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Abstract

Turbulence research has always been torn between
two objectives: the need to find engineering solutions
to the myriad technical problems presented by turbu-
lent flows, and the desire to gain a scientific under-
standing of the turbulence phenomenon. Because of
these sometimes conflicting, sometimes complemen-
tary objectives, it is easy to lose a sense of perspec-
tive about fundamental turbulence research, where it
has been, and where it is headed. In this paper, the
history of the development of our ideas about tur-
bulence is briefly traced with particular attention to
self-preservation, local similarity, and coherent struc-
tures. Recent research on chaos in non-linear dynam-
ical systems will be examined, and shown to provide a
conceptual framework for the understanding of turbu-
lence. In particular, it will be suggested that the at-
tractors for the Navier-Stokes equations are the flows
themselves. From this perspective, it will be argued
that turbulence is the counterpart of the strange at-
tractor, consequences of which are the observed ten-
dencies toward self-preservation and coherent struc-
tures.

1 Introduction

The turbulent motion of fluids has captured the fancy of ob-
servers of nature for most of recorded history. From the howl-
ing winds which paralyze continents to the babbling brooks
which fascinate adult and child alike, the omnipresent turbu-
lence both challenges our quest for authority over the world
around us and delights us with its unending variety of artistic
forms. From billowing clouds to falling leaves, from cigarette
plume to the first swirl of creme into waiting coffee cup, tur-

bulence constantly competes for our attention. From the al-.

most subconscious observation of exhaust jets on a frosty day
to being willingly hypnotized by the licking flames in an open
fire, turbulence by its handiwork immeasurably enriches the
lives of even those who cannot comprehend its mysteries. And

as the poem below shows, even for those who try, the distinc-
tion between art and research is often difficult to make. '

SONNET TO TURBULENCE
by »
S. Corrsin
(For Hans Liepmann on the occasion of his 70th birthday,
with apologies to Bill S. and Liz B.B.)

Shall we compare you to a laminar flow?

You are more lovely and more sinuous.

Rough winter winds shake branches free of snow,
And summer’s plumes churn up in cumulus.

How do we perceive you? Let me count the ways.
A random vortex field with strain entwined. '
Fractal? Big and small swirls in the maze

May give us paradigms of flows to find.

Orthonormal forms non-linearly renew
Intricate flows with many free degrees

Or, in the latest fashion, merely few —

As strange attractor. In fact, we need Cray 3’s.

Experiment and theory, unforgiving;
For serious searcher, fun ... and it’s a living!

This is a paper about the mechanical mysteries of tur-
bulence, and an attempt to place in perspective our efforts
to understand them. Before beginning this quest, however,
I would first like to direct your attention to the people who
study turbulence — the turbulence community, if you will
— and their reasons for doing so. Of these, only two are pri-
mary: scientific curiosity and engineering need. It is tempting
to identify the former with the “fun” referred to in the last -
line of Corrsin’s poem, and the latter with “making a living”.
However, as we all know well, engineers can have fun too, and
(in the modern world) scientists can make a living.

One of the curious characteristics of turbulence researchers
is that, unlike researchers in many other fields, they fre-



quently wear two hats — scientist and engineer. On the one
hand they can perform seemmgly useless experiments to elu-
cidate some esoteric feature of turbulence which has no fore-
seeable engineering application. On the other, they tinker
with the constants of turbulence “models” to improve engi-
neering prediction even though the models can be connected
with the physics of the flow in only the most primitive man-
ner. Witness, for example the recent review by Frisch and
Orszag [1] which moves from eddy viscosity to fractals in
scarcely more than a page. '

Unfortunately, there is a tendency by some who concen-

trate only on one aspect of this dual mission to disparage the ’

efforts of those who focus on the other — to the detriment
of alll An unfortunate consequerice of this is that the rest
of the world (and sponsors, in particular) get the idea that

the field is in disarray with little or no consensus as to how

to proceed. While in part this factionalism may be driven
by the ever-increasing competition for funds, I suspect that
in greater part it results from a failure to appreciate that
there really are the TWO reasons for studying turbulence —
and they are not necessarily complementary, at least in this
generation.

