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INTRODUCTION

The Danish cartoonist-philosopher, Piet Hein, in one of his
more famous grooks, tells of the scientist who has
discovered a well which is the source of truth. After
carefully filling his beaker from the well, he examines the
liquid closely, then pronounces his conclusion: Truth is
cylindrical. A similar 1n51ght into the nature of human
1nvest1gators is contained in the poem by John Godfrey Saxe
in which six blind men discover an elephant. The first
falls against the side and proclaims the elephant to be like
a wall, and the second feeling a tusk suggests the elephant
is more like a spear. The third grasps the trunk and argues
that the elephant is much like a snake, while the fourth
embracing a knee argues that it is really more like a tree.
The fifth feeling an ear believes the elephant to be more
like a fan, and the sixth seizing the tail proclaims that
the elephant is clearly more like a rope.

This is a paper about coherent structures, and one of the
tools we use to study them -- the proper orthogonal
decomposition. Like the scientist and the blind men in the
illustrations above, one's beliefs about coherent structures
are largely shaped by his perspective. And like them, there
is a tendency for those who study coherent structures to
want the answers to be simple.

The purpose of this paper is to provide some insight into
the particular perspective of the proper orthogonal
decomposition. The focus will be on what the orthogonal
decomposition can tell us about the mathematical
representation of coherent stuctures which is necessary to
capture their essential kinematics. Without such a
mathematical description, coherent stuctures are likely to
remain forever no more than a curiosity for the fluid
mechanics communlty, with little possibility of influencing
the manner in which turbulence models are built. The hope
is that by finding a way to represent stuctures and events
which is true to nature, we will open at long last the
possibility of explorlng the importance of coherent
structures for the dynamics of turbulent flow.
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There will be no attempt in this paper to provide a complete
history of orthogonal decomposition techniques, nor even to
list the ever-increasing attempts to utilize them. Rather,
the focus will be on 'What is a proper orthogonal
decomposition in the context of turbulence?' and on 'What
does it have to offer us in the study of coherent
structures?'. The hope is that this presentation will lead
to a better understanding of what has already been done, and
to a broader discussion of where we should go from here.

THE PROPER ORTHOGONAL DECOMPOSITION

Like most good ideas, the proper othogonal decomposition we
discuss here has more one who can lay claim to having
invented it. Oceanographers and meteorologists, who have
used it for the study of various geophy51cal phenomena,
neatly by-pass the question of origin and refer to their
results as Empirical Orthogonal Functions (EOF's), bristling
whenever anyone suggests using another term. The
mathematicians are equally adamant about referring to it as
a Karhunen-Loeve expansion. The turbulence community (or at
least a part of it) are happy to refer to it as Lumley's
Orthogonal Decomposition. All of these choices can be
defended. Certainly it is a Karhunen-Loeve expansion, and
the eigenfunctions obtained are empirical. And the
recognition of its applicability to turbulence (and perhaps
even its generalization to multi-dimensions) is due to
Lumley (1967). The viewpoint of this paper has been very
strongly influenced by the latter, although some of the
interpretations offered here may differ from those
originally proposed. Nonetheless, for reasons of efflclency
and to offend no one (or at least all equally) we shall in
the remainder of this paper simply use the term Orthogonal
Decomposition (or OD).

The basic idea behind the Orthogonal Decomposition (OD) is
that one tries to optimally represent a random field by a
set of deterministic functions which are in turn determined
by the field itself. This is quite unlike the more common
situation where one chooses a set of orthogonal functions
(like the harmonic ones of Fourier analysis) and then seeks
the coefficients necessary to represent the field. For the
OD, both the functions and the coefficients arise from the
statistical properties of the random field itself.

