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A new theory for the decay of homogeneous, isotropic turbulence is proposed in which truly
self-preserving solutions to the spectral energy equation are found that are valid at all

scales of motion. The approach differs from the classical approach in that the spectrum and
the nonlinear spectral transfer terms are not assumed a priori to scale with a single

length and velocity scale. Like the earlier efforts, the characteristic velocity scale is defined
from the turbulence kinetic energy and the characteristic length scale is shown to be

the Taylor microscale, which grows as the square root of time (or distance). Unlike the earlier
efforts, however, the decay rate is shown to be of power-law form, and to depend on the
initial conditions so that the decay rate constants cannot be universal except possibly in the
limit of infinite Reynolds number. Another consequence of the theory is that the

velocity derivative skewness increases during decay, at least until a limiting value is reached.
An extensive review of the experimental evidence is presented and used to evaluate the
relative merits of the new theory and the more traditional views.

I. INTRODUCTION

The ideas of similarity and self-preservation have
played an important role in the development of turbulence
theory for more than a half-century. The traditional ap-
proach to the search for similarity solutions in turbulence
has been to assume the existence of a single length and
velocity scale, then ask whether and under what conditions
the averaged equations of motion admit to such solutions
(cf. Townsend' and Tennekes and Lumley?). When shown
to exist, such solutions have been assumed to represent
universal asymptotic states, retaining no dependence on
initial conditions other than generic ones (e.g., jets, wakes,
plumes, etc.).

There has been considerable debate over the years as to
whether or not real turbulent flows actually converge to
such universal solutions, and if so, precisely which exper-
iments best represented them. It was, in fact, the apparent
failure of the von Karméan-Howarth® similarity analysis of
decaying isotropic turbulence to adequately describe the
turbulence behind a grid that led Batchelor* to propose the
now commonly accepted view of turbulence as an intrinsi-
cally multilength scale phenomenon, describable only by
local similarity laws at the energy and dissipative scales,
respectively. Incorporated into the latter was the
Kolmogorov proposal for the near statistical indepen-
dence of the dissipative motions from the larger scales, and
the idea of a universal equilibrium range. '

The advances over the past decade in chaos theory
with its strange attractors and fractal properties have given
new impetus to examining the role of self-preservation
ideas in turbulence. Recently, George® showed that the
averaged equations of motion for a number of flows admit
to more general similarity solutions that retain a depen-
dence on both the Reynolds number and the initial condi-
tions. These types of solutions are particularly tantalizing
in view of the similar properties of strange attractors in
dynamical systems theory (see Schuster’ and Georges).
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This paper reexamines the possibility of self-preserving so-
lutions to the averaged spectral equations from this more |
general perspective. The existence of solutions for isotropic |
turbulence that are both self-preserving at all scales of mo-
_tion and dependent on the initial conditions will be shown

to be possible.
The results will be seen to have been anticipated by the
analysis of Barenblatt and Gavrilov’ and by the experimen-

tal results of Ling and Wan,!? and are closely related to the -
general theory of intermediate asymptotics and similarity

solutions of the first and second kind (see Barenblatt!!).
An important contribution of the present work is the rec-

ognition of the role of the derivative skewness in limiting

the range of validity of the initial-condition-dependent so-

lutions, and in sorting out many of the apparent inconsis- |

tencies in the experimental observations in decaying turbu-
lence. Specifically, it is argued that there is an initial decay
region that is determined by the initial conditions and in
which the nonlinear transfer terms (as measured by the

velocity derivative skewness) are increasing in importance

during decay. As the initial Reynolds number of the flow is
increased, the von Karman-Howarth solution (in which
the energy decays as £~!) is approached asymptotically as
the limiting solution at infinite Reynolds number. Two dif-

ferent kinds of r~%/% decay are identified: one in which the

nonlinear terms are of increasing importance throughout
the decay and one in which they are negligible, the latter
corresponding to the true final period of decay. Finally, it
is suggested that for finite Reynolds numbers, the nonlin-
ear terms reach saturation so that a second region of decay

is entered in which the derivative skewness is nearly con-

stant (or decreases slowly) and which may or may not be
self-preserving. The theory is substantiated by a careful

examination of the experimental data for decaying turbu- |

lence.
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Ii. THE DYNAMICAL EQUATIONS

The spectral energy equation for a homogeneous iso-
tropic turbulence is given by Batchelor'? as

OF T—2vKk’E, 1
at =1 —aV ’ ( )
where E and T are functions of both the wave number k
and time ¢. The three-dimensional energy spectrum func-
tion E(k,t) is defined as the integral over spherical shells of
radius k= |k| of the contracted velocity spectrum tensor,

i.e.,
A L

E(k)=5 J.J;kl=k $i(k)do(k), (2)
where

¢ij(k)=J.ffw &% (u(x)u(x+r))dr. (3)

Hereafter, the three-dimensional spectrum function E(k,t)
will simply be referred to as the spectrum.

It follows from the definitions that the integral of the
three-dimensional spectrum function can be integrated to
obtain the turbulence kinetic energy, ie,

3 ) :
- 2=_ Y=
3 u =3 (uu;)= J; E(k,t)dk. (4)

The spectral energy transfer T'(k,t) arises directly
from the transformed convective terms of the equations of
motion. Following Batchelor,'? the Fourier transform of
the two-point triple-velocity correlation is defined as

(k) Efff' (ui(X)u(x)u(x+r))e*"dr. (5)

From the isotropic relations and incompressibility,
T;(k) can be related to a single scalar function y(k) by

Tyi(K) =iy (k) (kikfer— 3Kk B — K2k B). (6)
The transformed inertial terms in the spectral equations
can be shown to be given by

T (k) =4akSy (k). (N

Thus T(k,t) contains the essential nonlinearity of the
Navier-Stokes equations, and represents the transfer of en-
ergy from all other wave numbers.

