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T (T-T /Ty
Uy Outer velocity scale, eq. (19)

w Fluctuating vertical velocity

o

Vertical coordinate

z/n; ., inner coordinate

H

Ni

z/h, outer coordinate
a Thermal diffusivicy
B Thermal expansion coefficient

8T T-/T,

ATw Temperature differences between surfaces 2T,-T)

m Inner length scale, eq. (11)
v Kinematic viscosity

I Density

Po Reference density

8 Fluctuating temperature

1. INTRODUCTION

The problem of turbulent natural convection above
horizontal surfaces has been a subject of considerable
interest over the past 35 years. One reason for this
popularity lies in the common occurrence of such flows
in engineering and natural environments. Other
reasons are because such flows represent an important
class of flows in which turbulence is produced only by
buoyancy, and they can be easily idealized both
analytically and experimentally. Examples of these
{dealized flows include the unsteady and steady
boundary layers above a heated horizontal surface of
infinite extent, and the steady state flow between
horizontal parallel surfaces of infinite extent.

The first theoretical analysis of turbulent
natural convection above a heated horizontal surface
was put forth by Halk&s (1954) 4in which he argued for
the existence of a z7° region in the mean temperature
gradient, where z 1is the distance from the surface.
In the same year, Priestly (1954) on dimensional
grounds argued instead for the existence of a reg}gn
in which the temperature gradient varied as z° .
Long (1976) and Panofsky (1978) used matched
asymptotic analyses to support Priestly's hypothesis.

Another aspect of Long’'s matching analyses (1976)
was the derivatioi\ gf an asymptotic heat transfer law
fn which Nu ~ Ral/ with & Prandtl number dependent
coefficient. This is consistent with the empirical
heat transfer correlation of Globe and Dropkin (1959}
who proposed for the flow between parallel surfaces of
large extent,

Nu = 0.069 pr0-074 p,1/3

Other investigators (eg. Chu and Goldstein (19713,
Fitzjarrald (1976) report values of the Rayleigh
number exponent to be somewhat smaller than 1/3, an
effect which Long (1976) attributes to the experiments
not having reached the asymptotic value.

Adrian et al. (1986) and Fitzjarrald (1976) using
their own data argue convincingly for the existence of
inner and outer scales, the former proposed by
Townsend (1959) and the latter by Deardorff (1970).
As to the existence of the power law regions propesed
above, Adrian et al. (1986) argue that neither result
is particularly satisfactory alone. Instead they
provide a qualified endorsement of the meso-layer
thgory proposed by Chern and Long ()980) in which a
2" ° layer exists beneath a z layer 1In the
temperature gradient,

The purpose of this paper is to present a
different analysis of the so-called "turbulent
Rayleigh problem™ using the methodology of George and
Capp (1979) for turbulent natural convection next to
vertical surfaces. This paper will present only the
results for the mean temperature profile and the heat
transfer relation. Of special interest is the
derivation of the leading correction terms for the
heat transfer coefficient at finite Rayleigh number.
Some of the features of this analysis have already
been proposed, eg. Long 1976. However, it 1is hoped
that this new treatment will provide a more unified
approach to the problem of natural convection above
horizontal surfaces, and will be particularly useful
in understanding the experimental data. The theory is
based on an inner-outer scaling approach to the
p_x_:_zb}eu. and predicts both the existence of the
24/ temperature grndit?S and the asymptotic heat
transfer law Nu -~ Ra with a Prandtl number
dependent coefficient, An examination of the
experimental data from the perspective of this unified
theory will be seen to provide strong support for the
conclusions.

The remainder of this paper is divided into two
parts: Part I will analyze in detail the fully
turbulent flow between differentially heated
horizontal parallel plates, while Part 11 will
consider the experimental data,

PART 1: THE RAYLEIGH PROBLEM

2. Ihe Equations of Motion for Steady Flow
The flow to be analyzed consists of the thermal

' convection which develops at high Rayleigh number
| between differentially heated horizontsl plates in a

gravitational field. It is hypothesized that the flow
is fully turbulent and homogeneous in planes
perpendicular to the vertical (defined by the
gravitational vector). The flow {s further assumed to
be statistically stationary so that all time
derivatives vanish in the averaged equations of
motion. The flow and coordinate system is illustrated
in Figure 1. The notation utilized throughout will
conform as closely as possible to that used by Ceorge
and Capp (1979).

Since there can be no mean flow in any direction
{(by hypothesis) the mass conservation egquation
vanishes identically, and the averaged equations for
momentum and temperature to within the Boussinesq
approximation reduce to

o-ﬁ"_[—ﬁuxﬁ] (1)
az

temperature:
Bl 8z




a e P-P,
Z-momentum: 0 = = [—w’ -~ ——-—9'] + gB(T-T,)
az Po
(2)
where a is the thermal diffusivicy, g is the

gravitational acceleration, and g is the thermal
expansion coefficient. The reference values ‘denoted
by subscript rero can be taken to represent &
hypothetical undisturbed state of uniform density.
Note that unlike other boundary layer type flows, the
pressure variation across the flow can not be
neglected by refersnce to the momentum equation in
other directions. Note also that the absence of the
viscous term in equation (2) does not represent a high
Reynolds number approximation, but rather 1is a
consequence of the absence of a mean flow. Thus
viscosity can affect the averaged motion only by its
pressure in the higher moment equations.
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F=q/pC,
Figure 1. Sketch of Rayleigh flow.

