r, y, z, t) dr

= π

u2
2

lim
k1→0

F 1
22(k1). (57)
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For isotropic turbulenceL = L1 = 2L2, a condition not exactly satisfied by the
data, but easily dealt with as we shall show later. The values ofε were determined
by integrating the one-dimensional spectral data and usingε = ε1 + 2ε2 whereεα

is defined by:

εα = 5
∫ ∞

0
k2

1F
1
αα(k1) dk1. (58)

4.2. THE HIGH WAVENUMBER SCALING

The one-dimensional spectral data in high wavenumber variables is shown in
Figure 1.

This is the classical Kolmogorov scaling (Equation (12)), and has been shown
to be reasonably successful at high wavenumbers in many experiments. Such is
the case here. As expected, the scaled spectra clearly separate at low wavenumbers
where the scaling in no longer appropriate. This behavior with Reynolds number
of the spectrum at low wavenumbers is also expected (cf. [26]), and is a direct
consequence of the arguments presented previously. Note that, contrary to expect-
ations, there is not a consistent trend with Reynolds numbers at low wavenumbers.
This perhaps can be attributed to the difference between the initial conditions for
the various grids.

4.3. THE LOW WAVENUMBER SCALING

The low wavenumber scaling (Equation (11)) needs the integral scale for the
one-dimensional half-line spectrum. Only the pseudo-integral scale was used by
Mydlarski and Warhaft who tookl = 0.9u3/ε. Therefore, a determination ofL1

andL2 was essential. The spectra can not be determined at zero wavenumbers, of
course, because of record length limitations. Moreover, the spectral errors cannot
be removed by the usual smoothing since there are fewer estimates at these low
wavenumbers. The one-dimensional spectra at the origin (k1 = 0) can be expanded,
however, as

F 1
11 = A1 − B1 k2

1 + C1 k4
1, (59)

F 1
22 = A2 + 1

2
B2 k2

1, (60)

whereB1 = B2 if the turbulence is isotropic [26]. By fitting the curves to the
measured spectra at the lowest wavenumbers, it was possible to extrapolate to “zero
wavenumber” values without being dependent on simply the lowest wavenumber
data alone. The values of the different integral scales are presented in Table I.

The integral scales do not satisfy the isotropic relations. Therefore, we plotted
the longitudinal spectra usingF 1

11/u
2
1 L1 versusk1L1; and the lateral spectra as
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Figure 1. One-dimensional spectra in high wavenumber scaling.

Table I. The integral scales (in meter).

Rλ 50 100 124 174 207 275 330 473

L1 0.0226 0.0648 0.0483 0.0532 0.0500 0.1364 0.1054 0.1218

L2 0.0076 0.0213 0.0196 0.0180 0.0198 0.0346 0.0356 0.0398

u3/ε 0.0158 0.0533 0.0581 0.0662 0.0703 0.1253 0.1257 0.1648
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Figure 2. One-dimensional spectra in low wavenumber scaling.

F 1
22/u

2
2 L2 versusk1L2. As shown in Figure 2, both show a good collapse except

for the high wavenumbers where the scaling is no longer appropriate. The lack of
a consistent Reynolds numbers’ trend at high wavenumbers outside the collapse
zone is also present here, just as for the high wavenumber scaling.

Figure 3 shows the same spectra non-dimensionalized withu andl = 0.9u3/ε,
the pseudo-integral scale used by Mydlarski and Warhaft. Although the differences
are slight, the physical integral scaleL1 (or L2) is the better choice. Note that either
L or l could have been used in the analysis above, but the results obtained using
L are more useful since the Reynolds number dependence of the ratioL/l appears
explicitly in µ instead of inSH − SL.
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Figure 3. One-dimensional spectra scaled withu andl, the pseudo-integral scale.

