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STRACT
The importance of frequency response considerations in the use of thin
film gauges for unsteady heat transfer measurements in transient facilities
has been considered and methods for evaluating it have been proposed. A
departure frequency response function has been introduced and illustrated by
an existing analog circuit. A Fresnel integral temperature which possesses
the essential features of the film temperature -in transient facilities has
been inci‘od;zced and used to evaluate two numerical algorithms. Finally

criteria have been proposed for the use of finite difference algorithms for

the calculation of the unsteady heat flux from a sampled temperature signal.
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INTRODUCTION

The use of thin film gauges for heat transfer measurement in transient
facilities has been well-established over the past 30 years (Vidal, [l]; see
Schultz and Jones [2] for an excellent reviev). Until recently, attention was
focused on either relatively simple flows (such as the passage of a shock
wave) or on attempts to measure "mean" heat transfer rates on gas turbine
blades under quasi-steady conditions. In both types of experiments, attention
was focused on capturing the rise in temperzture ard mean heat flux, and the
fluctuations due to periodic flow disturbarces or turbulence were of little
interest. In recent years there has been considersble interest in extending
the thin film technique to the measurement of fluctuating heat transfer rates
in transient experiments, especially with regard to gas turbine applications
(Dunn and Holg,{B]; Dunn et al. (4], [S] and Doorly, {6]). All of these
experiments used an analog circuit, hereafter referred to as the Q-meter, to
convert the surface temperature measured by the thin film gauges to heat flux
signals. The Q-meter was originally developed in the lzte 1950's (Skinner
{7}, Meyer [8]), and was redesigned by Oldfield et al. %] to the wide band
analog used in this report. While this circuic hzs the advantage of
directly presenting an analog voltage proportional to heat transfer rate, its
design is based on the assumption of constant thermal properties of the
substrate, a cordition violated in some experiments. Moraover, the Q-meter,
although a considerable improvement over the original desizns, has a bandwidth
substantially lower cthan that of the gauge izself.

An alternztive to the Q-meter is to directly racord the surface
temperatures, ard then calculate the heat flux nuzericzily from either the
one-dimensional heat transfer equation or ar analytic soluzion to it. One of
the most successZul examples of the latter is the numericzl algorithm of Cook

and Felderman [10] and Cook [11] which assumed constant thermal properties.



and
A A

< q(0,f) = < T(0,f) + 45° (5)

AMPLITUDE AND PHASE RESPONSE

The ideal analog Q-meter would be one which duplicates the response
characteristics of equations (3)-(5) over the frequency range of interest.
Any deviation from this ideal characteristic will resul: in a distortion of
the unsteady heat transfer signal.

That this is indeed the case can be seen by viewing the Q-meter as a
linear circuit as shown in Figure 2a. For such systems the Fourier transform
of the output is simply the Fourier transform of the input multiplied by the
frequency response function of the system.* Thus if ;i(f) and ;oi(f)
represent the input and output to this ideal systenm,

A

eoi (£) = Hygoaq(E) e (E) (6)

The ideal frequency response function for a Q-meter would be (to within a

factor dependent on the thermal properties of the substrate)

Higea1 (E) = [j2nf (7)
In practice, circuits are never ideal. These departures can often be

characterized by introducing a hypothetical filter as shown in Figure 2b which
accounts for the departures from the ideal. The output from the real system

can be written es

eo(£) = Hyo (£) e

A

- Hdep(f) Hides1(f) e;(£) (8)
The product Hdep(f) Hideal(f) is thus the real response of the analog,

H .21(f). Thus the frequency response function of the departure from idezl

* The frequency response function of a system is the Fourier transform of the
impulse response function of that system.



cross—spectral information if the phase characteristics of all Q-meters is no:
the same.

Figures 5 and 6 show the effect of the departures from ideal on two
typical heat flux signals. Figure 5 shows the response of the analog to =
square wave with a fundamental frequency of 13 kHz. Figure 6 shows the
response of the analog to a pulse train with fundamental frequency also chosen
at 13 kHz and pulse width equal to 1/7 of the period. Unlike the square wave
response which is reasonable, the pulse train show;s considerable distortion
because of the removal of the harmonics by the finite bandwidth of the analog.
Without some careful thought about the representative Fourier series for the
pulse train, it might have been very difficult to have guessed the real wave
form from the analog output, especially in view of the negative regions of the
signal. Thus the importance of knowing the frequency response of the systen

cannot be underestimated if the original waveform is to be determined.

