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The history and theory supporting the idea of a universal log law for turbulent wall-
bounded flows are briefly reviewed. The original idea of justifying a log law from a
constant Reynolds stress layer argument is found to be deficient. By contrast, it is argued
that the logarithmic friction law and velocity profiles derived from matching inner and
outer profiles for a pipe or channel flow are well-founded and consistent with the data.
But for a boundary layer developing along a flat plate it is not, and in fact it is a power
law theory that seems logically consistent. Even so, there is evidence for at least an
empirical logarithmic fit to the boundary-friction data, which is indistinguishable from
the power law solution. The value of kz0.38 obtained from a logarithmic curve fit to the
boundary-layer velocity data, however, does not appear to be the same as for pipe flow
for which 0.43 appears to be the best estimate. Thus, the idea of a universal log law for
wall-bounded flows is not supported by either the theory or the data.
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1. Introduction

This paper examines the state of our knowledge about the log law in wall-bounded
turbulent flows, whether it exists at all, and whether it should be expected to be
universal. Several simple flows will be considered: turbulent pipe and channel flows,
and the turbulent boundary layer that develops along a flat plate with zero pressure
gradient and is two-dimensional in the mean. Attention will be focused entirely on
smooth walls for which surface imperfections have no measurable influence.

All of the flows we consider herein will be assumed to have undergone transition
and to be describable as fully developed. For pipe and channel flows, this means
that all the statistics have reached a state in which the only non-zero streamwise
derivative is the imposed mean pressure gradient, which itself is a constant. The
boundary layer never achieves this state and continues to evolve forever. Hence,
fully developed in this case means that whatever remains from the laminar to
turbulent transition at most affects that large scale structures in a way that is
replicated over and over. Note that this does not assume that developing turbulent
shear flows become asymptotically independent of their upstream conditions.
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The role of the Reynolds number is also different for the two types of flows. For
fully developed pipe and channel flows, the Reynolds numbers characterizing the
flow are fixed by the imposed conditions (e.g. streamwise pressure gradient,
channel height or pipe diameter, and the mass flow rate, only two of which can be
independent). This means that the relative effects of viscous to inertial terms are
independent of streamwise distance, and their relative balance can vary only
across the flow. By contrast, for the boundary layers, the local Reynolds
numbers, however defined, evolve continuously, increasing (for most) as the
boundary layers grow. Whether it is necessary to account theoretically for this
slow variation of the Reynolds numbers (together with the streamwise
inhomogeneity causing it) represents the fundamental point of disagreement
between the various approaches to turbulent boundary layers, and is at the heart
of most of the debate concerning the validity (or lack thereof) of the log law for
developing boundary-layer flows (cf. George & Castillo 1997; George 2006).
2. What is the ‘log law’ and why is it important?

The so-called ‘log law’ is widely believed to describe most (if not all) turbulent
wall-bounded flows, and lies at the core of the most widely used engineering
computational models involving turbulent flow near surfaces. While there are
several manifestations of the log law, the most important is the mean velocity
profile normalized in so-called ‘inner’ variables given by

UCZ
1

k
ln yCCBi; ð2:1Þ

where UCZU/u� and yCZyu�/n. U is the mean velocity, y is the distance from
the wall, n is the kinematic viscosity and u� is the friction velocity defined from
the wall skin friction, tw, as u

2
�Ztw=r where r is the fluid density.

The empirical constants in the log velocity profile, the so-called von Kármán
constant, k, and the additive constant, Bi, are believed by many to be universal
(see almost any text including a chapter on turbulence). Nonetheless, there
seems to be little consensus about what these universal values actually are. For
several decades following the work of Coles (1968) the value of k was assumed to
be approximately 0.41, but recent (and hotly disputed) estimates place it as low
as 0.38 (Nagib et al. 2004) and as high as 0.45 (Zagorala & Smits 1998). Some
even believe that k should be 1/e (e.g. Zanoun 2003), as much on the desire to
attribute to k some special status as on theoretical argument or hard empirical
evidence. There is even less consensus about the value of Bi. Traditional
estimates were between 4.9 and 5.1, but recent estimates cover a much wider
range from 4 to 10. Surprisingly, the lack of apparent universality of Bi seems to
be of far less concern than the precise value of k. As should be clear from equation
(2.1), however, a slight change in one parameter can cause a corresponding
change in the other, even for a given dataset.

