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INTRODUCTION

It is difficult to trace the origins of the ideas of self-
preservation and similarity solutions, and their application to fluid
mechanics. They appear to have first been applied to turbulence by
Zel’dovich (1937), but had been used long before in laminar boundary
layer theory by Blasius (1908). Self-preservation (or similarity) is
said to occur when the profiles of velocity (or any other quantity) can
be brought into congruence by simple scale factors which depend on only
one of the variables. A consequence of self-preservation is that the
dynamical equations become independent of that variable and are thereby
reduced by one variable in their functional dependence. A major benefit
occurs if the original equations are two-dimensional or axisymmetrical
since self-preservation reduces the governing equations to ordinary
differential equations.

More physical insight into the dynamical significance of self-
preservation can be had if an alternative definition is used. A flow is
said to be self-preserving if there exist solutions to its dynamical
equations and boundary conditions for which, throughout its evolution,
all terms (of dynamical significance) have the same relative value at
the same relative location. Thus self-preservation implies that the
flow has reached a kind of equilibrium where all of its dynamical
influences evolve together, and no further relative dynamical
readjustment 1is necessary. It should be clear that no flow can be
expected to begin in a self-preserving state (unless particular care
were taken in its initiation) since some dynamical readjustment is
always necessary to smooth out the details of the initial conditions
(infinite or very large gradients, for example). Self-preservation is
therefore an asymptotic state which a particular flow attains once its
internal readjustments are complete.

There has been widespread belief in the turbulence community (v.
Townsend 1976) that flows achieve a self-preserving state by becoming
asymptotically independent of their initial conditions. Thus, for
example, all jets should asymptotically grow at the same rates, all
wakes should be independent of their generators, and so forth. Such an
argument is a logical consequence of a belief that ‘turbulence forgets
its origins’, and can be modeled by its Tlocal properties. It is this
belief which forms the basis of all single point models for turbulence.
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Unfortunately, over the past two decades there has been increasing
experimental evidence that such a simple picture is not correct, and
that, in fact, even flows which appear to scale in similarity variables
(1ike centerline velocity and half-width) are dependent on their initial
conditions. For example, Wygnanski et al. 1986, show have very
different growth rates for the wakes behind cylinders and screens, even
though both appear to be self-preserving. Similarly, a variety of
growth rates and profiles have been reported for jets, plumes, mixing
layers and most other free turbulent shear flows by different
experimenters. While some dismiss these results as being inconclusive
or due to improper experimental techniques, others use them to argue
that the ideas of self-preservation are not relevant to real turbulent
flows.

If the ideas of self-preservation were to be abandoned for free
shear flows because of conflicting experimental evidence, it would not
be the first time for turbulence. Such was exactly the case for the von
Karman-Howarth (1938) analysis of decaying turbulence, and its failure
to describe the actual decay observed for the turbulence behind grids in
wind tunnels. It was this failure, and Batchelor’s subsequent
reanalysis {Batchelor 1948), which argued that turbulence could never be
scaled by a single Tlength scale, and led to our contemporary view of
turbulence at high Reynolds numbers as a multi-length scale phenomenon
requiring at least separate scales for the energy-containing eddies and
for the dissipative scales. Kolmogorov’s ideas for the local self-
preservation of the smallest scales and the concept of the universal
equilibrium range in part gained their acceptance because of the failure
of the more general self-preservation arguments.*

THE PurRPOSE OF THIs PAPER

The fundamental premise of this paper is that the concept of full
self-preservation does represent an important concept in turbulence
theory. It will be argued that the problems presented by the
experiments lie not in the experiments themselves nor in the concept of
self-preservation, but rather in the restrictive manner in which the
self-preservation analyses have been carried out. It will be shown that
a more general self-preservation analysis leads to the conclusion that,
contrary to previous belief, there exists a multiplicity of self-
preserving states (for a particular type of flow) and that each state is
uniquely determined by its initial conditions.

The more general type of analysis will be carried out in detail for
the axisymmetric jet and the plane wake, and shown to be consistent
with the experimental observations. Application of the technique to the
axisymmetric wake will be seen to lead to some interesting new
possibilities, also anticipated by experiments. In addition, the
results of another Took at the self-preservation analyses of homogeneous
flows will be cited which raise serious questions about our
understanding of small scale turbulence.

*As will be noted later, these analyses and the conclusions drawn from
them have recently been challenged.
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A consequence of these new analyses will be the recognition that
several kinds of self-preservation are possible. In particular:

(i) Flows can be fully self-preserving at all orders of the
turbulence moments and at all scales of motion.

(ii) Flows can be partially self-preserving in that they are self-
preserving at the level of the mean momentum equations only,
or up to only certain orders of the turbulence moments or at
certain scales.

(ii1) Flows can be only locally self-preserving in the sense that
the profiles appear to scale with local quantities, but the
equations of motion do not admit to self-preserving solutions.

The recognition of these various Tevels of self-preservation which
are possible leads to the following conjectures as to which will, in
fact, asymptotically describe the flow:

Conjecture I: If the equations of motion, boundary and initial
conditions admit to self-preserving solutions,
then the flow will always asymptotically behave in
this manner.

Conjecture II: If the equations, boundary and initial conditions
governing the flow do not admit to fully self-
preserving solutions, the flow will adjust itself
as closely as possible to a state of full self-
preservation.

While neither of these conjectures are proven, they are believed to be
consistent with the body of turbulence data. Conjecture II includes
among 1its possibilities partial self-preservation {as will be
demonstrated later) and local self-preservation.

It will further be argued that there is a Tlink between self-
preservation and coherent structures. In fact, it will be suggested
that it is this 1ink which may provide the clue to the proof of the
conjectures above and to the turbulence problem in general.

THE TURBULENT JET

The mean flow of an axisymmetric Jjet issuing into a quiescent
environment (Figure 1) is described to first order by the equations

au N _ 1 3 —
U ax t v 3y - r ar "W (1)
and
au  19rV _
axtrar © 0 (2)
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The second equation can be solved to yield the radial velocity as
r
1 ay ,
vV = - Io [ Ix ] dr (3)

This can in turn be used to eliminate V from equation (1).
%
m ]

Figure 1. Sketch showing development of jet.