Certainly a case can be made that we don’t know enough
about turbulence to even start to consider engineering prob-
lems. To begin with we have fewer equations than unknowns
in any attempt to predict anything other than the instanta-
neous motions. Moreover, we won’t be able to perform the
latter for engineering problems until at least several gener-
ations of computers have come and gone. And even if we
could perform a simulation of real flows, we would be over-
whelmed by the amount of data, especially in the absence of
real criteria for selecting from it in a single lifetime what is
important. Further, even the things we think we understand
— like the Kolmogorov similarity of the small scales and the
Law of the Wall — have never really been tested in controlled
experiments in the limits of high Reynolds number because
we have failed to invest in the large scale facilities required
to do so. That most would accept these particular examples
as fact instead of just theory is perhaps more due to the time
lapsed since they were proposed and found to be in reason-
able agreement with a limited data base, than that they have
been subjected to experimental tests over the range of their
assumed validity. (This point was made rather forcefully by
Long and Chen [2] in their controversial paper.)

The counter argument is that airplanes must fly, weather
must be forecast, sewage and water management systems
must be built, and society needs ever more energy-efficient
hardware and gadgets. Thus, no matter the inadequate state
of our knowledge, we have the responsibility as engineers to
do the best we can with what we have. Who, considering

. the need, could seriously argue with this? That — almost in-
credibly — some do, can only be understood as a response to
the impatience sometimes expressed by those attempting to
meet to such needs about those more focused on increasing
the state of our fundamental knowledge. B. Melville Jones
{3} ! wonderfully captured the essence of the problem when

he said,

1 am grateful to F.Culick of Cal Tech for calling this to my attention.

A successful research enables problems which
once seemed hopelessly complicated to be expressed
so simply that we soon forget that they ever were
problems. Thus the more successful & research,
the more difficult does it become for these who
use the result to appreciate the labour which has
been put into it. This perhaps is why the very
people who live on the results of past researches
are 8o often the most critical of the labour and

- effort ‘which, in their time, is being expended to
simplify the problems of the future.

It seems self-evident then that, once personalities, ques-
tions of personal self-worth, and limited resources are stripped
aside, there must of necessity be at least two levels of assault
on turbulence. At one level, the very nature of turbulence
must be explored. At the other, our current state of knowl-
edge — however inadequate it might be — must be stretched
to provide engineering solutions to real problems. The great
and not so self-evident danger is of being deceived by the
successes and good fortune of the latter into a sense of com-
placency about our knowledge of the former.

While it may be difficult to place a price tag on the cost of
our limited understanding of turbulence, it requires no imag-
ination at all to realize that it must be enormous. Try to
estimate, for example, the aggregate cost to society of our
limited turbulence prediction abilities which result in inade-
quate weather-forecasts alone. Or try to place a value on the
increased cost to the consumer of the need of the designer
of virtually every fluid-thermal system —from heat exchang-
ers to hypersonic planes— to depend on empiricisth and ex-
perimentation, with the resulting need for abundant safety
factors and non-optimal performance by all but thg crudest
measures.

There are some who may argue that our quest for knowl-
edge about turbulence should be driven solely by the insa-
tiable scientific cnnosnty of the researcher. Whatever the mer-
its of this argument, it is impossible to consider the: vastness
of the applications and not recognize a purely financial im-
perative for fundamental turbulence research. The:problem
is, of course, that the cost of our ignorance is not.confined to
a single large need or to one segment of society; but is spread
across: the entire economic spectrum of human existence. If
this were not the case, it would bé easy to imagine federal
involvement at the scale of & Star Wars o a Super-Collider
to advance more rapidly our understanding. By failing our-
selves to recognize clearly the need and nature of what we.do
in turbulence research, we have settled for fa,r, far less than a
reasonable allotment of the national a.nd corporate research
budgets.

However, enough for now of the turbulence wars, and the
endless debate over the relative merits of fundamental re-
search and engineering. Enough also of public needs and
policy. Since this is an Enginééring Conference, it is safe to
assume that the members of the audierice are well-versed in
and committed to the engineering aspects of turbulence re-
search. Therefore, with your indulgence, I would like draw
your attention now away from the nature of turbulence re-
search, and don my other hat — of pure scientist ~ to lead
you on a brief visit to the Never, Never Land of Ideas about

the Nature of Turbulence itself. The tour will, by the very
nature of the subjeet, be a very personal one since no two peo-



ple could be in complete agreement about something about
which we know so little. It will be up to you to distinguish
between what you wish to consider as fact and to dismiss as
fantasy. Thus, like two artists painting the same scene, the
pictures we paint will as much reflect our own personalities
and histories, as the facts. And, like real works of art, both
my picture of turbulence and yours might enable others to
see things 'ghat they would have otherwise missed.