The key word for determining the orthogonal functions is
"optimal". For the OD discussed here, "optimal" means that
the functions are to be determined so that the most possible
energy is contained in the lowest order term, then the most
possible of the remaining energy in the next, and so on.
This can be accomplished for a random field udx:t) by
finding a deterministic field ¢(x t) for which the mean



square projection of ¢, on u; is maximal. If we
denote this projection by & where

@ =u ¢ =u-¢ (1)
then we must maximize
<ief> = <ue,f> (2)

where < > denotes the ensemble average. From the calculus
of variations, ¢, can be shown to be determined by the

following integral equation,

”I Ry ) (1)A(-") = <f>p,(+) (3)

all space
where
() = (x,t)
and
(') = (x',t")

and where R;; represents the cross-correlation
defined by

Rjjlore') = <ui(c)u(-")> (3)

Thus the problem of optimally determining the deterministic
function ¢, has been reduced to an eigenvalue problem

with the kernel given by the cross-correlation of the random
vector field.

Since part of our purpose here is perspectlve, it is worth
pausing for a moment to note that there is no longer room
for judgement or subjectivity on the part of the
theoretician or experimentalist. By deciding at the
beginning that the functions we sought should optimally
represent the field in a mean square sense (equation2),

the functions have been completely determined. It actually
matters not whether the field represents velocity,
vorticity, pressure, or temperature, the integral of
equation (3) will simply have as its kernel the appropriate
cross~correlation. Thus all of our subjectivity has been
lumped into equation (2) and the choice of principle behind
it. It might be interesting to explore the consequences of
alternative choices for maximization.

The solutions to equation (2) are very strongly dependent on
the kind of field being discussed. If the field is of
finite total energy, then the solutions to equation




(3) are governed by the Hilbert-Schmidt theory of linear
integral equations from which it follows that:

(1) There exists a denumerable set of
eigenvalues, A, satisfying equation (3),
and A > AN, > \;, etc.

(ii) All of the eigenvalues are real.

(iii) The eigenfunctions are orthogonal and can
be normalized so that

[”q‘m’(-mif“’(-)do)) = & (4)
Domain
(iv) The cross-correlation can be represented by
thenm as
Ry(ere') = Mo ™) ¢ (o) (5)
(v) Any realization of the random field can be

represented as
u(-) =g a, ¢"¢) (6)

where the coefficients are determined for
each realization of the field by

a, = ” u, (+) o™ ()d () (7)

Domain

and where
<aja,*™> = A, 8, (8)

A corollary of equations (4) and (5) is that the total
energy in the field can be obtained as

“ <uu> d() = I N (9)

Domain

Thus, as required, the energy is recovered in an optimal
manner by our eigenfunctions and eigenvalues.

Before proceeding further, it is appropriate to ask what
this decomposition, however elegant and efficient, has to do
with coherent structures? The answer to this question is
somewhat complicated by the fact that there exists no



definition of a coherent structure with any dynamical or
mathematical significance. The situation was aptly
described by Lumley (1982) who, drawing from a U.S. Supreme
Court decision on pornography, pointed out that like
pornography, coherent structures are hard to define, but you
know one when you see it. Less facetiously, Lumley (1967)
did suggest that the "large eddy" of a turbulent flow
(coherent structures had not been invented then) be
identified as the lowest order eigenfunction resulting from
an orthogonal decomposition of the type outlined above.

Certainly it would appear, to this point at least, that the
eigenfunctions determined by equation (3) have many of the
desired properties we would associate with coherent
structures. They certainly represent coherent features of
the flow, and are even deterministic. Unfortunately, as
will be seen later, a simple physical representation of the
flow field resulting from them is not always possible.
Moreover, it will be also be seen that there is some
evidence that a given structure is represented by different
order eigenfunctions at different points in its life-cycle.

HOMOGENEOUS AND STATIONARY RANDOM FIELDS

The solution to the integral of equation (3) becomes
considerably more complicated if the field is not of finite
extent, as is the case if it is stationary (temporally) or
homogeneous (spatially) in one or more coordinates. In such
cases, the eigenfunctions in these coordinates reduce to the
harmonic ones and the coefficients are simply the Fourier
coefficients. This would not at first sight appear to be a
complication, since the eigenfunctions do not have to be
determined, but are known a priori. In fact, because the
eigenfunctions are known, the decomposition can be performed
on these directions immediately without solving an integral
equation. There are several equivalent ways of doing this,
but probably the simplest is to Fourier transform the random
field over the homogeneous and stationary variables, then
solve the integral equation for this transformed field to
find the optimal orthogonal functions for the remaining
directions.