The momentum equation (1) can be integrated across the flow to yield

© —_
I o P
dx J Uz +u 2 rdr = 0 (4)

-

The second order terms have been retained here since they can be
important in evaluating experimental data. It follows from integration
that the momentum integral must be constant and equal to the rate at
which momentum is added at the source, say oM, where p is the density
and M, is the kinematic momentum rate. Thus,

° _ v
M°=27IJ [U2+u2—";" ]rdr (5)
0



We seek self-preserving solutions of the form

U=1U(x) f(n) (6)
and -uv = Rg{x) 9;,(m) (7)
where n=r/§ (8)
and § = 8(x) (9)

The profile functions f(n) and g,,(n) account for all of the radial
variation, and their existence implies that the profiles of velocity and
Reynolds stress at every downstream location can be collapsed into
single curves. All of the streamwise variation has been incorporated
into the functions Ug(x), Rs(x) and &(x) which must be determined so
that all of the terms in the dynamical equation maintain the same
relative balance at the same relative Jocatjon. If such solutions are
possible, an equilibrium between terms has been established and the flow
evolves in a highly structured manner so that the flow can be said to be

self-preserving.

THE TRADITIONAL APPROACH

It is at this point in the analysis that the crucial assumptions
are usually made which dictate the classical solutions for the self-
preserving jet. For example, Monin and Yaglom (1972) argue that for a
jet issuing from a point source of momentum, the scale quantities Uy, R
and & must be entirely determined by the rate at which momentum is added
at the source, pM,, and the distance downstream, x. That is,

Ug = Ug(x, M) (10)
Re = R (x,0M,) (11)
and 5 = 5(x,0M,) > (12)

On dimensional grounds it follows immediately that

§ ~ x (13)

Uy - M/ 2/x (14)
and

R, ~ M /x2 ~ U2 (15)
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It is clear at even this early point in the analysis that if the
equations admit to self-preserving solutions at all, they must spread
linearly and the centerline velocity must decay as x1. Moreover, only
a single solution is possible as there are no other parameters, thus the
idea of a ‘universal’ asymptotic behavior for jets which is independent
of the details of the initial conditions.

Another approach which has commonly been used (v. Townsend 1976,
Tennekes and Lumley 1972) does not begin with dimensional analysis, but
equally predetermines the final form of the solution by arguing that the
solution depends only on a single length scale and single velocity scale
so that R, = UZ. Interestingly enough, Hinze (1975) avoids both these
lTines of reasoning, but then forces the solution to the same final form
by invoking an eddy viscosity assumption.

Carrying out the appropriate differentiations of equations (6)

through (9) and substituting into the governing equations (1) through
(3) yields the transformed equations as,

]
du du uz ds| | f’ - -
—S 2 - —5 S —_
[Us dx } f {[Us dx ] ¥ 2[8 dx] } n Jo F ndn

- [%;] (ﬂgéz)' (16)

This can be muitiplied by §/UZ to obtain,
sau) o, _ s an], fa8]] & (7 .-
U dx U dx dxjf n Jo nen

) B%] (ngéz)’ (17

Note that for a self-preserving solution to exist, all of the terms in
brackets must have the same x-dependence..

The momentum integral, equation (5) can be similarly transformed to
yield

0

M, = [vzs2]2n f 2 (n)ndn (18)
0]

where the second order terms have been neglected. (Note that this
neglect is not essential to the subsequent arguments and they could have
easily been retained by scaling them with Rg.)



The restrictive nature of the assumptions described above now
becomes clear, for if either § ~ x or R, ~ U2, all of the terms in
brackets must be constant since dé/dx ~ constant or R, /U2 ~ constant
respectively. For the latter, the remaining constraints for self-
preservation are,

§ du
U, a;i ~ constant (19)
and
ds
x constant (20)

Equation (20) requires § ~ x while equation (19) admits to solutions of
the form U, ~ x™ where m is at this point arbitrary. The momentum
integral constraint, however, requires

[ug 82] ~ constant (21)

from which follows that m=-1 is the only possible self-preserving
solution.

Thus both traditional lines of reasoning have yielded the following
self- preserving forms:

nl/2
U= ) (22)
-uv = g% 9:2(n) (23)
§=x (24)

where the constant of proportionality in-equation (24) is chosen as
unity, the scale factor being absorbed into g,,. The governing equation
reduces to

Fm o ,
_fz_f_and,I:(ng ) (25)
nJ, n

Thus there is only one solution which represents the jet from a point
source of momentum.
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REAL JETS

Jets which occur in nature are not the result of pure sources of
momentum, but rather emanate from sources of finite dimensions providing
also mass and energy to the flow at a finite rate. Measurements in jets
generated by such sources, however, often appear to asymptotically
exhibit self-preserving behavior. It has been argued that at large
distances from the source, all jets should become asymptotically
independent of the details of the source and depend only on the rate at
which momentum is added and the distance from the source. Thus all jets
have been expected to behave as jets arising from a point source of
momentum only (v. Fischer et al. 1979). If all jets become
asymptotically independent of the initial conditions, then it is obvious
that they must all decay at the same rate and exhibit the same shape
(once an adjustment for origin has been made), and these must correspond
to the equivalent point source of momentum.

A rationale for the above can best be illustrated by considering a
jet which has both a finite source of mass, say pmg, and momentum, pM,.
The rate of flow of mass at any cross-section of the flow is illustrated
in Figure (2). As the distance from the source is increased, so does the
net rate of mass flow at any cross-section due to entrainment. Thus at
large distances from the source the mass flow arising from entrainment
swamps the initial mass flow. This is quite unlike the momentum (or
momentum integral) which is constant. Thus it can be argued that
asymptotically the initial rate of mass addition is unimportant.
Similar lines of reasoning can be invoked for other kinds of source
conditions, including various kinds of forcing, since it can be argued
that the turbulence should "forget" its origins as it evolves, and the
starting conditions should be overwhelmed by subsequent developments.

m/m

increase due to
entralnment

Figure 2. Variation of jet mass flow with downstream distance
showing effect of entrainment.
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been increasing evidence that there is a flaw in them somewhere. True,
real jets do appear to reach a self-preserving state in which the mean
velocity profiles collapse when scaled in local variables, say
centerline velocity and 1local half-width. In fact, there is
considerable evidence that most, if not all, of these scaled profiles
look alike, even when source conditions vary. Unfortunately, there is
also considerable evidence that the growth rates of Jets arising from
different source conditions are also different, a fact that is not
consistent with the theory which argues that all jets should be
asymptotically independent of source conditions.