The differences in k may appear slight, especially given the errors involved in
most turbulence measurements, but in fact they are quite important. The reason
for this is that most turbulence models used by the aircraft industry depend in
one form or another on the assumption that the flow very close to the wall can be
described by the logarithmic velocity profile of equation (2.1). In fact, according
to Spalart (2006), a 2% decrease in k makes a 1% decrease in the overall drag
Phil. Trans. R. Soc. A (2007)
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estimate for a modern aircraft (like the Boeing 787 or the Airbus 350).
Obviously, an aircraft company would prefer the lower value in marketing a
plane that has not yet been built, since the fuel economy would appear to be
much better than a competitor’s estimate using a higher value. But this could be
a great risk, since eventually the plane has to fly and the real drag will eventually
be determined. It is perhaps only coincidence that there are many planes parked
in the desert which could not make their design range.

The reason for the sensitivity of the overall drag to the value of k can be most
easily seen from the logarithmic friction law, which for a turbulent boundary
layer is usually expressed as

c f Z 2
1

k
ln Rq CC

� �K1

Z
2k2

½ln Rq CkC �2
: ð2:2Þ

The skin-friction coefficient, c f, is defined using the wall shear stress, tw, and the
free stream velocity (measured relative to the surface), U0, as

c f Z
tw

½ð1=2ÞrU 2
0 �
: ð2:3Þ

RqZU0q=n is the Reynolds number based on the local momentum thickness
defined by

qZ

ðN
0
ðU=U0Þ½1KðU=U0Þ�dy; ð2:4Þ

where y is the direction normal to the surface (so the integration is across the
boundary layer). The most recent estimates of Nagib et al. (2004) place the value
of C at about 4.1 if kZ0.38. In a typical aerodynamic boundary layer, Rq

increases along the surface, so the skin-friction drag can be obtained by
integrating c f along the surface. Equation (2.2) applies approximately from the
region at which the flow becomes turbulent, typically at values of Rq of a
thousand or less. Upstream, the boundary layer is either laminar or transitional,
both of which are important but of no concern in this paper.
3. Why is this so difficult?

Typical values of Rq for boundary-layer experiments in wind tunnels where the
near-wall region is resolved in the measurements have only recently achieved
20 000–30 000. These can be compared to the values in flight of several hundred
thousand or more. Values of c f in the laboratory are about 0.002 or greater, but
often much less in flight. Simply put, the streamwise extent of a fuselage and the
speed of the airplane lead to Reynolds numbers much larger than we can measure
in our laboratories, at least at the moment.

The reason that the large discrepancy between experiments and application
matters is that the dynamics of the boundary layer change rather dramatically
with increasing Reynolds number, at least until some threshold is surpassed. The
log region (by the conventional reasoning) can exist only as long as neither
viscosity nor mean convection (advection) play a significant role in its dynamics.
This means that we should at most expect the mean velocity to be approximately
logarithmic between about 30 viscous units and about 10% of the boundary-layer
thickness, the distance at which the mean velocity achieves 99% of its free stream
Phil. Trans. R. Soc. A (2007)
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value (i.e. 30!yC!0:1dC99). Therefore, d
CO300 (which corresponds to RqO1000

approximately) is needed to observe even the beginnings of a log layer, and a
factor of 10 higher is needed to observe a decade (in space) of logarithmic
behaviour. There are strong arguments from the dynamics of the turbulent
fluctuations (cf. George & Castillo 1997; Wosnik et al. 2000) that the true
‘inertial layer’ can actually exist only between approximately 300!yC!0:1dC99,
and the region between 30 and 300 approximately is a ‘mesolayer’ in which
viscosity affects all the turbulence scales of motion, even though it is negligible in
the mean momentum equation. This means that dCO3000 (corresponding to
RqO10 000) is a necessary condition for a true inertially dominated log layer to
even exist. And Rq must be much higher if a substantial region of logarithmic
behaviour is to be observed, hence our failure to make much sense out of the
experiments at lower Reynolds numbers.

So why have not we carried out experiments at Reynolds numbers more
representative of engineering needs? Most techniques for accurate measurement
of turbulence require incompressible flows at quite low speeds (typically
10–20 m sK1). The reasons have both to do with the problems presented by
compressibility effects on the measuring technique and the size of the smallest
probes we can build. For the latter, the scale of the disturbances being resolved
must be larger than the largest dimension of the probe or measuring volume. For
boundary layers, the smallest scale of interest is the viscous length-scale (or wall
length-scale) defined as hwZn/u�. Clearly, the larger the velocity, the smaller the
value of hw (assuming n to be constant). The smallest practical hot-wire probes
are typically 0.2 mm in diameter and larger than 0.5 mm in length, but they have
significant problems operating within a few tens of diameters from the surface
due to enhanced heat transfer to the surface. The resolution of modern optical
techniques is about the same, although micro-PIV (particle image velocimetry)
and micro-LDA have been able to measure to within 10 mm of the wall.

