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ABSTRACT

A similarity theory is presented for the fully
developed turbulent boundary layer next to verti-
cal surfaces where heat transfer effects are impor-
tant. The theory is applicable over the entire
domain from pure forced to pure natural convection.
Particular limiting cases considered are: (i)

pure forced convection, (ii) mixed but primarily
forced convection and (iii) pure matural couvec-
tion. :

The unifying characteristic of these flows is
seen to be the existence of a constant heat flux
layer near the wall. 1In the absence of externally
imposed pressure gradieats other than the hydro-
static gradieats, the inner part of the flow is
shotm to be completely characterized by afu,,

the conduction length scale, v/ug, the viscous
length scale, k, a roughness height and a "Monin-
Obukov type" length scale L, defined by L, =
“2/38Fo where u, is the friCtion velocity, g8 is
the buoyancy parameter, and F_ is the wall heat
flux, qy, divided by the therfal capacity per
unit volume, pCp.

For distances from the wall such that yu, /o,

yu,/v, and y/k are sufficiently greater than unity,
the mean velocity and temperature excess (from
infinity) are given by '

u
dy *
—_—m —— f L
y l(Y/ l)

dy
and

dt _ *
&y "3 gl(y/Ll)

where T, = Fo/u*, and fl, g,
In the limit of forced comvection or for adiabatic
surfaces where g8F ~ 0, L, - =, y/L - 0, the
functions £y and Z2; can be’expanded dbout zero to
yield log-linear profiles for the velocity and
temperature. In the limit of pure natural convec-~
tion where y/L, - @, it can be shown that fl ~
(y/Ll)l/3 and g, " (y/Ll)'l/J‘ ..

An attempt is made to evaluate the universal
constants from the available data. Finally, the
significance of these results to experimenters and
numerical modelers is assessed.

are universal functions.

NOMENCLATURE

Ces T Prandtl number dependent coefficient
(eq. 13) for smooth walls

= defined by eq. (14)

C = specific heat at constant pressure

F = defined by eq. (6)

g = gravitational acceleration

£

= dimensionless velocity gradieant in boundary
layer

f = universal velocity gradient in inter-
mediate layer

f = universal velocity gradient in free
convection limit

g = dimensionless temperature gradient in
boundary layer

g = universal velocity temperature gradient
in intermediate layer

g2 = universal temperature gradient in free
convection limit

= roughness height

= convection length scale defined by eq. (9)
wall heat flux

= local mean temperature

= fluctuating temperatura
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= temperature at infinite distance from the
wall

temperature scale defined by eq. (12)

L}
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mean velocity components

<«
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= flyctuating velocity components
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= velocity at infinite distance from the wall

8

friction velocity definad by eq. (3)
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= coordinate measured zlong wald
coordinate measurad perpendicular to wall

= thermal diffusivity
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= coefficient of thermal expansiocn

o
]

outer lenzth scale similar to boundary
layer thickness

r»
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local wean temperature minus T,



AT = difference between temperature at wall and
w .. h
at infinite distance from the wall

Ny = viscous length scale defined by eq. (7)
g = thermal length scale defined by eq. (8)

v = kinematic viscosity

o] =.density

Tw = wall shear stress

z = dimaasionless coordinate g = y/Ll
INTRODUCTION

The problem of the turbulent coavection of heat
from vertical surfaces isone of the important prob-
lems of heat transfer because of its widespread
occurrence, both in engineering practice and in
nature. Turbulent convection can be loosely grouped
into three groups: natural, mixed, and forced. .
Natural convection is entirely driven by the buoyancy
arising from differeatially heated parcels of fluid
while forced convection is entirely driven by an
imposed flow. In mixed convection, both-a forcing
flow and the buoyancy of the fluid are important.

In spite of the importance and general nature of
the problem of turbulent mixed convection next to
vertical surfaces, there has been little progress
toward understanding the dynamics of these flaws.,
Progress has been made, however, in understanding
the problems of pure forced coavection {c.f. Monin
and Yaglom (1)) and pure natural convectlon next
to vertical surfaces (George and Capp 2.