Both equations can be integrated with respect to
z to yleld

e L I (3

] - rgﬁAsz’ %)
L]

where q, is the heat flow at the surface where z~o and
must be equal and opposite to that at the other
surface for steady flow to exist. Hereafter, for
simplicity, the related quantity F, will be referred
to as the heat flux. Equation (3) is of primary
importance since it makes it clear that the total heat
flux is constant from top to bottom. Thus in the
terminology of George and Capp (1979), the entire flow
is a gcongtant heat flux *layer" A consequence of
this is that the flow is symmetrical about the
centerline and only half of it need be considered.

and

3. The Existence of an lnner Laver

It is instructive to examine the relative order
of magnitude of the terms in the governing equations,
especially the temperature equations. It is
straightforward to show that in the limit as 2F h/aATw
(the Nusselt number) increases (it will be shown below
that {t is in fact the Rayleigh number which governs
the development), the conduction term vanishes over
most of the flow and the dynamical equations reduce to

Fo = - W0 ()

and

8 |~ PB-By
0w — j-w? - + gBAT (6)

dz Po

Therefore, inm this high Nusselt (or Rayleigh) number
limit, peither the viscosity mnor the thermal
conductivity directly affect the averaged momentum or
temperature equations.

It is clear that equations (5) and (6) can at
most describe a region sway from the wall since they
can no longer satisfy the surface boundary condition

aT
Fo v = o2|z=0 7

Thus, in like manner to the analysis of George and
Capp (1979), equations (5) and (6) must be recognized
as pgoverning an guter flow region away from the
vicinity of the walls, It follows immediately that
there must exist a region nesr to the walls in which a
different set of equations appliss which retains both
the conduction and the turbulence heat transfer terms,
An appropriste scaling length for this wall region
must be sought which allows the conduction term to be
retained there. If this inner length scale is denoted
as n;, then n; must be chosen so that the conduction
term is at least as important as the turbulence term.
Thus in this inner layer the governing equations are
exactly equations (3) and (4).

The inner layer can be further subdivided by
noting that the kinematic boundary condition (u'p=0 at
a fixed surface) causes W# to vanish identically at
z=0, Therefore very close to the wall, the
temperature squation reduces to

aT
as---F (8)

This can be immediately integrated to yield

T.T, -- 22 9
&

so that this inner-inner region can be recognized as a
layer in which the mean temperature varies linearly.
It is appropriate (again following George and Capp
(1979)) to refer to this sub-region as the Conductive
Sublayer.

An examination of the dynamical equations in the
limit as 2F,h/aAT, ~ = has led to the recognition that
the natural convection flow betwsen parallel
horizontal surfaces can be characterized by two
layers: an inner layer in which the conductfon term
allows the surface boundary condition to be met, and
an outer layer where conduction effects are
negligible. The inner layer has been shown to include
a region very close to the wall in vhich the mean
temperature varles linearly, the gconductive
A schematic of the flow is shown in Figure 2 along
with and parameters governing each region. Note that
the kinematic viscosity has been included for the
inner layer, even though it does not directly enter
the firgt-order moment equations but enters only in
the higher order equations for the turbulence heat
flux and the turbulence kinetic ensrgy.
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igure 2. Schematic showing inner and outer layers.

4T, versus F,

In order to establish scaling laws for the Ilnner
w outer reglons identified above, It is necessary to
rcide which of the parameters arising in the
juations of motion and boundary conditions govern
ich reglon. It is easy to see that it is improper to
ie the temperature difference between the two
irfaces, 4T, to scale the temperature variation in
ither layer since only part of the total temperature
TOp occurs across each. Thus a proper scaling
nalysis must include new measures of the temperature
rales for the inner and ocuter regions.

The key to properly scaling the inner and outer
iyers lies in the recognition that the entire flow is
iaracterized by a constant heat flux (total heat flux
wdependent of height). The inner layer has the
irface heat flux, Fy,, imposed on it. Because of the
mstancy of the total heat flux across the inner
iyer, F, also provides an inner boundary condition on
e outer (or core) flow. Thus Ey is a governing
wamefer fox both the inner and guter regions. The
'maining parameters must be obtained from an
:amination of the governing equations and boundary
nditions.

The Inner Layer

From the equations of motion for the inner layer
‘quations 2.3 and 2.4) it {i{s clear that the only
irameters arising in the equations are a,gf, and v.
us the inner layer must be governing entirely by the
irameters F,, gf, o and v. An inner temperature
ale can be defined as

F,3/4
Ty - W (10)
1d an inner length scale as
ot 1174
Ny - [SﬂFo] (i

Note that these choices are not unique since v
uld have been used in place of a. In fact, any
mbination of a and v having the correct dimensions
uld have been used, It is this ambiguity which
quires that the Prandtl number dependence be
tained in the scaled profiles given below for the
ner layer. The particular choices made here were
st Introduced for this problem by Townsend (1959)
7 are exactly those used by George and Capp (1979).