4.4. DETERMINATION OF µ, CH AND CL FROM THE DATA

Figure 4 illustrates the Mydlarski and Warhaft conclusions quite simply. When the
spectrum is multiplied byk+5/3, none of the spectra show the flat region implied
by a −5/3 power law. This is consistent with our theory, both that the power
is not−5/3 for any of the data, and that this value can at most be approached
asymptotically. Nonetheless, there is always some subjectivity in the determination
of µ. Mydlarski and Warhaft [21] chose the best exponent,n, to enablekn

1.F
1
αα to

achieve a constant plateau. (Note thatn = −5/3 + µ.) They did not, however,
utilize the isotropic properties of their spectra; and thus, cited two different values
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Figure 4. One-dimensional spectra in high wavenumber scaling multiplied byk+5/3
1 .

for µ: one for the longitudinal part of the spectrum and one for the lateral part.
In our analysis of the same data, we treated the longitudinal and lateral spectra
together using the isotropic conditions above. This, in effect, doubles the amount
of data that can be used and reduces the statistical error. Two different methods
were applied to the data to obtain independent estimates of the parametersµ, CH ,
andCL (and from themA andβ in Equation (44)):

Method 1begins with plots in inner and outer variables of

k1

F 1
11

dF 1
11

dk1
, (61)

and

k1

F 1
22

dF 1
22

dk1
, (62)

where the derivatives were computed directly from the data. It is easy to show that
in the power law region (if there is one) these are equal to−5/3+ µ. A typical
result is illustrated in Figure 5. Onceµ is found in this manner, the values ofCHα

andCLα are read on the curves ofF+1
αα (k+1)

5/3−µ andF
1
αα (k1)

5/3−µ, similar to
the approach of Mydlarski and Warhaft.

Method 2was developed to deal with the fact that both of the above methods have
difficulty distinguishing unambiguously precisely what data should be included in
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Figure 5. Derivation ofµ using(k+/fH )(∂fH /∂k+) = −5/3+ µ(R) for Rλ = 473.

the overlap region. This is because both the low and high wavenumber regions
have some residual influence on it, especially at the lowest Reynolds numbers.
This is a common problem in applying any asymptotic theory to real data, and is
illustrated by Figure 6 which plots the result of applying Method 2 to the high and
low wavenumber semi-empirical spectral models discussed in the Appendix.

Also plotted is the composite spectrum obtained by multiplying them together
and dividing by the common part. (These spectral models are discussed in detail in
the Appendix to avoid interrupting the main theme of this paper.) While the high
wavenumber model asymptotes tok−5/3+µ at low wavenumbers, and the low to the
same at high wavenumbers, their product never achieves this value – exactly like
the real data!
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Figure 6. Derivation ofµ using(k+/fH )(∂fH /∂k+) = −5/3+ µ(R) for Rλ = 473 using
semi-empirical spectra models.

To avoid this problem we have used the composite spectral model to fit the
entire spectrum for every Reynolds number. This was done using an optimization
routine, first to find the optimum values ofµ, CH andCL for each spectrum sep-
arately, then to optimize the constants in Equations (44) and (46) above. The fits
of the composite model to all the Mydlarski/Warhaft spectra (high wavenumber
variables) are shown in Figures 7 and 8.

Over the entire range of Reynolds numbers, the agreement between model and
experimental is spectacular, as are the same spectra in low wavenumber variables.

The values ofµ are summarized in Table II, together with the original Mydlarski
and Warhaft values.
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Figure 7. The composite model for the first four Reynolds numbers.

5. Evaluation of the Spectral Theory

Equations (44) and (46) were applied to the values found forµ, CH , andCL. Then,
those values were used as starting points to optimize the spectral fit to the original
data. We found the optimal choice of constants to be

A = 4.22, β = 0.87, (63)

so thatµ is given by:

µ(R) = 3.69

(ln R)1.87
. (64)
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Figure 8. The composite model for the last four Reynolds numbers.

The corresponding result forCH/CL is:

CH

CL

= CH∞
CL∞

exp

[
7.91

(ln R)0.87

]
(65)

with CH∞/CL∞ = 0.59. (Note thatCH∞ 6= CL∞ as in the analysis of Tennekes
and Lumley [26] because the infinite Reynolds number limit ofL/l is not exactly
unity.)