The spectral energy equation can be mtegrated over all
k to yield the energy equation for the turbulence as

d (3,
Ei(iu)=—e’ (8)

where € is the rate of dissipation of turbulence energy per
unit mass given by

e=2v J"" KEkdk 9)
0

and where the fact has been used that the net spectral
transfer over all wave numbers is identically zero, i.e.,
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».)

F T(k,t)dk=0. (10)
0

Hi. SIMILARITY ANALYSIS OF THE SPECTRAL
EQUATIONS

Self-preserving forms of the spectrum and spectral
transfer functions are sought for which

E(kpt)=E(t,2)f(n,+) (11)

and

T(k,t)=T,(t,%)8(n,#), (12)
where

n=kL (13)
and

L=L(t,s). (14)

The argument «» is included to indicate a possible depen-
dence on the initial conditions. Only those solutions of the
spectral energy equation will be sought for which the coef-
Sficients of all terms have the same time dependence so that
all terms maintain the same relative balance as the turbu-
lence decays. (Note that this is, thus, a more restrictive

* class of self-preserving solutions than those usually consid-

ered in which the only assumption is that the profiles col-
lapse with a single length scale.)
Differentiating Eq. (11) yields

=[E]f(n.+) + (15)

E
'L] nf'(n.-),

where the overdot denotes time differentiation and prime
differentiation with respect to ..

Substituting into the spectral equatlon (1) leads imme-
diately to the transformed equation

[E1f(n,8)+[EL/LInf (n,6)

=[T,}g(n,2) = [VEL*]20%f (n,s). (16)
{Note that the bracketed terms are functions of both ¢ and

It is convenient to divide by vE,/L? so that the trans-
formed equatxon reduces to

EL?

2
T’L ] (17

|5 =[] e e
where the dependences on ¢, 7, and » have been suppressed
for now.

Now, since the coefficient of the last term is time in-
dependent, self-preserving solutions of the type sought here
are possible only if the other bracketed terms are also time
independent; i.c.,

[E,L%/vE,] =const, (18)
[LL/v}=const, - (19)

and
[T,L*/vE,] =const. (20)
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From Eq. (19) it follows in_xmgdiately that

L2=24v(t—1ty), (21)

where the constant of proportionality has been chosen for
convenience as 24, and must be determined from other
considerations. Also, the dependence on #, can be elimi-
nated by an appropriate choice of origin in time; so, here-
after 7, will be assumed zero with no loss in generality.
Equation (18), together with Eq. (21) reduces to

Ey/E=p,
where p is a constant. This can be integrated to yield
E/Eg=[t/1,}%, (23)

where E;; and ¢, denote an arbitrary reference state. Thus
the spectrum undergoes a power-law decay (assuming p to
be negative). The third equation, Eq. (20), can be satisfied
if and only if

(22)

T,~vE/L? (24)
or using Eq. (21),
T,~t"'E, (25)

IV. THE LENGTH SCALE AND NONLINEAR
TRANSFER TERMS

From Eq. (4), it follows by substitution that the en-
ergy integral can be written as

3 w

Ju=[EL™"] fo f(n)dn. (26)
Since the integral is time independent,

E,~u’L. (27)
It follows from Egs. (25) and (27) that

T~v(u?/L). (28)

From Eqgs. (21), (23), and (27), a decay law can be im-
mediately obtained as

u? PrLy £1p-172

&l 2
or

ul~r", (30)
where

n=p—1 (31)

and either p or n must be determined. Thus the kinetic
energy also undergoes a power-law decay.

It remains to relate L to a physically observable length
scale. This can be accomplished by considering the rate of
dissipation of turbulence energy given by Eq. (9). In sim-
ilarity variables, this becomes

e=[vE,L—312f 7 (n)dn, (32)
0
or using Eq. (27),

e~vulLT2 (33)
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For isotropic turbulence

2 2

u
= = 15v nk (34)
where A is defined to be the Taylor microscale, Batchelor. !2

By comparing Eqs. (33) and (34), the similarity length
scale L is readily recognized to be the Taylor microscale A,
ie.,

du
e=15v< -

L~A. (35)
Thus, from Eq. (21),
Al=24wr. (36)

The coefficient 4 can be related to the decay law exponent
n by Eqgs. (8) and (34) with the result that

Al=—(10/n)wt, (37)

which is the result obtained by von Kirman and Howarth.}
(Note that this result does not depend on self-preservation,
but only on a power-law energy decay, Batchelor.'?)

A consequence of Egs. (35) and (28) is that the scale
function for the spectral transfer is given as

T=v(u*/A)=R7'd? (38)

where R is the Reynolds number defined from the Taylor
microscale and varies as

Ry=ul/v~tn+172 (39)

using Eqs. (30) and (36). The constant of Eq. (28) has
been chosen as unity by absorbing a factor into g with no
loss of generality. The result of Eq. (38) will be seen below
to represent the principal point of departure of the analysis
presented here from the earlier analyses of von Kirman
and Howarth3 and Batchelor,* where T, was assumed to
equal #’. Note that, for n < —1, viscous effects increase
during decay, whereas for n> — 1, they decrease. Since the
latter is inconsistent with the idea of a turbulence that is
decaying in the absence of an energy input, an upper bound
on the decay exponent must be n< — 1, with equality pos-
sible only at infinite Reynolds number where the dissipa-
tion is exactly zero. This interpretation of n=—1 as an
infinite Reynolds number limit will be seen to play an im-
portant role in the development of the ideas presented be-
low.