The largest boundary-layer facilities in the world at the moment with sufficient
flow quality for this type of research are at the Laboratoire Méchanique de Lille
(LML) in France and at the University of Melbourne in Australia. Both wind
tunnels have a test section approximately 20 m in length. This length allows the
boundary layer at 10 m sK1 to grow to approximately 0.3 m thickness, which in
turn allows the flow to be measured to within one viscous length from the wall,
yZn/u�Z10 mm. But even these extraordinary facilities can only accomplish this
at a value of RqZ20 000–30 000, meaning that less than half a decade of an
inertially dominated log layer should be expected. Most importantly, this is still
well below the Reynolds numbers at which airplanes must fly. Experiments
reported at higher Reynolds numbers obviously must settle for much less
resolution. As a consequence, we are left with the problem of whether the observed
Reynolds number dependencies are really from the flow, or from simply the
changing probe response as the flow around it changes with flow speed. The obvious
solution (especially since all other alternatives have been exhausted over the past
80 years) is to build much larger facilities in which high Reynolds numbers can be
achieved at low speed. Unfortunately, funding agencies (and especially industry)
have shown little interest. This may change with aerodynamic design improving to
the point where skin friction is more than 50% of the drag in flight, but most likely
it will take a colossal failure in drag prediction to get their attention.
Phil. Trans. R. Soc. A (2007)
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4. The pipe/channel flow alternative

Owing to the problems in obtaining boundary-layer data at high Reynolds
number, for most of the past century investigators have turned to turbulent pipe
and channel flows, arguing that the near-wall behaviour should be the same. The
argument goes like this: the region closest to the wall (say inside of 10% of the
channel height, pipe radius or boundary-layer thickness) is governed by pretty
much the same equations, at least if the Reynolds number is high enough, i.e.

0Z
v

vy
KhuviCn

vU

vy

� �
: ð4:1Þ

This can be integrated from the wall to obtain

KhuviCn
vU

vy
Z

tw

r
Z u2

�; ð4:2Þ

which explains why it is often referred to as the ‘constant (total) stress layer’. It
was these arguments which lead von Kármán (1930) and Prandtl (1932) to
postulate the log law to begin with using a simple eddy viscosity argument.
Simply model the Reynolds shear stress with an eddy viscosity, say KhuviZ
nevU=vyzu2

� (since the viscous term is negligible in the inertial region). Then on
dimensional grounds choose neZku�y, where k is a constant of proportionality.
Integration yields equation (2.1) immediately. Outside of yCZ30 (but within the
10% outside limit), the results looked pretty good, especially given the data at
the time. Hence, not only was the idea of the log law born, but it also came (on
the basis of quite limited evidence) to be considered ‘universal’. The subsequent
refinements by Isakson (1937), Millikan (1938), Clauser (1954) and Coles (1956)
were so strongly embraced by the community that they not only appear in
virtually all texts, but it is only in the past decade or so that serious challenges to
the arguments are even publishable.

Now, in fact the averaged equations for a turbulent boundary layer (including
pressure gradient) look like this

U
vU

vx
CV

vU

vy
ZK

1

r

vPN

vx
C

v

vy
KhuviCn

vU

vy

� �
; ð4:3Þ

where the y-momentum equation for the boundary layer has been integrated to
replace the local pressure by that imposed from outside the boundary layer, PN,
which is in turn assumed to be a function of the streamwise coordinate, x, only.
By contrast, fully developed turbulent channel flows are homogeneous in the
streamwise direction (only the pressure varies with x), so the convection terms
(left-hand side) are identically zero and the mean momentum equation reduces to

0ZK
1

r

dP

dx
C

d

dy
KhuviCn

dU

dy

� �
: ð4:4Þ

The cross-stream momentum equation can be used to argue that P is
independent of y, to at least second order in the turbulence intensity.

Clearly, equations (4.3) and (4.4) reduce to equation (4.1) only if the extra
terms in each vanish; i.e. the mean convection terms on the left-hand side of
equation (4.3) and the pressure gradient term in both. This is presumed to
Phil. Trans. R. Soc. A (2007)
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Figure 1. Plots of huviC and yC/RCK1 for DNS of channel flow, RCZ180, 550, 950 and 2000.
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happen at ‘sufficiently’ high Reynolds number. But there is a problem which is
seldom (if ever) addressed. It is obvious if equation (4.4) is integrated to obtain

u2
� Z KhuviCn

vU

vy

� �
K

y

r

dPN

dx
; ð4:5Þ

or in so-called inner variables, yCZyu�/n and UCZU/u�

1ZKhuviCCn
dUC

dyC
ClCyC; ð4:6Þ

where lC is a dimensionless pressure gradient defined as

lCZ
n

ru3
�

dPN

dx
: ð4:7Þ

For a channel flow, the force exerted on the overall flow due to the streamwise
pressure gradient is exactly balanced by the wall shear stress, so that

tw

r
Z u2

� ZK
R

r

dP

dx
; ð4:8Þ

where R is the half-height of the channel. Therefore, for a channel, lCZ1/RC,
where RCZu�R/n. Thus, equation (4.6) becomes simply