The values forµ andCH /CL from the spectral fit are quite close to the ones
found with the data analysis alone (cf. Table II). The only major discrepancies
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Table II. Summary on the values ofµ.

Present work Warhaft and Mydlarski

Rλ Data Composite

analysis spectrum Aβ/ ln R1+β µ1 µ2

50 0.43 0.13 0.25 0.37 0.57

100 0.19 0.19 0.19 0.37 0.37

124 0.18 0.18 0.18 0.17 0.27

174 0.14 0.14 0.15 0.15 0.21

207 0.13 0.13 0.14 0.15 0.21

275 0.11 0.02 0.11 0.13 0.21

330 0.11 0.09 0.11 0.11 0.15

473 0.11 0.11 0.10 0.09 0.11

Table III. Implementation of the modelµ = 3.69/(ln R1.87).

Rλ 50 100 124 174 207 275 330 473

µ 0.25 0.19 0.18 0.15 0.14 0.11 0.11 0.10

CH /CL 5.75 4.21 4.08 3.54 3.40 2.78 2.77 2.55

were forRλ = 50 andRλ = 275. It is our opinion that there is no real overlap
region for theRλ = 50 data. Moreover, the problem with theRλ = 275 spectra can
probably be attributed to the lack of isotropy.

The values for the particular Reynolds numbers of interest have been included
in Table III.

We summarize results forµ in Figure 9, and forCH/CL in Figure 10. These
figures also include the earlier values found by Mydlarski and Warhaft [21]
for the longitudinal one-dimensional spectrum. We have also added Barenblatt
and Chorin’s hypothesis [1] to emphasize its non-fit, which is not too surpris-
ing since it contradicts both the Kolmogorov and von Karman/Howarth scalings
simultaneously in the limit asL/η→∞.

Figure 10 showsCH /CL as a function of R for the two one-dimensional spectra.
The scatter in the values is due to the fact that the coefficientCL (or CH ) is highly
dependent on the value ofµ: a small change inµ can give an important difference
in the value ofC. Clearly the theory and the proposed model are both consistent
with the experimental data; moreover they have the correct asymptotic limits.
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Figure 9. Different values ofµ function of the Reynolds number.

6. The Functionφ(R)

A somewhat surprising benefit of the spectral analysis was a determination of the
Reynolds number dependence of the length scale ratioL/l = φ(R). This has
relevance, not only to the present analysis, but to many types of turbulence models
(cf. [17, 18]).

From Equations (45) and (63) it follows immediately that:

φ

φ∞
= exp

{
− 6.34

(ln R)0.87

}
. (66)

The valueφ∞ can immediately be obtained from Equation (41) as

φ∞ =
{

CH∞
CL∞

}−3/2

= 2.20. (67)
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Figure 10. Different values ofCH /CL function of the Reynolds number.

This result is shown in Figure 11, along with the values ofL1/ l and 2L2/ l obtained
earlier. Note that for isotropy 2L2 = L1 (hence the factor 2). As noted earlier,
however, the integral scales did not satisfy the isotropic relations. Therefore we
have also plotted[L1+2(2L2)]/3l which is an attempt to produce a better estimate
for comparison by averaging the longitudinal integral scale with the other two,
assuming the latter to be equal.

The theoretical curvewith constants determined only from the spectradoes reas-
onably well at high values ofR, but goes in the wrong direction for low values. It
will be argued below that the low Reynolds number behavior of the data is because
of the nature of the dissipation at low wavenumbers. Therefore we have also plotted
the limiting form for small values and a composite of both the high and low forms
together. These are discussed in the next paragraph.
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Figure 11. φ function of the Reynolds number. Part (a) shows Equations (70), (69), and
(66) together with the Mydlarski/Warhaft data; (b) Equation (70) with data taken from
Sreenivasan [25].
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Table IV. Values ofφ from data and model of Equation (70).