MODEL FOR THE UNSTEADY A

The unsteady temperature signal from a thin film gauge on the rotor of =
turbine blade in a transient test facility (in this case a shock tunnel) is
shown in Figure (7). The rapid rise in temperature is associated with the
arrival of the test gas and marks a step change in the heat flux. The
temperature signal rises with an approximately e1/2. dependence because of the
heat transfer to the substrate. Superimposed on the overall rise are the
fluctuations resulting from the vane-wake crossings and other unsteady effects
in the flow.

One of the difficulties in testing either analog circuits or numerical
algorithms is the difficulty in generating a known temperature input signal
which possesses the characteristics of a transient experiment like that

described above. A particularly useful choice for a test signal would be one



can be determined as:
Hdep(f) = Hrea1 (£)/Hjgea1(£) (%)
Since, in general, the frequency response function is complex, the departures
from ideal can be in both the amplitude and phase.
The effect of attenuating the higher Fourier components by a roll-off in
the amplitude response is generally well understood. The effect of phase
errors can be much more difficult to assess since, in effect, some Fourier

components are delayed with respect to others so that the wave forms are

distorted. i ta xc on_occurs when the phase errors vary linearlv
with frequency in which case all Fourier components are delayed by a fixed

time delay and no distortion occurs.

Figures 3a and 3b show the amplitude and phase characteristics* of the Q-
meter design due to Oldfield et al. [9]. As shown in the preceding section,
it is the departure frequency response function which is primarily of interest
here. Figures 4a and 4b plot the amplitude and phase characteristics of the
departure. The linear-linear plot of the amplitude in Figure (4a) makes it
clear that there is considerable attenuation at frequencies well below the
half-power points, a facF often obscured by the usual log-log plots. It is
also clear from both Figures 3b and 4b that the Q-meter does not produce the
desired 45° phase shift. Fortunately, however, the phase shift is linear with
frequency below the half-power point (~100 kHz). As pointed out earlier, this
means that the individual Fourier components are not shifted with respect to
each other, but that the entire signal is delayed by an amount 4/2x where A is
the constant of proportionality between the phase shiZt A and the frequency
f. The lag for the circuit shown is ~4 HBS. Note tha: even this linear phase

shift can pose a problem when more than one gauge is to be used to obtain

*The authors are grateful to Dr. Martin Oldfield of Oxford University and Dr.
James O'Brien of NASA/Lewis for providing the data for Figures 3 and 4.



Dunn et al. [5] attempted to include variable thermal properties by
numerically solving the governing equations using the thin film surface
temperature data as input. Prior to the present work, a portion of which was
reported by Dunn et al. (5], there appears to have been no attempt to zzalyze
the ability of these numerical techniques to resolve fluctuating heat trznsfer
rates.

The purpose of this paper is to present a detailed evaluation of the
frequency response of both analog and numerical approaches tc the
determination of fluctuating heat transfer rates from the output of thirz film
gauges in transient environments. The amplitude and phase errors are

determined and their effect on simulated signals is assessed.

IH NC GOV ONS
Transient heat transfer measurements with thin film gauges depend
primarily on the applicability of one-dimensional heat conduction as shown in

Figure 1 so that the process can be described by the one-dimensional equztion

8T 4 d
C—=— |k —
P* 3t T ax [ a:] @
subject ‘to the surface condition
. aT
q(0,T) = -k P (2)
Xl x=0

For constant thermal properties, this equation can be solved analytically
using Laplace or Fourier transform techniques. 1If T(0,f) and q(0,f) are the
Fourier transforms of the surface temperature and heat flux, respectively,

then

q(0,f) = ijk JjZ:f T(0,£) (3)

from which it follows that the modulii and phases are related by

laco.£)] = [pck J2xf  |1¢0.8)] (4)



which yields a step change in heat flux (corresponding to the cest initiation
in a transient facility) superimposed on which is a sinusiodzily oscillating

unsteady heat flux. Such a heat flux signal is given by
q(0,t) = A, + A jcos2xf,t + B;sin2xf, ¢ (10)

where f, is a given frequency, and where A;,, A, and B, are arbitrarily chosen

coefficients. This is shown in figure (8a), and corresponds to a single

Fourier component bius the dc part of the signal which might be seen in a
transient facility. If the temperature signal which produces such a heat flux
could be determined, it could be wutilized to test numerical algorithms
designed to directly calculate the heat flux from the measured surface
temperature.