Clearly there is a problem here! Ejther the experiments are in
error, or the theory is wrong or inapplicable. Certainly it is not easy
to make good measurements in free jets because of their sensitivity to
external boundary conditions and because of the relatively high Tocal
turbulence intensities present (v. Beuther et al. 1987). Nonetheless,
it is compelling that even measurements made by single investigators
using identical techniques show substantial differences when source
conditions are varied (v. Gutmark and Ho 1983).

If the theory is incorrect, why do the measurements in fact confirm
a self-preserving state, albeit a multiplicity of them? Is the problem
in the plausibility arguments which relate real Jets to the sources of
momentum only? Or are there more fundamental problems in the analysis
as originally posed? The answer to both of these questions will be seen
below to be yes!

SELF-PRESERVATION OF JETS: ANOTHER Look

We return now to the original formulation of the problem. Without
making any assumptions about the source conditions, we can reverse the
order of the preceding  arguments and begin by substituting equations
(6)-(9) directly into the governing equations (1)-(3). The results are,
with a single exception, identical to equations (17) and (18), i.e.,

Ul
§ dul, [5 du, @ﬁj e
[ﬁs dx Jf [ﬁs d | * 2 dx| n 0 f ndn (17)

) H (n9,,)’
Uz n

and

0
[uz52] 2x l f2 ndy - M, (18)

The exception: the functional dependences of Uss Ry and 6 remain to be
determined.
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From equation (18) it follows immediately that U; ~ §71, say
u, = BM/2571, (26)

Using this, equation (17) reduces to

] " ,
dé f’ - = R !
[Ei (F2 + ;7—[ £ ndn) = [Uf?] —11—("9n ) (27)
J 0 S
and
0
2n | 2 ndn = 1/B2 (28)
Yo

Thus the condition for self-preservaticn reduces to

ds Ry

x vz (29)

It is clear that if initial conditions are to enter the problem,
they must do so through the quantities Ug, Ry and §.  Thus those
arguments which reduced to ’‘peint source of momentum only’ solutions
must be avoided. Consider, for example, a point source of mass and
momentum. The scale quantities are now functionally described by,

Us = Ug(x, My, m,) (30a)

Rs = Rs(x, My, m,) (30b)
and

§ = 6(x, Mo’ mo) (30C)

where pm, and pM, are respectively the rates at which mass and momentum
are added. No longer is x the only length scale since a new Tength
scale L can be defined as,

L= ﬁ—&72 (31)

On dimensional grounds for our example, solutions which reduce to
those for a point source of momentum as m, + 0 can be written as,
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c
)
"
b3 |°=

1/2
F,(x/L) (32a)

=
@
I
X

- 33 Fo (/L) (32b)

and

(<2}
|

= x Fy(x/L) (32¢)

The plausibility arguments given above for the asymptotic and
universal applicability of the point source of momehtum solution can now
be simply expressed as,

Tim F, - 1 (33a)
x/L + o
1im F, + 1 (33b)
x/L + o
Tim Fy » A (33¢)
x/L » o

where A = dé/dx must be a universal constant, previously chosen as
unity. If this argument is indeed correct, then the substitution of
these forms into the equations (27) and (28) should yield differential
forms of the x-dependent coefficients, the solutions to which must be
asymptotic to equations (33) regardless of the initial conditions.

Differentiating equation (32c) and substituting together with
equations (32a) and (32b) into the transformed momentum equation yields
the condition for self-preservation as,

1+[5]5=—'~—F2— (34)

Clearly this equation 1is satisfied not just for the Timiting
conditions of equations (33) but by all solutions satisfying,

Fs ~ Fo/Fy2 = (x/L)m (35)

where the exponent m and the constants of proportionality are arbitrary!
Only one of these (m=0) corresponds to the x-dependence of the ’‘point
source of momentum’ solution. Even for this solution there are many
source dependent possibilities for the constant of proportionality in
equation (35) so that different types of jets can grow at different
rates. Thus all solutions diverge farther from the ’point source of
momentum’ solution as x increases.
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If one abandons even the functional form of the point source of
momentum solution as in equations (32a) - (32c), it is easy to see that
there are many other classes of functions satisfying the self-
preservation constraint of equation (29). In fact, any x-variation of
dé/dx proportional to the variation of R./U2 can be self-preserving, at
Jeast at the order of the mean momentum equation. Thus self-preserving

jets could spread by any power of x, exponentially, or any other
function, at least to this order.

Exponential spreads have been observed by Reynolds and co-workers
at Stanford (v. Lee and Reynolds 1985). Even the oft-observed "linear"
spread might represent only the first term in an expansion of the actual
spreading function. The multiplicity of spreading rates observed by
different experimenters might also have been expected since, in
principle, no two jets with different starting profiles need be alike.
Also, the familiar experiments with "top-hat" jets which are often
jnterpreted as approximations to ‘point-source of momentum only’ jets,
are, in fact, not approximations at all, but have their own unique

character. Hence much of the confusion in the Titerature.

Wwhat determines the functional form of &(x), and thereby the
spreading rate? Alternatively, and somewhat more narrowly, what
determines the exponent m? The analysis at this level can provide no
insight. What is needed are additional physical constraints, some of
which in this case arise from consideration of the second order
equations (e.g. kinetic energy) as shown below.

SELF-PRESERVATION OF TURBULENCE QUANTITIES

Since the mean momentum equation involves the Reynolds stresses it
is reasonable to ask what constraints the equations governing these
guantities impose on the self-preserving forms. While equations can be
written for each of the Reynolds stresses individually, it will suffice
here to examine only the kinetic energy equation.

