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l iThe  burst-mode or individual realization laser Doppler anemometer is re- 
viewed with attention to the manner in which the data are processed. The em- 
phasis is on making quantitatively correct measurements so that corrections to 
the results are not necessary. Of particular importance are the residence time 
weighting and the manner in which the flow is seeded. Previous analyses are 
evaluated, and modest extensions are proposed. The well-known criteria for 
analog signal processing are shown to have their counterparts for burst-mode 
LDA signals. A detailed analysis of the effects of counter quantization errors 
on the measurements is presented. Also discussed are the effects of the poly- 
dispersity of the scatterers on the measurements. 
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I N T R O D U C T I O N  

The laser Doppler anemometer (hereafter referred to as the LDA) 
was invented more than 25 years ago. The instrument and our 
understanding of it have remained relatively unchanged in the last 
ten years. In spite of the mature state to which our understanding 
and the technology have evolved, the LDA has not had a 
significant impact on our understanding of fluid dynamics. While 
in part this may stem from the fact that its unique capabilities are 
best utilized in industrial environments, it is in greater part due to 
the difficulties of properly using the instrument and in understand- 
ing what it measures. 

The difficulties referred to are not problems with the use of the 
hardware to achieve Doppler signals. Modern integrated optics 
and sophisticated electronics have brought the instrument a long 
way from the early anemometers of the mid to late 1960s and even 
early 1970s. Commercial LDAs can be purchased off the shelf and 
made to work in a wide variety of environments by semiskilled 
personnel. Thus these difficulties are not related to the acquiring 
of Doppler signals. Rather they refer to the interpretation of the 
measurement as representing a fluid dynamic quantity. 

The purpose of this paper is to review some of the most 
common difficulties in understanding the proper use of the laser 
Doppler anemometer. Some of the difficulties referred to are 
unique to the LDA, while others are common to all measuring 
techniques and are simply interpreted here for the LDA. It is 
hoped that this review will provide a checklist against which an 
investigator may test his or her own understanding and experi- 
ment. If the rules and guidelines that are laid down here are 
carefully adhered to, experiments that might have been performed 
incorrectly will be performed correctly, and the results will be 
useful to the scientific community. It is equally possible that a 
careful application of the principles set forth here will indicate that 
some experiments that have been performed are incorrect and that 

their results are at best unreliable. It is hoped that some 
experiments that might have been attempted will be found to be 
physically impossible and will be discarded. On the other hand, it 
is also hoped that an impetus for correct measurements and new 
experiments will have been generated. 

Attention will be focused in this paper on the so-called burst- 
mode operation or individual realization LDA. In the succeeding 
paragraphs the theory of operation will be briefly reviewed and 
some of the more important aspects of the burst-mode signal will 
be highlighted. Finally, some of the problems of implementation 
will be discussed. 

T H E O R E T I C A L  C O N S I D E R A T I O N S  

The  B u r s t - M o d e  L D A  

The basic principle behind the burst-mode LDA lies in the fact 
that each scattering particle generates a Doppler current of the 
form [11 

isp(t)=I(xp) cos K • Xp (1) 

where Xp is the position of the particle, I(x) is a position- 
dependent intensity determined by the illumination of the measur- 
ing volume and the optics, and K is the scattering wavenumber 
vector. The position of the particle can be related to its initial 
position a and its velocity history Usp(a, t) by 

S' 
x = a +  usp(a, t l )  d t l .  (2) 

0 

The scattering wavenumber vector can be defined as the vector 
difference in the wavenumbers of the incident and scattered light 
(or if there are two incident beams, by their vector difference). 
Thus, if as shown in Fig. l ,  kj and k2 are the two beams differing 
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Figure 1. Illustration of scattering geometry. 

by the angle O, then 

K=k[ -k2.  (3) 

The product K'xp selects the component of the velocity eolinear 
with the scattering wavenumber, say u~p. Thus Eq. (1) can be 
written 

i 
f 

isp(t)=I(xp) cos [Ka+K 0u~p(a, tl) dhl. (4) 

If the velocity of the particle can be assumed constant across the 
scattering volume, this reduces to 

isp(t) = l(xp) cos IKa + Ku~ptl. (5) 

Thus the Doppler current due a single particle consists of an 
amplitude I that varies with the spatially varying intensity of the 
measuring volume, a phase Ka determined by the particle's 
position at some arbitrary origin in time, and a Doppler frequency 
defined by 

27r 
~D=KUsp = -  t/sp sin (0 /2)  (6a) 

or 

sin (0 /2)  
.ft) - ~,, -U~ 0 (6b) 

where ki is the wavelength of the incident light. 
Note that it is sometimes useful to interpret the Doppler signal 

as having arisen from the particle crossing interference fringes in 
the flow. While not strictly correct, tbr most purposes the results 
are the same as Eq. (1). 

The amplitude function 1 is generally close to Gaussian as 
shown in Fig. 2, with the result that the Doppler signal from a 
single particle consists of a "burst"  with a near-Gaussian 
envelope as shown. The exact width and height of the envelope 
depend on where the particle enters the measuring volume and on 
the path it follows through it. 

It is easy to see that if the frequency (or time between zero 
crossings) of the Doppler burst can be determined, then the 
particle velocity can also be determined. The purpose of the LDA 
burst processor is to make this determination. There are a variety 
of ways this can be accomplished. Commercially available 
counters all operate in a manner similar to that shown in Fig. 3 
The Doppler burst is first amplified, and then the rising part of the 
envelope is used to start a clock that is stopped either after a fixed 
number of cycles or at the next zero crossing after the burst falls 
below a preset level. Since the number of cycles (or "fringes 
crossed") is known, the frequency of the burst can be determined. 

If this were all there were to the burst-mode LDA signal, the 
next few sections could be omitted, and only the effects of filtering 
and quantization would need to be considered. Unfortunately, in 
many applications, the statistics determined from the particle 
velocities do not correspond to the usual Eulerian flow averages. 
This was first noticed by McGlaughlin and Tiedeman [2], who 
observed that in turbulent flow there appeared to be more fast 
particles than slow, thus biasing the statistics if normal arithmetic 
averages of data were computed. Buchhave [3] also noticed that 
frequency shift, or the absence of it, seemed also to affect the 

Figure 2. Typical Doppler signal from a 
single particle. 
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Figure 3. Operation of typical burst processor. 
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statistics in turbulent flows, and proposed the existence of the so- 
called dead angles, or directions from which measurements were 
ignored, thereby biasing the statistics. 