The problem of forced couvection next to smooth

and rough surfaces has been the subject of numerous
theoretical and experimental imvestigations. These
have been discussed in detail by Monin and Yaglom
(1). By hypothesis, the buoyancy has no influence
on the dynamics of the motion. As a Reynolds number
and a Peclet number characteristic of the turbulencea
become very large, it is easy to show that the
equations of motion become independent of the viscous
acd conduction terms over most of the flow. The
no-slip and thermal boundary conditicas at the
wall, however, can be met only if there is a region
of the flow near the wall in which these terms are
retained. These considerations lead immediately

to a picture cof a turbulent boundary f£low ia wihich
two primary regions are recognized: an outer region
-in which the mean convection of mgomentum and heat

is balaaced only by the turbulent Reynolds stress
and turbulent hzat flux respectively; and, an inner
layer in wnich mean convection terms are negligiole

and CDnduCtlv‘ tar=s. OF partlcular i:por:ance to
theoreticians and experimentalists alika 1s the

existence of the inertial or logarithamic sublayer
which joins these regions at high Reynolds nuszbers.

It is the purpose of this paper to present a unified
similarity analysis for turbulent convectloa next

to vertical surfaces which encompassas the eatire
range of conditions from the pure natural convection
boundary layer (no forcing free streanm velocity)

to the pure forced convection boundary layzr (no

buoyancy). The important problem of a natural
convection flow next to an adiabatic wall will
also be seen to be a special case of the general
formulation. Particular attention will be paid
to the region of the boundary layer at distances
sufficiently far from the wall for the mean
equations to be uninfluenced directly by vis-
cosity, thermal diffusivity, or roughnass but close
enough to the wall to bz independent of mean
convection or mean iunertia effects. This region
corresponds to the logarithmic or imertial sub-
layer in forced flows and the buoyant sublayer

in natural convection flow and will be referred to
hereafter as the intermediate layer.
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EQUATIONS . OF MOTION

We restrict ourselves to a two-dimensional mean
motion and choose the upward vertical direction to
correspond to the x—~axis and the distance from the
plate to correspond to the y-axis (see Fig. 1).

We define the pressure P to be the difference be-
tween the local static pressure and the hydrostatic
Pressure and assume that 3P/8x is identically zero
at large distance from the plate'. We assume that
a velocity U_ 1s imposed at large distance from the
plate and that either a heat flux, q, or a tempera-
ture difference (from free stream), AT , is imposed
at the wall. _We further assume that the spatial
variation of U and or AT is sufficiently small
that the turbulent £189w is 17 local equilibrium;
that 1s, all profiles will be functions only of
local parameters.

It is straightforward to show by simple scaling
arguments that as turbuleat Reyrvolds and Peclet
numbers become laxgs, the equations of motion

for the main part of the turbulent boundary layer
to within the Boussinesq approximation are given
by (c.f. references (1) and (2))

aﬁ -3 _ 3 ,—
U+ v 3y " 3y (-uv) + {gB(T-T )} (@)
3T - 3T . .
U + v '5-')‘; = "'— (—vt) )

The pressure has been eliminated using the y-
momentum equation and the incompressibla continuity
equation has not been written. The buoyancy

term has beea enclosad in brackets since it will

be absent for forced convection.

Since these equations obviocusly cannot be used
near the wall because the viscous and conduction
terms are missing, it is necessary to seek an
alternate set of equatioas for the near wall
region. It is easy to show that the appropriate
set is (c.f. references (1) and (2)).

0 -2 [TV v E) o+ (ga(T-T) ) (3)
dy 3y

N ().
dy T 9y

¥This restriction can be reiaxed‘at some increase
in complexity.



As before, we have included the buoyancy term in

brackets.

'z can now use this ianer set of eguatioas to dis-
zuish the Eundamental diffecences betwzen forzed
ws and those in which buoyancy plays a role.
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wiare ru/p is the wall shear stress and u, is de-
fined by the equaticn. Similarly, equation (3)
can be integrated to yield

— 3T L
- d o o 2R e e D e
ve + o 3y oC Fo (6)

wnare q, is the wall heat flux, C_ is the spacific
neat at coastant pressure, and Fo is defined by
the equation.