What determines the value of the coefficients and the
decay exponent? Except at infinite Reynolds number and
for the final period of decay which are discussed below, this
question cannot be answered in general except to say that
they must be determined by the initial conditions. How-
ever, since these coefficients directly enter the spectral
equations, they are closely related to the shapes of the
spectrum and spectral energy transfer. This can be easily
seen by substituting into Eq. (17) the appropriate form of
the bracketed terms. From Egs. (22), (31), (37), and
(38), it follows that

n(10f+g—29%f ) +5nf" +5/=0. (40)

Clearly, the shapes of the functions f and g satisfying Eq.
(40) will depend on the value of n. Thus turbulence gen-
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erated in different ways tust be expected to have a differ-
ent spectral shape if its decay constant is different, and vice
versa.

In summary, self-preserving solutions to the spectral
energy equations are possible and have the following char-
acteristics:

(i) The characteristic length scale for the entire spec-
trum is the Taylor microscale A. ‘

(ii) The Taylor microscale increases as the square root
of time, i.e.,, A ~ 72,

(iii) The spectrum and spectral transfer functions col-
lapse when plotted as E(k,)/u?A vs kA and AT (k,t)/vu’
vs kA.

(iv) The energy undergoes a power-law decay, i.e.,
u® ~ 1", where n is a constant.

(v) The turbulence Reynolds number characterizing
the motion is R;.

(vi) The constants of proportionality and exponents
are imposed externally by the initial conditions, and should
be expected to vary from flow to flow.

It is important to note that there is nothing in the theoret-
ical development to this point (or subsequently) that sug-
gests the possibility of a single universal self-preserving
state. ’

V. THE VELOCITY DERIVATIVE SKEWNESS AND THE
INERTIAL TERMS

The velocity derivative skewness is defined as

L (auw/an)) .
= T {(du/dx)H)? (41)

and can be related to the spectral energy transfer by
(Tavoularis et al.®)
330 STKT(k)dk

14 [STKE(k)dk])**"
Thus the velocity derivative skewness is a direct measure of
the importance of the inertial terms in the dynamical equa-

tions. By substituting the similarity forms of the preceding
analysis, it follows that

S_s\fsﬁ [v*A~ 4155 n’8(n)dn

(42)

= WU mant “w
This in turn implies
S~R7Y (44)
or
SR;=const=y(s), (45)

where the constant of proportionality is a function of the
initial conditions. ‘Alternately, Eq. (44) can be rewritten
using Egs. (36) and (30) as -

S~ tn+ 72 (46)
Thus, for n< —1, the velocity derivative skewness in-
creases throughout the decay, while for n=1, it is constant.

The value of the constant ¥(s) in Eq. (45) can be
related to the decay exponent n and the spectral shape by
substituting for the spectral transfer using the spectral en-

ergy equation. From Egs. (40) and (45), it follows after
some manipulation that

30\ (n—1 4 ©
y(‘)=SR,1=(7) (T) 35 f n°f(n)dn.

0

(47)

Since both the decay exponent n and the spectral shape
depend on the initial conditions, so must .

Both Egs. (44) and (47) are important consequences
of the proposed theory of self-preservation, and provide a
crucial experimental test of its validity. These results can
be contrasted with that of Kolmogorov,5 which requires
that the velocity derivative skewness itself be a constant
(see Batchelor!?), or the modified theory of Kolmogorov“
in which the velocity derivative skewness increases with
Reynolds number. Neither of Kolmogorov’s theories sug-
gests a separate dependence on initial conditions. It is im-
portant to note that, while Kolmogorov’s theories make
statements about the derivative skewness of turbulence in
general, the theory presented here only argues that the
skewness increases during decay (when n<—1) for a
given set of initial conditions, and then only for isotropic
turbulence! It seems likely that this increase in skewness
during decay cannot continue indefinitely, since the steep-
ness of the velocity gradients would increase without
bound. Thus it is suggested that there exists an upper
bound on the velocity derivative skewness, which when
achieved, prescribes the limit of validity of the fully self-
preserving region, after which another region of decay is
entered that is not necessarily self-preserving. It will be
argued below that this upper bound on the derivative skew-
ness is, in fact, the Kolmogorov value that is achieved in
the limit as the Reynolds number characterizing the initial
conditions becomes infinite.

Note that for the special case n=—1, both the von
Karman-Howarth and Kolmogorov results are recovered,
but with the additional possibility of dependence of the
remaining coefficients on the initial conditions. It has al-
ready been argued (Ling and Wan'? and Barenblatt and
Gavrilov®) on empirical grounds that n= —1 is the appro-
priate limiting solution at infinite Reynolds number. The-
oretical justification for this idea is provided below by ar-
guing that the Kolmogorov similarity law must also be
satisfied in this limit. A consequence of 7= —1 is that both
R, and S are constant throughout the decay, thus, there
can be no bounds on the limit of validity of the solution, as
in the case for which n < —1. An interesting possibility
(Speziale and Bernard'®) is that it is also this n=—1 so-
lution to which the turbulence evolves after the derivative
skewness achieves its maximum value and the initial self-
preserving state is no longer viable.

VI. COMPARISON WITH PREVIOUS THEORIES OF
SELF-PRESERVATION

The key assumption of the earlier von Karman—
Howarth analysis (see also Monin and Yaglom'®), is the
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arbitrary choice, 7, ~ u, which can be contrasted with that
obtained here in Eq. (38) in less arbitrary fashion. The
earlier choice dictates that the energy decay as inverse time
and that the turbulence Reynolds number be constant dur-
ing decay. Thus both of these important results (which
have presented so much difficulty to the turbulence com-
munity) follow not from the similarity analysis, but from
the assumptions that went into it.