The so-called bias problems referred to above were largely 
understood and resolved by 1975 (see papers by George [4] and 
Buchhave [3]). Review articles by Buchhave et al. [ 1] and George 
[5] discuss the signal characteristics in detail. Adrian [6] and 
Edwards [7] have also provided comprehensive and useful 
reviews. The results will be only briefly summarized here. 

Signal  Charac te r i s t i cs  of  the Burs t -Mode  L D A  

provided by the LDA, which senses only scattering particles, must 
be related to the characteristics of the flow at the measuring point. 
This is a most difficult task since it must be assumed that the 
statistics of the particles (Lagrangian) and those of the flow at the 
point (Eulerian) are related. Only with the most stringent 
conditions on the particle distribution is a general relation 
possible. 

The analysis of the signal produced by a burst-mode LDA 
begins with Eq. (1). It is possible to represent the Doppler current 
as a function of time by simply summing over all particles that 
pass through the beam [1]. The result is 

i(t ) a, ls!!  isp(t, a )g(a ) da. (7) 

The function g(a) is simply a function that accounts for the 
presence or absence of a scattering particle at initial location a. 
Note that in spite of the fact that the integral is over all space, only 
those particles that pass through the measuring volume actually 
contribute to the integral because of the amplitude factor 1(Xp) = 
l(xp[a, t]). When there is no particle in the beam, i(t) is exactly 
z e r o .  

If the burst processor could "track" the velocity while a 
particle was in the measuring volume and provide zero output the 
rest of the time, the resulting output would be a "velocity-like" 
signal, Uo(t), given by 

uo(t)= S S f w[x(a, t)]Usp(a, t)g(a) da. (8) 

The function w(x), like Isp(X), is a position-dependent function 
that defines the measuring volume. Since our processor turns on 
only while the particle is in the measuring volume, w(x) is given 
by 

I l ,  in measuring volume 
w(x) = O, outside (9) 

Figure 4 shows the velocity signal that would be generated by 
our hypothetical burst processor. While it might seem strange and 
artificial to treat what is intrinsically a digital signal (the measured 
Doppler frequency of the burst) as an analog signal (which is 
usually zero), it is precisely this artifice that allows unbiased 
measurements to be taken. 

The question of how to average the data can now be addressed. 
If particle statistics (in particular, arrival statistics) are desired, 
then the Doppler frequencies measured from each burst can 
simply be averaged arithmetically, taking care not to count 
individual particles more than once. Usually, however, arrival 
statistics are not of interest but, instead, the time-averaged 
properties at the point of measurement. The simple arithmetic 
average will yield an incorrect result. The correct result is 
obtained by performing a timelike average of Eq. (8), just as 
though it were an analog signal [1,4, 5]. The only difference from 

There are two problems that are of primary importance if one is 
attempting to obtain physically meaningful data from a burst- 
mode LDA. First, rules for computing statistical quantities from 
the available data must be established so that results can be 
interpreted. For example, burst-mode signals can be processed so 
that the results correctly measure the statistics of the arriving 
particles, or they can be processed to provide information on the 
average characteristics of the flow in the measuring volume, the 
latter usually being of most interest. Second, if one is interested in 
the flow velocities at the measuring point, then the information 

- - - - - -  INSTANTANEOUS VELOCITY 

[ ]  NO PARTICLE IN VOLUME 

f / 1  N \  

I / A  t 

Figure 4. Hypothetical signal from burst processor. 



32 W . K .  George 

the usual time average is that the results are counted only during 
those periods for which particles were in the meauring volume. 

Thus, if A t  i is the residence time of the ith particle and u~ is the 
velocity associated with it while it was in the measuring volume, 
then the mean and variance of the particle velocities are given by 

S~' lu ~ At, 
a (IO) 

and 

S/~'=l(Ui- t~) ~- ',3ti 
var { u } =  E,~ L2~t, ( i l )  

Each of these results follows directly from the interpretation of the 
burst processor output as a time signal, nonzero only when a 
particle is in the measuring volume. The summation is over all 
particles that entered the beam and were detected in the time 
interval of interest. 

The "pseudo"  time signal Uo(t) given by Eq. (8) can be used to 
compute other statistical quantities of  interest. For example, the 
spectrum of the velocity can be computed by averaging the 
spectral estimators given by (George [5]), 

T 
S t ( f ) =  (~NIAti )2  { f i r ( f ){ :  (121 

where T is the total record length and where l i f t  f )  is the Fourier 
transform of the data computed as 

f i r ( f ) =  x2~1 exp (j2rrfti)ui At~ (13) 

where j  = x/Z-l, N is the number of samples arriving in time T, 
and t~ is the arrival time of the ith particle. Unlike equispaced time 
series analysis, there is no Nyquist criterion here [5]. 

The autocorrelation of the velocity signal can be computed by 
using the residence-time-weighted velocities at different time lags 
as in Buchhave [8]. A more computationally efficient approach is 
to compute the Fourier transform given by Eq. (13) for values o f f  
= integer x l / T ,  then the spectrum from Eq. (12), and finally 
the inverse Fourier transform of the spectrum by an FFT 
algorithm to get the correlation. This was discussed in detail in 
Ref. 5. 

Algorithms can similarly be generated for a variety of statistical 
quantities (e.g., probability density) by working from the analog 
signal analogy of Eq. (8). All such unbiased algorithms have a 
common feature: The velocity or indicator functions are weighted 
by the residence time. Even the presence of mean velocity 
gradients across the measuring volume does not introduce a bias 
(if the curvature of the velocity profile curvature is small enough) 
as long as the averages are residence-time-weighted [1]. 

A major reason why the residence-time-weighted averaging 
technique described above should be used is that it is the only 
method that can, in general, produce an unbiased measure- 
ment  o f  the f l o w  properties at a point  (or Eulerian averages), 
and then only if the scattering particles have been statistically 
uniformly seeded in space. This is because the arrival of the 
scattering particles at the measuring volume is, in general, 
strongly dependent on the flow field that brings them there. Thus 
the Doppler signal is not a simple time signal, but depends in a 
complicated way on the entire flow field and seeding distribution. 
Only by uniformly randomly distributing the scattering particles 
in space can the statistics of the particles be uncoupled from those 
of the flow field so that meaningful Eulerian statistics of the latter 
can be inferred. 