1ZKhuviCCn
dUC

dyC
C

yC

RC : ð4:9Þ

Since the viscous stress term is less than approximately 1% by yCZ30, this
means that Reynolds shear stress drops linearly by 10% over the region of
interest ( y/R%0.1), independent of the Reynolds number. Therefore, only in the
innermost part of the constant stress layer can the pressure gradient be assumed
negligible, and nowhere if the Reynolds number is not extremely high.
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The interplay of the Reynolds shear stress and the mean pressure gradient is
shown in figure 1 using the recent DNS channel flow data from Jimenez and his
co-workers (e.g. del Alamo et al. 2006). The values of RC are 180, 500, 950 and
2000. The linear drop of the total shear stress (viscous plus Reynolds) ensures that
there is no constant stress region, since its contribution is more than 1% of the
total beyond yCZ2, 5, 10 and 20, respectively. And, contrary to popular belief,
the situation will not improve with Reynolds number, since by yCZ0:1RC–0:2RC

(the approximate outer limit of the region of interest) the pressure gradient will
always have reduced the Reynolds shear stress by 10%. Figure 2 shows that there
is most certainly not a logarithmic region for these data. If the velocity profile were
really logarithmic, the quantity plotted, yCdUC/dyC, would be constant over
some region. Clearly it is not, at least for Reynolds number range of DNS data
currently available.

By contrast, the boundary layer at zero pressure gradient does not have this
pressure gradient problem, since the pressure gradient term is identically zero. If
the Reynolds number is high enough for the convection (advection) and viscous
terms to be negligible over some region (e.g. dC[300), it truly does have a
y-independent stress layer (even though it continues to vary slowly with x).
Therefore, it can (at least in principle) behave like the assumed model equations
(equation (4.1)), even if pipe or channel flow cannot. Boundary layerswith pressure
gradient, however, do not behave like either a zero-pressure-gradient boundary
layer or a channel (or pipe) flow, since over the range logarithmic behaviour is
expected, the role of the pressure gradient depends on the value of lC. Therefore,
the effect of the pressure gradient over the overlap region will in principle be
different for each imposed lC (with presumably different log parameters for each).

Thus, there is no reason a priori to believe boundary layers and pipes/channels to
have identical inertial layers (or evenmesolayers). Themost that can be expected is
that theymight be identical only for the part of the flowwhich satisfies yC/0.1RC
Phil. Trans. R. Soc. A (2007)
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or yC/0.1/lC. And for most boundary-layer experiments, this is a very small
region indeed. Therefore, while pipe/channel experiments (or DNS) may be of
considerable interest in their own right, they cannot be a substitute for high
Reynolds number boundary-layer experiments. This is especially true if the goal is
to evaluate log constants or substantiate the log theory to within 10% (since their
underlying equations differ over the overlap region by this amount).
5. Do pipe/channel flows have a logarithmic region anyway?

Now one might infer from the arguments above (and the DNS data) that pipe and
channel flows should not have log layers (at least from the perspective of the eddy
viscosity arguments), since there is really neither a constant Reynolds stress region
nor any regionwhere thepressure gradient canbe ignored.Weowe to Isakson (1937)
and Millikan (1938) the original arguments that the contrary is true. The basic
arguments have been presented in detail in many texts (e.g. Tennekes & Lumley
1972; Panton 1996; and in slightlymore general form inWosnik et al. 2000), andwill
onlybe summarizedhere.Wewill present them forpipeflowonly, since experiments
in pipes are much easier to realize at high Reynolds numbers than in channels, in
part due to the difficulty of maintaining a two-dimensional mean flow in the
latter. The superpipe data of Zagorala & Smits (1998), for example, go as high as
RCZ500 000.The basic theoretical arguments for channels, however, are the same.

The counterpart to equation (4.4) for fully developed flow in an axisymmetric
pipe with smooth walls is

0ZK
1

r

vP

vx
C

1

r

v

vr
r KhuviCn

vU

vr

� �
; ð5:1Þ

where r is measured from the pipe centreline andU, u and v are to be interpreted as
corresponding to the streamwise and radial velocity components, respectively.
SinceP is nearly independent of r, we canmultiply by r and integrate from the wall,
R, to the running coordinate, r, to obtain the counterpart to equation (4.5) as
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� Z
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KhuviCn

vU

vr
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r
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: ð5:2Þ

Integration all the way to the centreline (rZ0) yields the relation between the pipe
radius, the wall shear stress and the imposed pressure gradient as

u2
� ZK

R

2r

dP

dx
: ð5:3Þ

Thus, of the four parameters in the equation, R, n, (1/r)dP/dx and u2
�, only three

are independent. It follows immediately from dimensional analysis that the mean
velocity for the entire flow can be written in either of the two ways