Batchelor,® approaching the self-preservation analysis
from the correlations functions using the von Karméan-
Howarth equation, in essence makes the same assumption

by arguing that the triple-correlation function k(r) defined
by

(W (x)u(x+r)) =uwk(r) (48)
can be written in self-preserving form as
k(r)=k(r/L). (49)

The full implications of this can be seen by writing the
entire triple correlation in self-preserving form as

(WA(x)u(x+r)) =u’k(r) =K (Dk(r/L). (50)
In effect, Batchelor has also arbitrarily chosen
K=, (51)

which assumes that the velocity triple correlation is inde-
pendent of Reynolds number. A further consequence of
this assumption is that a factor of R is left in the equation,
from which it follows (as in the von Karman-Howarth
analysis) that the Reynolds number must be a constant for
self-preservation at all scales. Unlike von Karman and
Howarth before him, Batchelor then argues that this can
only occur in the limit as R, goes to zero, the final period
of decay (see below).

If an analysis of the von Karman-Howarth equation is
carried out using Eq. (50) leaving K to be determined by
the analysis (as in the spectral analysis presented above),
the result is

K, ~v(u¥/A) ~R7 ', (52)

Thus the triple-moment term retains the Reynolds number
dependence and no factor of R; remains in the equation.
Most importantly, true self-preservation is possible at all
scales of motion, independent of R;. Physically, the non-
linear transfer terms continually adjust themselves to
maintain the relative balance of the remaining terms.

It should be noted that the solutions found in this
paper do not rule out the possibility of the von Karman-
Howarth type of universal self-preservation; the difference
is that the initial assumptions do not dictate them. Specif-
ically, if for some reason u? decays as ¢~!, then R, is a
constant during decay as is the derivative skewness. Why
the turbulence might decay as ¢~! can be debated, but at
least the choice does not give the illusion of having been
deduced from the analysis!

It is instructive to examine why the choice T, ~ u*
(K, ~ u’) might have been made and what physics it im-
plies. If it is assumed (as in Monin and Yaglom”’) that, at
'some moment during decay, the turbulence spectrum can
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be completely characterized by two parameters, say 4 and
A, then it follows from dimensional analysis that E, ~ u’A
and T; ~ u* and a von Kdrman-Howarth analysis is indi-
cated. What kind of turbulence would be characterized
only by its energy and a single length scale? Only one
which is completely independent of its initial conditions,
precisely the conditions previously believed to be necessary |
for a flow to be asymptotically self-preserving. [Asymptotic
refers to times (or distances) sufficiently far removed from
the generation so that not all of the details of generation
are important.]

As shown by the analysis above, independence of ini-
tial conditions is not essential for a flow to achieve a self-
preserving state. However, because of the dependence on
initial conditions, there is no single universal solution to
which all flows must be asymptotic, at least at finite Rey-
nolds number (see Sec. VII). Unfortunately, self-
preservation has often been confused with the existence of
a single universal state. Clearly, such is not necessarily the
case. It has recently been argued by George® that most
turbulent shear flows relax to a self-preserving state deter-
mined by their initial conditions, and not to a single uni-
versal state as previously believed. The same possibility
apparently exists for isotropic turbulence.

Before leaving this section, it is useful to note the vir-
tually identical conclusions of Barenblatt and Gavriolov,’
who recognized that Eq. (50) led to initial-condition-
dependent solutions. Barenblatt!! identifies these as “self-
preserving solutions of the second kind,” and distinguished
them from the universal “self-preserving solutions of the
first kind.” (This distinction does not seem appropriate in
light of the arguments of the next section since the von
Kéarman-Howarth solutions are recovered as the infinite
Reynolds number limit of the solutions identified herein.)
Moreover, he argues that the former have a limited range
of validity and introduces the term “intermediate asymp-
totics” to describe them, thus, anticipating the maximum
derivative skewness argument put forth earlier and ex-
plored in detail below.

VII. THE RELATION TO KOLMOGOROV'S THEORY
OF LOCAL SIMILARITY

Before comparing Kolmogorov’s theory for the local
self-preservation of the dissipative scales of motion to that
proposed here, it is worth examining the precise conditions
under which it can be expected to hold. For a given set of
initial conditions of isotropic turbulence, the governing
equations make it clear that the spectrum at all wave num-
bers must be a function of the kinetic energy 3u®/2, the
rate of dissipation €, and the kinematic viscosity v. In the
limit of infinite Reynolds number, it can be argued that the
spectrum at low wave numbers makes no contribution to
the dissipation. Also, in this limit, the spectrum at high
wave numbers contains no energy. Thus, in the limit of
infinite Reynolds number, the high-wave-number spectrum
must be determined by € and v (which is Kolmogorov's
proposal’). Similarly, the spectrum at low wave numbers
can only depend on u? and ¢, the latter entering only be-
cause it is equal to the spectral energy flux from the low- to
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the high-wave-numbser regions (and then only at infinite
Reynolds number). (This was apparently first recognized
by Batchelor.!) It is clear from the above that, strictly
speaking, neither scaling can be entirely correct at finite
Reynolds numbers since the high-wave-number region will
always contain some of the energy while the low-wave-
number region contributes some of the dissipation, thereby
invalidating the arguments on which the scaling is based.
Note that it follows that the familiar assumption that €
— u*/1 can be only approximately true at finite Reynolds
numbers if / is to taken to be a real length scale of the flow.

In view of the above, it is reasonable that the high- and
Jow-wave-number scaling laws might be approximately
valid at very large, but finite, Reynolds numbers. In other
words, each might be assumed to be the leading terms inan
expansion about the infinite Reynolds number limit. If so,
then there must be a region where both scaling laws are
valid and they can be matched. This matching in the limit
of infinite Reynolds number yields the familiar k=53 iner-
tial subrange (Tennekes and Lumiey?). Thus the existence
(or nonexistence) of a k~*3 range in a particular experi-
mental spectrum provides a clue as to whether or not the
Kolmogorov or von Karman-Howarth scaling laws might
approximately describe the appropriate spectral regions.
Certainly, if there is no k= range, then there is little
reason to believe that the assumptions for either scaling
law would be even approximately satisfied.