It is tempting to try to analyze the LDA by assuming the 

characteristics of the particle arrival rate (e.g., Poisson-dismb 
uted, modulated Poisson, etc), and many have done so [9]. Whdc 
these approaches may contribute useful insight into the nature of 
LDA signals, they cannot address the question of how to seed the 
flow. This is because the experimenter has no control over the 
arrival rate statistics, only where and when the scattering particles 
are introduced into the flow. The flow itself determines the rest. 

It is interesting to ask what happens if there are interruptions in 
the data acquisition so that not all particles are included in the 
statistics. This can happen by accident because data are arriving 
faster than they can be processed, or by design (as in Capp I I0]i 
so as to avoid overfilling the disk with statistically dependent data 
Since Eqs. (10) and (11) are approximations to a time integral 
whose individual pieces can be separated in time, it does not 
matter whether the sampling process is continuous in time as long 
as the interruptions are due to external effects (like the computer~ 
and not the flow. The residence time weighting must still be 
applied as long as it is the flow (by the particle arrivall that 
determines when signal acquisition is initiated and how long it 
characterizes events occurring in the measuring volume. 

It is, of course, possible to imagine ways of interrogating the 
counter so that the experimenter is in control and not the flow 
This might involve accepting a data point only if it arrives in some 
very small interval (relative to the smallest time scale of the f low) 
If no data point is accepted the counter is disabled until the nex~ 
window of opportunity is enabled. Obviously, there will be many 
no-shows unless the particle arrival rate is very high. In such cases 
the residence time weighting is unnecessary and the data cat~ 
simply be averaged arithmetically. Note that even this approach 
does not alleviate the seeding distribution problem. 

Approximations to the Residence Time Weighting 

A number of approximate corrections have been proposed to try to 
correct for the biased statistics that can result if the data are not 
weighted by the residence time as indicated above. It will be 
shown below that, at best, these so-called bias corrections are 
valid only in flows of moderate to low turbulence intensity. This is 
easily seen by examining the behavior of the residence time tbr a 
spherical measuring volume tor which particles pass only through 
the center. For such a hypothetical case. the residence time is 
given by 

~t  ~- d / i u i  (14) 

where d is the diameter of the measuring volume and i ul is the 
magnitude of the velocity vector. This "residence t ime" can now 
be used to compute the velocity mean by substituting it into Eq. 
(10) with the result that 

z )  ~u~iu, i ~ 
1~ 2-: \' \---i~,(-- T , |5I  

This is the three-dimensional correction suggested by 
McGlaughlin and Tiederman [21. Note that it not only reqmres 
direct measurement of the velocity vector but also depends on 
some rather unrealistic assumptions about the scattering volume. 

A simplified alternative to Eq. (15) can be obtained by 
restricting the turbulence intensity so that 

lu l  = l ( U + u )  ~'4 ' - /~  w2t ~ " 

= ~  1 + U :  = 0  + u (16) 
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using the binomial expansion. Thus 

,at=d~[ U + ul (17) 

and a low-intensity version of Eq. (15) is 

Y,~=luiluil - l  
= (18) 

X/N=,luil -~ 

This is the McGlaughlin-Tiederman [2] one-dimensional correc- 
tion. It has the advantage that it requires measurement of only a 
single velocity component. Disadvantages are that it is restricted 
to low turbulence intensities [say, less than 20% to ensure the 
validity of Eq. (16)] and it also depends on scattering volume 
assumptions that are unrealizable. 

It should be obvious that if the turbulence intensity is 
sufficiently low, then all the particle residence times are nearly 
equal. Thus, the statistical computations can just as easily be 
performed by ignoring them altogether and using simple 
arithmetic averaging, that is, 

l~ = l  xNI  U i. (19) 

Because of errors that arise in the practical determination of the 
residence time, this approach should always be used when the 
turbulence intensity is less than 5 %. 

In summary, there are a number of approximations that can be 
used to simplify the implementation of the residence time 
weighting or avoid it altogether. All can result in errors because of 
the assumptions inherent in them regarding the scattering volume. 
It is my opinion that a straightforward implementation of the 
proper residence time weighting is preferable to all of them if the 
turbulence intensity is sufficient to merit any of them. The 
measurements of Buchhave [8] and Capp [10] provide strong 
support for this point of view. 

The Convergence of  Stat is t ics  

The problem of the statistical reliability of burst-mode-averaged 
quantities has been reviewed in detail by George [5], and the 
results will only be summarized here. The question of conver- 
gence can most easily be addressed by looking at the variability of 
the estimator for the averaged quantity of interest. If the true mean 
is denoted by t2 and the mean estimated from N samples as UN, 
then the variability of this estimator, e, is defined to be 

e 2= { U s -  a } 2/a2. (20) 

Clearly it is to be hoped that e--*0 as Nooo .  
If each realization (or velocity associated with a single burst) 

can be assumed to be statistically independent of all others, then 

2 1 / ° u ' ~ 2  
e = ~ ~, u J ' statistically independent samples (21) 

where N is the number of samples and au and t2 are the true rms 
and mean values, respectively. Thus the variability increases with 
the variability of the velocity itself (eu/a) and inversely with the 
square root of the number of independent samples. 

In the more general case where successive realizations may 
retain correlation (since the flow itself may be correlated over 
finite regions of time or space), the counterpart to Eq. (21) is 

E2--~ {1 +2voru} . (22) 

N is the number of realizations, which may not be independent, v0 
is the mean data rate, and Tu is the Eulerian integral time scale of 
the flow velocity. Clearly if the data rate is greater then some low 
multiple of the inverse of the flow integral scale, the extra data 
points do not help to improve the accuracy of the average. 

An alternative form of Eq. (22) expresses the variability 
directly in terms of the record length in time T, instead of the 
number of samples; 

2 2ru ( 1 " /ou\2 

The expected number of samples is N = roT. This relation makes 
clear that it is really the record length relative to the integral 
time scale o f  the f l ow  that is important once a minimum data rate 
has been achieved. Relations similar to Eq. (23) can be derived for 
any statistical quantity of interest [5]. 

It is the practice of the Turbulence Research Laboratory at the 
University at Buffalo to sample for fixed record lengths in time as 
opposed to a fixed number of samples. This is because if the 
seeding density varies widely in an experiment, as sometimes 
happens, the variability can be very hard to predict unless the 
record length is known precisely. 