For the high Reynolds number turbulent jet, the kinetic energy
equation reduces to second order to

l = 1 =
J5 q 95 q
2 2 1 1 - — 1 =
U-5x_*+V or - - 15 vV 5 @) - 35 (U + g )
— U _ 3 _ -5 9V
TWar T UWax T Viar € (36)

where q2/2 represents the kinetic energy per unit mass of the turbulence
and € is the rate of dissipation of turbulence energy per unit mass.
While all of the terms are important somewhere in the jet, we only need
to consider the underlined terms here.
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We again allow turbulence and mean quantities to scale
independently, and assume self-preserving forms as follows:

!

-uv = Ry (x)g,,(n) (37)

3 @ = K (k(n) (38)

(v + 1T = T 0t (39)
€ = D, (x)e(e) (40)

where K,, T, and D, represent new scale functions for the kinetic
energy, third moments and dissipation respectively. Substitution of
these equations into equation (36) yields for the underlined terms,

%ﬁ d—s]nfk’ P

|
]
=

[u.K, "] fk

. L] ()", .. (41)

+ ngi] g,,f" + ... - [Ds]e

Dividing by K U /6 yields,

5K’ dé
% O il ’
[ K, J fk [dx} nfk’ + ...

T, | (nt)’ [R } [o § }
- | —=s— + |== fr - [S—le + ... (42
[Ks Us} n Ks 12 Ks Us (42)

Since for self-preservation, all of the bracketed terms must have
the same x-dependence, we must have in particular,

s _ R,

dx ~ K, (43)
and

ds§ SKE'

dx = K (44)

However, from equation (29), d§/dx ~ R /U2. Therefore equation (43) can
be simultaneously satisfied only if

51



Ks ~ U2 (45)

Equations (45) and (26) together satisfy equation (44). Thus we are
left with

dé R D.§ T

= _ S8 _ =s_ _ S
dx " Uz TUF T3 (46)

Therefore, the spreading rate of the jet depends on the manner in
which the energy dissipation and transport terms scale with respect to
the mean motion, not too surprising a result. Note that all of the
coefficients remain a function of the initial conditions.

Further reduction of the relationships of equation (46) requires
additional equations, or dependence on ad hoc assumptions. An obvious
choice 1is to argue that all second order quantities should scale
together. Thus we immediately have R, = UZ and linear growth (but at a
rate determined by the initial conditions). It will be useful for
future reference to look at what happens if instead we choose forms for
the dissipation or transport scale functions. For example, for the
dissipation we can choose either:

Case (i): D, ~ v U 2/82 (47)
or

Case (ii): D, ~ Ug3/6 (48)
We are accustomed (v. Tennekes and Lumley 1972) to associate the first
with low Reynolds number turbulence where the energy-containing eddies
are affected directly by viscosity, and the second with high Reynolds
number turbulence where viscosity has no direct effect on the energy

containing scales.

The results are,

Case (i): g% ~ 51; ~ Iﬁ—3~ y/Mol/2 = constant (49a)
S s
and
Case (ii): d R L constant (49b)

dx " U2 T 0,3

where the constants in both cases depend on the details of the initial
conditions. The two scenarios differ, however, in that for case (i) the
spreading rate (as mﬁ;fured by dé/dx) varies inversely with the initial
Reynolds number, M */¢/v, whereas for case (ii) the Reynolds number
dependence (if any) is more subtle. This latter weak dependence appears
to be more consistent with the experimental observations in high
Reynolds number jets, and would appear to confirm, for now, the
conventional wisdom regarding the dissipation.
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Thus for any of the above assumptions we have

5§~ x ' (50a)

Ry ~ U2 (50b)

s ~ U2 (50¢)
and

D, ~ U3/x (50d)

the Tatter resulting from the constancy of the Reynolds number U,§/v as
the flow develops. Therefore self-preservation to the second-order is
possible, and the flow can, in fact, be characterized by only a single
length and velocity scale, the assumption of the traditional analyses.
It is important to recognize, however, that the constraints derived
above do not require that all jets look like the hypothetical ’point
source of momentum only’ jet. Nor do they even require that all Jjets
grow and decay at the same rates! This is because that even though the
coefficients of equations (27), (28) and (42) are x-independent, they
can still depend on the details of how the flow is generated.

It is important to ask whether jets with differing growth rates can
have different profiles for f, g,,, k, etc.? This question can be
answered by examining the momentum equation (27) which can be reduced to

n

Litd -~ _|Ry dé 1] (n9;,)’

—F2 _— = |28 (== 9127
fr L £ ndn [U; (3 } . (51)

The term in brackets is now x-independent but can vary from flow fto
flow! Therefore all self-preserving jets will have the same velocity
profile shape, f(n), and the same Reynolds stress profile shape, g9,,(n).
The scale factors for these quantities may differ, however, so that
depending on how the profiles are normalized they may differ by an
amplitude factor. For example, if the mean velocity and Reynolds stress
are normalized by centerline velocity and centerline velocity squared
respectively, the mean velocity profile will look the same for all jets.
The Reynolds stress profiles will the same shape, but will have an
amplitude factor which varies from jet to jet because of the factor
[(Rg/U2)/(d6/dx)] which has been absorbed into it.

While the mean velocity and Reynolds stress profiles must maintain
the same relative shape from flow to flow, this is not the case for the
other turbulence quantities. This is clear from the more complicated
nature of equation (42) in which the coefficients are determined by the
initial conditions in a way which allows the terms to differ relatjive to
each other, resulting in different solutions for each flow. Thus, for
example, a top-hat jet should not be expected to have the same profile
of kinetic energy as one starting from a fully developed pipe flow, even
though their mean velocity and Reynolds stress profiles will have the
same shape.

Finally it should be clear from the conditions for self-
preservation of equations (46) and the subsequent discussion that there
may exist a variety of ways in which the jet can develop in a self-
preserving manner. The linear spreading rate has been seen to result
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when all of the moments ‘settle—in’ together. It may be possible to
modulate this development at the source by excitation so that all of the
flow quantities vary in a self-preserving (and possibly exotic) manner.
It might be interesting to re—examine some of the experiments on
coherent structures in forced and non-circular jets from this
perspective.