We will begin by examining what I believe to be the three
great ideas which should most influence our view about the
nature of turbulence: Fiist, the idea of self-preservation and

the tendency of turbulent flows toward self-preserving states;

second, the recognition of coherent and organized structures
in turbulent flows; and third, the recent discovery of the
chaotic nature of deterministic non-linear systems. Then I
shall attempt to show. how I believe these ideas fit together

to tell us something about the nature of turbulence. Finally,

I'll try to speculate as to where this might be taking us.
Note that I shall not discuss what many consider to be
the fundamental problem of turbulence — the closure prob-

lem. From the: perspective of this tour, the closure problem

is an engineering problem, and does not bear du‘ectly on the
nature of turbulence itself. The inverse is not true, of course,
since our attempts to deal with it should depend crucially on
our understanding of the nature of turbulence. It is prob-
ably worth pointing out that most closure attempts to-date
use very little of even our present understanding beyond the

simple recognition that if you have more of a quantity in one -

place than in another, on the average the turbulence tries
smooth out the difference. (Lumley [4] chides those who rail
against gradient transport models for ignoring the “on the
average”, thereby missing the whole point.) This observation
does not imply that such turbulence models are particularly
simple, since even the higher level single point models can
become bewilderingly complex as they try to satisfy the con-
straints of rational mechanics, cf. Lumley- [5]. As one who
has spent a significant portion of his career trying to improve
the data base on which such models must depend, I hardly
need to defend the fundamental character of work on the clo-
sure problem or the priority it deserves. Nor, therefore, do I
need to apologize for arguing that it contributes little to our
understanding of the nature of turbulence.

2 Self-preservat ion

The first clue to the nature of turbulence is offered by the -

observation that in every case where the averaged equations

of motion  admit to self-preserving (or similarity) solutions,

the flows observed in nature appear to settle into these states.
Moreover, in many cases where the equations do not admit
to such solutions, the flow tries to settle into some kind of
local similarity. Examples of the former include the familiar
self-preserving solutions for jets and wakes, while the latter
would include the Law of the Wall and Law of the Wake for
turbulent boundary layers, and the Kolmogorov similarity for
the dissipative 'scales of high Reynolds number turbulence.
(Almost every book on turbulence includes most of the flows
mentioned; cf. Tennekes and Lumley [6], Monin and Yaglom
[7], and Hinze [8}.)

The term self-preservation is used here to mean that the
averaged flow properties in space or time can be collapsed by

characteristic scales which depend on-.only a single variable.
For-example, if the mean velocity is given by

U=Ul(y), W

then self-preservation would imply that there exists a length
scale, 6 = 6 (z), and a velocity scale, U, = U, () so that

U =U.f (4/9) (@)

An important consequence of the definition above is that the
equations of motion are reduced by one-dimension. . Thus
for flows which are planar or axisymmetric in the mean, the
averaged equations are ordinary differential equations, The
consequences of self-preservation are thus similarity solutions
to the governing equations. Figure 1 illustrates the self-
preservation-of the veloaty profile in an axisymmetri¢ buoy-

" ant plume.

Recently, I have explored a somewhat different definition
by insisting first that all of the terms in the averaged equa-
‘tions go up and down together at the same relative loca-
tion (like y/z above), and then seeking appropriate scaling
functions for each term which accomplishes this, v. ref. {10}.
While this assumption leads to the same the kind of profiles
assumed above, there are some important differences which
will be discussed briefly later.
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Figure 1: Velocity profile in an axisymmetric plume (ref 9).

The second kind of self-preservation is called local self-
preservation or local similarity. The principal difference is
that local self-preservation does not lead to a reduction of
the order of the governing equations, and similarity solutions
are not possible. Perhaps the best example of local self-
.preservation is the experimental observation that for many
types of boundary layer flows in the near-wall region, the
velocity moments can be collapsed with only the friction ve-
locity (defined from the wall shear stress as u, = v/ 7w/ p) and
the kinematic viscosity, ». This Law of the Wall for the mean
velocity. profile is thus given by

U=uf(yu,/v) = ' ®3)



This is only a local self-preservation since it is only valid in
the wall region. Another well-known example (illustrated in
Figure 2) is that of the so-called Kolmogorov similarity of
the small scale turbulent motions in high Reynolds number
turbulence for which all statistical quantities scale with the
rate of dissipation of turbulence kinetic energy, ¢, and the
kinematic viscosity, ».

Now it should be noted that not everyone who works in
turbulence believes in self-preservation. And even those who
do, don’t necessarily agree on the details of what they believe.
Most who do believe follow the view perhaps best presented
by Townsend [11], [12] that the self-preserving states at-
tained are truly universal. For example, all wakes, regardless
of how generated, should asymptotically achieve the same
self-preserving state (when normalized by the drag and free
ptream speed). In the same vein, all high wavenumber turbu-
lent spectra should look alike (when plotted in Kolmogogov
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Figure 2: Velocity spectra in Kolmogorov variables (ref 7).