The consequences of Eqs. (22) and (23) to the experimentalist 
are very important. If only mean quantities are to be computed, 
then care should be taken to ensure that the data rate is sufficiently 
slow to avoid processing (and storing) the extra data to no useful 
purpose. In many situations this involves reducing the data rate to 
very low levels. (For example, in Capp's experiment [10] the 
optimal data rate was 2/s.) This is sometimes best accomplished 
by interrupting the data acquisition by disabling the counter for 
fixed periods between samples. Note that as pointed out above, 
residence time weighting is still necessary if when the counter is 
enabled it is the flow that determines when the data actually 
arrive. 

Recons t ruc t ion  of  Time Records 

In a very few applications it is necessary to reconstruct actual 
histories of the velocity from the burst-mode LDA. Unlike the 
kinds of statistical measures discussed above where low data rates 
were preferable, in such cases the data rate must be, on the 
average, faster than twice the Nyquist frequency, the highest 
frequency of the signal (usually considered to be the mean velocity 
divided by the Kolmogorov microscale). This is the exact 
counterpart of the digital analysis of equispaced samples in time 
(see Tan-atichat and George [111). 

It has been argued that such an approach does not require 
statistically uniform seeding in space. It is easy to see that without 
additional assumptions this cannot be true, since there could 
always exist regions of the flow from which particles never arrive, 
yet the flow of fluid from those areas could contribute substan- 
tially to the statistics. Thus the measurements are conditioned by 
the method of seeding. (Similar considerations apply to those 
techniques that depend on arrival time statistics.) 

If the data are to be turned into an analog signal by a standard 
digitial-to-analog converter with a low-pass filter (as in most 
counter analog modules), then the data rate must be many times 
the Nyquist frequency of the signal (a factor of 10 is a good 
number) to adequately reconstruct it. Few experiments can satisfy 
this criterion, and as a consequence the results can be seriously in 
error if the data are processed as a analog signal. 

There arise circumstances in practical applications where the 
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data rate may not be high enough relative to the Nyquist frequency 
of the fluctuating velocity to justify treating the signal as an analog 
signal but are still high enough relative to the integral scale to 
obtain reasonable estimates of the lower order moments. Whether 
or not an analog signal is actually reconstructed or simply treated 
as a randomly sampled time series, the effective signal is a low- 
passed version of the true velocity, the cutoff frequency corres- 
ponding to the data rate. All such techniques must be applied with 
a full understanding of the approximate nature of the analysis and 
used with caution or, better, avoided altogether. Edwards [7] 
suggests that for the measurement of second-order moments the 
data rate should at least exceed the inverse of the Taylor 
microscale of the velocity, a value usually well below the Nyquist 
frequency. 

It should be noted that is is not necessary to satisfy the Nyquist 
criterion for spectral analysis if the algorithms proposed in Eqs. 
(12) and (13) are utilized. It is a curious fact that randomly 
sampled data do not have the aliasing problem of equispaced data 
[5]. On the other hand, the convergence of spectral estimators can 
be very slow indeed if the data rate is too low 15, 8|. 

The Role of Frequency Shift in Burst-Mode 
Applications 

Frequency shift of one or both of the incident laser beams is an 
essential part of any LDA burst-mode application in high-intensity 
turbulent flow or in any other application where the flow direction 
cannot be guaranteed. The reason for this is that burst-mode 
processors (with noise discrimination) depend on a minimum 
number of cycles (or fringe crossings) in order to register a 
measurement. A particle entering the measuring volume perpen- 
dicular to the fringes and near the center will always cross the 
requisite number of fringes (typically eight). On the other hand, a 
particle entering near the extremities of this measuring volume or 
entering at an angle may not cross the required number of fringes. 
If this is indeed the case, then that particle will not have been seen 
by the counter. The problem is illustrated in Fig. 5. This "dead- 
angle" phenomenon was analyzed in detail by Buchhave 13], and 
the results will only be summarized here. 

The consequences of the dead-angle phenomenon are that the 
statistical measures of the velocity are conditioned upon the flow 
direction, the larger angular deviations being ignored. In a high- 
turbulence-intensity flow or one with reversals, the effects can be 
dramatic and the averages greatly in error [81. Since the scattering 
volume seen by a small particle is smaller than that seen by larger 
particles because the signal it generates is of lower amplitude, the 
smaller panicles will be more susceptible to this angular bias. 

The solution to this problem is to move the fringes so that even 
if the particle enters at a high angle from the preferred direction, 
sufficient fringes cross the particle that it can always be seen. 
Clearly, the higher the turbulence intensity, the more probable are 
large angular deviations from the streamwise direction and the 
larger the amount of shift that will be required to ensure that no 

particle escapes without being measured, Hgurc 0 ~s taken u~,;, 
Ref. 8 and illustrates what happens to the dead angle ;is the shii~ i, 
increased relative to the fluctuating flo,x.. At no shift, the ,lead 
angles are seen to be at right angles to the flow direction, btu as 
the amount of shift (as measured by the fringe velocity U, relam e 
to the flow speed U) is increased, the dead angle_~ ~.c,,,~: 
progressively toward the downstream direction and cventualiy 
disappear altogether. This point of disappearance represents, ~lac 
minimal frequency shift required in a given flow applicatior~ 

Rather than go through an analysis of precisely how much si~ilt 
is required, there is a real temptation to simply use so much shift 
that there is never a problem. The consequences of this can als~ be 
quite detrimental and severe. First_ as is shown later tim 
quantization errors in the determination of the Doppler frequem ~ 
are increased as the amount of shift ix increased. Second. the 
slower the scattering particle, the more fringes that will cross it 
and the greater the number that must be registered in the fringe 
count register. (It will be shown later that this fringe count register 
is often used to determine the residence time needed to obtain 
unbiased statistics.) If the fringe count register overflo~s v~he~ 
residence time weighting is being attempted, then the nleasl.uc 
merit will again be seriously in error 

How much shift, then, is the righl amount? Clearly thcle must 
be enough shift to ensure that in a given llow situation no particle 
escapes without being seen. On the other hand, there must not be 
so much that a slow-moving panicle overflows the fringe count 
register or that the quantization errors are unacceptable. In each 
and every situation the experimenter nmsI make an intelligenl 
choice to ensure that his or her measurement is between these 
limits. A usetial tool in evaluating whether the correct choice has 
been made is the fringe count histogram as used by Capp I I0] and 
shown later in this paper 

H A R D W A R E  C O N S I D E R A T I O N S  

T h e  Ef fec t  o f  F i l t e r i ng  on  L D A  Signa ls  

In all but the most unusual circumstances it ~s necessary t{~ 
bandpass filter the photomultiplier signal before further process- 
ing is attempted. The purpose is to remove the low-frequency 
pedestal and reduce the broad-band electronic noise that can 
contribute stray zero-crossings. The criteria for pedestal removal 
and signal-to-noise optimization have been discussed elsewhere 
112]. The objective here is to examine the unwanted consequences 
of this filtering on the data and on averages computed from them. 