It is clear that all vertical flat plata flows are
characterized by a layer next to the wall in which
the total haat flux away from the wall (furbulent
transport and conductlon) is constant. Thus F, must
be considerad z fundamantal parameter of the motion
since it represents the hzat providad to both the
inner layer and the main part of the boundary layer.

Unlike the temperature equation, the inner momentum
equation is directly dependent on the dagree to
wnich buoyancy is important. We can best understaad
the nature of this equation if we first exazine the
forced coanvection lizmit where the buoyancy term

is completely abseat. It is clear that in this

case the inner layar is also a coastaat stress
layer; that is, the total stress (turbuleat and
viscous) is unchangad across the layer. Because

of this, the wall shear stress, Tw/p, or the fric-
tion velocity, uz, is a measure of the degrze to
which the inner layer is forced by the outer layer
and the flow exteranal to the boundary layer. Thus,
in the case of forced f£low, ux measuras both an
input to the inner layer from ths outer layer and

a2 boundary conditien on the outer layer, Therefore,
ug, or i, must be coasidered an inda2pendecnt parameter.

w

The mom2ntuxm equation for pure natural coavection
can be concrasted with that discussed abova. Since
thare is no external forcing of the imner layer and
since all motion is uniquely determined by the heat
flux at the wall, the wall sh2avr stress is depen-
daat only on parameters specified in the ianer layer;
nazely, g3, F,, 7 and a. Since u, coataics no

new information, ik is entirely a depend2nt pava-
peter and its inclusion in a dimensional analysis
wculd be redgﬂd 2z, Tnis fact is the fundaceatal
differesace batw thz analysis of forced aad
aztural convect‘ undary layers.

The temparaturz s=7uation also proxx“" an interesring
contrast betwzzn forced and natural cenvaciion.

For natural coavection w2 have already se2n that
inner layer is uniquely determinad when g3, FQ:

2 and v are spacified. For forced convection,
howaver, we have the parama2tec uy instead of g2.

In addition, we note that ths temparature 1as no
direct effact on the mom2ntuz equation. harefore,

-
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w2 can expact the mozentuz fizld in the innar layer

to be entirely specified by uiz and v while F o and
: must be added only feo sp2cify the tecjparature
field. In a samse, this is the ravarsz of the
ratural convaction case whars the haac flux
determinad both zguations; hare, ux enters both
equations. Clearly, th: differeacas are entirely
due to which parzzeter m=asuras the fercing of

the flow.

UNIVERSAL VELOCLIY AND TEMPERATURE PROFILES FOR

MIXED CONVECTION

For mixad coavection it is cleav that there are
two “sources" of motiecan. In additiom to that
motion resulting froz buoyancy there is also

an "input" from the outer flow. The parameter

F is still characteristic of the innar layer
becausa of the fact that the haat flux is coastant
across it. The wall shear stress, oo the othar
head, is a parametar whnich includes bota the
effect of the outer flow and the bLoyaDcy
while not ao ideal paraae;er bacausa of this
mixed origin, it is ths on;y one available which
accounts for the forcianz of the outer flow,

Thus,

1f we hypothasize that the valocity aol tempera-
ture profiles at aoy ziven cross-sactico of the
boundary layer dapend oaly on local par=me:ers

the Functional form of those pcofiles dapends only
on the follawing lisz: g3, F , Uz, 5, 2, v, k
and y, where § is ac outer lenet& scals (e.g.,

the boundary layer thickness) azd k is a roughness
height (c.f. Schlicting (3)). From this list

five independant dimensicanless pavameters can

be formed; we chose

Y/Ll, nv/Ll, 6/nv, nT/Ll’ k/le
where
n, = viu,, 160
ip ® o/ ®)
and

- .3 9
Ll = u*/gaFo 9)

The length scales i, and r. are the faziliar
viscous and conducticzn scaies and L, is siamilar
to the Monia-Obukov langth introducad ia the
atmospheric surface layer analysis (c.£. Monin
and Yaglom (1), Chapzar 7).
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I* =z Fo.,u* (12)

TnZ CONYVECTION LEMNITH SCALE L

s

It is appropriate before proceeding further to
explore the nature of the langth scale L1‘ For
reasons which will be clear later, we dub this the
ccrnvaction leagth scale.