For example, suppose the random field to be stationary in
time and homogeneous in the xlcoordlnate. Then the
Fourier transform of the field is given by

- i(klx + @t)

a,(k,wix,, ;) dxdt (10)



We now seek a deterministic function ¥, (X,,%;37k ,w) whose mean

square projection on the transformed random field is a
maximal. As before, we are led to an integral equation,
but this time given by

” 8,02, %, %" ,%X57) ¥, (%, %37k, 0) dx,dx,

Domain

MK, 0) ¥ (x,,X%57K,,0) (11)

%, is the cross-spectrum defined as the Fourier

transform of the cross-correlation over the appropriate
variables, i.e.

& (%, %, %", X 0K, w)

00

- —(zi‘r)leRu(xl'-XI,xz',xz,xa',xa,t'-t)
- 00

.e-l[kl[xl'-xl]+w(1"t]] d (X1 ] _xl) d (t ' —t) (12 )

where the use of g'—xland t!'-t reflects the fact that
the field is homogeneous in the 1-direction and stationary
in time.

Now, instead of the single eigenvalue problem of equation
(3), we have an eigenvalue problem for each frequency and/or
wavenumber combination. Each of the eigenvalues of equation
(11) has now become an eigenspectrum ANKk,w). While this may
present some difficulties in managing the data, they are
more than compensated for by the reduced information
required about the cross-correlation because of the
homogeniety and stationarity. (In our example, the number
of variables has been reduced from 8 to 6.)

As before, we can reconstruct the decomposed Fourier
transformed field, in this case by

Q (K,wix), X)) = 3 a (k,w) ¢*(n)(x,,3k,0) (13)

where the coefficients are determined by



a (k,w) = ][ q, (k,, wix,,X%;) wi["](xz,x3;k,,w) dx,dx, (14)

Domain

(2m)?

and satisfy
<an(kllw) am*(kllw)> = )‘n(kllw) 6mn (15)

Equation (13) can in turn be inverse Fourier transformed to
obtain the original field as

1(klx1+wl]
e

[
U (X),%;,%3) = {!J,lan(k110)¢1[n](xzrx3?erw) dkld“’} (16)

Thus the original field has been completely represented in
terms of the eigenfunctions and their coefficients, and as
before, all of its statistics are intact.

The complications alluded to above then do not arise from a
short-coming of the decomposition itself, since we have
still optimally decomposed the random field. Nor do they
arise from the reconstruction of the field, since again the
original field is faithfully recovered. The problems occur
when we try to reconstruct a physical picture of an
individual eddy. As for the completely inhomogeneous
problem above, it is straightforward to identify the spatial
variation of each mode in the x, and t coordinates since
they are simple Fourier modes. It is for the inhomogeneous
directions, however, that we encounter difficulties because
the eigenfunctions are continuous functions of wavenumber
and frequency. Thus, we can determine the spatial
dependence in the inhomogeneous directions only by first
adding up all the Fourier modes to determine the appropiate
coefficients according to the recipe of equation (16).
Unfortunately, these coefficients are both complex and
random, thus the amount of each eigenfunction to be added
varies, not only from ensemble to ensemble, but from time to
time and place to place within a given ensemble. Thus
without additional assumptions, there is no one way to add
up the pieces to find out what a "typical" coherent
structure looks like.

This inability to say unambiguously what the structures look
like in the homogeneous direction(s) has led many to
conclude that there is a fundamental problem with the
orthogonal decomposition approach. While there may be, this
is not it! The OD has identified for us a set of building
blocks and is telling us that they are not always put
together the same way. To see that this is not so uncommon



in nature one need only consider the waves which occur on
the open sea. The individual swell are made of many Fourier
components, all propagating in different directions and at
different rates. At the instant we observe them, they add
up to form a structure which we identify as a typical wave.
As we watch, the wave evolves and then disappears as the
Fourier components which constitute it change. Does our
inability to provide a precise recipe for the individual
structure prevent us from learning about the dynamics of
waves from studying the interaction of the building blocks?
Of course not, and so most studies of the dynamics of the
sea are based on Fourier analyis. 1In a similar manner, a
study of the interaction of the building blocks yielded by
an OD of a turbulent flow holds forth the prospect of
teaching us much about the dynamics of turbulence.