‘variables), and all wall layers should have the same same ve-’
locity profiles (when plotted in wall variables), regardless of
‘how the flows were generated. Probably the most articulate
defender of this view at present is Narasimha, e.g. ref. [13].

The alternative view of self-preservation mentioned above
is both new and controversial — so much so in fact that some
will argue that I’'m the only one who holds it! (In fact, most of
the papers where I've discussed it have yet to be published be-
cause the journal reviewers keep rejecting them.) Regardless,
it follows from the rather different approach described briefly
above where one begins with the equations of motion, and
asks what kinds of scaling yield similarity equations in which
all the terms go up and down together. Much to my surprise,
when such self-preserving forms can be found, the solutions
depend forever on the initial conditions (for example, the ini-
tial Reynolds number or the shape of the wake generator).
The universal profiles above, and the Kolmogorov similarity
are only achieved at infinite Reynolds number.

As often seems to be the case in turbulence, the data pro-
vide some support for both views. While there does appear
1o be some dependence on Reynolds numbers, for example,

_ most argue that it is just experimental error. This argument
is countered by arguing that the range of variation of initial

conditions over which experiments have been performed is
just too small to see much variation. This is understandable,
of course, since the theory suggesting such a dependence is
rather new, and the experimentalists haven’t yet designed ex-
periments to look for it. On the other hand, some argue that
the observed variations in the self-preserving states simply
prove that there can be no such thing. (Usually, however,
the proponents of this view are uninformed of the new alter-
native to universal states.)

Now the basic ideas of self-preservation have been around
for a very long time (at least 60 years). So why, you may
ask do I suddenly believe them to be so important to under-
standing the nature of turbulence? The full answer will have
to wait for the concluding section of this paper, but for now
another question may give a clue. The question is: Presum-
ing that turbulent flows do have this tendency toward self-
preservation, WHY? Certainly the instantaneous equations
admit to no self-preserving solutions. (The inviscid equa-
tions can, however, be shown to be scale invariant, v. ref.
[1]). Thus, this tendency to settle into self-preserving states
is only an average property of the turbulence, and it reduces
the effective number of dimensions of the equations govern-
ing the averaged motion. How does the turbulence know it
is supposed to behave this way? For example, how does the
flow from an orifice know it is supposed ignore the possibility
of spreading uniformly in space (like an inverse sink flow),
and organize itself into the thin shear layer that is a self-
preserving jet? Even if we allow for the separation at the
edge of the orifice as a partial explanation of why-the flow
starts as a jet, it is still not obvious why it stays that way.

It is my view that self-preservation is itself a clue to some
deeper understanding of why turbulence does what it does?
In other words, if we would understand the nature of turbu-
lence, we must be able to explain Why self-preservation — of

any kind? ‘ :
3 Coherent structures: real or imag-
inary? '

A second clue to the nature of turbulence comes to us from
the presence of coherent structures in many turbulent flows.
While the means for quantifying these structures are at times
difficult to understand, the occurrence of characteristic pat-
terns of motion in many turbulent flows is obvious to even the
most casual observer. Some of the most common examples
include the rolls of clouds overhead, the wind-streaks along
the surface of highways in.a snow-storm, and rain-marked
gusts in a thunderstorm. The famous sketch by Leonardo da
Vinci of the turbulent flow from a pipe (see the paper cover of
ref. [6]) isreplete with a variety of characteristic structures.
In spite of the human mind’s ability to quickly recognize vi-
sual patterns, the problem of quantifying the existence and
character of coherent motions in turbulence has proved to be
a major and continuing challenge. .

The idea of using statistical measures to look for highly
correlated disturbances underlying an apparently random tur-
bulent field can largely be attributed to Townsend and his



students in the 1950’s. They postulated the existence of big
turbulent eddies to explain the small, but persistent, correla-
tion between velocity fluctuations at widely separated points
and the large scale intermittency of turbulent shear flows.
This idea was given mathematical rigor a decade later with
the proposal by Lumley [14] to use proper orthogonal de-
composition (POD) techniques to find and characterize these
structures. Nearly concurrent with this development was the
attempt by Kovasznay and his students [15] to investigate
coherent structures experimentally by using conditional sam-
pling techniques. It was, however, two relatively simple ap-
plications of flow visualization which captured the attention
of the fluid dynamics community, and buried forever the old
idea of turbulence as a rather disorganized jumble of many
interacting degrees of freedom.