The experiments of Binder and Favre-Martinet (1981) on forced
axisymmetric and two-dimensional jets i1lustrate both the theory
presented here and the possibilities for future work. While the forcing
affected only the virtual origin of the axisymmetric jet, it
dramatically affected the spreading rate for the planar jet. The scaled
mean velocity profiles for each case, however, remained the same,
regardless of forcing. The analysis can easily be extended to be two-
dimensional jet with equivalent results -- a dependence of spreading
rate on initial conditions, but with profile shapes independent of them.
Figure (3) shows the effect of the initial conditions on the variation
with distance of the centerline mean velocity for the two-dimensional
jet.

e
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Figure 3. Variation of two-dimensional jet centerline velocity
with downstream distance showing effect of forcing.
(from Binder and Favre-Martinet 1981). Theory
predicts inverse square root dependence for full
self-preservation.

THE PLANE WAKE

Another turbulent free shear flow which has been extensively
investigated is the turbulent far-wake of a drag-producing obstacle as
illustrated in Figure (4). Recent experiments by Wygnanski et al. (1986)
show clearly that the wake characteristics are not universal as expected
from the classical analysis (v. Sreenivasan and Narashima, 1982). In
the following paragraphs we shall briefly outline the analysis for a
plane wake and show that, as for the jet, the observed features are
consistent with self-preserving motions which are determined by their
initial conditions.
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Figure 4. Sketch showing development of wake behind
drag-producing obstacle.

The governing equation for a plane wake in a uniform stream to
first order are (Townsend 1976),

Uo Gz (U-0,) = - 5w (52)

where U, is the speed of the free stream. The momentum integral to
first order is given by

4 fmm Ug(U-Ug)dy = 0 | (53)

which can be integrated to yield

[: Ug(U-Ug)dy = U2 6 = M/p (54)

where 8 is defined to be the constant momentum thickness and M is the
momentum defect per unit length on the wake generator.

Self-preserving solutions are sought of the following forms:

U-U, = U (x)f(n) (55)
—uv = Ry (x)g,,(n) (56)

and
n =r/6 where § = §(x) . (57)
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These can be substituted directly into equation (52) to yield

du U, d§ R

s - s =2 ro- | 3s

[Um ax ]f [U°° 5 dx] nf [8 ] dy2 (58a)
which after rearranging can be written as

sl fd] e [ R ]
o 8- o - s o

Similarly, equation (54) becomes,

Lol
[u,U,8) J f dn = U2 6 = const (59)

-

Since all of the x-dependence is in the bracketed terms and since
the right-hand side of equation (59) is constant, we must have

U, /U, ~ /8 (60a)
or

U, /U, = B 8/6 (60b)

where B is the constant of proportionality. Thus equation (58) reduces
to

_ |9 iy o= [ Rl g
4] o i
Therefore any &, R, and U satisfying

ds R,
dx ~ Ul (62)

represents a possible self-preserving solution of the momentum equation.

Equation (61) can be integrated to yield
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R dé, 1
= |—8 (—
nf [u,,us ax) ] 912 (63)
Thus self-preservation requires the equivalent condition,

R ds, -1
—S (= _
TR ) constant (64)

THE POINT SOURCE OF DRAG

The traditional analysis supposes that the wake is generated by a
point source of drag only, and is therefore completely characterized by
the kinematic drag, UZ8, and the distance downstream, X. Thus on
dimensional grounds,

U, = U (x,U28) (65)

and

Oon
n

§(x,U29) (66)
subject to the momentum integral constraint,
U6 ~ U8 (60)

From equation (65), the only possibility on dimensional grounds is

1/2
U, - [9%3] (67)

Therefore from (67) we must have,

§ ~ (6x)1/2 ) (68)

It has been commonly believed that all plane wakes, regardless of
generator, should asymptotically reduce to this single and universal
‘point source of drag’ wake. It is easy to see, however, that (Tike the
jet) as soon as additional parameters arising from the details of the
initial conditions are allowed into the dimensional analysis statements
of equations (65) and (66), a considerably wider variety of possible
solutions are possible. Each of these solutions will retain in some way
the features imparted indelibly to it by its initial conditions. This
will be discussed in further detail below.
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WAKES GENERATED BY REAL SOURCES

It is clear from equation (63) that variety of self-preserving wake
profiles are possible as long as equation (62) is satisfied. As was the
case for the jet, only some of these profiles are consistent with the
self-preservation of second order quantities. To see this consider the
equation for the kinetic energy balance given to first order by

1 J—
a - qz —
2 d 1— p — au
e % |- gy - — o
Up Ix 3y [ 2 q2v p ] uv 3y € (69)
Defining,
1 =
3 @ = K (xk(n) (70)
1— pv
-5 v - E Tt (70b)
P
€ = Ds(X)e(ﬂ), (70c)

and using equations (55)-(57), yields the following transformed equation:

dK K, d§|_,, T.l,, |IRU ,
(71a)

or equivalently,

s dk .| (del . _ | Te |4 — |[Ys)Re » {Ds8
[Ks dx]k [dx]nk = [Ksu,jt [[UKS 927" - lu )

(71b)
Thus self-preservation of the second order quantities requires,
d§ & dK
&K ax (723)
ds _[u,] Ry
ax ~ UJ K, (72b)
and
ds (Y| T5 _ [Ys) Ds
dx [Uw] KSUS [Um KSUS (72C)
Equations (62) and (72b) Jead immediately to the conclusion that
K, - U2 (73)

58



from which it follows from equations (60) and (72c) that

ds  [6] R, (8 T 6] D6
-fe-0%- 74

Again we are confronted with the need for additional equations or
ad hoc assumptions. We can assume Ry ~ K, Dy ~ U3/§ or Dy ~ vU2/62,
and all lead to the same x-dependence (because U, 8/v is constant from
the momentum constraint). Thus, dé/dx ~ 8/8 from which it follows that

§2 ~ 6x (75)

(Note that as for the jet, the latter assumption for D, yields a growth
rate which depends inversely on Reynolds number.)