We can gain considerable insight into the relation of the OD
to coherent structures if we take an single eigenfunction
and its coefficient from the OD, and transform it back into
physical space. Choosing, for example, the lowest order
term (n=0) from equation (16), the velocity field arising
from it, say u®, is given by

0
0 1(kyz+ @)
u@(x,t) = I a,(k,0) $20(x,,%5:k,0) e

=00

dk,dw (17)

Now the time and spatial extent in the x, direction for

which ufm appears coherent will be determined by
the bandwidth of the disturbances constituting it. From
equation (15),

<|an(k1'w)|2> = }‘n(kuw) (18)

Thus it is the eigenspectrum, A\, which will determine

how long and over what distance the contribution of u®

will appear coherent. If A\, is strongly peaked in
wavenumber and frequency, then the contribution will appear
highly coherent, persisting for a time proportional to the
inverse bandwidth in frequency and over a distance
proportional to the inverse bandwidth in wavenumber. If the
contribution of this mode is spread smoothly over a broad
band in either wavenumber or frequency, then its coherence
will be proportionately decreased.

It is the length of time for which a coherent structure
exists which determines its visibility, or our ability to
see it. Similarly, it is the structures spatial extent
which enables us to find it. Thus visibility and spatial
extent are determined for stationary and partially
homogeneous flows by the spectral content of the



eigenspectra.

Let us assume for the moment that the OD does in some sense
reflect what is happening in a real turbulent field, and
that the eigenfunctions obtained really have captured the
coherent features of the flow. Then the reason for the
difference in visibility of coherent structures in high and
low Reynolds number turbulence becomes readily apparent. At
low Reynolds number, the energy (and hence the eigenspectra)
is concentrated in a narrow band of frequency and
wavenumber, usually not too far removed from those
characterizing the instability and transition process. 2as a
consequence, it should be (and is) relatively easy to see
and find coherent structures in these flows. As the
Reynolds number is increased, however, the eigenspectra are
broadened by the non-linear interactions, and the coherent
structures are harder to see and find. This does not mean
that they are not present, only that they are evolving more
rapidly.

RANDOM FIELDS WITH PERIODICITIES

A similar situation to that described above arises when the
random field is periodic in one or more dimensions. Suppose
for example that the flow is axially symmetric so that the
single point statistical quantities are independent of the
azimuthal coordinate, 6, and the two-point statistics

depend only on differences in 6, say 6'-6. Since

the random field must be periodic in 6, it can be shown

that the elgenfunctlons satisfying equatlon (3) are harmonic
functions of 9, i.e.,

e'®, o' o0 otc,

Thus the orthogonal decomposition for axially symmetric
processes reduces to the familiar Fourier series.

As for the homogeneous and stationary cases, it is most
convenient to carry out the decomposition in the periodic
direction first, then proceed with the remainder of the
decomp051t10n. Suppose, for example, the field is
stationary in time, perlodlc in the azimuthal direction,

8, and inhomogeneous in the other two dlrectlons, say X

and r. Then, the Fourier decomp051t10n in the time variable
ylelds the cross-spectrum, which must in turn be represented
in terms of its azimuthal Fourier modes (Glauser 1987),
i.e.,

2m
Ay(x',%,r',r; w,0) = fﬁléi,j(x',x,r',r,9'-9:w)e"“[e"e]d(e'-e)(19)
0
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where §,; is the cross-spectrum and A is its

decomposition into azimuthal modes designated by the mode
number & = 0,1,2, etc.

The orthogonal decomposition is thereby reduced to the
following integral equation,

II $,(x'",x,r',r;u,a) %(x',r':w,a) dx'dr!

Domain
= MNw,®) ¥ (%X, r;jw,) (21)

The eigenspectra and eigenvectors are now functions of the
frequency @ and the mode number ¢, as well as of the
inhomogeneous variables x and r.