The mean temperature profile in inner wvariables

can now be written as
T-T, = T, F,(z¥, Pr, H,) (12)

where z* is a dimensionless inner coordinate defined
by ’

zt - z/n, (13)

Pr = v/a is the Prandtl number and H, is the flux H-
number (v. George and Capp (1979) defined as

g8F h¢

a’

Hy = (14)
It is important to note that the temperature has been
referenced to its value at the wall in order to avoid
the need to directly account for effects from outside
the wall regfon,

The flux H-number takes on additional
significance as having a direct relation to the ratio
of gap half-width, h, to the inner length scale, ny.
From the definitions of equations (11) and (1l4) it
follows that

h o H*ll“ (15)
1

This 1is particularly important since h will be
identified below as the outer length scale, The
inner-outer nature of the problem as H, - « is again

clear.

It is important to note that equation (12)
describes not only the tempersture variation in the
inner region, but across the entire flow, the
dependence on H, reflecting the dependence of the
inner flow on the outer at finite values of H,. In
the limit as H, + «, the dependence on this variable
must vanish (if the inner variables have been
correctly chosen), and equation (12) will describe
only the inner temperature profile or a Law of the
Wall (Adrian et al.(1986). George and Capp (1979)).

6. The Conductive Sublaver

The linear profile of equation (9) can be
rewritten in the inner variables proposed sbove. The
result is

v, - (16)
T, m ‘
or
Fy(z%) = - 2zt an

This particular functional form describes only
the conductive sublayer portion of the inner layer
where the turbulence heat flux contribution can be
neglected. The exact extent of this region will
depend on the Prandtl number, since viscous effects
control the emergence of W§ as the distance from the
wall increases. If the Prandtl number is large,
disturbances will be damped to & greater distance from
the wall than the distance for which the temperature
equation can be expected to be described by the linear
term only, As a consequence, the temperature will
begin to show & gradual deviation from the linear
drgpgff between distances characterized by 7n; and
pr/ n the latter characterizing the extent of the




viscous—dominated region. On the other hand if the
Prandtl number is low, the linear dropoff in
temperature can be expected to continue for distances
wall beyond the extent of the viscous region.

7. Ihe Qutex (or Cexe) Region

From the equations of motion (equations (5) and
(6), it is clear that the only parameters governing
the outer flow are gf and F,, the former occurring
directly in the governing equations, and the latter
from the boundary condition imposed by the 1inner
layer. Since the inner layer becomes vanishingly
small as the H-number increases, the appropriate
length scale for the outer flow is the half-distance
between the surfaces, h. From these parameters, outer
temperature and velocity scales can be uniquely
defined as

T = 1"02/3/(519!\)1/3 (18)

and

ug = {g8F.h)1/3 (19)

These scales correspond directly to these utilized by
George and Capp (1979) for vertical surfaces, and were
first introduced into this problem by Deardorff
(1970} .

The wvariation of temperature in outer variables
can now be written as

T-T, = T, £,(Z, Hy, Pr 3W,) (20)
where Z is a dimensionless outer coordinate defined by
Z=2z/h (21)

Here the dependence on H, and Pt'3ﬂ* reflects the
influence of the inner parameters at finite values of
Hy and Pr  H,.

Tc' the centerline temperature, is chosen as a
reference temperature to avoid referencing the
temperature variation to a value outside the core

region. Ihis is necessaxy to aveid the need 3o

(They are, however, included
implicitly through H,.) Thus the term "Deficit Laws"”
is appropriate to this outer form. Note that similar
considerations must also apply to other statistical
quantities (which are not considered here). While the
earlier analyses have been generally careful about
properly referencing the mean temperature, the need to
properly reference the other quantities appears to
have been overlooked until now.

In _the limit as Pr'3H,, H, - =, the function
£,(Z,Pr 7 H,), must become asymptotically independent
of both. This is because it represents a profile non-
dimensionalized in outer varisbles and must remain
finite in the outer region. Thus in this limit,
equation (20) represents a true outer profile, having
lost all dependence on viscous and conduction effects.

8. A Matched Laver: The Buovant Sublavex

It has been noted above that the functional forms
of equations (12) and (20) reduce to inneﬁ and outer
profiles respectively in the limit as Pr "H, H, - =,
Jt is interesting to ask whether there exists a range

of distances for which both the inner and outer
scaling laws are valid - in effect, an overlap range.
The procedure is exactly equivalent to that followed
by George and Capp (1979) and requires matching the
inner and outer profiles in the limit of infinite flux

K-number . In formal terms: Is there a reglon of
common validity in the limit as Pr , Hy = = so
that

3
1im f,(s.ﬂ*.vr*%," - lim nE—l—.P:,H*] (22)

z/h » O z/n =
R*-oca H*—co
Pr‘aﬂ* - w 9:‘35* -+

It {s more convenisnt at this point to match the
temperature derivatives given in inner and outer
variables as

aT T

22 o 2L pregt 23

3z " FI(Z ,Pt.H*) (23)
and

aTt T, ~ -3

i - S 24

32~ o iz He, PR (24)

where ' denotes differentiation with respect to the
appiopriata variable. Equating these in the limit as