The frequency content of the incoming Doppler burst signal 
(minus noise) is entirely determined by the velocity of the fuid 
and the frequency shift (which is presumed steady). The finite 
length of the burst implies that a single velocity gives rise to a 
band of frequencies. The bandwidth of the burst is exactly the 
same as that which would airse from transit-time broadening in the 
continuous-mode case [12]. In the subsequent discussion the 
bandwidth due to this finite residence time is assumed to be 

Figure 5. Illustration of existence of panicle 
trajectories not seen by counter. 
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Figure 6. Measuring volume as a function 
of shift for fixed flow parameters showing 
dead angle. (From Ref. 8) 

negligible compared to the overall fluctuations of the signal 
arising from unsteady fluid velocities. Note, however, that it is 
intrinsic to the Doppler burst and can adversely affect the counting 
process. 

The bandpass filtering is often carried out by passing the 
Doppler current signal through high-pass and low-pass filters, the 
exact cutoff frequencies of which are adjustable. It should be clear 
that when the frequency of a burst lies outside the band of the 
high- and low-pass filters, it will be ignored by the counter 
processor. If these high- and low-pass cutoff frequencies are 
chosen entirely to improve the signal-to-noise ratio without 
reference to the statistics of the velocity itself, serious errors can 
be introduced. 

Figure 7 illustrates how the statistics of the filter and signal can 
be biased by the filter. Figure 7a shows the probability density 
function (pdf) of frequencies that might arise in a typical turbulent 
flow. (It can be shown that this pdf is, in fact, the spectrum of the 
Doppler current [4].) Figure 7b shows the gain characteristics of 
the combined high- and low-pass filters, while Fig. 7c shows the 
probability density of the filtered Doppler current. 

If the filtered current is now processed by an appropriate 
counting technique and sufficient samples are averaged (with the 
appropriate weighting factors), the averaged Doppler frequency 
will be identical to that given by the probability average 

<fD)BP = ffHfpBp(f) df  (24) 
"fL 

where Pap(f) is the pdf of the bandpass-filtered frequencies. The 
correct averaged Doppler frequency is, however, 

<fo> = fp ( f )  d f  (25) 
- o 0  

where p(f)  is the pdf  of  the unfiltered frequencies (the original 
pdf of the flow). 

Clearly, because the parts of the integral from - 00 to f t  and 
from fn  to + oo are missing, the computed average will be in 
error. Similar considerations apply to the higher moments, which 
must be asymptotic to 

(f~)Bp = (fl4fnl~v(f) df  (26) 
~ft 

instead of the correct value given by 

S o (fn D> = f#p( f )  df. (27) 
- o o  

That the consequences of filtering can be quite severe is 
illustrated in Fig. 8, which shows several examples where 
statistics would be greatly in error. The phenomenon is exactly 
analogous to the clipping of an analog signal by the range limits of 
an analog-to-digital converter [10]. 

It is possible to use the above to provide rough criteria for the 
design and evaluation of experiments. If the pdf of the frequencies 
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Figure 7. The effect of bandpass filtering on the probability 
density function of the Doppler frequency. 

(and the velocity itself) is not greatly different from Gaussian and 
the mean value is near the center of the filter, then for 
measurements of the mean a minimal requirement is that 

fH --fL > 3 u '  (28) 
2(f) U 

while for the mean square (or rms), the minimal bandwidth 
requirement is increased to 

fH--fz > 6U' 
2 (f) U (29) 

The higher the moment, the more severe these constraints will 
become, since the tails of the distribution are increasingly heavily 
weighted. Thus careful attention must be paid to what is being 
discarded by filtering if meaningful measurements are to be taken. 

An independent consideration related to filtering, but a practical 
matter of great concern, is the ease with which nonsense data can 
be taken with the burst-mode LDA. Even when the signal quality 
is not adequate, it is still possible to obtain high validation rates 
from noise and be tricked into believing that reasonable measure- 
ments have been obtained. This is because the signal has been 
narrow-band-filtered so that even noise has a burstlike character. 
(In fact, the easiest way to make a synthetic Doppler signal is to 
narrow-band filter a random noise.) 

There are two ways to test whether the measurement is, in fact, 
valid. First, the measurement should be independent of both 
the high-pass and low-pass filter settings. If it is not, then noise 
measurement instead of flow is probable. Second, the measure- 
ment should be unaffected by small amounts of frequeno' 
shift other than by the precise amount of  the shift change. This 
can easily be checked by simply changing the amount of shift, 
Both of these criteria should be applied before data are taken to 
ensure that, in fact, the burst processor is measuring particles and 
not filtered noise. 

Quant i za t ion  Errors Aris ing f rom the C o u n t i n g  Process  

Quantization errors have long been recognized as a source of 
noise in the analysis of analog signals. (Otnes and Enochson [14] 
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provide a general background on the problem as applied to analog 
signals, while the discussion of Tan-atichat and George [11] is 
more specifically directed to the problem of turbulence signals.) 
Unlike the direct analogy between the filtering of LDA signals and 
the clipping of analog signals, there is no direct analogy between 
the quantization of analog signals and those of laser Doppler 
signals. (This is because of the manner in which digitization is 
implemented by LDA counters.) 

In the standard analog-to-digital conversion of analog signals, 
the signal is simply placed into the appropriate bin, one bin 
representing a subdivision of the total range of the signal and 
uniquely designated by an integer assignment. LDA counters, on 
the other hand, have a number of features that preclude a simple 
analogy. Specifically, the LDAs tend to be autoranging and make 
use of a mantissa-exponent representation of the quantized signal. 
The analysis presented below is summarized from Capp [10]. 