Rλ 50 100 124 174 207 275 330 473

Data 1.22 0.97 0.75 0.59 0.59 0.84 0.60 0.57

Model 1.11 0.62 0.60 0.58 0.58 0.64 0.64 0.68

It is well known (cf. [26]) that in the limit asR→ 0,

lim
R→0

ε = Dν
u2

L2
. (68)

It follows immediately that

lim
R→0

φ = D3/2

R2
. (69)

A simple composite form, reminiscent of those commonly used in turbulence
modeling (cf. [11]) can be created by combining the two expressions, i.e.,

φcomp= D3/2

R2
+ 2.20 exp

{
− 6.34

(ln R)0.87

}
. (70)

This is the limiting form plotted in Figure 11a withD = 215. The values are found
in Table IV. This does a reasonably good job of describing the experimental data
(in spite of the lack of isotropy), except for theL1 from the problematicalRλ = 275
grid. A most striking feature of the composite curve is thatφ is nearly independent
of R for R > 200. This apparent cancellation of competing effects explains the
willingness of the turbulence community to assumeL/l ≈ constant (cf. [2, 25]).
Figure 11b shows the semi-empirical relation of Equation (70) plotted together
with data from Sreenivasan [25]. The agreement at low wavenumbers is excellent;
only the high Reynolds number asymptotes differ. It might be significant, however,
that all of those data were taken from the controversial experiment of Kistler and
Vrebalovich [14].

A major contributor to the scatter in all the plots might be the tendency of
grid-generated turbulence to fall into the form of similarity decay described by
George [7]. A consequence of this is that the energy decays so that(εL/u3)Rλ =
constant, but where the constant is determined by the upstream conditions. There-
fore, the farther the measuring point downstream, the higher the value ofφ (for
fixed initial conditions). In general, the higher the Reynolds number of the grid,
the higher the constant, but also the slower the variation ofRλ downstream. Thus,
unless the grid geometry and measuring point relative to it were fixed (i.e., fixed
x/M), this effect will act to produce artificially high values ofφ, especially for
small R. This is consistent with what is observed, but is impossible to quantify
without further experimentation.
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7. Conclusions

In the previous sections, we have developed a theory for the energy spectrum at
finite Reynolds numbers. We considered two ranges of wavenumbers (classified
as low and high), and have defined the appropriate length scales for each region:
the physical integral scale, that we believe is the appropriate length scale for the
low wavenumber region, and the Kolmogorov scale,η, for the high wavenumber
region.

Based on the energy equation and on its evolution at infinite Reynolds numbers,
we have derived the appropriate parameters for the two regions of interest. Those
parameters areu andε for the low wavenumber region (also being the region con-
taining the energy), andν andε for the high wavenumber one (being the dissipation
region). We can then scale the entire spectrum for the whole range of wavenumbers,
at least at finite Reynolds number. Only in the limit of infinite Reynolds numbers
do they lose the ability to describe the entire spectrum, one losing the low, the other
the high range of wavenumbers.

For finite Reynolds numbers the two differently scaled energy spectra must still
represent the same spectral function. We were able to use this fact with Near-
Asymptotics to determine the conditions for and properties of an overlap region
shared by the two similarity functions that survive in the limit of an infinite Reyn-
olds number. We proved that the spectrum should follow a power lawkn in the
overlap, where the exponent,n = −5/3+ µ, is Reynolds number dependent but
goes to−5/3 in the limit of infinite Reynolds number, thus recovering in the limit
the Obukhov/Kolmogorov result.

To verify the above theory, we needed a set of isotropic decaying or grid turbu-
lence data which covered a wide range of Reynolds numbers. Such a set already
existed from the experiments of Mydlarski and Warhaft [21]. When their data
was plotted in both low and high wavenumbers variables, we found a near perfect
collapse in the expected regions, proving that the appropriate length scale for low
wavenumbers is really the physical integral scaleL, and that the exponent is indeed
Reynolds number dependent.