Pr'"H,, H, » = ylelds
I Fi(z* Pr) - L £1(2) 25)
mm h
From equations (10) and (18) it follows that
1/3
T o [.'!1.] & w1712 (26)

Us}ng this and multiplying both sides of eq. (25) by
z4/3 yields

(zH%3 izt ey - 23813) 27

Since h/n; ~+ « as H, ~ =, it follows from the
definitions of z' and Z that their ratic becomes
undefined in this 1limit, Thus z' and Z become
independent variables as H, -+ ®. As a consequence,

both sides of equation (27) must equal & constant, say
- Ky/3. Thus,

=53 piz* B - - K, /3 (28)

and
()43 £1(3) - - K,/3 (29)

Equations (28) and (29) can be readily integrated to
yield

F,(z* Pr) = K, (zH) /3 + B, (Pr) (30)
£,(5) = K ()3 + B, €38

where K, and B;, are universal constants and B,(Pr) is
a universal function of the Prandtl number.

Equations (31) and (32) can be expressed in
physical variables as

inner 3—,}—'5“ - K, [5:]'1/3 +B3,(Pr)  (32)



T-T z7 .
outer "‘i::n - K, [}-\] 1/3 + B,y (333

Equations (32) and (33) thus represent the inner and
outer forms of the temperature profile in a matched
region between the inner and outer layers, This layer
(by analogy with the analyais by George and Capp 1979)
will be referred to as the Buovant Sublayer, since it
can be shown to be governed by only the distance to
the wall and the buoyancy parameter.

The existence of such a region has been
previously derived on the following dimensional
grounds by Priestley (1954), (see also Turner (1372).
Suppose there exists a region for which n; and Pr / LF
<< z << h. This can, of course, occur only in the
limit of large H,. Since the region of interest is
well-removed from viscous or conductive effects, vet
too small to be depsndent on gap width, it must be
entirely determined by g8, F,, and z itsalf. Thus, on
dimensional grounds (considering gf to be a single
parameter since they always occur in the equations In
combination),

a1 (g8)1/3:4/3 Ky
?‘; -—;:273—— = constant = — -3- (34}

This can readily be integrated to yield equations (32)
and (33). The origin of the Prandtl number dependence
of the constant in equation (32) can be seen to arise
from the reference to the wall temperature and the
integration over the viscous region.

Although only the temperature profile is being

considered here, it is noted that a matching of inner
‘and outer profiles
N7, (P-P,)/p,, Or any other turbulence quantity, and an

can also be carried out for

appropriate buoyant sublayer form deduced. As for the
mean temperature gradient, the functional dependences
of dw?/dz and dP/dz could have been deduced on
dimensional grounds as noticed by Adrian et al.
(1986). It is 4important to note, however, that
becsuse of the need to exclude the dependence on a, v,
and h, dimensional arguments for the buoyant sublayer
can only be applied to the variation of T, W* and P
within the sublayer, and not to these quantities

jdirectly._a ug, itr is appropri?ge to argue that
dI/dz - z /3 but not that T - z~ ; similarly that
but not W% ~ z2/3, etc,

! reference values.

aw?/9z ~ z= The matching
results above make clear the importance of both the
additive constants and the use of appropriate
The failure to recognize this
clearly before now is largely responsible for the
frustration of experimenters who sought to confirm the
existence of the buoyant sublayer by using log-log
plots of T and W7 versus z (see for example Adrian et

'al.(1986), Goldstein and Chu (1969)).

9. A Heat Iransfer Law

Since both inner and outer forms of the dependent
variasbles in the bucyant sublayer describe the same
physical profiles, the actual (unscaled) wvariables
predicted by both must be the same. For example,

equations (32) and (33) must yield the same
temperature at the same location. Thus
2 -1/3
T, + Ty 9K, &;} + B, (Fr)
1

‘Thus at very {,zgn values of H,,
‘varies as H,

2 - 173
-Tc{*To K, [E] + By, {3
Using the definitions of T;, 7, and T, (equatio

(10), (11) and (18) it follows after rearranging thas

. 1/3
TeTe - [21] Byp ~ By (Pr) (3¢
Ty h

This can be transformed into a more familiar fo:
by using a Nusselt number defined as

q - ——Ehb-~ (3

a(T,-T.)
Note that because of symmetry, the temperatu:
difference between surfaces i{s

AT, = 2(T,-T,) (3t

Thus, since the distance between the plates is 2h, tl
Nussalt number of equation (38) 1is just the usu:
Husselt number based on temperature difference and g¢
width.

By using equations (10), (11), (15} and (37
equation (36) can be rewritten as

Nul g 1/% -p,, w,"1/12 L (e (3¢

or

H*l/h

Nu =
By o,/ 1i-p, (Pr)

(4

Thus the heat transfer law is completely determiped t
second oxder by the buoyant sublaver constants of ti

mean profile, This appears not to ha
been noticed before now, and provides an importa:

check on the consistency of experimental data as wel
as on the internal consistency of the theory.