Figure 3 presents a schematic of the operation of a typical LDA 
counter. When the Doppler burst exceeds a predetermined level, a 
counting process is initiated in which the number of ticks of a 
crystal-controlled oscillator is counted. This process is terminated 
when the Doppler burst signal falls below the predetermined level 
or when a certain number of cycles have been achieved, typically 
eight. (On the Dantec 55L90a counter, for example, mode 3 
corresponds to the former method of analysis, while mode 2 
corresponds to the latter.) If it is presumed that the accumulators 
are switched off and on instantaneously, then the primary source 
of quantization error arises from the rate at which the clock is 
functioning, since the uncertainty in the measurement is between 
zero and the time between individual ticks. If the clock rate is 
denoted as fc and the Doppler frequency plus frequency shift is 
denoted as f ,  then the rms error in the determination of the time 
for a fixed number of cycles can be shown to be given by &t ~: 
(3f,.)-I. The exact time for M cycles of the burst is M[ ~ 



Therefore the relative rms error in the determination of the 
inverse of the Doppler frequency can be shown to be 

= f  /x{3fcM. (30) 

Thus the errors arising from this source depend linearly on the 
Doppler frequency (plus shift) and inversely on the product of the 
clock rate and the number of cycles counted. For example, if the 
Doppler frequency (plus shift) is 1 MHz, the clock rate is 500 
MHz, and the number of cycles required is 8, then E = 1.4 × 
10 -4 , or 0.014%. For all but the very highest Doppler frequen- 
cies, clock errors are a negligible source of measurement error. 

A second source of quantization error arises from the manner in 
which the frequency determined above is delivered to the user. 
Commercial counters deliver the measured frequency (or its 
inverse, the so-called burst time) as a digital word consisting of a 
mantissa and an exponent. The mantissa may have from 8 to 12 
bits, while the exponent has 4 bits. In addition, the first bit is 
usually presumed to be 1. It is straightforward to show that the 
effective numbers of bits is equal to the number of bits in the 
mantissa plus one. The actual frequency resolution must be 
determined by considering the full range at which the counter is 
set. For example, if the counter has a mantissa of m bits and is set 
at a maximum frequency range of fro, then the resolution of the 
device is A f  = ___ ½fro~2 m+l. This corresponds to an rms relative 
error of 

E =fra/2"~ ~ If. (31) 

Clearly the resolution errors are at a maximum when the Doppler 
frequency is at the lower extremities of the range. For example, if 
the counter is set on the 4 MHz range and has a stated resolution of 
10 bits and the Doppler frequency (plus shift) is 3 MHz, then e = 
8.5 × 10 -3, or 0.85%. As with the clock errors, this is seldom 
the most important source of uncertainty. 

In the actual determination of the frequency of the bursts (or its 
inverse), most counters use a comparison technique to reduce the 
possibility of sampling a noise burst. Usually the time for eight (or 
in some cases, 16) cycles is compared to that determined 
independently for only a fraction of these (typically four or five). 
If the comparisons do not fall within selected limits, the 
measurement is discarded. The tightest limit is typically a few 
percent; thus this soure of error can always be greater then either 
of the quantization sources discussed above. Therefore, unless the 
burst is of extremely high quality (high signal-to-noise), it is this 
tolerance that establishes the minimum turbulence level in most 
applications. 

All the mechanisms for error discussed above provide only the 
error in the measurement of the frequency of the burst. I f  the 
error in the Doppler frequency is desired, then the frequency 
shift must first be subtracted from the frequency so that the 
relative error in the measurement of the flow velocity or Doppler 
frequency (or rather, its inverse) is given by 

f s+fo  
~o = ~ - -  (32) 

fD 

Clearly, the insignificant errors above can become significant if 
care is not taken to avoid excessive amounts of frequency shift. 
Thus the experimenter operates within bounds defined by the 
conflicting requirements of minimizing quantization errors and 
avoiding dead angles, as pointed out earlier. 
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I m p l e m e n t a t i o n  o f  the  Res idence  T i m e  W e i g h t i n g  

The residence time of a particle in the LDA measuring volume, 
which is essential to the accurate determination of statistics in 
high-intensity turbulent flows, must be determined independently 
of the Doppler frequency itself. Commercial counters determine 
the residence time by counting the number of peaks in the Doppler 
burst as shown in Fig. 2. Thus the residence time is given by 

A ti = NJ(f~) (33) 

where Ni is the number of fringes for the ith realization. The 
accuracy of this determination is determined in large part by the 
quality of the Doppler burst itself. A significant source of 
measurement error can arise from this determination of the fringe 
count if noise is present. 

It should be noted that even in a steady laminar flow the fringe 
count is never a single number but always a distribution. This is 
because particles enter and leave the measuring volume at 
different locations and, in effect, trace out the shape of the 
scattering volume, the number of fringe crossings being propor- 
tional to the distance traversed across the beam in the flow-stream 
direction. Also, the particles are usually polydisperse, and 
therefore even particles entering and leaving at the same location 
are "seen"  differently by the LDA counter. Fortunately, this 
distribution of scattering volume and particle sizes does not affect 
the validity of the residence time theory (see Adrian [6]). 

Capp [10] has used Buchhave's analysis of the measurement 
volume [3] to determine the fringe count distribution that would be 
achieved in a uniform flow with a Gaussian scattering volume 
distribution. The results are shown in Fig. 9a. Also shown are 
Capp's measured results using smoke particles in a laminar 
uniform flow facility with a single-channel LDA. Clearly evident 
is the effect of the polydispersity of the scattering particles. In 
effect, the size of the measuring volume is varying with the size of 
the scattering particles, since the larger particles can be detected 
in regions of weaker measuring volume intensity. Thus Capp's 
measurements represent a convolution of the fringe count distribu- 
tion for a single particle (or volume) size with the probability 
distribution of the particles themselves. Figure 9b shows the same 
fringe count distribution measured in a turbulent jet. The 
distribution is substantially broader now, because the fringe count 
is a function of not only where the particle passes through the 
volume and the particle size distribution, but also the velocity 
direction. 

Since the residence time that will be used to obtain unbiased 
statistics is to be determined from the fringe count and is linearly 
proportional to it, any uncertainty in the measurement of the 
fringe count will show up as errors in the statistics themselves. But 
the effective residence time can be determined only to within 
minus a fringe crossing, and therefore the relative error is 
inversely proportional to the square root of the number of fringes 
in the burst itself. (For example, with the Dantec 55L90a counter 
this number can be as small as 8 if validation is used, or as high as 
255. Special versions of this counter exist in which the fringe 
count register has 10 bits or 1023 fringe counts possible.) Note 
also that some counters do not reset when the fringe count register 
is exceeded but simply start the register from zero and begin 
accumulating again, resulting in fringe count readings that can be 
substantially in error. 