Thus, even without the restriction to a point source of drag, the
self-preserving wake must grow as

5 ~ (ox)1/2 (76)
From equation {62), it follows that the velocity scale function, Ug, is
given by

U, ~ Uy/(x/8)1/2 (77)

Note that the coefficients in equations (75) and (77) are not uniquely
determined by the analysis (as for the point source wake) but depend on
the spreading rate (and thus on the initial conditions).

There are other interesting consequences of the dependence of the
wake development on initial conditions. Examination of equation (63)
reveals that the profiles of mean velocity and Reynolds stress (when
scaled with local velocity deficit and width) will be the same for all
wakes (to within a constant factor determined by (R,/U2/dé/dx) Thus,
like the jet, even though different wakes can spread at very different
rates, their scaled mean velocity and Reynolds stress profiles will be
similar in shape. If the centerline velocity deficit is used as the
normalizing parameter, all wakes will even have the same normalized
profiles. The Reynolds stress profiles, however, will differ by a scale
factor. On the other hand, the kinetic energy equation given by
equation (71) depends in a non-simple manner on the growth and decay
constants. Therefore the profiles of kinetic energy can, in principle,
vary from wake to wake, even though each is self-preserving!

Strong experimental evidence for the above conclusions is provided
by the recent experiments of Wygnanski et al. (1986) who examined in
detail the asymptotic character of three very different wake generators.
Although the normalized mean velocity profiles were identical, the
variation of centerline velocity deficit with distance and the spreading
rates showed a strong dependence on the initial conditions (Figure 5).
As predicted, the Reynolds stress profiles (Figure 6) had the same shape
but with an amplitude factor determined by the spreading rate (since
momentum was conserved). The turbulence intensity profiles were
distinctly different for the various generators (Figure 7).
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Figure 5. Variation centerline velocity deficit and half-width
with distance for three wake generators; o ,airfoil;
A, 70% solidity screen; g , solid strip (from
Wygnanski et al. 1986).
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Figure 6. Reynolds stress normalized by centerline velocity deficit
for the solid strip and airfoil (Wygnanski et al. 1986).
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THE AxISYMMETRIC WAKE: A FLow WHICH Does NoT EVOLVE AT
COoNSTANT REYNOLDS NUMBER

The axisymmetric wake presents an interesting contrast to the
axisymmetric jet and plane wake flows described above in that it does
not evolve at constant Reynolds number (as will be seen). As a
consequence, the nature of the assumptions regarding the dissipation
will be seen to predict two quite different asymptotic developments.
There appears to be experimental evidence for both forms in different
experiments, which raises an interesting question as to how the flow
chooses one form or another. An interesting possibility is that the
flow evolves from one state to another as the Reynolds number changes.
These possibilities will be discussed in more detail below following the

analysis.

The equations of motion describing the axisymmetric wake to first
order can be shown to reduce to,

2 .10 =
v, & [u—um] --18 5 (78)

where U, is the undisturbed speed of the free stream. This can be
integrated across the flow to yield the integral constraint,

2n Im Uy (U-U )rdr = nU 2602 = M/p (79)
0

where 6 is defined to be the momentum thickness.
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As before we seek self-preserving solutions of the form

U-U, = U f(n) (80)
-uv = Ry 95,(n) (81)
where n=r/é (82)
and § = 8(x) (83)

Substituting equations (80) — (82) into the governing equation (78)
yields after some manipulation,

6 du, fds] o, [R]1ld
Sl - - 5] 3 ]

For self-preservation, all of the bracketed terms must have the same x-
dependence so that

4 & dyg

dx = U dx (85)
and

d§ R

dx = UgUq (86)

The integral constraint, equation (79), can be transformed to yield

0
U U, 62| 2n fndn = nU_282 (87)
WS @®

0

It follows immediately from equation {(87) that

U, 62 - U2 (88a)
or

U /U, ~ (8/8)2 (88b)

Therefore equation (85) is satisfied identically, leaving only equation
(86) to be satisfied for self-preservation.
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The momentum equation can now be written as

- (&) [ene + 2] - [GSE;J o (89)
which can be reduced to
[ - 5l o) (0
This can in turn be integrated to yield
Ry [d&)~!
_nf = [ﬁ:[&] ngz (91)

It is immediately clear, to this point at least, that the
axisymmetric wake will have features Tike those observed for the other
flows described above. In particular, the velocity profiles will look
alike for all wake generators when scaled by the centerline velocity,
and the Reynolds stress profile shapes will be the same but differ by an
amplitude factor of [Re/(UgUs )1/ (d8/dx).

As before we turn to the kinetic eénergy equation to examine the
possibility of full self-preservation. For the axisymmetric wake, this
can be written to first order as

1 —
3> q2 -
2 1a 1 — pv
= — —_ - - g2 | -
uv rar " [ q2v + p J € (92)

U ax ar

Three new scaling functions are needed; in particular

3 @ = K, (x)k(n) (932)
€ =D,(x)e(n) - (93b)

and _
[+ 2 - 1ot (93¢)

These can be substituted into equation (92) to yield

8 ak 48] C R s, [Tl [0y5
o L o Y & Y 8 R
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Thus for self-preservation to this order we require:

d§ & dK

dx ~ K, dx (95)

ds _ R, (U

2. ‘ 6

o ) (36)

dé Ts

dx ~ KUy (97)
and

ds D.§

— . S

dx KU, (98)

From equations (86) and (96) it follows that

K ~ Ug? (99)
with the consequence that equation (95) reduces to

s dK, sdu, _ ds

K dx U, dx dx (100)
using equation (88). Similarly equation (96) reduces to exactly
equation (86). Therefore, for self-preservation,

dé Re D6 T (101)

dx 7 U.ug T uzug T ouzy

©

It is again apparent that we must either introduce additional
equations or ad hoc assumptions to proceed further. As before we try
assuming the form of the dissipation scale function, Ds. We consider
two cases:

Case (i): D, ~ U3/8 \ (102)

Case (ii): D, ~ vUZ/82 (103)
(Note that Case (i) includes Ry ~ K¢ from equation (101) since Ky ~ UZ.)