In the limit as H, - =,
Nu = ¢ H /% (41
where
= [-B,(Pr))"L (42

the Nusselt numbe
with & coefficient dependent o
Prandtl number. However, for smaller values of as H
(yetr still large 7q3ugh to ensure the validity of th
theory), the H*‘l correction term will modify th
coefficient. It will be seen later that both B, (Pr
and B,, are negative so that the effect of finite F
is to jincrease the Nusselt number above the valu
which would be predicted by equation (41) alone. Not
that the negative value of B,, 1mpli7§2chat the theor
breaks down 1long before the H,~ f7?m become
dominant in the denominator; thus an H, asymptot
will not be observed at moderate values of H,.

It has been customary in the experiments
literature to correlate data using the Rayleigh numbe
and the Nusselt number. The Rayleigh number based ¢
h and (T,T.) can be defined as




—T YhY
Ra - 88(TuToORY (43)

av
which can be related to the cerresponding - number by
Ra - H * Pr (44
where
H - .%‘iﬁigci 45)

(Note that the usual definitions are based on the
temperature difference and distance between the
surfaces and are therefore 2¢=16 times bigger than the
H and Ra defined here.)

From the dofinitions of oquations (1l4), (37), and
{45), 1t follows that

Hy = H "~ Bu (46)

Thus the heat transfer law of equation (40} can be
transformed into

Hl/“'Nul/A
Nu - a7y
(8,0, /12801123, (pry)
or
1/3
Nu = L (48)

[By 01"/ 12807 1/125  (pr))4/3

The transformed heat transfer law of equation
(48) is considerably more complicated than equation
{40) because of the implicit dependence on the Nusselt
number*, Nonetheless, it is easy to see that for very
large H- numbers, the Nusselt number varies as the
cube root of the H- mumber and the coefficient is
Prandtl number dependent, i.e.,

Nu = Cy(Pr) HY/3 = cy(porpcl/3ral/? a9y

where

_1 1473
1 ] (50)

Cu(Pr) = [n(rz)

The Prandt]l number dependence is not determined by the
analysis (to this point, at least) and must be derived
from other considerations.

The recognition that Nu ~ Ral/3 with a Prandtl
number-dependent coefficient could be derived by an
asymptotic matching analysis was apparently first
noticed by Long (1975). His arguments were somewhat
different, however, and led to two different
dependence for smaller values of the Rayleigh number
than that proposed here one of which is equivalent to
equation (47).. The correction for finite wvalues of
H, given by equation (47) will act to increase the
heat transfer coefficient so that the experimentally
derermined dependence on Rayleigh number will be less
than the 1/3 power. This will be discussed further in
Part 11 when experimental data are considered.

*This is not a serious limitation in practice because
the Nusselt number can first be calculated for given
H, using equation (40}, then the value of H assigned
using equation (46).

1t will be shown in a subsequent publication that
a similar matching can be carried for other
statistical quantities which enter the governing
equations (eg., wZ, #7, etc.). The results of matching
the appropriate immer and outer buoyant sublayer forms
are "laws"™ which describe the variation of the
centerline values of these quantities with H,. These
possibilities do not appear to have been noticed
previously.

PART II: EVALUATION OF THEORY USING EXPERIMENTAL DATA

10. Qverview of Experiments

There have been a number of laboratory
experiments over the past two decadas which attempted
to simulate the fully developed turbulent Rayleigh
problem. There have also been experimental
investigations of several related flows including the
natural convection betwesn parallel plates with an
adiabatic upper surface (Adrian et al. 1986), steady
penetrative convection (Townsend 1959), unsteady
penetrative convection (Deardorff et al. (1969). 1In
addition there have been numerous investigations of
the convective planetary boundary layer (Wyngaard et
al. 1971, see also Monin and Yaglom, wvol. I 1971}.
While there is reason to believe that all these flows
should obey common scaling laws, there is little
reason to believe that the scaled profiles should be
the same for all, except perhaps in the inner layer.
For now this question will be avoided, and only the
Rayleigh experiments will be considered below.

11. The Mean Iemperature Profiles: Innetr Varisbles

There have been several experiments carried out
which measured the mean temperature distribution at
reasonably high Rayleigh numbers (eg. Somerscales and
Gazda 1969, Chu and Goldstein 1973, Goldstein and Chu
1969, and Deardorff and Willis 1967a, 1967b). Many of
these investigators made a particular effort to
evaluate whether or not there was a tﬁg}gn in the
temperature gradient which varied as =z (or the
temperature varied as z /7). Of these, only
Deardorff and Willis (1967b) "ff N partially
successful in identifying a limited 2z region in
the temperature gradient. It is suggested here that
the failures were due in part to the relatively low
values of the Rayleigh number which limited the extent
of the buoyant sublayer, but in larger part to the use
of log-log plots in the presence of additive
constants, and the failure to understand clearly where
the proposed region should lie.