An estimate of the rms error in the statistics arising from errors 
in the determination of the residence time is thus inversely 
proportional to v2 -T-L-- I, where p is the number of bits in the fringe 
count register. The exact constant of proportionality will depend 
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Figure 9. (a) Histogram of fringe count in laminar flow (X = N~ 
N,,, N,, = 32, no shift). (b) Fringe count histogram variation 
with higher turbulence intensity levels. (Mean velocity is 2 m/s 
for all cases. Frequency shift is 400 Hz.) 

on the actual fringe count distribution. If p = 8, then the rms 
error is greater than 6%. Clearly, in most applications this is the 
dominant source of statistical error from the LDA. If a 10-bit 
fringe count register is used, this is reduced by a factor of 4 but 
can still be the most significant source of error in measurement ot 
high-intensity flows. Fortunately, unless the turbulence itself is of 
an intensity greater than 10% (as pointed out earlier) it is not 
necessary to use residence time weighting of the data. 

The data obtained by Capp in turbulent flow (Fig. 9b) indicate 
that because of the distribution of the fringe counts, substantial 
overflow of the fringe count register can occur unless care is taken 
to ensure that the mean fringe count is not too high. Note that this 
mean fringe count should also be substantially greater than the 
fringe count necessary to get a reading at all, or the statistics will 
be biased at the low end by the absence of data with low fringe 
c o u n t s .  

I m p r o v e m e n t s  to t he  Bur s t  P roces so r  

As is clear from the above, the hardware limitations of the burst- 
mode LDA are largely inherent in the counter principle itself 
Faster clocks, more bits, and better filters will do little to improve 
the fundamental limits on frequency and fringe count determina- 
tion. 

Buchhave [15] has pointed out that the limitations on counter 
performance are in large part a consequence of the fact that all of 
the noise that is passed by the filters can affect the counting 
process even if the frequency content of the Doppler burst is only 
a small fraction of that band. It is easy to show that a substantial 
increase in the signal-to-noise ratio can be achieved if only the 
noise corresponding to the frequency content of the burst is 
passed. 

This observation suggests that the burst should be analyzed, not 
in the time domain as is presently done, but in the frequency 
domain, if the time history of a burst could be Fourier 
transformed, it would be easy to obtain the frequency of interest 
(Doppler plus shift) from the first moment of the burst spectrum 
The residence time can be shown to be inversely proportional to 
the square root of the centered second moment. Such a scheme 
would appear to substantially reduce the errors associated with 
both the frequency and residence time measurements. 

It is relatively straightforward to implement this Fourier burst 
analyzer in software using bursts captured by a transient recorder. 
Such a "processor"  is, of course, very slow. A hardware 
implementation of these two algorithms could prove very chal- 
lenging but might certainly be worthwhile for many applications. 

T h e  I m p o r t a n c e  o f  t he  Sca t t e r i ng  Pa r t i c l e  Se lec t ion  

There are a number of criteria that can be used to select scattering 
particles in a given flow situation: optical properties, ease of 
implementation, and flow characteristics (Adrian [6] and Durst et 
al. ]12] have reviewed these in detail). Most often the choice is 
made on the basis of what is available, since one seldom has a 
surplus of good choices. The most important criterion, however, 
is the last one: the flow characteristics of the particles. 

Unless there is specific interest in the velocity of the scattering 
particles in their own right, it is generally required that the 
particles must follow the flow, since it is the fluid velocities that 
are of interest. Unfortunately, there are few applications where 
this can be guaranteed over the entire range of mean and 
fluctuating quantities of interest, As a consequence, many 
measurements are, in fact, only measurements o f  the response 
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of  the scattering particles to the environment in which they 
f ind themselves. Such measurements contribute little or no 
information about the flow itself. Thus even though high-quality 
Doppler signals may have been obtainable, and even though 
proper analysis of these signals is carried out, the measurements 
are themselves worthless since they are not of fluid dynamic 
quantities of interest. 

Whether or not the particles are tracking the fluid velocities of 
interest can be determined by examining the particle response 
time. The particle response time is a measure of how rapidly the 
particle can adjust to changes in the velocity field of the fluid. 
Since scattering particles tend to have densities that are different 
from those of the fluid, the inertia of the particle precludes an 
immediate adjustment. In simplistic terms, the viscous forces 
acting on the particle due to the flow over it act to accelerate (or 
decelerate) the particle until the flow and particle have the same 
velocity. A simplified equation for the response of the particle to a 
flow of different velocity around it is given by the Stokes 
approximation, which results in a first-order differential equa- 
tion [ 1 ]. 

dusp 
7" 1 ~ : u - Usp. ( 3 4 )  

The time constant Zl in this equation is defined by the viscous and 
inertial parameters as 

) 7-1 ~ 2 + 1 (35) 

is how they are placed in the flow. Buchhave et al. [1] point out 
that unless the f low is uniformly seeded everywhere, a 
conditional measurement is being made. In other words, only 
the fluid from regions that have been seeded will contribute to the 
measurements, and the rest will be ignored. Unless all fluid 
entering the measurement volume can be assured an equal chance 
of having been seeded, the measurements will not be representa- 
tive of the velocity at that point. Sometimes this is desirable--for 
example, if one only wishes to measure inside an intermittent 
turbulent jet interface. Most of the time it is not, and unless the 
flow is seeded everywhere the measurements will be meaningless 
or at best difficult to interpret. This places a heavy responsibility 
on the experimenter who cannot seed the "world"  to prove that 
his or her measurements have not been biased by the manner in 
which the flow has been seeded. 

S U M M A R Y  

It has been suggested that the primary problems in using the burst- 
mode LDA lie not in the hardware but in the manner in which it is 
used. It has also been suggested that there are circumstances in 
which it should not be used at all (for example, if particles cannot 
be found that track the flow). It should be obvious that if the 
trouble has been taken to overcome the experimental difficulties 
so that meaningful measurements can be taken, then at the very 
least care should be taken to process the data correctly. If the 
procedures outlined here are followed, the burst-mode LDA can 
make a substantial contribution to our understanding of complex 
flows. 

where dp is the particle diameter, v is the kinematic viscosity of 
the fluid, and pp and pf are the particle and fluid densities, 
respectively. For example, glycerin smoke particles of 1 #m 
diameter in air have a time constant rl = 3.7 × 10 -4 s. Aerosol 
particles would have time constants substantially larger than this. 
Adrian [6] includes data for a variety of common particles. 