The first of these came from the dye and hydrogen bubble
studies of the near wall region of a turbulent boundary layer
by Kline and his students in the late 1950’s and the subse-
quent decade. Their photographs not only made it clear that
this region of the flow was not quiescent as previously be-
lieved (and as implied by its old name, the laminar sublayer),
but very active (hence its new name, the viscous sublayer).
More than this, the visualization studies showed clearly the
existence of highly coherent streaks near the wall which per-
sisted for nearly 1000 times the viscous length scale with an
average spacing of more than 100 times it. This was not only
unexpected, but almost inconceivable, to a scientific commu-
nity which had been weaned on a mixing length proportional
‘to the distance from the wall. A intensive hunt was begun us-

(b)

Figure 3: Numerical simulation of vortex roll-up in a shear
layer (ref 18).

ing all of the techniques described above to further document
the character of the wall region and its relation to the rest of
the boundary layer. The findings still defy complete expla-
nation today and remain an active area of research. (Kline
[16] provides a comprehensive collection of current efforts and
viewpoints.)

While the existence of structure in the wall layer revised
our view of turbulent boundary layers, it did not significantly
influence thinking about the nature of turbulence away from
surfaces. That did not happen until more than a decade later
when another flow visualization event-captured the imagina-
tion of fluid dynamicist and non-fluid dynamicist alike, the
publication of the now famous photograph by Brown and

Roshko [17] of vortex roll-up in a turbulent_free shear layer
(similiar to that shown in Figure 3). It had been preceded by
the forced jet mixing layer experiments of Crow and Cham-
pagne [19] in which the flow could be clearly seen to organize
itself into large scale puffs. Regardless of one’s opinion about
the existence of coherent structures before, from this point
forward these structures were recognized by most as being a
fundamental part of turbulence.

These two early experiments unleashed a flurry of research
efforts to identify coherent structures in a variety of turbulent
flows. Flows of all types were artificially forced, condition-
ally sampled, and visualized by all sorts of exotic techniques.
(Cantwell [20] and Hussain [21] provide excellent reviews of
the results of these efforts.) While there remains even today
considerable debate as to how to interpret the various results,
there is a general consensus that coherent vortical structures
are present in most. turbulent flows. Not at all clear yet is
their dynamical role; or presuming they have one, how to
incorporate them into improved turbulence models. In fact, -
this debate has not subsided since the very beginning. Orig-
inally, some (myself among them) subscribed to Townsend’s
view that, however visible, the role of coherent structures was
largely a passive one. Others (e.g. Liepmann (22]) argued
that coherent structures were the dominant determinants of
the turbulent energy, and that one couldn’t begin to model
turbulence without explicitly accounting for them. The truth,
as we are beginning to understand it now, appears to be that
both views were partially right and partially wrong. (Isn’t
this always the case?) .

My own efforts in coherent structures through these last
two decades were focused, not on the methods described
above and being used by most, but rather on attempts to
apply proper orthogonal decomposition techniques to the de-
termination of coherent structures. From the early 1970’s
when I was collaborating with Lumley, we realized that the
POD held forth the possibility (perhaps the only one) of cap-
turing objectively the full kinematical behavior of coherent
structures. The problem was that the POD needed prodigious
amounts of experimental data to properly capture this behav-
ior — billions of cross-spectral data at hundreds. of points!
The first experiment we designed was for the viscous sub-
layer, and built off of an earlier much less ambitious effort
by Bakewell and Lumley [23]. I changed universities shortly
after the experiment was underway, and after great effort it
was completed by Herzog [24] — more than 15 years after its
inception. The second application of the POD was initiated
in the axisymmetric jet mixing layer when I came to Buf-
falo in the mid- 70’s, and was completed more than a decade

later by Glauser [25], [30]. Both these experiments broke

new ground in terms of experimental complexity and sheer
amounts of data; and were it not for the parallel develop-
ment of on-line computer acquisition and processing, might
never have been completed, (In fact, one of the greatest dif-
ficulties was in keeping sponsors and proposal reviewers be-
lieving the experiments were possible at all 2) The advent of
the full Navier-Stokes computer simulation of turbulence has
opened many new possibilities for further application of these

%1 have more than a few personal heroes out there who never lost the
faith, but foremost among them were Dr. George K. Lea of NSF and
Lt. Col. Lowell Ormand, formerly of AFOSR.



techniques (cf. Moin [26] and Moser and Moin [27]).