For constant thermal properties and zero film thickness, equations (L)

and (2) can be solved analytically to yield (Vidal, [1]),

t .
T(0,£) = — j 900.2) 4y 41, (11)

prCk 0 Jt-l

Substitution of equation (10) into equation (11) yields after integration,

JxpcKk
[2x£, ”Z

(]

T(0,t) = [8xf,t +

A B
JZR C(2xf,t) [ L cos2nfyt + - sin2xfcc]
A, A,

A B
+ s(2xfet) | Xi sin2nfyt + Xj costfoc]} (12)
where
1 u
COS
C(u) = J 2 o (13)
JE; 0 Ja
and

da (14)




The integrals C(u) and S(u) can be recognized as the familiar Fresnel
integrals, Abramowitz and Stegun [12]. Figure (8b) shows the temperature
variation which would produce the heat transfer signal corresponding to A, -
0, By/a, = 1/4. Because the Fresnel integrals in equation (12) can be
evaluated by a variety of convenient formulae, the temperature history of
equation (12) is particularly useful for testing finite difference algorithms
for solving equation (1) with unsteady inputs. It can also be used to
evaluate the overall phase and amplitude response of the data processing
system if the impulse response function of the system is known.

Before using the Fresnel-integral temperature history, it is interesting
to look at the asymptotic behavior of equation (12). It is straightforward to
show by using the asymptotic expansions of the integrals C and S (Abramowitz

and Stegun, [12]) that for 2rf >>1,

+

[

N

[2x£, J":Ck T(0,t) = [8xf,t {1
0

+ -lzi——
J8xf°t
ysin2xf,t

Janot

[ 1 ycos2xf,t

2 I2xf°t

The negiected terms are of order (2xf°t)'1 and the expznsion is valid for

A B
+ ...][ L cos2xf,t + —* sin2xf. .t ] +
Aq ° Aq °

A B
+... ][-A—:sinZ:rfot - Xi—costfot]} (15)

2nf,t>40 (or after about six cycles).

The t1/2 dependence can be recognized as the surface temperature rise due
to a step change in heat flux applied to a semi-infinite slab. Of particular
interest to the experimentalist is the fact that the ratio of che fluctuating
part of the temperature to the t1/2 rise is continuously reduced with time.
This makes it very difficult to directly sample the filr temperature signal

without burying the fluctuating part in the quantization noise of the A/D



Implicit numerical procedures for solving equation (15) work best when

the step-size ratio
r = aAt/(ax)? (21)
is in the range 0.25 to 0.5 (16]. It happens that this criterion can be met
for the test conditicns of interest here by taking the sampling interval, At,
on the basis of the Nyquist criterion to be inversely proportionzl to the
highest frequency of interest, i.e. At - x/w ~1/2f. The spatial step size ax
musEAbe small enough to resolve the skin depth; that is, Ax =< fa/w. A

constant value of the step-size ratio r will satisfy both of these criteria.

EVALUATION OF NUMERICAI ALGORITHM

The purpose of this section is to evaluate the algorithms outlined =zbove
by using the Fresnel integral temperature proposed earlier. 0f special
concern to the experimentalist is the rate at which data must be ctaken
relative to the frequencies of interest, and the sensitivity of the zlgorithms
to noise on the sampled signal or introduced by the sampling process.

Digital temperature data were generafed using the Fresnel integral
temperature given by equation 12 and shown in Figure 8b. These data were
sampled at rates of 3.75, 7.5, 15 and 30 times the fundamental, and then used
as input to the numerical zlgorithms.

Figures 9 — 12 cemonstrate the relative abilities of the Cooke-Felderman
algorithm of equatiorn (17) and the simple implicit scheme of equztion (19).
Note that the progressively poorer reconstruction of the sine wave part of the
signal with decreasing number of points for cycle is due to the fact that the
graphs have been procduced using straight line segments, a procedure generzlly
requiring about 10 points per cycle to produce a smooth sinusoidal. Of more
concern here are the magnitude and phase errors of the computed heat flux
signals relative to the exact signails. It is clear from the figures chat both

algorithms suffer from a siight phase lag (about 20 deg.) for the lowest
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SUMMARY AND CONCLUSIONS

The use of thin film gauges for the measurement of unsteady heat transfer
in transient facilities has been briefly reviewed, with particular attention
to how the heat transfer is determined from the film temperature. The removal
of Fourier components by the finite frequency response of analog Q-meters was
shown to have a significant effect on the heat transfer inferred. Similarly,
the sampling rate and choice of computational algorithm was shown to introduce
similar problems for the numericai reconstruction of the unsteady heat
transfer from the digitally sampled film temperature. The digital methods
have the advantage that they require less hardware, and can easily include the
effects of the temperature dependent thermal properties of the substrate.