In a manner similar to the above, the Fourier decomposed
velocity field, 4; can be represented in terms of the
eigenfunctions by

O (%,riw,@) = a(w,) ¥ (x,r;v,e) (22)

where the coefficients for each realization of the velocity
field are computed from

a,(w,e) = II u;(x,r,9,t) WJm(x,r;w,a)dxdr (23)

Domain

As before, the coefficients are related to the eigenspectra
by

<an(wla)an'(wla)> = )\(wla) 6mn (24)

The instantaneous and 9-dependent field can be recovered
from equation (22) by performing the inverse transforms on
ui, i.e.,

© ©
wex,r,0,t) = F (5 [ [ a0,0)90(x,ri0,e)a0])  (25)
= -0

Immediately, we see that we have the same problem we
encountered above where the individual eigenfunctions
arising from the decomposition in the inhomgeneous
directions to not contribute in a simple way to the velocity
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field, since each eigenfunction is multiplied by a random
coefficient which is a function of the frequency and mode
number. Thus, just as for the homogeneous and stationary
case, it is not possible, without additional assumptions to
identify a single coherent structure, since its composition
will continually evolve. The situation in the 6-direction
is a little better than before, at least conceptually,
since it is easier to visualize the roles of individual
azimuthal modes than it is continuously varying ones. The
zeroth mode is simply the same for all 6, while the

higher order modes have a sinusoidal variation in 6, the
number of oscillations corresponding to the mode number.

It is easy to see that the presence of a coefficient which
is dependent on both mode number and frequency allows an
individual coherent structure to be transformed from one
modal shape to another during its life-time. If we believe
that coherent structures are vortical structures which
evolve in time and space, the OD the would seem to have
retained a feature essential for a successful
representation. This situation can be contrasted with one
where the coherent structure simply stays in one place and
decays, which could conceivably occur only when the flow is
completely inhomogeneous and non-stationary.

Given that the effect of periodicities, homogenieties, and
stationarity is to make the eigenfunctions separable into
harmonic and non-harmonic parts, it is difficult to see any
other way for the OD to be able to describe such an
evolution than by the result we have obtained. This point
is to be emphasized here, because some have suggested that
these random coefficients represent a deficiency of the
decomposition, and have discouraged its use. Certainly, the
problem is more complex than we might have wished, but it
does appear that the kinematics of an evolving flow are
accurately described, and probably in as simple manner as
possible.

PARTIAL DECOMPOSITIONS AND EXPERIMENTS

In spite of the fact that the OD and most of our
understanding of it have been around now for 22 years or so,
there has been no real opportunity to find out what it tells
us about coherent structures in turbulence. This is because
acquiring the information on the cross-correlation or
cross—-spectral tensor throughout the flow field has proven
beyond the vision of most experimenters. The situation has,
however, improved remarkably over the past few years.

First, two experimental programs have been completed which
contain enough information to carry out the decomposition in
three out of the four space-time dimensions necessary for a
complete description (Herzog 1986, Glauser 1987). These are
reviewed in below. Second, the advent of full Navier-Stokes
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computer simulations of simple flows has opened up new
possibilities which are beginning to be exploited (e.q.,
Moin 1984). Unfortunately, a considerable effort has been
spent (or mis-spent) trying to figure out what the eddies
look like, instead of using the information we already have
to study the far more important dynamical characteristics
of coherent structures. Happily, this is also beginning to
change (e.g.,Aubry 1987).

Before reviewing the results of the experimental program, it
is worth reviewing precisely what information is desirable
to fully exploit the OD, and what one gives up by only
having some of it. As is obvious from equations (3), (11),
and (21), sufficient information on the cross-correlation or
cross-spectral tensor is necessary to allow the eigenvalue
problem to be solved. This will yield the eigenvalues and
eigenvectors. Perhaps not so obvious is that then, a
complete space-time realization of the velocity field is
necessary to allow the coefficients of equations (7), (14),
or (23) to be computed. Only when this latter element is
included is there sufficient information to follow the
space-time evolution of the individual structures. It
doesn't require much knowledge of experimental capabilities
to see why the application of the OD has been rather slow in
developing. It should also be easy to see why the
contlnulng development of numerical simulation capabilities
is of great interest in this context. The same can be said
for the development of holographic anemometry techniques
which allow an entire field to be measured simultaneously.