We adopt the following sign conventions: Ly > 0
whan buoyancy acts ia the same direction as tha
forcing flow and Ly < 0 when the buoyancy and
the forcing flow oppase each other. TFor example,
Ly > 0 when U, i{s upward and heat is being addad
to the fluid. Thus, y/L; can take all values io
the iaterval (—=,») depending on tha2 sign of the
hest f£lux for a given direction of the forcing
flow, .

By obsarving the consaquences of letting g3 F, - Q
it is clear that the ratio y/L, i3 2 measure o:
the ralative importance of bucyancv and extarnal
forcipgll Thus y/L; - 0 corrsspoands to ux >>
(g*”oy) . This limit could be interpretad as
the pura convectiom limit although it could also

be achieved for a buoyaat flow next to ar adiabatic

wall.

George and Capp (_) have shown that for naCu:al
convaction on smooth walls

2
uy = co - (gBFQa)llz (13)
where c__ is Prand:tl number dependent, while for
rough walls

2 - 1 2/3
L#:— Cep (g8F k) Qs

whare ¢, despends oa the roughness H-number, gs. /
al, and Sramdcl nuzbar. As anticipatad,

u, is no longer aa independent paraseter. Sub-
stitution of these values into the dafinition of
Ll yields for pura matural convaciion

3/2

a .
L; = ¢ (gBFo) C¢s M as)
or
- 3/2
L, = cg, -k s)

Taus y/Ll = y/ns-or v/k, whichevar is appropriace.
If we r2strict our attantion Lo regzions

fer whish y >> ng, k then the natural convection

of the flow

"linit is s2en ta correspend to y/Ll -+ =,
VELOCLTY AND TIVFIRATURI PROFILIS IXN AN INTERMEDIATE
LAYER

We now confine our attention to what we shall call
the intermediate layer; namely, 2z region of the
flow sufilciently removad from the wall to be
ouzside the direct iafluence of tha wall para

rr
m
lu

k, +, a and ver close enough to ths
indapzadant of th2 cuter scales. Thu

3 wa ara
talking abour a region in which Ay, nI, K <<y << @
It fellows imnadisztaly from ocur previous arguzaals
that tha velac ;:\ acd terperature gradieass can

Thus, w2 must

dep2ad only on g3 Fo, ugp and y.

have ,defining 3 = ’/Ll’

LS

dy (17)

— T — f '_,
dy vy (
and
T
daT * -
dy " gl(c) (18)

These represaat universal velocity and tamperatura
gradient profiles in aa intermadiate layer. The
only restrictioas aze that appropriataly definad
turbulant Reynolds and Peclet numbers must be
sufficiently high aad there be no imposad pressure
gradieat.

In the precading section wa saw that as g =
y/Ly ~ 0, we could approach the forced convaction
limit. If we assune tha functiocas £, and g, to be
well-behaved iu thisz limit, we can w&ice a &aylor
expansion for theam aboul tba poin. 3 =0 in the
following wanzar

2

- - 1
= 7 o T —r " v ae
fl(C) fl§0) + 3 tl(o) +3 fl(o) + (19)
@ 2g,@ +c-gl@ + 2% M0 + ... @0
g1 & 81 2" B A
whare primes denote diffeventiation. Substituting

these into equatioas (L7) and (18) we obtain

-~ u
Lo 2 5@ + 5 - @ + 37 £ )
(21)
T
ar T DN B 2
& "7 {5, @) + ¢ - g](Q) + 353" gJ(0) + ...}
(22)

Equatioas (21) and (22) cax be readily intagrated
to yileld

— . 2
g— = {%-lny + const; +«f5(0) . %—-+ fg(O) . _x_i +
* 1 4L,
{23)
AI., ,l_ oyl 3 . z__+ "oy -
T, {Ka: iny + ceasc} + go(0) i gs( ) |
2
b SENS (24)
4.2
1
where we have defined
1 ' 25
£, = 2 (25)
cand
- (26)

gl(o) = ==



ne terms in brackets in the praceding expressions
e readily recognized as the logarithmic profiles

{ the forced coavection solution, and the constants
end = are the wall known von Rarﬂ_n constant

and turbuleat Prandtl number respactively (c.E.
Monin and Yaglom (1l)). It is clear that as y/Ll -0,
tnz higher order terms vanish and the velocity and
tzmperature profiles reduce ro tha pure forcad
convection solutions.