The fundamental frequency limitations of thin film gauges have not been
discussed, but will be mentioned briefly here. The upper frequency limit is
proportional to (ozf/d2)1/2 where as is the thermal diffusivity of the film
itself and d is its thickness, v. reference [2]. This is typically of order
10® Hz, and is therefore well above the bandwidth of most applications. The
principal determinant of the lowest frequency which can be measured 1is the
penetration depth which must be small compared to the size of the film so that
the heat transfer into the substrate is effectively one-dimensional. Thus, if
2 is the smaller of the gauge dimension and the depth of the substrate, the
lower cut-off frequency is of order (¢:¢/12)1/2 where a is the thermal
diffusivity of the substrate, v. reference (2]. Analog Q-meters can deviate
from the fl/2 response at substantially higher frequencies because of design
limitations. It is easy to see that these lower frequency limits place an
upper limit on the duration of the test in transient facilities -- at least
for which the determination of heat flux from the methods discussed here will
be valid.

Finally, it should be noted that there are situations where thin film

14



sampling rate (Figure 12). This has virtually disappeared for thke Cooke-
Felderman algorithm when the sampling rate has increased to fs/f, = 12 (Figure
10), but persists to even fs/f, = 30 (Figure 9) for the simple implicit
algorithm. Figure 13 shows how the relative magnitudes of the sinusoidal part
of the signal wvary with the sampling rate. The Cooke-Felderman zlgorithm
slightly over-predicts the peaks while the simple implicit under-predicts
them. Both algorithms converge toward the correct amplitude as the samplfng
rate increases.

In order to assess the sensitivity to noise on the inpu:t data, z second
set of input data was generated by truncating the digital word size of the
input data to a single byte. The effect is to introduce a quantization noise
on the signal which is the same as if it had been sampled by an 8 bit A/D
converter. (Note this is a relatively large amount of noise since most A/D
converters that would be employed for unsteady signal measurement are 10 bits
or greater.) Figure l4a shows a typical quantized input signal whiie Figure
14b shows the difference between quantized and original input signzl. The
"noise level" is most easily characterized by defining ¢ to be the ratio of
the size of the quantized step to the pezk-to-peak fluctuating par: of the
temperature. For the case shown here and in the subsequent zpplications, € =
0.012.

Figures 15a-d show the effect of the 8-bit quantization on trz Cooke-
Felderman algorithm for the four sampling rates. These can be compared to the
simple implicit results shown in Figures 16z-d. Both algorithms show a slight
increase in the noise present on the signal with increasing sampling rate.
The simple implicit algorithm, however, is less sensitive to noise thza is the
Cooke-Felderman. This can probably be acztributed to ics poorer Irequency

response which effectively low-pass filters the quantization noise.
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converter. The Q-meter with its E response tends to alleviate this problem as
does the differentiation approach of Dunn et al. [5]).

In the following section the Fresnel integral temperature history will be
used to evaluate several numerical schemes for directly evaluating the heat
flux from the surface temperature. 0f particular interest will be the
amplitude and phase errors introduced by the algorithms. Such an evaluation
will __be possible because the actual heat flux is known o be that given by

equation (10).

NUMERICAL ALGORITHMS FOR CALCULATING HEAT FLUX FROM SURFACE TEMPERATURE
MEASUREMENTS

An alternative to the analog Q-meter is the direct calculation of heat
flux from the time dependent surface temperature measured by the gauge. For
all but the simplest inputs (and then only if the thermal properties are
assumed constant), the solutions to gquations (1) and (11) cannot be obtained
in closed form, and must be calculated numerically. The particular problem
here falls into the general class of inverse heat conduction and ill-posed
problems for which there is an extensive literature. (Beck et al. ([13]
provide an excellent summary of both examples and pitfzlls of the various
numerical approaches.) This paper will consider two rumerical algorithms
which have been used for processing thin film gauge data: the first, the
finite difference approximation to the exact solution for constant thermal
properties proposed by Cooke and Felderman [10}, and the second, the simple
implicit scheme for variable thermal properties used by Dunn et al. [S]. The
focus of the evaluation here will be on the ability oI the algorithms to
faithfully represent the amplitude and phase of rapidly wvarying input data,
and on their sensitivity to the quantization errors and roise encountered in

typical applications.