For Case (i) it is easy to show from equations (88), (101) and
(102) that

U K
— ~ ~ = 4
dx U, [8] (104)
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Thus
§3 ~ f#2x
or

Case (i): /8 ~ (x/0)1/3 (105)

It follows from equation (88) that

2/3
Case (i): Y [9] / (106)

[

X

The Reynolds number governing the downstream development of the flow is
given by

1/3
Case (i): U /v - 9«;9 [%] / (107)

and thus decreases with downstream distance.

Equations (105) and (106) represent the classical results for the
axisymmetric wake (v. Tennekes and Lumley 1972) except that now the
coefficients will be determined by the initial conditions as
demonstrated for the jet and plane wake flows earlier.

Now consider Case (ii) for which it can be shown from equations
(101) and (103) that

dé§

Y

ax D} (108)
This can be integrated to yield

2 . ¥X

§ U,

or
) v 12 1/2
Case (ii) [5/9] - [@] [5] (109)

Thus, unlike Case (i), where the wake spreads as the one-third power of x,
this wake spreads as the square root of x, and the rate of spread is
directly proportional to the inverse square root of the Reynolds number.
It follows from equation (88) that

Case (ii) L [M] [9} (110)

Uy v JIx
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The Reynolds number governing the downstream development is now given by

Case (i) u,8/v - [’355]3/2[3 Y2 onstant (111)

which decreases even faster than for Case (i) with increasing x.

If the traditional high Reynolds number arguments about energy
transfer are correct then Case (i) would govern during an initial period
of self-preservation until the Reynolds number is sufficiently reduced
for Case (ii) take over. Thus for high Reynolds number axisymmetric
wake, both cube root and square root regimes should be observed in
succession.

An alternate possibility, which defies the conventional wisdom, is
that the flow may organize itself so that the development proceeds at
the highest possible Reynolds number. If this were the case then the
order would be reversed since the Reynolds number for Case (ii) depends
on a higher power of U,8/v than does Case (i) until x/8 exceeds a
certain value. It is easy to show from equations (107) and (111) that
this value is proportional to

5, By

crit

For any reasonable value of the Reynolds number, U,8/v, this point is
orders of magnitude beyond the range of experiment. Thus only the
square root type wake evolution should be observed.

The experimental evidence at the point is not yet definitive. The
recent experiments of Cannon, Champagne and Wygnanski (1987) exhibit the
square root behavior corresponding to Case (ii), unlike earlier
measurements which appeared to show the cube root behavior. Clearly
there is work yet to be done which could have important consequences if
the more recent measurements are sustained since the traditional line of
reasoning would appear to give an incorrect result.

SELF-PRESERVATION ANALYSIS OF OTHER TURBULENT FLOWS

It is clear from the preceding examples that much of what has been
believed about turbulent free shear flows needs to be reexamined. At
the very least the classical similarity analyses for other flows must be
re-interpreted since these flows must also be forever influenced by
their initial conditions, Jjust as the jet and the wake are. For
example, in view of the analysis presented here, one simply cannot
expect the mixing layer between two streams of differing speeds to be
independent of the characteristics of the splitter plate behind which it
develops. Similarily, the analyses of Fisher et al. (1979) and Baker et
al. (1982) for the manner in which hot jets develop asymptotically into
buoyant plumes must also be reinterpreted since the asymptotic states
cannot be independent of the manner in which the flow is generated.
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In addition, there are probably many flows which are self-
preserving at the first order, but not at the second. A common
characteristic of such flows will be the non-linear spreading rates and
a Reynolds stress scale which does not equal the square of the velocity
scale, but for which (R,/U,2)/(d§/dx) or its equivalent is a constant.
Note that the traditional plot of uv/U2 will mask this kind of first
order only self-preservation since the Reynolds stress will have its own
scale. A better choice for normalization is uv/(U2dé/dx), or even
simply normalizing the Reynolds stress by its peak value.

SELF-PRESERVATION AND KOLMOGOROV'S THEORIES FOR SMALL
ScALE TURBULENCE

The re-examination of self-preserving flows previously thought to
be well understood can have startling and important consequences.
George (1987a) has reconsidered the analysis of von Karman and Howarth
(1938) and the subsequent analysis of Batchelor (1948) for the self-
preservation of the energy spectrum of isotropic decaying turbulence.
Contrary to these earlier analyses, it was found to be possible to
collapse the spectrum at all scales of motion at all Reynolds numbers
with a single length scale. The characteristic length scale was found
to be the Taylor microscale and the characteristic velocity scale was
determined by the energy. Experimental confirmation was provided by the
careful experiments of Comte-Bellot and Corrsin (1971) as illustrated in
Figure (8). A consequence of the analysis was that Kolmogorov’s
theories (Kolmogorov 1941) for the universal equilibrium range could be
shown to be incorrect when applied to this important flow.
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Figure 8. Spectra measured behind one-inch grid normalized using
turbulence intensity and Taylor microscale:
A,x/m=45; V,120; 0 ,240; +,385 (from George 1987a)
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Similar considerations of self-preservation at all scales of motion
have since been extended to a number of homogeneous turbulent flows
including the homogeneous shear flow and homogeneous strain experiments
(v. George 1987b, 1988, George and Gibson 1988). A1l were found to be
fully self-preserving at all scales of motion, and to be inconsistent
with Kolmogorov’s arguments.

An explanation for the failure of many homogeneous flows to scale
according to Kolmogorov’s theory of local similarity of the small scale
motions is that the flow has answered to a higher calling: that of full
self-preservation at all scales of motion. This is precisely Conjecture
I. That this might be a phenomenon present in other flows is
i1lustrated by the spectral data of Champagne (1978) reproduced in
Figure (9). Clearly the spectra for the wake, jet and atmosphere are
different at high wavenumbers, even though normalized by Kolmogorov
variables. Champagne attributes this to the Reynolds number dependence
of the universal spectral form.