AO QM

 IZ we include only the terms of corder ¥y/Ly, the
profiles are log-linear. The existance of this

trpe of profile has long beaen known for the
atmospheric boundary layer and similar flows where
the diraction of the gravitational force is per-
pendicular to the mean motioca (c.f. Monin and
Yaglom). This is believed to be the first time
that this type of profile has been suzgested for
wixed coavection f£lows next to vertical surfaces.

From section (2) we recall that for the pura patural
convection limit, we must eliminate uy froz consider-
ation in a dimensional analysis since it is not

an independant paramater. Accordingly, appropriate
forms for the velocity aad tewperature gradieats

in the intarmadiate layer near tha pure natural

convection limit are

dar (gﬂ?o)1/3

iy £, @7
7

and

d.T FOZ/B

TR w T Z 28)

dy NVERTERR A ¢

In the natural coavacrion limit, we saw earlier
that Ly was proportiocnal to np or k whichever is
appropriata., Since we have already assumad

y »> ng, N, or k it follows that £, and g; must
approach comstaat values, say c; and ¢ res-
pectively.

It is easy to show that we can also express this
lizmic using the Formulation of equations (17)

and (13). We find

lia fl(c) =c g 1/3
y/L, »= 29
an

-1/3

Ha g () =c, ¢ ¥
y/L -t 4 (30)
EVALUATION OF CONSTANTS F20M THE EZXPEIIMENTAL DATA
Qur ability to evalua tions
(23) thrcugh (33} £ lmosc
coxplece lack oI exparim
turbulent miwxed zconvectieon bcu_i z2yars There-
fore, we shall have to ba coatent to evaluating

£

tnes2 which have bean established for forcad and
natural convection and leaving for sudsequent
e;perimenters the complaticn of this work.

¥or forced coavectioa it is wzll-known (c.f.
¥33in and Yaglonm (1) that the velocity and tem-
garature profiles in tha isertial sudlayar (ch=
intermediate layer) can de writ:zen for smocth
w2lls as
N (31)
TmEdn (y/n ) + B
’_.‘.i < Vv .

'\
.1 ¢ 7 (32)
== — la (5/n ) + A(P2) 2
I, <=

(8]

< is refarred to as the voz Karman cocastant and X,

is a type of turbulent Prandtl numbar., < is

very close to 0.4 and 1 is generally agrezd to

be about unity. Tae comstant B is indapeadant of
Prandtl number and is usually taken to be about 5.
A(Pr) has been calculated from assuzed turbulence

=cdels; thase ars reviewed in refzrance (1),

Section 5.7.

For rough walls the velocity and tamparziure pro-

files can b2 writtea as

= u*k

Lalingm +a 9 (33)
U <

and

. u,k
Eolingm+s, oo, ) (35)

The constants « and 2y are unchanged but the
functions A; aud B; depend uot oaly on the roughness
height, k, but also on the type of roughaess.

George and Capp (2) have showa for natyral convec-
tion next to smooth surfaces that the velocity aad
tecperacure profilas in the buoyant sublayer (the

intermediate layer) are given by

T v 1/3 .
Gy Ve m G s (35)
and
M:Q Y 4-1/3 4 B (er) (36)
¢ 374 ‘z(r.F 2CBr
o

The constants K; and K, ware evaluatad as 27 and
5.6 respactively. Not enough informatiocn was avail-.
able to evaluate A;(Pr) and B9 (Pr).