Now these POD applications were always viewed with sus-
picion by those using conditional sampling techniques (and
still are today, by some!), largely 1 believe because of a fail-

"ure to appreciate what the POD is. (Truth to tell, we didn’t
always explain it too well - in part, because our own under-
standing was evolving.) In simplest terms, the POD decom-
poses an instantaneous random field of space and time into
‘the deterministic modes (or eigenfunctions) which can repre-
sent it with the smallest number of terms; in fact, optimally
in a mean square sense. (See George [28] for an introduction
to the POD and how it can be interpreted physically.) For
a homogeneous or- periodic field, the optimal functions are

the harmonic ones, so the POD produces the familiar Fourier
répresentation in these cases. In the more interesting inho-
mogeneous case, the eigenfunctions must be determined from
an eigenvalue problem involving the full space-time two point
correlation tensor — hence, the need for experimental data. In
this case, the lowest order eigenfunctions correspond rather
loosely to the largest coherent structures present. What is
most interesting however, is that by studying how' the eigen-
functions change in space and time, and how they interact
with each other, we can see for the first time what the dy-
namical role of the coherent structures is.

This use of the experimentally obtained eigenfunctions to
investigate dynamical behavior is just now beginning with the
first published results due to Aubry et al. - [29] using Her-
zog's and Moin’s viscous sublayer eigenfunctions: By using
only the lowest order mode in the cross-stream direction and
a few modes from the other two directions, they were able
to obtain dynamical behavior of a synthetic sublayer which
displays the principal features observed in real flows by the
flow visualization and conditional sampling techniques. An-
other effort by Glauser and George [30] used only qualitative
arguments to construct the life-cycle illustrated in Figure 4
for pairs of vortex ring-like structures in the axisymmetric jet
mixing layer which were destabilized by their interaction, the
net result of which was to produce smaller scale vorticity ,
perhaps also rings. From these two examples, it is clear that
the gap between the POD and coherent structures appears to
be disappearing, if it is not gone already. And with the dis-
appearance is the confirmation that there really are coherent
structures in turbulence, and that they are a very important
reason why turbulence does what it does. B

From this very brief summary, it should be obvious that I
believe coherent vortical structures to be an essential feature
of any attempt to define the nature of turbulence. While rec-
ognizing them and defining their role is important, an equally
important question is: “Why do they arise in the first-place?”
A partial answer might be that they arise from an instabil-

ity of the velocity profile much in the matter of transitional
instabilities. While operationally useful, this too begs the
question? The more fundamental question is: Why does the
turbulence seefn to want to organize itself into these highly
coherent motions? As will be seen later, my own view is that
this question is closely related to the question asked at the
end of the previous section about self-preservation.

side visw

- Figure 4: Schematic of proposed life-cycléin jet mixing layer

{ref 30}. -
4 Chaos: the key to understand-
ing? § B

" The last clue we shall consider is ‘¢haos. The so-called “the-
“ory of cliaos” has emerged from the subculture of mathemati-

cians, physicists, and fluid mechaticians who nourished it in

‘almost anonymity to the most dramatic influence on scientific

thinking since quantum mechanics and relativity. The tale of
how this happened was beautifully captured by Gleik [31]
in the best-seller that should be required reading for every
student of mechanics, and’ especially of turbulence 3. That
something referred to as chaos'should have significance to a
field named turbulence can hardly be a surprise to anyone.
In fact, a considerable portion of the early interest in chaos
arose from an interest in how transition to turbulence occurs.

Chaos, or deterministic chaos.ag it, is sometimes referred
to, is the séemingly unpredicts havior of purely deter-
ministic solutions to non-linest equations. (Note that the
word random has not been used, although “seemingly ran-

~ dom” would be equally appropriate.) Prior to chaos, it was

commonly believed that a necessary prerequisite for obtain-
ing “random-looking” solutions was either intimidating and
intractable equations (like those governing fluid motion), or
random boundary conditions often believed to “trigger” the
complex’ behavior of turbulent flows. The big discovery of
the chaos pioneers was that perfectly normal and solvable
equations which just happened to be non-linear can produce
solutions which have all the unpredictability of turbulence.
While this seemed to commie as & major surprise to most of the
scientific community, it was less surprising to at least the tur-
bulence school of thought in which I have my roots. At Johns
Hopkins in the 1960’s, for example, both Corrsin and Kovasz-