The Cooke—Felderman Algorithm. This algorithm is bzsed on the integral



solution to equations (1) and (2) for constant thermal propercies which is

1/2 t A
Ck] [T(O,t) . 1 J’ (T(0,t)-T(0,1)] a ] (16)

q(0,t) = [f;- 2 (-2 372

Je
The first numerical approximation to equation (16) was proposed by Vidal {1}
who used it to calculate heat flux from thin film gauges in shock tunnels.
Cooke and Felderman [10] improved Vidal‘s algorithm by approximating the
temperature in equation (16) at time steps At with a piece-wise linear signal.

The result for the nth realization of the surface heat flux (t=nAt) is given

by

1/2 n
- |— 2(a 17
n [ n ] (ae) 1§1 (n-i.)]‘/2+(n-i+1)l/2 (an

In spite of its obvious advantage over a finite differencgwsolution, equation
(17) is valid only if the thermal properties are constant. Moreover, while it
has received extensive use in the calculation of heat fluxes in transient
environments, the ability of this algorithm to accurately reproduce rapidly
varying fluctuations in the unsteady heat flux has not been established.

If the effects of variable thermal properties on the irnstantaneous heat
flux are to be accounted for, there appears to be no alternative to solving
the heat conduction equation numerically. (Note, however, that corrections
to equation (17) for varying thermal properties have been proposed by Miller
[14]). Dunn et al. {4] proposed a technique utilizing a Crank-Nicolson
finite difference procedure. Unfortunately, the equations were cast in
terms of the similarity variable q-x/I;E which rendered the solution
incapable of following rapid fluctuations at large time because of the
increasing grid spacing. The problem encountered above has been reported in
detail in Dunn et al. [S]. However, because of its importance to the problem
of resolving fluctuating heat transfer rates, it will be briefly suamarized

here.
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When the heat transfer rate contains a part that fluctuates at
* . .
frequency w , a second scale enters the problem, namely Ia/w, which is
properly called the skin depth and is independent of time. The classical
solution of a sinusoidal surface-temperature variation (Carslaw and Jaeger,

[15]) contains an early-time transient plus the solution:

AT(x,t) = A exp(-xJw/ax} cos{wt - xJw/a) (18)
Thus the high-frequency portion of the surface-temperature rise has a very
shallow penetration, and care must be taken in the numerical work to resolve
this thin layer properly. Solutions of equation (1) which use a fixed step
size in the n—direction will have a small value of Ax at early time, znd a
large one at late time. Clearly the solution is to avoid the problem by
??ﬁferencing in x, not 7.

Dunn et al. [S] proposed a simple-implicit algorithm given by

$(1.3+1)-6(4.9) _
Cis1-tj

S(i+1,3+1)-24(4, j+1)+4(i-1,3+1)
(ax)?

a(x;,t;) (19)

where ¢ is defined by the Kirchoff transformation (v. Carslaw and Jaeger 715})

by

¢ = J L dT (20,

k
Tref ref

This equation was solved on a grid of variable size: at every time step, the
boundary condition of zero temperature rise was enforced at a <dcepth
of 7Jareft. The heat transfer rate was found from a second-order accurate

expression for the derivative at the surface.

*The radial frequency w=2xf has been used here for convenience.
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gauges can be used for the measurement of periodic or statistically s:ationary
heat flux measurement.* The first of these is when the average heat flux is
identically zero, in which case the transient part of the solution given by
equation (15) dies off and only the periodic component remains. Then equation
(3) can be applied directly to the unsteady part of the temperature signal to
obtain spectra of the heat flux. This presumes, of course, that the lowest
frequencies of interest are above the low frequency cut-off described above
and that the thermal properties are nearly constant, The second situation
arises when the transient part of the temperature signal contributes only
below the cut-off frequency, so that the unsteady part of the sigznal is
uncontaminated by it. In this case, the average heat transfer czanot be
determined, but equation (3) can still be shown to be valid for the unsteady

heat flux determination.
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NOMENCIATURE

A, D.C. part of unsteady heat flux signal [W/m?]

A coefficient in Eq. (10) [W/m?]