The data forµ, however, contained some scatter, and left some doubts con-
cerning its value. We therefore developed an empirical spectral model allowing a
Reynolds number dependent exponent in the overlap region. To do so, we created
a multiplicative composite spectrum based on a low wavenumber model (exten-
ded from a von Karman one) and on a high wavenumber one (extended from a
Lin/Hill version). This composite model was then applied on the data sets for
a better evaluation ofµ. The results mostly confirmed our previous estimates
(and those of Mydlarski and Warhaft as well). We then optimized the choice of
µ = βA/(ln R)1+β (whereA and β were the only free parameters) to fit this
composite spectrum to all the spectral data.

The theory also predicted other functional relationships including the coeffi-
cients for the power law region and the behavior ofφ = εL/u3. All predictions
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were well-confirmed by the theory. When the low Reynolds number asymptote
was used to create a composite equation forφ covering all Reynolds numbers, it
became clear why most experimentalists believe this ratio to be nearly constant for
all but the lowest Reynolds numbers.

It remains to relate the conclusions of this Near-Asymptotic analysis to a full
similarity analysis of decaying turbulence for fixed initial (or upstream) conditions.
It is not clear, for example, whenlocal similarity theorieslike that discussed here
apply, and whenfull similarity takes over. It appears, however, that the former
determines the value of the constants for the latter, but this will require further care-
ful study. Of particular utility would be experiments which carefully distinguish
between development downstream with fixed upstream conditions, and families of
experiments where only the upstream Reynolds number was varied with all other
features fixed.
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Appendix: Empirical Spectral Models

It has been customary to consider two classes of spectral models: a low wavenum-
ber one and a high wavenumber one. Traditionally, a low wavenumber model
should roll off ak−5/3 and never reach the dissipation range. An example is the
von Karman model considered below. The high wavenumber model, by contrast,
starts ask−5/3 then rolls off exponentially with increasing wavenumbers.

Our goal in this Appendix is to modify two of these existing infinite Reynolds
number models to incorporate the effect of finite Reynolds number. Then following
Driscoll [3] or Helland et al. [12], we will then “marry” these two models to create
a composite model to cover all the wavenumber range.

A LOW WAVENUMBER MODEL

At low wavenumbers, the energy spectrum starts from zero wavenumber askn

where 1< n < 4 [7]. Von Karman and others have gotten reasonable agreement
with grid generated turbulence by usingn = 4 and the following functional form:

E(x) = B
x4

(1+ x2)17/6
, (71)
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wherex = k/ke, B andke must be determined. Note that thek4 dependence at low
wavenumbers has little effect on the one-dimensional spectrum, and other values
could be used.

To incorporate the finite Reynolds number form in the matching region, we
simply modify the above model:

Elow(x) = B
x4

(1+ x2)17/6−µ/2
. (72)

If we assume isotropy, we can relateE to F 1
11. Moreover, we can determ-

ine B and ke if we use the relations betweenu2 and the integral scale andF 1
11

(since, at low wavenumbers,u2 andL1 are the proper scaling parameters). It is
straightforward to show that

ke =
√

π 0
(

5
6 − µ

2

)
L1 0

(
1
3 − µ

2

) , (73)

where0 is the Euler–Gamma function.
Therefore, the one-dimensional low wavenumber form of the one-dimensional

longitudinal spectrum becomes

F 1
11(k1) = u2 L1

π

(
1+ x2

1

)−5/6+µ/2
. (74)

This model is valid for low wavenumber scaling; hence, ask1 L1 →
∞ (or x1→∞),

F 1
11 →

u2 L1

π

(
k1 L1

ke L1

)−5/3+µ

(model limit),

= u2 L1 CL1 (k1 L1)
−5/3+µ (power form).

Clearly these two equations require:

CL1 = 1

π
(ke L1)

5/3−µ, (75)

where bothµ andCL1 depends on the Reynolds number. A fit to the set of data at
Rλ = 473 can be seen in Figure 12 (upper).