An alternate explanation becomes apparent if one considers that
both the jet and the wake, unlike the atmosphere, can be truly self-
preserving at all scales of motion since they evolve at constant
Reynolds number, Usé/v. As ,a consequeq7% all of the characteristic
length scales -- wU%/e, Q7 /e, (v3/€) where ¢ is the rate of
dissipation, gZ is the kinetic energy, and v is the kinematic viscosity
--are proportional and each will equally collapse the spectral data at
all scales of motion. More importantly, as was shown earlier for the
averaged equations and can also be shown for the spectral equations, the
spectral shapes can depend on the initial conditions. Thus the jet and
the wake spectra can not a priori be expected to have the same
characteristics, even at the highest wavenumbers. Each flow may simply
have responded to its own governing equations and initial conditions by
relaxing into its own unique spectral shape. The Reynolds number
variation observed by Champagne may be simply a measure of the fact that
the flows themselves were different, as well as confirmation that the
high wavenumber spectrum is not universal.

Figure 9. Fourth moments of normalized spectra:m,jet; —,corrected
jet; A, cylinder wake; A, boundary layer{Champagne 1978).
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It should be noted that these ideas are not far afield from the
modified Kolmogorov theory proposed in 1963 (Kolmogorov 1963) which
attempts to account for the spatially localized nature of the
dissipation in turbulent flows. Self-preservation, perhaps through the
role of the large scale structures (as suggested below), has determined
the distribution of the dissipation so that the type of flow (along with
the Reynolds number) is the governing characteristic. This is
consistent with observed failure of general assumptions about the
distribution of dissipation, like Tog normality (v. Wyngaard and
Tennekes 1970), as well as the persistent evidence of the non-isotropy
of the dissipation in self-preserving flows (v. Browne et al. 1987).

The apparent success of Kolmogorov’s theories in flows like the
atmosphere (Pond et al. 1963) and the tidal channel (Grant et al. 1962)
is not inconsistent with the ideas put forth above. According to
Conjecture II: When the equations of motion and boundary conditions do
not admit to self-preserving solutions, the flow will adjust itself as
closely as possible to a self-preserving state. Thus, in the absence of
a single Tlength scale, the turbulence will assume a locally self-
preserving character. Whether such local self-preservation can be
universal (in the sense that the constants are the same from flow to
flow) or whether it must always retain a dependence on the larger scales
and mean flow is open to question. The hypothesis put forth above would
argue that the constants (like Kolmogorov’s and von Karman’s) must
always retain a dependence on the particular flow and thus cannot assume
universal values. If so, then a number of questions assumed answered
need to be reexamined. Examples include the behavior of spectra in the
equilibrium range and the nature of flows next to walls, to cite but a
few.

COHERENT STRUCTURES AND SELF-PRESERVATION

Another subject which must be closely related to the analysis here
is that of coherent structures. It has long been argued that initial
conditions are important in determining the development of such
structures in shear flows, and that these structures in turn influence
the spreading rates of the flows. That this is true has been
extensively documented (e.g. Gutmark and Ho 1983, Hussain 1983), but
never explained. Whatever the explanation for the detailed behavior of
a particular structure, however, the general characteristics are
consistent with the apparent tendency of turbulent (and non-turbulent)
flows to settle rapidly into a self-preserving state (if permitted to do
so by the dynamical equations), and thereby to remember forever how they
began. Thus the basis for Conjectures I and II.

An example as to what this relationship between coherent structures
and self-preservation might be is possibly given by the recent model
proposed by Glauser and George (1987) for the dynamics of an
axisymmetric shear layer. In brief, ring-like concentrations of
vorticity arise from instabilities of the mean profile which then
jnteract to initiate a sequence of instabilities which are responsible
for the "cascade" of energy to small scales. The key point of
importance here is that each new instability is triggered by the
preceding one, and occurs in a flow modified by it. It is not difficult
to imagine how such a process could be forever influenced by the manner
in which it is initiated, and why it might show a preference for being
governed by equations whose terms are (on the average) in relative
equilibrium with respect to each other.
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Another example comes from the self-preservation analysis of grid
turbulence mentioned above. George (1987a) has suggested that such
self-preserving behavior for the decay of turbulence behind a grid might
be due simply to the evolution of single vortical structures distributed
randomly throughout the flow. The manner in which grid turbuleg;g
changes into the final period of decay (as characterized by the t~
decay of the energy) has been shown to be consistent with evolution of
the flow from one self-preserving state to another in which (after the
evolution) the tails of the correlations roll-off faster than r™>. This
evolution is also consistent with an instability and breakdown of the
original vortical structures.

SELF-PRESERVATION AND TURBULENCE MODELING

That insight into the dynamics of coherent structures is important
to future developments of turbulence becomes immediately apparent by
considering another consequence of the results presented earlier. None
of the existing single point closures models of turbulence now so

universal development of self-preserving flows. While this problem is
discussed in some detail by Taulbee (1988), it is worthwhile to briefly
consider it here.

A1l turbulence models make closure approximations which relate
higher order moments to lower order ones. Single point models at some
level assume that these relations are locally determined, and are
independent of history. As a consequence, only a single asymptotic
state can be predicted which is independent of initial conditions; in
particular, the state determined by the model constants. The phenomenon
was first documented by Taulbee and Lumley (1981) who used a Reynolds
stress model to successfully predict the properties of the far-wake of a
screen, but were unable to account for the observations behind
cylinders. As an alternative to suggesting that the measurements were
wrong (this was before the decisive measurements by Wygnanski et al.
(1986) mentioned earlier), they suggested that the problem might 1ie in
the presence of coherent structures in the cylinder far-wake which were
not present in the screen far-wake.

The problem with the turbulence models, in view of the arguments
presented here, can be stated simply as follows: A turbulence model
(single point, at least) can predict the asymptotic development of self-
preserving free shear flows only by selecting a set of "universal”
constants appropriate to the particular initial conditions. Note that
this 1is far worse than simply needing different constants for
axisymmetric and plane flows since each of these flows will require a
multiplicity of constants to account for different starting conditions.
While perhaps acceptable in some engineering situations, this is clearly
intolerable to the theoretician and indicates that there is considerable
work to be done. Most probably, progress will come about as suggested
above (and by Taulbee and Lumley) by addressing the dynamical role of
the coherent structures, a subject which is only beginning to be
addressed by the theoreticians.
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