Figure 3 i{s a plot of the Deardorff and Willis
data (1967b) in inner variables. The data were read
from enlarged versions of the figures in their paper,
and the scatter in the fitted curves is largely due to
the errors in this process, especlally near the center
of the flow. In order to make readily apparent the
existence of a region described by equatiir}a(n), the
data irg plotted as {(T-T,)/T,llz/n] versus
{z/n]) /3. Thus the buoyant sublayer, should it exist
at all, would correspond to a straight line. Note
also that since the plot is in inner variables, the
data should be expected to deviate at progressively
larger values of z° as the Rayleigh number of the
experiment is increased sgince the ratio of outer to
inner scales increases.
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Figure 3. Mean temperature versus hefght in inner

variables, air data of Deardorff & Willis.

It is clear from Figure 3 that the data collapse
well in inner variables until very larie values of =z
are obtained, and that the value of z° for which the
curves begin to deviate from each other increases with
Ra as expected. The reglon nearest the wall (z¥<1) is
well-described by the linear dependence of equation
(_11) 4 Of greater interest i{s the existence of the
2 region as represented by the straight line on
the plot. This method of plotting allows
determination of both K, and B, (Pr) directly, and alljf
makes clear that the buoyant sublayer (or z~
region) is an asymptotic region which will be
increasingly apparent with increasing Ra (or H,).

In Figure 4, the same data are plotted follof>gg
George and Capp (1979) as (T-T,)/T; versus (z/n;) />,
This method would be of considerable value if profiles
from different Prandtl number fluids were being
plotted together. According to equation (32}, E?g
effect of Prandtl number should be to shift the z~
region, but to leave its alope unchanged. This has
not been confirmed for this problem since only the air
data have been considered to-date.

The constants K, and B, (Pr) of equation (32) have
been estimated from a least squares fit to the highest
Ra gmber experiment using data from 8 < zt < 27 (2 <
z+:L < 3), The results are

K, = 0.73 (51)
B,(0.71) = —3.4 (52)

The constant K, is related to the C, constant of
Deardorff and Willis (1967b) by K, = C,/3. They found
by plotting dT/dz versus z that C, = 2.2 for the same
data which corresponds exactly to the value obtained
here. The constant B,(0.71) is, of course, valid only
for air (Pr = 0.71) and a different value can be
expected for a different fluid, Rote that B(Pr)
enters directly the heat transfer laws (equations (40)
and (50)), and so this value will be considered again
below.
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Figure 4. Mean temperature versus height in inner
variables, air data of Deardorff and Willis.

12. The Mean Temperature Profile: Outex Variables

The same mean temperature profile data as that
used sbove has been replotted in outer variables in
Figure 5. Considerable difficulty was encountered in
trying to plot the data in outer variables to make
clear the dependence over most of the outer flow.
This was because most of the temperature drop occurred
in the inner layer (in fact, the linear layer) so that
the temperature outside ths inner region was very
close to the centerlins valus to which it must be
referenced. Thus (T-‘Ic) was very sensitive to the
errors in determining both T and T,. In view of the
lack of alternatives, the data were plotted as
(T-T ){}3 versus (z/h)"I/ 3. Thus the left ordinate is
(z/hg— = 1.0 and corre to the centerline;
increasing values of (z/h) are progressively
clgsgx to the wall. Again the buoyant sublayer (or
z region) should correspond to a& straight line.

As expected, the outer scaling works reasonably
well fgr value of Zez/h greater than about
0.1 1/3<2).  The deviations at smaller values of
Z(larger Z “1/3) are a consequence of the fact that
the region nearest the wall collapses only in inner
variables. In spite of the scatter and the low
values, there does appear to be a straight line region
on the plot, especially at the higher Rayleigh
numbers. From it the constants K, and B;, can be
determined. Because of the large errors, K, was taken
at the value determined above, and the value of B,
was determined by inspection to be

Byo = -1.0 (53)

Obviously there is further work needed to refine this
estimate., Note that whatever the value {s, it should
be universal and independent of Prandtl number.




16+
1 — Ra 63 x 10° -7
. - - 25 x 10: Lo’
12 ———— 1.0 x 10 P
N .’
- ’,
E IJ
e £
- #
g i
© 1 ,’ -
( 8-: 4 -
r?‘ - ’I - -
A s -
S L
] 7
9 /I'
] /o
4: // II
, !/,
p ’.7 = v .1/
. e Teo0.81: “1.0
; /,// ‘
4 . o
O—M!llllii'lllIllll]'f‘
1 2 : :-54/3 4 5
(z/n)
Figure 3. Mean temperature difference from centerline

value versus height in outer variables, air data of
Deardorff & Willis,

Ibe Heat Iransfer Law

The relation between Nusselt number and Rayleigh
nunber has been the subject of intense investigation
with almost as many proposed laws as investigators.

Several of the suggested empirical relations for air
are given below

13.

Fitzjarrald (1976) (air, 8 x 10* < Ra < 9 x 10°)
Fu = 0.13 Ra,0-30 (54)

Goldstein and Chu (1969)(air 3 x 10% < Ra < 10%)

Nu = 0.123 Ra,0-2%% (55)

Globe and Dropkin (1959)
Nu = 0.0673 Ra,l/3 (56)
Deardorff

wvhere Ra; 1s 16 times the Ra used earlier.
and Willgs (1967a) note that their experiments in air
are not too different from equation (56).