A HIGH WAVENUMBER MODEL

There are numerous examples of high wavenumber spectral models. Monin and
Yaglom [20], for instance have an extensive review. We will consider in this work
an improvement of the Lin/Hill model, which seems to reproduce the spectral be-
havior the best. This model originated from Corrsin and Pao’s [23, 24] ideas on
modelingεk as a function ofE andk, in addition toε. Later on, Lin [19] improved
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Figure 12. Low and high wavenumber models implemented separately atRλ = 473.

the model to better simulate the spectral behavior at high wavenumbers. Finally
Hill [13] extended slightly the model.

It is straightforward to modify the Lin/Hill spectrum to include the modified in-
ertial subrange. The details are in [5]. The resulting functional form for the energy
spectrumE at high wavenumbers is:

E+high = α (1+ k+2/3
) k+−5/3+µ exp

[
−2α

(
k+4/3+µ

4/3+ µ
+ k+2+µ

2+ µ

)]
. (76)

Note that the model reduces to the overlap power law form whenk+ → 0 as
required. Its substitution into the dissipation integral also yields the correct dissip-
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ation, and this fact was used by us to determine the coefficients in a manner similar
to that used by Lin and Hill.

Finally, using the isotropic relation betweenF 1
11 andE, we can implement the

model for the one-dimensional spectrum. Figure 12 (lower) shows a comparison of
the modified Lin/Hill one-dimensional spectrum and the Mydlarski/Warhaft data
for Rλ = 473. The discrepancy at low wavenumbers is expected since the model
is not valid there. The slight discrepancy at high wavenumbers is probably more
due to the effect of measurement errors at these very low spectral values than to
the model. Most importantly, the model captures the power law region and the high
wavenumber departure from it accurately; and that is its primary reason for being
introduced here.

A COMPOSITE MODEL

We now have two models for two different scaling regions, and a common overlap
region (see Figure 12). We can therefore build a composite model to describe the
spectrum in thewhole range of wavenumbersby combining these two models. The
simplest way to do this would be to simply add them, then subtract the common
part. Unfortunately this possibility is precluded because the Lin/Hill spectrum is
not integrable (nor our modification of it as well) because of the low wavenumber
asymptote. (Note that only the energy is infinite, the dissipation is finite.) This
problem can be resolved by using the other common approach to building a com-
posite spectrum; namely, multiplying the two spectra together and dividing by the
common part.

We define the composite model as the product of the low wavenumber and the
high wavenumber models and divide by the common part. Note that there are two
ways of expressing the common part, so

Ecomposite=
(u2 L)Elow(k) ∗ (ε ν5)1/4 E+high(k

+)

(u2 L)CL (k)−5/3+µ
, (77)

or

Ecomposite=
(u2 L)Elow(k) ∗ (ε ν5)1/4 E+high(k

+)
(ε ν5)1/4 CH (k+)−5/3+µ

.

It is easy to see from this why the multiplicative form leads to a useful result; the
singularity in the high wavenumber of the modified Lin/Hill model whenk+ → 0
is removed by thek4 term from the low wavenumber form.

The model must satisfy three different constraint equations:

1. The kinetic energy:

3

2
u2 =

∞∫
0

E(k) dk.
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2. The integral scale:

L1 = 3π

4

∫∞
0 E(k)/k dk∫∞

0 E(k) dk
.

3. The dissipation rate:

ε = 2ν

∞∫
0

k2 E(k) dk.

Note that the constants determined for the high and low wavenumber models
separately by using these constraint equations are not valid for the composite
model. To determine the constants in the composite model, the three constraint
equations must be applied to the composite model itself. These integrals, un-
fortunately do not have an analytical solution, so all integrations must be done
numerically.

To fit the composite spectrum to each measured spectrum, only two parameters
need to be specified:µ and eitherCH orCL (depending on whether the data were in
high or low wavenumber variables). To begin, we used the values ofµ found with
Method 1; then we allowed the different constants in the model to vary to insure
that the three constraint equations above were satisfied. This allowed the model to
initialize the constants for the next search based on the value ofµ found with the
data. The final step was to let all the constants andµ change to optimize the fit with
the data while still verifying the constraint equations. The resulting fits were shown
earlier in Figures 7 and 8. For all spectra the agreement is more than satisfactory.
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