For natural convecticn next to rough surfaces the

velocity and temperatura profiles in tha buoyant
sublaver ware given by
T . .
il Gt + 8, @], o) 37
~2F 1/3
G:F K)
and
-, .~1/3
LI(g3) e wy~1/3 Koo, 38
S T K O T Ay G, ) (38)



whzre 4

% iT W
Heo= = (33}
is a moll oughress H-numbar. Althouzh oo
erparizan at is vallable, the valuas of Ky and
Ky should 5e tn2 same as fcr the smocth wall.
Froxz che iaformatiou and results listad abova, it
is pessible to obtain

1 =

fl(_O) =2 - 2.5 (40)
g.(0) = == = 2.5 €3Y)
1 Ka, '

. 3 -
Lim £(9) = ¢, @Y 2 9?3
Gorea (42)
lia g,(2) = ¢, 7 2 a7 (V3
g (43)

Tan appears ta be the extent of our preseat ability
to eyaluate che coefficients in equations (23)
through (30). Clearly information oan at least

Ei(O) and 31(0) would be very useful.

APPLICASILITY TO EXPSRIMENTAL EFFORTS

The logarithaic or iuertial sudlayer profilass hava
long baen used by experimentalisis to determins the
friccion velocity (and hemce the wall shzar strass)
in forced flows whara determination by other means
‘was difficult or ianconvenient. This has especially
baen true for metarologists who have had no other
option. If on= is williang to accepgt the valua of
a. (eq. 32) as known, the logarithaic texmperatur
profile can simllarly be usad to determinz the
h"a\. flux. ’

The universal profiles for mixed coavection proposad
here should provide the expericentalist and enginear
with further lmportant tools for rapid determina-
tioa of wall shear stress and hsat flux. As for
forced flow, only a few valocity and temperaturs
measurac2ats need be takea in tha intermadiace
layer to completaly spacify tha impues. Such uti-
lizaticn must, of coursa, first be pracaded by a
serizs of careful basic experimeats to determiae
fl(:) and gl(;).

APPLTCASILITY TO NUMERICAL MODFLLI TORIS

Asidz from thair value ia contributing te aerganiza-
tion of exparimantal results and undarscandiag the
piysics fo tha flow, a possibility for izmdiate
application cf thzsa resulls is thair izcovooration
into numericel modalling prograzs for turbulaant flow.
Tne most successful tusbulznt closure models. te

Reynolds (4)) are useful oaly at high
Reynolds aumbars. As the wall is ap-
turbulent Reyn,lds nuzbar aparoaches
zers aad the modals must be modified by a serizs of
Evamples of this apgr

and Launder (3)-

daze (c.E.
turbulent
p-oashad, the

gach are

An zlternate approzch for
vse the logarichmic layer
dition to which the outer

Laundar and Spaldinz (6})-

faorced flow has bean to

as an inaer boundary coa-

flov must confora (e.f.
Tnis approach has the

advantage that a turbuleace codel

nead be con-—
the influance

structed only for regioas outsides
of viscosity; that is, at high turbuleac Ravmolds
aumber. The sacze approach can be usad for natural
coavection flows using the aforemesationszd tubyant
sublayer profiles.

It would appear zhat for the difficult problea

of calculating turbuleat boundary layers ic aixad
convaction the universal profilas of velecity

aad temperatura in the interwmediate layar could
be uysad to great advantage as inmer boundary
conditions for a turbulaat model which calculates
the outer :.ou. .

SIRMARY AND CONCLTSTONS

The outline of a similarity theary fcr fully
daveloped tucbulent boandary layer £low maxt to
vertical surfaces has bzea givea. Parsicular
attantion has be2un paid tao the ictermediate layar
whare only turbulant transport anod buayaacy ara
impartant.

Scaling laws for tha profiles of tecperature aad
velocity in tihis r=gion have baea proposad and
explicit fuactional forms have beea darived vaizh
are valid nesar the iimits of pura catural ceoavec-
tioz and purs forzed convastioa and reduca to the
correct functignal benavior im the limits.
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The mixed convection boundary layer.
(Region I: viscous conductive region;
Region II: intermediate layer;

Region IIl: outerflow.)