It is clear from the above that Kolmogorov’s theory is
at best an approximation for turbulence at finite Reynolds
number. Thus it is quite unlike the theory of self-
preservation proposed here, which places no restriction on
Reynolds number. Therefore it is only in the limit of infi-
nite Reynolds number that these two theories must be
compatible. This requirement for compatibility in the limit
of infinite Reynolds number can, in fact, be used to deter-
mine the decay rate exponent in this limit, as will be shown
below. The spectrum in Kolmogorov variables is given by

E(k) =v/%€"*f (knk), (53)

where 7k is the Kolmogorov microscale defined by 7k
= v¥/%/€"/%. 1t has been generally believed that the spec-
trum f is universal in that it is independent of how the
turbulence is generated (see Batchelor'? and Monin and
Yaglom'®). However, if the spectrum for isotropic turbu-
lence, in fact, collapses in Taylor variables u and A as
required for full self-preservation, then the spectrum in
Kolmogorov variables must be related to it by

VeV (k) =uAf (kA,»), (54)
so that
Flhkng) =15"V4RYf(KA,»). (55)

Thus the Kolmogorov scaled spectrum appears to be di-
rectly dependent on R;, contrary to the hypothesis that it
should not be. Moreover, since f(kA4,s) is determined by
the initial conditions, so must be f(k7k), and the Kolmog-

orov spectrum cannot, therefore, be universal, even at high-

wave numbers, at least at finite Reynolds numbers.

Despite the above, it is easy to show that the two the-
ories are not necessarily incompatible. Lin'” showed the
equivalence between the von Karman-Howarth theory and
that of Kolmogorov. In particular, he showed that Kol-
mogorov scaling was consistent with full self-preservation
of the type proposed by von Karman and Howarth only if"
the energy decayed as ¢t~ and the length scale increased as
£1/2_ For the special case where n=—1, the theory of full
self-preservation presented here yields an R, that is con-
stant during decay [see Eq. (39)]. When R, is constant,
nk/A is also constant so that both nx and A evolve to-
gether, with the result that the spectra scaled in Kolmog-
orov variables and Taylor variables are equivalent. Thus,
for the special case of n=—1, all three theories (including
the one proposed here) are equivalent.

A heuristic argument for a decrease in the energy de-
cay rate with increasing initial Reynolds number can be
made by noting that energy is removed from a given wave
number in the energy-containing range by both the nonlin-
ear spectral transfer and by the direct action of viscosity. If
the spectral transfer is relatively insensitive to the Rey-
nolds number (as is usually assumed in spectral closure
models, see Lesieur'?), then the rate at which energy is
removed from a given spectral component decreases with
increasing Reynolds number since the viscous term is less.
In the limit of infinite Reynolds number, no energy is re-
moved by direct viscous action on the energy-containing
scales, and the decay rate is entirely determined by the
spectral transfer. It follows immediately that, if the turbu-
lence settles into a self-preserving state in which the energy
decay can be represented by a power law, then that power
must vary with initial (or grid) Reynolds number and ap-
proaches an asymptotic value in the limit as this Reynolds
number becomes infinite. It is interesting that this is the
same limiting solution proposed by Speziale and Bernard"®
for infinite time.

The theory of full self-preservation proposed herein
can only predict that there is a decay exponent, that it does
not vary during decay (at least as long as the nonlinear
transfer can continue to increase), and that it is deter-
mined by the initial conditions. It is entirely consistent that
this dependence on initial conditions vanishes in the limit
as the Reynolds number characterizing the initial condi-
tions (usually the grid mesh Reynolds number) becomes
infinite. If so, then the decay exponent must approach
some asymptotic value. The applicability of the Kolmog-
orov theory in the limit of infinite grid Reynolds number
can be interpreted to require that this limit be n, — —1as
Ry — o, where Ry is a Reynolds number characterizing
the initial turbulence (like the grid Reynolds number). It
is not hard to imagine that the shape of the spectrum ap-
propriate to this limit might also be independent of the
details of the initial conditions (at least at high wave num-
bers). In fact, it could even be the same as for other tur-
bulent flows. If so, all of the apparent points of conflict
between the competing theories vanish and, in fact, the
theories are seen to be complementary.

Before leaving this section, it is interesting to examine
the behavior of the derivative skewness in the limit of in-
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finite Reynolds number if n— —1. First note from Egs.
(39) and (46) that the closer n approaches the limiting
value, the slower the variation of R, and the less rapid the
increase of the derivative skewness during decay. In the
limit of infinite Reynolds number, neither R; nor S will
vary at all during decay. By expressing the integral of Eq.
(47) in terms of the Kolmogorov spectrum using Eq. (55),
the resulting limiting value of the derivative skewness can
be obtained as

12 ® i~
So=—= J15 f K*f(k)dk. (56)
0

If this limiting spectrum is independent of Reynolds num-
ber (as in Kolmogorov’s® theory), then this limit is a con-
stant. On the other hand, if the limiting spectrum retains a
Reynolds number dependence (see Champagne'®) or a de-
pendence on the other initial conditions (see George®),
then the limiting value of the derivative skewness will re-
flect this. Thus, even though the derivative skewness in-
creases during decay for finite Reynolds numbers, the the-
ory proposed here can still be consistent with previous
theories when the Reynolds number increases without
bound.