U

u�
Z fiðrC;RCÞ; ð5:4Þ

and
UKUc

u�
Z foð�r;RCÞ; ð5:5Þ
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where Uc is the mean velocity at the centreline, RCZu�R=n is the ratio of outer to
inner (or viscous) length-scales, rCZru�/n is an inner normalization of r and
�rZr=R is an ‘outer’ normalization of r. Note that the velocity difference from the
centreline, or ‘velocity deficit’, is used in the last expression to avoid having to take
account of viscous effects as RC/N.

Figures 3 and 4 show some of the recent superpipe data of McKeon et al.
(2004b) plotted in inner and outer variables, respectively. (Note that the
conventional labels inner and outer may appear opposite to the what they should
be, since the outer is really the core region for the pipe and inner is a thin region
closest to the pipe walls.) Clearly, the inner-scaled profiles appear to collapse
near the wall, nearly collapse over a large intermediate range, and diverge when
(RKr)/RO0.1 or so. This means that the extent of the region of near-collapse in
inner variables increases indefinitely as the Reynolds number, RC, increases. One
might easily infer that in this region of near-collapse, the collapse will also
improve to some asymptotic limiting profile (in inner variables). Similarly, the
outer-scaled profiles appear to nearly collapse as long as RCKrCO300–500
approximately, and again one could infer that the region of collapse might
improve and continue all the way to the wall if the Reynolds number increased
without bound.

We can define hypothetical inner and outer limiting profiles as fiN(rC) and
foNð�rÞ, respectively, i.e.

limRC/NfiðrC;RCÞZ fiNðrCÞ; ð5:6Þ

limRC/Nfoð�r ;RCÞZ foNð�rÞ: ð5:7Þ
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For finite values of RC, both equations (5.6) and (5.7) describe functionally the
entire profile and RC acts as a parameter to distinguish the curves when they
diverge. To see how they differ, consider the limit as RC/N. Clearly, viscosity
has disappeared entirely from foNð�rÞ, so it can at most represent the mean
velocity profile away from the near-wall region where viscous effects are not
important. By contrast, fiN(rC) can only describe the very near-wall region,
since it has retained no information about R.

Now it is possible that the two limiting profiles, fiN and foN, do not link up,
i.e. neither describes the flow far enough towards the pipe centre in the first
case and towards the wall in the latter that they both describe a common
region. But suppose they do (Millikan’s great idea), so that both the inner and
the outer scalings have a common (or overlap) region. Or thought of another
way, can we ‘stretch’ the region over which the inner region collapses the
data so that it overlaps a similar stretch in the other direction of the outer
scaled version?

In fact, there are a variety of ways to show that the answer is yes. The
traditional way is to set the inner limit of fo equal to the outer limit of fi and ask
whether there can be a solution in the limit of infinite Reynolds number. Similar
results can be obtained by matching derivatives in the limit (cf. Tennekes &
Lumley 1972), or using matched asymptotic expansions (e.g. Panton 1996).
Alternatively, Wosnik et al. (2000) used the methodology of near-asymptotics
to seek not an overlap region, but instead a common region which survives
at finite Reynolds number as the limits are approached. Regardless, all of
the methodologies conclude that the mean velocity profile in the common
Phil. Trans. R. Soc. A (2007)
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(or overlap) region should be logarithmic and given by the following equations:

UKUc

u�
Z

1

k
lnð1K�r C �aÞCBo; ð5:8Þ

U

u�
Z

1

k
lnðRCKrCCaCÞCBi; ð5:9Þ

where aZa=R, aCZau�/n and a is a spatial offset which is a necessary
consequence of the need for invariance (cf. Wosnik et al. 2000; Oberlack 2001). In
addition, the friction and centreline velocities must be related by the following
relationship (or friction law):

Uc

u�
Z

1

k
ln RCCC ; ð5:10Þ

where
C ZBiKBo: ð5:11Þ

Thus, it is not enough to simply draw a logarithmic curve on a friction plot or an
inner velocity plot and conclude anything more than that an empirical fit is
possible. In fact, empirical log fits always seem to work, at least over some
limited range, for just about any curve. Therefore, it is only when fits to all the
three plots (friction, inner and outer mean velocity) can be linked together with
common parameters using equations (5.8)–(5.11) that it can truly be concluded
that pipe/channel flows are logarithmic and that theory and experiment agree.