" nay spent a great deal of time challenging us to understand

the characteristics of various kinds of non-linear systems, and
always inferred some analogous relation between such behav-
ior and turbulence. Even with this background and the firm
belief that at the core the world really was governed by non-
linear behavior, 1 confess to have been awed by the actual
consequences of that non-linear behavior as it has been re-
vealed over the past ten years or so by the chaos community.
The full consequences for scientist, engineers and especially

educators of both are only beginning to be understood. *

My own favorite example of chaos (and one I require my

314 is required in the turbulence course I teach at UB.
4Gee, for example, the recent interview of F. Moon [32]




students to investigate first hand) is the logistic map explored
first in detail by May [33]: Consider the simple non-linear
equation given by

o = 1oy (1 — Timr) (4)

for 0 € z < 1. The equation is often used by ecologists to
try to account for the changing population of a particular
species from year to year for a given reproduction rate r. It
is easy to show with a hand calculator that if the value of r
is too small for a given initial value of x, then the limiting
value of x is zero, i.e. extinction. For values of r above
this critical value, but less than 3. the value of x stabilizes
at value determined by its initial value. For 3 < r < 4,
however, no stable solution is achieved. For r near 3, after
an initial transient, the solution simply oscillates between two
values. Asr increases, it switches abruptly to oscillate among
four values, and then changes equally abruptly to oscillate
among eight values. Above r = 4, however, the solution
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Figure 5: Logistic map (from ref 37).
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Figure 6: Bbifuxjca,tion diagram for logistic map (from ref 37).

varies chaotically (and hence the name), never returning to
any previous value. '

In spite of this apparently random behavior in the chaotic
regime (It’s, of course, not random since it’s perfectly repro-
ducible!), there is a pattern to even this solution as shown in
Figure 5, where the values continue to trace square-like fig-
ures. But these “squares” never close since the values never
repeat! As if this wern’t mystery enough, within the chaotic
regime are windows of order in which the whole route to chaos
repeats itself. In fact, no matter how large the magnification,
each ordered region also goes chaotic and in these chaotic re-
gions are windows of order, and so on. This is illustrated in
Figure 6 which shows the bifurcation diagram for the system,
and makes clear the islands of order with chaos.

Figure 7: The Lorenz attractor (ref 37)

There are many other systerhs of équations — algebraic
and differential — which give rise to the same basic pat-
terns of behavior: simple limiting solutions yielding to pe-
riodic solutions which in turn yield to chaotic ones. For
time-dependent equations, phase-plane plots of the chaotic
solutions are characterized by strange attractors like the now-
famous butterfly attractor of Lorenz shown in Figure 7. Over
the past decade or so, many time-dependent non-linear and
chaotic systems have been analyzed, and all ultimately end
up producing the kind of confined chaotic solutions observed
above, often with spectacularly artistic strange attractors, see
for example Ruelle [34]. There has been a great deal of at-
tention focused over the past decade on the various routes to
chaos, and the attempts to-apply the results to transition-to-
turbulence of fluid dynamics are both interesting and contro-
versial, v.. Morkovin [35]. For our purposes here, however,
we are only interested in the chaotic part of the problem, and
particularly the strange attractor.

Schuster [36] lists numerous properties of strange attrac-
tors; among them: -

o (a) It is an attractor, i.e. a bounded region of phase
space to which all sufficiently close trajectories from
the so-called basin of attraction are attracted asymp-
totically fot long enough time.

o (b) It has a sensitive dependence on the initial condi-
tions so that points initially close together do not re-
main so. '



o (c) It is structurally stable (i.e. small changes in the
parameters change it continuously) and generic.

o (d) It is characterized by fractal dimension, i.e. it is not

space-filling. ®

Now let us step back from the terminology of chaos and
strange attractors, and try to describe the above character-
istics from a more familiar perspective. First, note the ten-
dency of solutions to non-linear equations to become “tur-
bulent” all by themselves, without any effort to make them
s0. Second, these “turbulent” solutions are not just random,
but fall asymptotically into certain patterns which depend on
the initial conditions, Third, these “self-preserving” states
have a great deal of “coherent structure” to them, which is
clearly evident when “visualized” in phase space. Finally, as
a consequence of the fractal nature of the attractor, “simi-
lar” structures are observed at any level of magnification. It
is clear that the terminology of the preceding sections (and
of the turbulence community for the past 20 — 30 years) fits
nicely to this task.

The purpose of the last paragraph has not been to argue
that turbulence and chaos are the same thing, nor should we
expect them to be. The kind of chaos we have been talk-
ing about applies to algebraic maps and dynamical systems
where time is the only independent variable. Turbulence, on
the other hand, is both a temporally and spatially varying
phenomenon. Thus, at most the behavior of dynamical sys-
tems can give us clues as to what the nature of turbulence is.
In the next section, we shall try to tie all the clues together.

5 The real nature of turbulence

There aré many other clues to the nature of turbulence which
we could include and discuss in some detail, were space and
time permitting. In the context of this paper probably the
most important are the observations by Screenivasan and
Mendiveau [38] that the turbulent non-turbulent interfaces
and the dissipative scales of turbulence appear to have a
fractal character. As these authors have noted, a fractal de-
scription does not preclude a fluid mechanical description of
these phenomena by vortex elements, since fractals can only
describe the geometry of turbulence, and not its dynamics.