VHI. INVARIANTS OF THE DECAY

There have been several attempts to establish theoret-
ically the existence of integral invariants of the decay of
homogeneous, isotropic turbulence. These all take the form

f” r"B,, (rdr=1,, (57)
0

where I, is the invariant and is thus presumed constant
throughout the decay. The first of these was due to
Loitsiansky,2® who argued that the fourth integral moment
of the longitudinal velocity correlation should be an invari-
ant of the motion, i.e., m=4. Necessary conditions were
the existence of the integral which required that B, (r)
— 0 at least as fast as 7 ~> as 7— o and that the two-point
triple correlation By, ;(r) — O faster than r % Subse-
quently, Proudman and Reid?! and Batchelor and
Proudman?’ showed that these conditions were not satis-
fied in general (except in the final period of decay which
will be discussed in the next section). In particular, they
showed that, because of the influence of the pressure cou-
pling terms in an incompressible flow, B, ;(7) — r ~*as
r— o, even when the turbulence was generated at the ini-
tial instant so that the velocity correlations rolled off ex-
ponentially.

Saffman?® considered a field of turbulence generated at
an initial instant by a distribution of random impulsive
forces. Such a distribution was shown to correspond at the
initial instant to a turbulent field for which all vorticity
correlations roll off exponentially with ». By a series-of

. arguments paralleling those of Batchelor and Proudman,
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Saffman was able to show that the second integral moment
of the velocity correlation was an invariant of the motion,
ie, m=2,

The interrelation of self-preservation and the existence
of an integral invariant have been realized from the begin-
ning (see Batchelor* and Saffman?*). Unfortunately, none
of the measured decay rates, except in the so-called “final
period of decay” (see discussion below), were consistent
with both self-preservation and the proposed invariants.
However, as pointed out by Monin and Yaglom,'® there is
no reason to believe that idealized models based on as-
sumed behavior of turbulence in an infinite environment
should be able to describe real turbulence, particularly that
behind a grid in a wind tunnel.

It has already been established in the preceding section
that the turbulence behind a grid might be self-preserving
at all scales. Moreover, this self-preservation has been
shown to be consistent with the spectral energy equation
for the flow. Therefore it makes sense to reverse the usual
question and ask: What integral invariant of the decay
corresponds to the observed self-preserving state of the tur-
bulence? Since, from self-preservation, if £=r/A,

BLL(T)=“sz(§). (58)
it follows that
) [ e ds=1n (59)

The integral over £ is independent of time, and therefore

constant throughout the decay. Hence the entire integral is

an invariant only if
[A™+14?]) ~const. (60)

From Eqs. (30) and (36), it follows immediately that

M+ D2 _ const, (61)
which implies that
m=-—2n-1. (62)

Thus the Loitsiansky and Saffman invariants correspond to
energy decay rates of n=—5/2 and n=—3/2, respec-
tively. For the von Kirman-Howarth value of n= —1, the
corresponding integral invariant has m=1, which, if the
arguments of the preceding section are correct, should
characterize only a hypothetical isotropic decaying turbu-
lence at infinite Reynolds number. It is important to note
that there is no reason to expect that either m or n will be
universal constants and independent of the initial condi-
tions, except possibly in the limit of infinite *“grid” Rey-
nolds number. In this same context, it will be interesting to
see whether an idealized model of the turbulence at the
initial instant can be shown to be consistent with the frac-
tional powers that characterize most experiments. Such a
model would probably recognize the unique vortical char-
acter of grid-generated .turbulence, and would most prob-
ably attribute the differences behind geometrically similar
grids to the changes in these vortical structures with Rey-
nolds number.
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IX. A t—>“ REGION AND THE FINAL PERIOD OF
DECAY

During the final period of decay or at low-turbulence
cynolds numbers, an additional constraint can be added
(v the spectral equations considered earlier; in particular,
the constancy of the Loitsiansky integral. Batchelor and
Proudman?? argue that, while the Loitsiansky integral is
not an invariant of the decay (as originally proposed), it is
at least constant during the final period of decay where the
nonlinear terms are negligible. As noted above, the con-
stancy of the Loitsiansky integral determines the energy
decay exponent so that u? ~ =2,

Thus the t~%? decay law is not new having been pre-
viously derived theoretically and confirmed experimentally
(Batchelor and Townsend®® and Bennett and Corrsin’®).
(Batchelor* even used similar arguments.) What is impor-
tant here is that it has been derived without assuming the
negligibility of the spectral transfer terms (or inertial terms).
By contrast, the widely accepted analysis (Batchelor and
Townsend?® and Batchelor'’) was based on linearized
equations of motion. (Note that Bernard®’ recently has
studied the behavior of the nonlinear Sedov?® solution in
the final period of decay, thus anticipating in part the result
here.) This difference is important since Bennett and
Corrsin,?® while confirming experimentally the predictions
of the theory with regard to the =2 law and A> ~ ¢,
showed that the inertial terms (as measured by the velocity
derivative skewness) were certainly not negligible and, in
fact, increased in importance throughout the decay. This
trend does not reverse to yield the roll off expected from
the linearized analyses until R; < 2 (Tavoularis et al.'*).
Thus the analysis here would appear to have resolved the
paradox by eliminating the necessity of neglecting the in-
ertial terms.

There remains, however, another paradox. In arguing
that the Loitsiansky integral was constant during the final
period of decay, Batchelor and Proudman?? resorted to the
linearized dynamical equations to argue that viscosity
caused the correlation function to roll off exponentiaily,
thereby ensuring the constancy of the integral. The appar-
ent consistency of the theory presented here and its agree-
ment with the experimental observations would argue for
the constancy of the Loitsiansky integral for at least the
initial conditions of the experiment cited, independent of
assumptions about the negligibility of the inertial terms.
What is needed is an explanation as to how viscosity mod-
ifies the tails of the correlation function as the Reynolds
number is reduced, without requiring that the inertial
terms vanish. It might be noted that this same behavior
also appears in the eddy-damped quasinormal Markovian
(EDQNM) turbulence model, which yields a constant
Loitsiansky integral for any initial spectrum rising from
zero wave number at least as fast as k* (see Lesieur'®). It
would thus appear that it is impossible to have a turbulence
that decays faster than n= —5/2.