The asymptotic theories conclude that k, Bi and Bo must be constant, but only
because the matching is done in the limit as RC/N. Near-asymptotics, by
contrast, tells how these limits are approached (inversely with powers of ln RC)
and also how the different parameters are linked together, i.e. they must either be
independent of RC or satisfy

ln RC d

d ln RC ð1=kÞZ d

d ln RC ðBiKBoÞ: ð5:12Þ

But regardless of whether k, Bi or Bo are constants (i.e. independent of Reynolds
number) or only asymptotically constant, only two of them can be chosen
independently.

So how well does this work? Quite well actually. Figure 5 shows data for Uc/u�
from the superpipe experiments of McKeon et al. (2004a), along with several
logarithmic fits to the data, both with average r.m.s. errors of about 0.2%. One
curve uses constant values of k and C, and another the variable Reynolds number
version proposed by Wosnik et al. (2000). The values of k and CZBiKBo were
0.427 and 7.19 for the constant parameter (Reynolds number independent)
analysis, while the limiting values for kN and CNZBiNKBoN for the Reynolds
number dependent analysis were 0.429 and 7.96, respectively. The reason for the
difference between the two values of C can be seen by examining the Reynolds
number dependence in the Wosnik et al. theory for which

Ci ZCiNC
ð1CaÞA
ðln RCÞa ; ð5:13Þ

1

k
Z

1

kN
K

aA

ðln RCÞ1Ca
: ð5:14Þ
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Substituting these into equation (5.10) yields the refined friction law as

Uc

u�
Z

1

kN
ln RCCCNC

A

ðln RCÞa : ð5:15Þ

All of the extra Reynolds number dependence is in the last term of equation
(5.15), and in fact it is this term which ‘adjusts’ the value from 7.96 to 7.19 over
the range of the experiments. For this dataset, the optimal values of a and A
were given by K0.932 and 0.145, respectively, so the variation in k over the
entire range of the data was only from 0.426 to 0.427. The corresponding
variation of the last term in the friction law, however, was from K0.690 to
K0.635, enough to account for the slight lack of collapse of the mean velocity
profiles in outer variables noted in figure 4.

Note that the constants determined by Wosnik et al. (2000) used an earlier
(and ‘uncorrected’) form of the superpipe data, which showed a slightly different
Reynolds number dependence. The differences are due to the static hole
corrections in the new dataset. Unlike the conclusions from earlier versions of the
superpipe data, there would appear to be little reason to consider the Reynolds
number dependent version superior.

Table 1 summarizes the parameters from individual fits to five of theMcKeon et al.
(2004a) profiles selected to cover the entire range of the data. The value of
kdetermined fromthe frictiondatawas takenasgiven, and thevalues ofBi andawere
determined from a regression fit of each inner profile between 50!(RKr)C!0.1RC.
The average r.m.s. errors are approximately 0.2% for all inner profiles. These same
values, together withCZBiKBo, were then used to determineBo, by optimizing the
fit to the same profile in outer variables over the same range. The values of k are
remarkably constant, as are those of Bi. There might be a slight Reynolds number
trend in the values of Bo. In view of the closest distance to the wall which can be
measured (relative to aC), the variation in aC is probably randompositioning errors.

If the Reynolds number dependence is truly negligible, then the inner and
outer mean velocity profiles should collapse when different Reynolds numbers
are plotted together as in figures 3 and 4. The collapse of the profiles in inner
Phil. Trans. R. Soc. A (2007)



Table 1. Parameters for fits of log law to inner and outer profiles of McKeon et al. (2004a) using
friction law values for Reynolds number dependent parameters.

ReD!10K5 0.743 1.44 4.11 13.5 44.6
RC!10K3 1.82 3.32 8.51 25.2 76.4
k 0.426 0.426 0.427 0.427 0.427
Bi 5.62 5.50 5.64 5.87 5.85
Bo K1.65 1.77 K1.65 K1.43 K1.46
aC K1.33 K1.34 K5.10 K11.9 K1.5
% errin 0.169 0.269 0.427 3.26!10K04 0.188
% errout 0.657 1.13 1.71 1.37 1.55
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variables is excellent, consistent with the observations that k is nearly constant,
and Bi and aC are nearly so. The outer variable plot does not collapse quite so
well, especially over the range for which the profiles are logarithmic. This lends
support for the variable Reynolds number approach, which shows that the only
significantly Reynolds number dependent parameter is Bo. This has implications
for the asymptotic friction law, however, since the asymptotic values of CZBiKBo

are different, 7.19 versus 7.96.
So where does this leave us? These experiments (and most other pipe

experiments as well) show an almost perfect agreement with the theoretical
predictions, both the asymptotic and the near-asymptotic versions. Not only
does there appear to be a region of logarithmic behaviour in the mean velocity
profiles where we expected to find it (30–50!yC!0.1–0.2RC), the parameters
determined from fits to these and the logarithmic friction law satisfy the
constraints among them. This is about the strongest experimental confirmation
for a theory that can possibly be imagined.