Even in the absence of such complete information, however,
it has been possible to glean a great deal of information
about the nature of these two different turbulent flows by
applying the OD to experiments which provided only part of
the needed information. These experiments will be discussed
in the following sections. The intent here is not to
present the results in detail, which has already been done
elsewhere, but to focus on what even a partial decomp051tlon
is able to say about the character of structures in the
flow. We begin with the experlment of Glauser in a high
Reynolds number ax1symmetrlc jet mixing layer, then consider
the experiment of Herzog in a low Reynolds number pipe flow.
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THE AXISYMMETRIC JET MIXING LAYER

The experiment of Glauser (1987) was carried out in the
mixing layer of an axisymmetric air jet. The Reynolds
number based on jet exit velocity and diameter was 10°,

and the Mach number was 0.067. The exit velocity profile
was flat and the boundary layer at the lip of the jet was
laminar. The experiment was performed using rakes of up to
14 hot-wire probes so that the flow could be simultaneously
measured at many locations. The experiment was performed in
phases of increasing complexity so that the results of
simple decompostions could be studied before carrying out
additional measurements. All of the two-point cross-spectra
involving the streamwise and radial velocity components were
measured on a grid with seven positions across the layer,
and 25 azimuthal positions from 0 - 180°. Thus, in all

5000 cross-spectra were measured so that with the frequency
dependence 10 x 10° cross-spectral entries were used in

the eigenvalue analysis.

The first partial decomposition considered only the radial
and time variation of the velocity field. Therefore, since
the field was stationary in time, the cross-spectrum as a
function of radius and frequency only was used to carry out
the eigenvalue problem, i.e.,

R,

I%(r',r:w)wl‘“’(r:w)dr = \(0) 9" (riw) (26)
R

where R, and R, were chosen to span the mixing layer.

Note that the dependence on x',x, and 6',0 has been
suppressed since these were all fixed. Thus the results are
equivalent to summing over all the azimuthal modes for a
single domnstream position.

Figure (1) shows the eigenspectra for the first three

modes, and shows clearly the dominant nature of the first
which integrates to 40% of the energy in the field. From
even the partial decomposition it is possible to reconstruct
the velocity spectrum using

#,(r50) = 5 A, [90(ri0)f (27)

Figure (2) shows such a reconstruction of the one-
dimensional spectrum for a position near the center of the
mixing layer, and it is apparent that only three terms are
required to completely recover it. The individual terms of
the spectrum at each position can be integrated with respect
to frequency to show what fraction of the variance at each
position across the layer is contributed by each term.
Figure (3) shows the results of such an integration

for the first ternm.
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An even more striking illustration of the ability of the OD
to capture the details of the flow is given by Figure (4)
which shows how a single realization of the real part of
the Fourier transform of the instantaneous signal is made up
by the individual terms. Even the first term alone has
captured most of the salient features, while three terms
recover virtually all. 1In view of this, there really should
be no more talk of the inability of the OD retain phase
information, or of it smearing out significant events.

A reconstruction of the azimuthal variation of the

field, together with the time information, would answer
many question about the behavior of coherent structures in
the jet mixing layer. Unfortunately, because it was not
possible to acquire data at all values of 8 and r
simultaneously, it was not possible to evaluate the
coefficients as in equation (23). Even so, the OD applied
to the azimuthal direction provides some tantalizing clues.
Figures (5) - (7) show the modal constituents of two
components of the velocity correlation tensor, B, and B,.
On the high speed (or inside of the mixing layer), both
normal and Reynolds stresses show almost a complete
dependence on the zeroth order mode (Figures 5a and 5b),
while on the low speed side (or outside) the dependence has
shifted almost entirely to a band of modes centered around
m =5 or 6 (Figures 7a and 7b). In the center (Figures 6a
and 6b), the normal stress component, B, hascontributions
from both m = 0 and the band at m = 5 - 6, but the Reynolds
stress, B, has nearly uniform dependence on everymode but
m = 0. The first three eigenspectra for modes 1,2,3 and 5
are shown in Figure (8 a-d). Immediately apparent is the
fact that the first eigenspectrum for each mode is dominate,
the same being true for modes 4, 6, 7, and 8 which are not
shown here. Also clear is the shift toward lower
frequencies with increasing mode number.