From the above, it appears that the fact that a turbu-
lence decays as ~*'? by no means uniquely characterizes it
as the final period of decay, but may instead be only a
function of the manner in which the turbulence is gener-
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ated. The real final period of decay is reached only when
the Reynolds number becomes sufficiently low (of order
unity) that the inertial terms are truly negligible. It is in-
teresting to note in this context that, if the arguments
about turbulence at infinite Reynolds number being char-
acterized by the von Karman-Howarth similarity theory
are correct, then this final period of decay can never be
reached because R, is constant throughout the decay. '

X. THE RELATION OF THE EXPERIMENTS TO
DECAYING ISOTROPIC TURBULENCE

Until recently, almost all of the attempts to simulate
the turbulence described by Eq. (1) have (following the
example of Taylor?’) utilized a grid in a wind tunnel. In
such experiments, the wakes generated by obstructions
(most often a biplane grid of round or square bars) in a
uniform airstream merge to form a turbulent flow that is
approximately homogeneous in planes perpendicular to the
direction of the mean flow. Since there are no mean veloc-
ity gradients, the turbulence can only decay and the spatial
variation of its kinetic energy is described by

g2 3 1
<?92x>. =—o= | u) +3 (¢'u) ~2v(uen) | —€, (63)

where e;; is the fluctuating strain rate. The terms in brack-
ets on the right- hand side are of third order in u/U. Since
u/U ~ 10~ typically, they can be neglected with respect
to the others. If we move with the flow, Ud/dx=43/dt, and
Eq. (63) can be seen to be the equivalent of Eq. (8) for
temporally decaying turbulence. Thus the distance behind
the grid x is the equivalent of the time ¢, i.e., t=x/U.

Generally, the turbulence behind a grid tends to be
anisotropic with the streamwise component slightly larger
than the cross-stream components. Comte-Bellot and
Corrsin*® were able to generate turbulence very close to an
isotropic state by introducing a slight contraction after the
grid. However, in most of the investigations, all of the
experimentally determined second-order quantities were in
réasonable agreement with the isotropic relations even with
the slight anisotropy, as long as the distance behind the
grid was sufficient (typically x/M > 40, where M is the
grid mesh length).

The preceding considerations alone do not ensure that
the spectral equations for grid-generated wind-tunnel tur-
bulence are the same as for temporally decaying turbu-
lence. However, since the flow is homogeneous in planes
perpendicular to the mean flow direction and varies only
slowly in the streamwise direction, it is reasonable to sup-
pose the turbulence to behave as homogéneous turbulence
in an infinite environment, at least for scales of motion
much smaller than the size of the tunnel dimensions. Thus
spectral and correlation measurements in such flows
should be expected to satisfy those for homogeneous (and
in most cases isotropic) turbulence for all but the largest
scales of motion. Because of the difficulty in making suffi-
cient measurements in space to compute wave-number
spectra, Taylor’® introduced the idea of a frozen field for
which time variations at a fixed point could be treated as

William K. George 1499



spatial variations moving by the probe. For such a frozen
field the temporal correlations measured at a fixed point
C, (r) are related to the spatlal correlations B; j(r) by

B, (Ur,0,0)=C,; (), (64)

where 7 is the time delay and r=(r,0,0) is the streamwise
separation and they are related by r=Ur. The one-
dimensional wave-number spectrum F; ,(k,) and the fre-
quency spectrum S; ;( f ) measured by a fixed probe can
be similarly related, i.e.,

F, (k) =(U/2m)S, (Uky/2m), (65)

where f is the circular frequency and k,; is given by k,
=2mf/U.

In the following sections, the wealth of experimental
data on grid-generated turbulence acquired over the past
50 years will be examined. The major difficulty that will be
encountered is the limited range of variation of R; for a
particular set of initial conditions. (Note that this is quite
different from the usual lament of turbulence theoreticians
that the Reynolds number is not high enough.) Previous
investigators appear to have believed that the character of
turbulence behind a grid should be independent of its ini-
tial conditions. As a consequence, most of the Reynolds
number variation reported in the literature has been ob-
tained by changing the initial conditions either by varying
the velocity or changing the grid mesh length. These ex-
periments (which unfortunately constitute the bulk of
those performed) are of little use in evaluating the theory
proposed herein.

Only a few of the experiments in the literature report
detailed measurements over a wide enough range of decay
times (distances downstream) for R; to have varied sig-
nificantly. The problem is that R; depends only weakly on
distance from the grid. From Eq. (39), it follows that

R;_~t(”+”/2~x("+”/2,

(66)

For the experiments considered below, n~ —1.2 so that
R, ~ x~°!. Thus a factor of 10 variation in x/M is neces-
sary for even a 20% variation in R;! Most of the early
experiments (Batchelor and Townsend®' and Mills et al.,*?
for example) only report data for 20 <x/M <70. A few
(Uberoi,*® Frenkiel and Klebanoff,** and Wahrhaft and
Lumley®®) report data to about x/M=110-170. Only
Comte-Bellot and Corrsin®**® report streamwise variations
even approaching an order of magnitude 45 < x/M < 385.
Particular attention will be paid to these experiments for
which the spectral and decay data have been conveniently
tabulated, and the data can be shown to be internally con-
sistent.