It was shown in Section 9 that the matching of
the inner and outer temperature profiles yielded a
second order heat transfer law (equation 40) with the
coefficients determined only by the matching. Thus
for air wusing B,(0.71) - -3.4 and B;, = ~1.0 in
equation (40) yields

1/4
Nu = 0.294 My (57)

[1 - 0.294 n,"1/12]

This can be evaluated for given H,, then the
appropriate Rayleigh number calculated from equations
{(44), (45) and (46). The results are shown in Table I
and Figure 6. Also shown are equations (54) and the
asymptotic law (H, = «) determined from equation (37)
as

Nu = 0.294 H,L/%

(58)
or
Nu - .0690 Rayl/3 (59
10
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Figure 6. Comparison of theoretical and empirical
heat transfer laws.
Table 1

Tabulation of Nusselt Number for Alr Using

Equations (40) and (41).

B,(0.71) = -3.4, B,, = -1.0
Hqa Nu Ruasym Ray
1.00E+04 3.41B+00 2.94E+00 6.62E+04
3.00E+04 4.42E+00 3.87E+00 1.53E+05
1.00E+05 5.89E+00 5.23E+00 3.82E+0S
3.00E+05 7.67E+00 6.88E+00 8.81E+05
1.00E+06 1.03E+01 9.30E+00 2.20E+06
3.00E+06 1.34E+01 1.22E+01 5.0SE+06
1.00E+07 1.79E+01 1.65E+01 1.26E+07
3.00E+07 2.34E+01 2.18E4+01 2.89E+07
1.00E+08 3.14E+01 2.94E+01 7.18E+07
3.00E+08 4.11E+01 3.87E+01 1.65E+08
1.00E+09 5.52E+01 5.23E+01 4.08E+08
3.00E+09 7.23E+01 6.88E+01 9.35E+08
1.00E+10 9.72E+01 9.30E+01 2.32E+09
3.00E+10 1.27E+02 1.22E+02 5.31E+09
1.00E+11 1.72E+02 1.65E+02 1.31E+10
3.00E+11 2.25B+02 2.18E+02 3.00E+10
1.00E+12 3.03E+02 2.94E+02 7.44E+10
3.00E+12 3.98E+02 3.87E+02 1.70E+11
1.00E+13 5.36E+02 5.23E+02 4.20E+11
3.00E+13 7.04E+02 6.88E+02 9.60E+11
1.00E+14 9.49E+02 9.30E+02 2.37E+12
3.00E+14 1.25E+03 1.22E+03 5.42E+12
1.00E+15 1.68E+03 1.65E+03 1.34E+13
3.00E+15 2.21E+03 2.18E+03 3.06E+13
1.00E+16 2.98E+03 2.94E+03 7.56E+13

It is clear from the figures that regardless of

the exact value of the constant B,,, its effect is to
increase the heat transfer above that which would be
obtained from the cube root relationship. It is also
easy to see that this effect will reduce the effective




exponent of the Rayleigh number below 1/3, and that
the amount of the reduction will depend on the
Rayleigh number range considered. For example, a
least squares fit to equation (57) in the range
105 <« Ra < 101° yields :

Nu - .094 Ray®-32 (60)

The three empirical laws (equations 54, 56 and
50) differ from that given by equation (57) by less
than 4% at Ra = 1 x 107 and only by 1i% at Ra = 1 %
108, The agreement could be further improved by
selecting a slightly higher value for the outer
constant B,, (like —2.3) which may be warranted in
view of the difficulty in determining it from the
outer profile. Thus over the range in which most
experiments were performed, the heat transfer law
obtained from matching the profiles {s in excellent
agreement with the earlier empirical correlatiouns.
Fauation (40) (and 57) must therefore be regarded as
an {mproved heat transfer law valid for at least
Ra > 108,

No effort has been made to determine
theoretically or empirically the Prandtl number
iependence of the integration constants for the inner
buoyant sublayer profiles (eg. B, (Pr), etc.). From
the correlation of Globe and Dropkin (1959) it can be
inferred that

B, (Pr) = 3.06 pr-0-303 (61)

It follows that the corresponding heat transfer law
should be

0.305, 1/4
0.327 Pr
u - v {(62)

[1 - .204 1,71/12]

These must be confirmed by further investigation.

4. Summary and Conclusions

A scaling analysis of fully developed turbulent
natural convection between differentially heated
surfaces of large extent has led to the identification
of inner and outer layers. Only the inner layer is
affected by the viscosity and thermal diffusivity,
Matching of the mean tgg?eratuto profiles in the limit
as Hy =+ o and Pr"H, -+ « resulted in the
identification of a buoziyg sublayer in which the mean
remperature varied as z with an additive constant.
Further matching of these profiles yielded a heat
transfer law valid at finite values of H,, as well as
in the limit,.

The available experimental data for air were
analyzed in detail. The data were in excellent
agreement with the predictions. Especially gratifying
was the success of the temperature profile buoyant
sublayer constants in producing a heat transfer law
which was able to reproduce the experimental
cbservations over the entire range of Rayleigh numbers
measured.