B, coefficient in Eq. (10) [W/m?]

c thermal capacity [J/(kg K)]

C(u) Fresnel integral, see Eq. (13)

d N film thickness [m]

2 smallest lateral dimension of film, or depth of substrate [m]
k thermal conductivity {w/(m))

S(u) Fresnel integral, see Eq.(14)

T temperature of gauge [K]

T Fourier transform of T [K-s]

t time [sec]

X coordinate in substrate (Fig. 1) [m]

q heat flux [w/m2?]

q Fourier transform of q [W-s/m2?]

b3 frequency [Hz]

;i Fourier transform of input voltage [V-s]

;oi Fourier transform of ideal output voltage [V-s]
;o Fourier transform of real output voltage (V-s]

H;s.a1 frequency response function of ideal system

real frequency response function of real system

Hdep defined by Eq. (9)

a thermzl diffusivity of substrate [m%]

ag thermzl diffusivity of film [m?)

€ ratio of quantization step to peak-to-peak signal
A integrztion variable (time) [s)

P density of substrate [kg/m3]

v constant - 0.3989, dimensionless

A - P . I T - ™ e o
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8b Response of surface temperature to heat flux in Fig. 8a.
9 Computed response to Fresnel integral temperature

(fgfy = 30).
10 Computed response to Fresnel integral temperature

(£/£, = 15).

11 Computed response tc Fresnel integral temperature
(£ /f, = 7.3).

12 Computed response to Fresnel integral temperature
(fg/f, = 3.73).

13 Ratio of corputed rms output to rms of exact solution.

l4a Typiczl Fresnel integral temperature input with and
without 8 bic quantization.

14b Difference between exact and quantized Fresnel integral
temperatures in Figure l4a.

15a Sensitivity of Cook-Felderman algorithm to quantization
noise on input (f./f, = 30, ¢ = 0.12).
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Figure 1. Coordinate system for Equation 1.

ei (f) > Hidé?l >éoi (f)

Figure 2a. Schematic of ideal linear system.

t

{ i

t {

! !

' (f) - ‘ I -~

) : H1deal €oi (£) Hdep ) | €

I

! l

l I

e e e e e e e e e e e e e !

Hreal (£)

Figure 2b. Schematic of real linear system showing
departure from ideal.



2000.

1500. —

L

J |

F N S S 1 B I W SR N D G |

t * 1 = t A +
20. 40. 60. 80. 10
Frequency (kHz)

Gain characteristic for Q-meter (9).

L1

13 A b % 1.t 1

-
-
-
-y

c i
‘S 1000.—
O -
500.—
0.
0.
Figure 3a.
50.
) 0.—+
8 -
(@) -
Q
3 -
o —-50.—
o -
| =
(o] -
” o
m e
2 _100
£ -100.
~150.
0.

Figure 3b,

i - $ - i 4 i
20. 40. 60. 80. 100
Frequency (kHz)

Phase characteristic for Q-meter (9),



Gain

0.0 . t . t : t . t .
0. 20. 40. 60. 80. 10
Frequency (kHz)

Figure 4a. Gain characteristic for difference from ideal response.

200. v { ! $ . 4
w  100.-+ +
[*]
2 B -
(o] s =
LY
3 B -
@ 0.+ 4
c‘ - -
C
< - -
3] - -
B f ]
a —1 00."“" e
_200_ " 1 . t A + M + A
0. 20. 40. 60. 80. 10(

Frequency (kHz)

Figure 4b. Phase characteristic for difference from ideal response.



|

Q(o,t)/A,

T . ;

Response of Q-meter to input which woulcé ideally generate
a square wave output.

1 ——
0 n
! l
' I
i !
r I
' 1
'. l
I I
o ! | :
<= |
%) ]
- | "
c l 11y
= | E
| : |
i X 1
| A h \ N
1 1\ \ ;7
-1 - -t — ,I “ ot A ! \
At N AV ARY ‘l ~ \‘ ”
V7 v v 7 g \,
"’ ‘v’ ‘.” Vl ‘JI
0 fbt ’1
Figure 6.

Response of O-meter to input which jdez-1
P ! 1dea’ly gener
Pulse train output. g ates a



TEMPERATURE (°R)

590. | -1+ -

570.—5

550. ;:

530. :; T e e T L B S
6.0 16.0 26.0

TIME (milliseconds)

Figure 7. Typical surface temperature measured by -his film gauge
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Figure 1Sb. Sensitivity of Cook-Felderman algorithm to quantization
noise on input (fs/fo =15, € = 0.12).
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Figure 15c. Sensitivity of Cook-Felderman algorithm to quantization
noise on input (fS/f0 = 7.5, € = 0.12).
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Figure 15d. Sensitivity of Cook-Felderman algorithm to quzantization
noise on input (fs/fo = 3.75, € = 0.12).
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noise on input (fS/f0 =15, € = 0,12).
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noise on input (fs/f0 = 3.75, € = 0.12).