So the analysis presented here (of part of the most recent version of the
superpipe experiments) suggests strongly that the value of k is approximately 0.43,
a bit lower than the value of 0.44–0.45 suggested from the earlier uncorrected data
and slightly higher than the estimate ofMcKeon et al. (2004a) of 0.42 using a larger
set of the same data used herein. But all are higher than the earlier accepted value
of 0.41, however, and most certainly not lower. The asymptotic value of the
additive constant for the outer velocity profile (and friction law) can still be
debated, but this debate in no way detracts from the overall conclusion. In spite of
the absence of a constant total stress region (and hence the lack of validity of the
early arguments for it), the logarithmic theory for a pipe flow can be taken as fact.
One can infer this is probably also true for the channel, once data at sufficiently
high Reynolds number becomes available to test it.
6. Boundary layers

As noted in the introduction, the differences in skin-friction drag on a modern
plane resulting from kZ0.38 and 0.43 are economically quite important. Since
the assumption has been challenged that the near-wall regions of boundary layers
and pipes were equivalent (as least as far as the logarithmic drag and velocity
profiles were concerned), it is quite important to establish exactly how boundary
layers do behave. Boundary-layer developments over the past decade have been
Phil. Trans. R. Soc. A (2007)
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discussed in detail in a recent paper (George 2006) from the perspective of the
ideas presented here, so the very brief summary below will not suffice for a
careful reading of that paper. The primary concerns are twofold: first, the
apparent lack of a consistent theory for the log law in boundary layers and
second, the validity of the experiments. Both these are discussed below.

First, there is good reason to believe that the underlying log theory used above
so convincingly for pipe/channel flow does not apply to boundary layers. The
theory for pipe and channel flows depends crucially on the existence of the
Reynolds number independent limits of the scaled profiles, equations (5.6) and
(5.7). If the inner and outer profiles both do not scale with u�, then there is no
possibility of a logarithmic profile in the overlap region. Since the boundary layer
is not homogeneous in the streamwise direction, there is no theoretical argument
that can be used to justify an outer deficit law for boundary layers using u� (as
described in detail in George & Castillo 1997 and George 2006). In particular,
substitution of equation (5.7) into the mean momentum equation (equation
(4.3)) requires ignoring terms of the order u�/UN, while making inferences about
skin friction which is of the order u2

�=U
2
N. Thus, in the absence of supporting

theory, any further inferences based on this deficit scaling are at most built on a
foundation of empiricism, no matter how good the empirical collapse over some
range of the data.

In spite of the theoretical objections, there is still evidence that a log friction
law with kZ0.38 is an accurate description of at least the friction law for the
boundary layer (e.g. Österlund 2000; Nagib et al. 2004), and perhaps even the
velocity profiles. In an effort to resolve the apparent paradox, George (2006)
suggested these might represent the leading terms in a logarithmic expansion of
the power law solutions, and showed that a value near 0.38 was consistent with
the power law coefficients. In fact, the dependence of the skin friction (or
equivalently, u�/UN) on Reynolds number (or dC) that results from a power law
theory (which is theoretically defensible from first principles, George & Castillo
1997) is virtually indistinguishable from the log law fits to the same power law
theoretical curves.

Whatever the reason for the apparent success of the log law in zero-pressure-
gradient boundary layers, in the absence of a consistent log theory for the
boundary layer (or any developing wall-bounded flow), there is no reason to
believe that logarithmic friction and velocity laws for boundary layers should be
linked to those for pipes and channels, no matter how good the empirical curve
fits. The consequences of this are quite important, since it means that boundary
layers could be quite well described by logarithms with kZ0.38, independent of
all other considerations.

Second, there are reasons to believe that there are significant problems with at
least some of the boundary-layer mean velocity measurements that have been
used to argue for the log law with kZ0.38. George (2006) pointed out that the
recent results from Nagib et al. (2004) are not consistent with the momentum
integral, differing by as much as 30–40%. Thus, either the flow is not a two-
dimensional incompressible smooth wall turbulent boundary layer, or the skin-
friction and/or velocity measurements are in error.

George (2006) also considered in detail the other extensive and relatively
recent set of mean velocity measurements by Österlund (2000). Contrary to the
claims made by Österlund et al. (2000), these data were shown to be equally
Phil. Trans. R. Soc. A (2007)
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consistent with either log or power law curve fits, and in fact the curve fits were
indistinguishable. It was also pointed out that in the absence of Reynolds stress
measurements, there was no way to confirm that any of the measured profiles
were consistent with the mean equations of motion. This was of considerable
concern, since unlike earlier boundary data (e.g. Smith & Walker 1959), the
Österlund data showed virtually no Reynolds number dependence in the overlap
region, but did in the outer region of the flow (where one would least expect to
find it).