It is likely that the results of the analysis
presented here are directly applicable to related
natural convection problems. The asymptotic wvalue of
the ratio (T,,-T.) /Ty of 3.4 is very close to its
counterpart in both steady and wunsteady non-
penetrative convection (Adrian et al.(1986). Also,
rhe temperature profiles obtained by Townsend (1959)

when normalized in inner varilables are
indistinguishable from those in Figure 3. Thus when a
proper accounting is taken of the Prandtl number
dependence of the inner layer, it is likely that {its
characteristica will prove to be flow-independent. It
is unlikely that this will be the case for the outer
flow, however, (except for the buoyant sublayer part
of it) since it will be mora directly influenced by
the differing boundary conditions away from the
surface,

ACKNOWLEDGEMENTS

I first became sensitized to this problem as the
result of a presentation at NCAR by Professor A.
Libchaber of the University of Chicago during the
Prospects for Turbulence Research Symposium in 1987,
and immediately suspected the possible relation to my
own work with Dr. §. Capp. I am grateful to Dr. J.
llorring of NCAR for inviting my participation in the
Symposium and to Professor R. Adrian of the University
of Illinois for alerting me to tha wealth of work on
the problem. I should also express my gratitude to
United Airlines, whose long flight delays on the
return trip made it possible to complete the analysis
while the problem was still fresh in my mind without
the distractions of hone. The diligence of Mrs.
Eileen Graber in preparing numerous versions of the
manuscript is also deeply appreciated,

REFERENCES

Adrian, R.J., Ferreira, R.T.D.S. and Boberg, T. 1986,
“Turbulent Thermal Convection in Wide Horizontal
Layers®”, Exp. in Fluids, 4, 1221-141,

Chern, C.S. and Long, R.R. 1980, "“A New Theory of
Turbulent Convection Over A Heated Surface"™ Johns
Hopkins Univ., Dept. Earth & Plan. Sci. Rept.,
Baltimore, Md.

Chu, T.Y. and Goldstein, R.J., 1973, "Turbulent
Convection In a Horizontal Layer of Water", J. Fluid
Mech., 60, 141-159.

Deardorff, J.W. and Willis, G.E. 1967a, *Investigation
of Turbulent Thermal Convection Between Horizontal
Plates", J. Fluid Mech., 28, 675-704.

Deardorff, J.W., and Willis, G.E., 1967b, "The Free-
Convection Temperature Profile”, Q.J. Roy Meteor.
Soc., 73, 166-175,

Deardorff, J.W., Willis, G.E. and Lilley, D.K., 1969,
"Laboratory Investigation of Non-Steady Penetrative
Convection®, J. Fluid Mech., 35, 7-31.

Deardorff, J.W., 1970, “"Convective Velocity and
Temperature Scales for the Unstable Planetary Boundary
Layer and the Rayleigh Convection®, J. Atmos. Sci.,
27, 1211-1213.

Fitzjarrald, D.E,, 1976, "An Experimental Study of
Turbulent Convection in Air",.J. Fluid Mech., 73 693-
719.

George, W.K. and Capp, S.P., 1979, *"A Theory for
Natural Convection Turbulent Boundary Layers Next to
Heated Vertical Surfaces”, Int. J. Heat & Mass Trans.,
22, 813-826.




Globe, S. and Dropkin, D., 1959, *Natural Convection
Heat Transfer in Liquids Confined by two Horizontal
Plates and Heated From Below", Heat Trans., 81, 156-
65. 219-223,

Goldstein, R.J. and Chu, T.Y., 1969, “Thermal
Convection in a Horizental Layer of Alr*, Prog. Heat &

Mass Transfer, 2, 55-75.

long, R.R., 1976, "Relation Between Nusselt Number
and Rayleigh Number in Turbulent Thermal Convection®,
J. Fluid. Mech., 73, 445-451.

Malkus, W.V.R., 1954, "The Heat Transport and Spectrum
of Thermal Turbulence", Proc. Roy. Soc. London, 4225,
195-.212,

Monin, A.S. and Yaglom, A.A., 1971, Statistical Fluid
Mechanics, Vol 1, MIT Press, Cambridge, MD.

Panofsky, H.A., 1978, "Matching in the Convective
Planetary Boundary Layer*, J. Atmos. Scl., 35, 272-
276,

Priestly, C.H.B., 1954, "A Model for the Simulation of
Atmospheric Turbulence®, J. Appl. Meteor., 15, 571-
587.

Somerscales, E.F.C. and Gazda, I.V. 1969, “"Thermal
Convection in High Prandtl Number Liquids at High
Rayleigh Number™, Int. J. Heat Mass Trans., 12, 1491-
1511,

Townsend, A.A., 1959, *Temperature Fluctuations Over
a Heated Horizontal Surface.

Turner, J.S., 1973, Buoyancy Effects in Fluids.
Cambridge Univ. Press, Canbridge, Ma.

Wyngaard, J.C., Cote, O.R. and Izumi, Y., 1971, “"Local
Free Convection, Similarity, and the Budgets of Shear
Stress and Heat Flux, J. Atmos. Sci., 28, 1171-1182.