The particles can be assumed to follow the flow only when the 
smallest flow time scale is greater than the particle response time 
[Eq. (35)]. Thus in order to properly estimate whether the 
particles follow the flow, the appropriate flow time scale itself 
must be estimated. In the case of a simple turbulent flow, the time 
scale is simply the inverse of the highest frequency fluctuation of 
interest. Since the effect of the particle lag is to low-pass filter the 
velocity fluctuations, the mean square fluctuations will be reduced 
by the particle lag effect if the particle response time is not less 
than the Taylor microscale of the flow. Therefore care must be 
taken to ensure that the energy removed by this filtering is 
negligible. Capp [10] and Nee [16] provide examples of how such 
estimates should be made. 

In situations involving curving flows, the centripetal accelera- 
tions of the particle can be significant. In such situations the time 
scale of the flow defined by the inverse rotation rate must be 
greater than the particle time scale. This ensures that centrifugal 
forces on the particle can be balanced quickly by the viscous drag 
around the particle as it begins to slip across streamlines. A sure 
sign of such effects in problems with rotating machinery is the 
absence or scarcity of scattering particles near the hub. Whenever 
a region o f f  low is identified in which it seems to be difficult to 
inject a sufficient number o f  scattering particles, particle lag 
effects should be suspected in the measurements, and serious 
consideration should be given as to whether the measurements are 
meaningful at all. 

A final point to be considered regarding the scattering particles 
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N O M E N C L A T U R E  

component of a aligned with K, m 

initial position of scattering particle at arbi- 
trary origin in time, m 
diameter of hypothetical (spherical) measur- 
ing volume, m 

particle diameter, m 
Doppler frequency plus shift, Hz 

low-frequency filter cutoff, Hz 
clock frequency, Hz 

Doppler frequency (circular), Eq. (6b), Hz 
high-frequency filter cutoff, Hz 
upper limit of counter range, Hz 
shift frequency, Hz 

random function accounting for presence or 
absence of a scattering particle at position a, 
1/m 3 

current generated by a single scattering parti- 
cle, H 

amplitude of Doppler current, H 

wavenumbers of incident laser beams (Fig. 1), 
1/m 
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magnitude of K, l /m 

scattering wavenumber,  defined by Eq. (3), 1 / 
m 

number of cycles in burst that are counted, 
dimensionless 

number of realizations, dimensionless 

number of fringes crossed by ith particle. 
dimensionless 

probability density function (pdf) tbr Doppler 
frequency, l /Hz 

bandpass pdf for Doppler frequency, l /Hz 

spectral estimator, defined by Eq. (12), m2/ 
(s 2 Hz) 

time, s 

integration variable in Eqs. (2) and (4), s 

flow integral time scale, s 

mean velocity, m/s 

rms fluctuating velocity, m/s 

flow velocity, m/s 

velocity of ith particle, m/s 

streamwise component of velocity of ith 
particle, m/s 

component of  U~p aligned with K, m/s 

components of fluctuating velocity, m/s 

velocity transform defined by Eq. (13), m/(s 
Hz) 

three-dimensional function describing scatter- 
ing volume, dimensionless 

particle position, m 

expected value or mean 

Greek Symbols 

residence time for ith particle, s 
variability, defined by Eqs. (20) and (31), 
dimensionless 

variability of Doppler frequency measure- 
ment, Eq. (32), dimensionless 

wavelength of incident laser beam, m 

kinematic viscosity 

data rate, l /s  

fluid density, kg/m 3 

particle density, kg/m 3 

ou standard deviation or rms lluctuating velocity. 
m/s 

rt particle time constant, defined by Eq. 135). 

REFERENC ES 

1. Buchhave. P., George, W. K, and Lumley, J. L ,  The Measuremen~ 
of Turbulence with the Laser Doppler Anemometer, Ann. Rev. Fluid 
Mech., 11,443-503, 1979. 

2. McGlaughlin, D. K., and Tiederman, W. G., Biasing Correction for 
Individual Realization Laser Anemometer Measurement in Turbulent 
Flows, Phys. Fluids, 16 (12), 2082-2088, 1973. 

3. Buchhave, P., Biasing Errors in Individual Particle Measurement 
with the LDA-Counter Processor. Proc. LDA Symp. Copenhagen 
1975, pp. 258-278, 1976. 

4. George, W. K., Limitations to Measuring Accuracy Inherent m the 
Laser Doppler Signal, Proc. LDA Syrup, Copenhagen, pp. 20 63. 
1976. 

5. George, W. K., Processing of Random Signals, Dynamic Mea~. m 
Unsteady Flows, Dynamic Flow Conf. 1978 (Skovlunde, Denmark), 
pp. 757-800, 1979. 

6. Adrian. R. J., Laser Velocimetry, Fluid Mechanics Measurement~. 
Hemisphere, NY, pp. 155-244. 1983 

7. Edwards, R. V.. Report of the Special ASME Panel on Statistical 
Particle Problems in Laser Anemometry..L Fluids Eng. ,4 SME, (it, 
be published), 

8. Buchhave, P., The Measurement of Turbulence with the Burst-Type 
Laser Doppler Anemometer--Errors and Correction Methods, PhD 
Dissertation, University at Buffalo, SUNY, 1979. 

9. Edwards, R, V., and Jensen. A. S., A New Look at Particle Statistics 
in Laser Anemometers, J. Fluid Mech., 105, 317-325, 1981 

10. Capp, S. P., Experimental Investigation of the Turbulent Axisymmet- 
ric Jet, PhD Dissertation, University at Buffalo, SUNY, 1983. 

11. Tan-atichat, J.. and George, W. K., Use of Computer for Data 
Acquisition and Processing, Handbook of Fluids and Fluid 
Machinery, Wiley, NY, Sec. 11.9, 1987. 

12. Durst, F., Melling, A., and Whitelaw, J., Principles and Practice oJ 
Laser-Doppler Anemometry, Academic Press, New York, 1976. 

13. George, W. K., and Lumley, J. L., The Laser Doppler Velocimeter 
and Its Application to the Measurement of Turbulence, J. Fluid 
Mech., 60, 321-362, 1973. 

14. Omes, R. K., and Enochson, L., Time Series Analysis, Wiley, New 
York, 1978. 

15. Buchhave, P., Presentation at short course The Art and Science ol 
Dynamic Flow Measurements. University at Buffalo, SUNY, 1983. 

16. Nee, N., Continuous Laser Doppler Anemometer Measurements in 
the Mixing Layer of an Axisymmetric Jet, MS Thesis, University al 
Buffalo, SUNY, 1982. 