The aforementioned concern about the Österlund experiment was consider-
ably heightened by recent results from ongoing experiments at the Lille
boundary-layer facility (mentioned above) by M. Stanislas et al. (2006, personal
communication; see Carlier & Stanislas 2004), which became available to me in
the course of preparing this paper. Their mean velocity profile obtained at
RqZ21 000 is plotted in figure 6 along with the corresponding profile from
Österlund (2000). The friction coefficients for the two experiments were almost
exactly the same (meaning the normalized shear stresses were in agreement), as
is evident from the near overlay of the curves at the largest distances from the
wall (effectively UN/u�). This is encouraging, since the Österlund shear stress
was estimated using an oil film method and the Lille result obtained by micro-
PIV. Incidentally, the latter value differs by approximately 3.5% from the shear
stress estimated using the Clauser chart on the Lille data, a substantial difference
in view of the questions being asked.

By contrast to the data at large distances from the wall, the mean velocity
profiles near the wall (inside 0.15d99 or y

C!1200) differ substantially until they
come together again inside yCZ10. Figure 7 shows a linear–linear plot of both
sets of data showing only the region from 100!yC!1100. The two profiles
appear virtually identical over this range, but shifted in both velocity and
position. This is difficult to understand. Both sets of measurements were
obtained using hot-wire anemometry, so there is no obvious reason for the
Phil. Trans. R. Soc. A (2007)



100

300

500

700

900

1100

0 5 10 15 20 25 30 35
U+

y+

Österlund, Rq = 20562
Stanislas et al., Rq =21000

Figure 7. Expanded linear–linear plot of data in figure 6 from 100!yC!1100.

W. K. George804
difference. The Lille profiles, however, were confirmed by more sparsely spaced
PIV measurements. Moreover, the Lille profiles are consistent with the measured
Reynolds stress profiles (from PIV) and the differential equations of motion.

Both the log profile and the power law profile, UCZCiðyCCaCÞg, can be
optimized to fit the Lille velocity profiles to within 0.2% for 50!yC!0.1dC. This
was no surprise, since, as pointed out by George (2006), the functional forms are
indistinguishable, at least over the range of data available. The results for g,Co,Ci

and aC were 0.119, 0.97, 9.87 and K8.3, respectively, different from the earlier
estimates of George & Castillo (1997) as expected since the data were different
from those previously considered. The values for the logarithmic fit, on the other
hand, were quite surprising given the difference in the measured profiles, since the
optimal values were 0.384, 4.86,K2.03 and 4 for k, Bi, Bo and aC, respectively. By
comparison, the log values for the Österlund profile were kZ0.384, BiZ4.16
and aCZ0.

In other words, the values of k from the log curve fits to the Stanislas et al. and
Österlund experiments were identical, even though the profiles and other
constants differed substantially. Thus, in spite of the differences and short-
comings of the various experiments (which remain to be explained and
reconciled), there would appear to be increasing evidence for kZ0.38 (or even
0.384) for boundary layers.
7. Summary and conclusions

Therefore, in summary, there is no justification, theoretical or experimental, for a
universal log law for all wall-bounded flows, no matter how aesthetically
appealing or potentially useful an idea. At very least, boundary layers and
pipe/channel flows are fundamentally different. Or viewed another way, the log
law represents the inertial region of pipes, channels and boundary layers to about
Phil. Trans. R. Soc. A (2007)
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the same degree that their underlying equations have the same terms, which is to
within approximately 10%. Thus, the historical value of kZ0.41 is probably best
seen as a compromise for different flows, accurate to within these limits.

The log theory does apply quite rigorously to pipe flows with kZ0.43
and perhaps to other wall-bounded flows homogeneous in horizontal planes
(e.g. channels, Couette flow, the neutral planetary boundary layer, etc.). But it is
a power law theory for the boundary layer that can be derived from first
principles using equilibrium similarity analysis and near-asymptotics. This
theory predicts (without additional assumptions) a number of things that have
also been observed, but which require additional hypotheses with a log theory.
Among them are differing outer scales for the normal and shear stress
components (U 2

o and u2
�, respectively), the consequent dependence of the

turbulence properties of boundary layers in the overlap region on mixed scales
and the dependence of pressure fluctuations on the ratio Uo/u�. Moreover, the
same principles can be used to predict different results for different flows
(like wall jets and boundary layers with pressure gradient), again as observed.

Nonetheless, theoretical arguments notwithstanding, the log ‘law’ also appears
to apply to developing boundary layers. If not the leading term in a logarithmic
expansion of the power law solution, it is at least a local and empirical
description. And to the degree that developing boundary layers can be described
this way, the value of k for them is approximately 0.38.
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