The concepts of chaos and strange attractor discussed
briefly in the preceding section have considerable appeal in
trying to understand the nature of turbulence. However, since
chaos has traditionally been examined in phase space in the
traditional manner of dynamical systems theory, it is not at
all clear what we should expect in a spatially and temporally
varying system. It is probably for this reason that atten-
tion has largely been focused on the “Lagrangian Turbulence”
arising from particle motions in fluids (not necessarily turbu-
lent flows, either), and on the behavior of flows in time at a
single point. (Chevray [37] provides an interesting review of
these efforts.) Therefore it is to this problem that I would
like to address my attention. In particular,

5The subject of fra¢tals was recognized by Mandelbrot as being rel-
evant to turbulence, and could have been included as a section in this
paper. However, it is primarily of interest in this context as being a
property of the strange attractor.

o Do the Navier-Stokes equations give rise to chaotic solu-
tions, i.e. solutions which are deterministic but appear
random?

o Do the Navier-Stokes equations have strange attractors
associated with them?

e And if they do, what should we expect them to look
like, and how would we represent them?

Recognizing that the first step in any application of the
scientific method is the formation of the hypothesis, I offer
the following: I suggest that the clues we have examined are
strong indicators that the turbulence is the manifestation of
the chaotic tendencies of the Navier-Stokes equations.” More-
over,

o The Navier-Stokes equations do indeed have attractors,
and they are in fact the flows we realize.

o The strange attractors of the Navier-Stokes equations
are the turbulent flows we see:

Now if one insists on defining an attractor only as a con-
struction in phase space the above makes no sense. However,
if one is willing to consider a more general definition, then
turbulent flows have counterparts to all of the properties we
noted about ‘strange attractors. From the sensitive depen-
dence of the instantaneous motions on initial and boundary
conditions, to the relatively insensitive dependence of the self-
preserving and entraining “average” flows they seem to fall
into; from the generic flow patterns we so quickly recognize
and name (e.g. jet, wakes, etc.), to the elusive coherent struc-
tures we see but cannot unambiguously identify; from the low .
order representation by orthogonal functions, to fractal geom-
etry which dictates self-preserving forms — all of the features
of strange attractors have their counterpart in the turbulent
motions around us. Thus turbulence must be the natural
manifestation of the non-linearity of the Navier-Stokes equa-
tions, and the baffling features we see are the characteristics
of its strange attractor in a given environment.

If all of this makes sense, we have succeeded in identi-
fying turbulence with a large class of non-linear and chaotic
phenomena, and vice versa. And in doing so have provided
the answers to many of the questions we posed earlier. For .
example, turbulence tends to be self-preserving because its
attractors have fractal dimension. Or, thin shear layers de-
velop as a consequerce of the particular strange attractor cor-
responding to the equations and gross boundary conditions.
Thus from this viewpoint, there is nothing particularly unique
about nature of turbulence.

Now unless you haven’t been thinking while you read the
above, you’ve probably noticed that by answering these ques-
tions in this manner, we haven’t really answered them at all!
We have only moved them into a much larger category of
things we don’t understand about nature. For example, Why
do non-linear systems give rise to strange attractors? Or from
another discipline, Why is space-time in the large governed by
general relativity? Equally, Why does the world in the small
obey quantum mechanics? Obviously, regardless of how far
we push this, there will always be a point at which we must.
answer as Richard Feynman [39] was fond of saying: “It’s
crazy that the world behaves this way, but that’s the way.it .



is!” The challenge, of course, is to know when we’ve reached
this point.

Suppose that we have not reached that point in our un-
derstanding of non-linear phenomena, and that there remain
principles to be uncovered which explain why chaos occurs,
and what the nature of the attractor will be. It is my own
belief that beneath it all lies at least a variational principle
which if in our grasp will solve (or remove entirely) the tur-
bulence (closure) problem by giving us directly the form of
the attractor. For example, one might hypothesis that the
flows we see represent the minimum rate at which entropy
can be produced for a given set of boundary conditions. One
cannot, of course, infer from my own lack of success in pro-
ceeding from this to a solution of the turbulence problem,
that someone else using this or an alternative hypothesis will
not succeed.

While it may be easy to dismiss this kind of thinking as
a useless exercise because of the difficulties inherent in it, let
us not fail to recognize the enormous practical implications
should it succeed. And spurred on by this hope, let us keep
alert as we continue to explore the nature of turbulence and
as we tackle our engineering challenges. Maybe if we get
really lucky, we won’t fail to recognize what we’ve found if
we should trip over it!
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