One of the problems with a partial decomposition which does
not include the streamwise variation is that if time is
included, it has contributions from the streamwise
variation because the disturbances are convected by the
mean stream. Thus the shift of the higher order
eigenspectra to lower frequencies probably is consistent
with the dominance of the higher order modes on the low
speed side of mixing layer. Glauser and George (1987b)
were able to use these obvervations to propose a life-cycle
for the generation and decay of the coherent stuctures in
the axisymmetric jet mixing layer. 1In particular, they
suggested that:

"Vortex ring-like concentrations arise from an
instability of the base flow, the induced
velocities from vortices which have already formed
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providing the perturbation for those which follow.
These pairs of vortices then behave like the text
book examples of inviscid rings, the rear vortex
ring overtaking the vortex ring ahead of it, the
rearward vortex being reduced in radius and the
forward one being expanded by their mutual
interaction. The rearward ring is stabilized by
the reduction in its vorticity (by compression)
thus the predominance of the 0th mode on the high
speed side (core region). The forward ring has its
vorticity increased by stretching as it expands in
radius. This narrowing of its core while the
radius 1is expanding causes the vortex to become
unstable, thus the predominance of the 4th-6th
modes from the center of the shear layer outwards.
The continued effect of the rearward vortex on the
forward one and the interaction of the now highly
distorted ring with itself, accelerates the
instability until its vorticity is now entirely in
small scale motions, in effect an energy cascade
from modes 4-6 all the way to the dissipative
scales. This incoherent turbulence is swept from
the outside where it has been carried, back to the
center of the mixing layer as the still intact
rearward vortex passes. It is this collecting of
the debris, both small scale vorticity and fluid
material, which has been recognized as 'pairing'.
The entire process is repeated as a new rearward
vortex overtakes and destabilizes the one ahead of
it."»

In order to evaluate whether or not this plcture is correct
will require application of more complete versions of the
OD. The most useful and straight-forwared experiment would
yield information on enough points in 6 and r simultaneously
to enable the a (w,) to be computed. Then the
instantaneous field could be reconstructed in order to see
the sequence by which the various modes contribute in time.
Certainly there is room here also for a refined application
of the shot-noise decomposition, the discussion of which has
been avoided in order to avoid confusing it with the oOD.
Finally, and perhaps most interestingly, the decomposition
should be applied to the streamwise direction so that the
space-time evolution can be studied together without the
problem introduced by the mean convection.

THE VISCOUS SUBLAYER

The second and last experiment to be considered here is that
carried out by Herzog (1986) in the wall region of low
Reynolds number turbulent pipe flow. The experiment was an
extension of the earlier one of Bakewell (1966) The
experiment was realized in a 12" pipe flow using glycerine
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as the working fluid. The Reynolds number based on pipe
diameter and bulk flow velocity was 8750, and the flow was
tripped at the pipe entrance to insure fully developed flow
at the measurement locations. All of the measurements were
taken below y* = 40. While the experimental techniques
were quite different than those used by Glauser (1987), the
overall complexity of the experiment was of comparable
magnitude.

In Bakewell's original experiment only the cross-
correlations involving the streamwise velocity component
were measured as functions of the time, radial and spanwise
coordinates. Herzog measured all components of the cross-
correlations, and included the streamwise dependence, but
not the time. Therefore all correlations in the latter
experiment correspond to zero time lag. Thus the measured
correlations were functions of two homogeneous coordinates,
r, and r;, representing the streamwise and spanwise
separatlons, and the inhomogeneous coordinates, xg and
X,. (Note that it was decided to treat the spanwise
direction as homogeneous instead of utilizing the azimuthal
symmetry of the flow because of the small thickness of the
sublayer relative to the pipe circumference.)

Figure (9) shows lowest order eigenvector (denoted by Herzog

as Al) while Figures (10 a and b) show the cross-

sections through the k, and k, axes of the first three
eigenspectra. As w1th Bakewell's and Glauser's experiments,
the first eigenspectrum is dominant at all but the very
hlghest wavenumbers. Figures (1la through d) show how the
variances of the three velocity components and the Reynolds
stress are distributed between the first three terms of the
OD. Particularly of interest is that the first term
accounts for almost all of the streamwise velocity variance
and the Reynolds stress near x,* = 20.

The off- ax1s peak in the lowest order eigenspectrum (Figure
9) at k = 0.0035 corresponds to a span-wise wavelength

in wall units of A\ = 286. (Note that Herzog defines k=1/A
omitting the usual 2m.) Herzog notes that the distance
between the nodes associated with this wavelength would be
half of this value which is very close to the oft- -reported
wall streak spacing. It is also clear from the bandwidth
associated with the streamwise wavenumber variation that the
streamwise extent of the coherent structure is very large
indeed, perhaps as much as an order of magnitude greater
than 1ts spanwise extent. It should be noted that these
observations are not dependent on an ad hoc application

of the shot-noise decomposition, but depend only on the
original hypothesis which led to the OD itself.

Note that it can not be inferred directly from the results
of the OD that there are counter-rotating rolls of the type
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inferred originally by Bakewell (1966) and subsequently
using somewhat different arguments by Herzog (1986). These
inferences depended entirely on the introduction of other
assumptions about the field and on the use of the shot-noise
decomposition. Whether or not such rolls are really present
depends very much on the nature of the coefficients of the
reconstructed field, which in this case will depend on

ki/k;, and also w since the field is stationary. If, in fact,
the eigenfunctions add up in constant phase as these authors
suggest, then there will be counter-rotating rolls. On the
other hand, when the full time-dependence of the stationary
field is included with effect of the streamwise and spanwise
homogeneities, the longitudinally extended and highly
coherent structure may appear quite differently. It might
appear so different in fact that it is scarely recognized as
such in a real flow.

It should be clear that, as for the mixing layer, the part
of the puzzle as to what the OD is really telling us can be
filled in only by determining the coefficients for a
realization of the flow field. Only by doing so can we

see visually how the building blocks are being added by
the flow itself. This determination, as for the mixing
layer above, requires information from many points
simultaneously. Certainly this would seem well within the
scope of modern numerical simualtions.

SUMMARY AND CONCLUSIONS

The elements of the application of proper orthogonal
decomposition techniques have been reviewed. Particular
attention has been placed on what can be gained from the
decomposition, and what it can tell us about the nature of
coherent structures in turbulence. Two experiments have
been used to illustrate the theory, one by Glauser (1987) in
the axisymmetric jet mixing layer,and the other by Herzog
(1986) in the viscous sublayer of a turbulent pipe flow.
Both experiments show clear evidence of the existence of
coherent structures, and give a strong indication that they
play an important role in the dynamics of the turbulence.

There are, of course, many ways to detect the presence of
coherent structures. If detection were the only
contribution of the orthogonal decomposition, it would not
be worth the effort. What the orthogonal decomposition
provides is a mathematical description which can be used for
further analysis. The results of a decomposition can be
used in the governing equations to understand the
interactions of the flow with itself. Or they can be used
to study the effect of coherent structures on other
phenomena of interest, like noise or mass transport (v.
Arndt and George 1974). The eigenfunctions can be used as
the basis for other dynamical calculations in order to
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capture the essence of the turbulence in a simplified (and
often more instructive ) analysis (v. Aubry 1987). Finally,
the orthogonal decomposition can be applied directly to the
Navier-Stokes equations to develop a hierarchy of equations
which can be solved directly with appropriate closure models
for the higher order terms. This latter may be the most
important of all, for it holds forth the hope of
engineering calculatlons which include in a direct manner
the dynamical influences of the coherent structures.
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