A related problem with the bulk of the experimental
data is that few of the experiments report measurements of
either the velocity derivative skewness or the two-point
triple-velocity correlation. Thus there is no basis for decid-
ing whether these terms are still increasing, or are remain-
ing nearly constant. Since the product of derivative skew-
ness and R, can be expected to be constant only while the
former has not reached a maximum value, there is no basis
for deciding whether the theory should be expected to de-
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FIG. 1. Turbulence intensity decay in a typical case after a contraction at
18 M; square-rod grid with M=2.54 cm and U=20 m/sec. O: U*\u’

with hU/M=4; +: UZJ? with teU/M=4 (from Comte-Bellot and
Corrsin'").

scribe the data or not if the derivative skewness measure-
ments are absent. The experiments discussed below all ei-
ther present this information, or provide the means to
obtain it.

XI. THE TURBULENCE INTENSITY VARIATION
BEHIND THE GRID

The variation of the turbulence intensity with distance
downstream of a grid has been investigated many nmes
since the experiments reported by Simmons and Saiter®’
and Dryden et al. 38 These early experiments seemed con-
sistent with the von Kirman-Howarth predictions that
ut ~ t=Vor U¥/u? ~ (x — xp)/M, where x, represents a
virtual origin. However, subsequent studies by Corrsin and
co-workers indicated that a better fit to the experimental
data could be obtained by a relation of the form

UZ

=

aduiad) B (67)

M

where the coefficient 4, and the exponent n appeared to
depend on the particular geometry and Reynolds number
of the grid. The most comprehensive of these studies is due
to Comte-Bellot and Corrsin®*® from which Fig. 1 is taken.

So well established is Eq. (67) on empirical grounds
that few would doubt its validity, nor that the constants
depend on the initial conditions. Thus the turbulence in-
tensity measurements would appear to strongly support
this prediction of the proposed theory. (The recent contri-
butions of Mohammed and LaRue,’® which might appear
to dispute this, are discussed later.) It should be noted that
it has been previously recognized [Eq. (40)] that there
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must be a relation between the spectral shape (especially
near k=0) and the decay exponent (see Lesieur'®).

A second aspect of the turbulence intensity variation
concerns the possible dependence of the exponent n on grid
Reynolds number Ry, = UM/v and whether or not n— — 1
in the limit as Ry — oo. From the definitions of R, and
R, and Eq. (67), the coefficient 4, can be obtained as.

o Loy U
=T R M

n+1

(68)

(Note that the explicit time dependence is canceled by the
time variation of R;.) If n— —1 in the limit as R,, and
R; — o, then the limiting value of 4, is given by

A lo ™ 10

Ry
—k-i-] . (69)

Thus, in this limit, R M/R,zl is a constant and uniquely de-
termines the decay, and can, at most, be a function of the
grid geometry. This relation is generally consistent with
the experimental data of Comte-Bellot and Corrsin.* 1t
was introduced by Batchelor and Townsend?® on empirical
grounds, but follows directly from the theoretical argu-
ments presented herein.

From the discussions in Sec. VII, it is clear that
whether n— —1 as Ry, — oo is closely related to the ques-
tion of the applicability of Kolmogorov’s theory to grid
turbulence. However, it has long been recognized that the
Kolmogorov theory applies only beyond the Reynolds
number range of most grid turbulence experiments (cf.
Stewart and Townsend®). In fact, only two experiments
(Kistler and Vrebalovich*' and Schedvin et al.*?) were car-
ried out at high-enough grid Reynolds numbers to even
begin to observe the k>3 range expected for high Rey-
nolds number turbulence. Both of these experiments re-
ported best-fit decay laws for which n= —1. Consistent
with this is that there is some evidence (most notably the
square bar data of Comte-Bellot and Corrsin®® and the
experiments of Ling and Wan'®) that the decay exponent
increases from n < — 1 toward n= — 1 with increasing grid
Reynolds number. Figure 2 shows the variation of expo-
nent with grid Reynolds number for the square bar grid
data of Comte-Bellot and Corrsin.® Also plotted is the
exponent determined by Kistler and Vrebalovich*' at very
high Reynolds numbers using a round bar grid with the
same solidity (c=0.34). Even without this latter point, the
trend is clearly downward, and is especially apparent when
each of the three grids used is considered independently.

Xil. THE LENGTH SCALES

Von Kérman and Howarth® showed for isotropic tur-
bulence that, if the turbulence decayed as a power law in
time, then the Taylor microscale would increase as the
square root of time. In view of the consensus reported
above for the turbulence intensities, it is no surprise that all
of the experiments beginning with that of Dryden®® are
consistent with Eq. (37).

" Figure 3 shows the variation of the square of the Tay-
lor microscale with Ut/M for the two grids of Comte-
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FIG. 2. Variation of n with R, square-bar grid for U2 i’ data of Comte-
Bellot and Corrsin'’ (s: no contraction; +: with contraction).

Bellot and Corrsin.>® Both show the expected dependence
of A? as confirmed by the linear regression curve fits. From
the tabulated data, the ratio A2/vt can be computed and
found to be 8.24 and 8.20 for the 25.4 mm and 50.8 mm
grids, respectively. Since, from Eq. (37), the coefficient
should be —10/n, where n is the exponent for the energy
decay, —n can be computed as 1.20 and 1.21 for the two
grids, respectively. These values are very close to the value
of 1.25 suggested by the authors from direct plots of the
intensity data, the difference corresponding, in part, to the
choices of virtual origin: Ute/M = 3.5 for both grids by
the authors from the turbulence intensity measurements,
Uty/M = 8.95 and 4.54 for the 25.4 mm and 50.8 mm
grids, respectively, here. Note that the theory requires that
the virtual origin for all statistical quantities from a single
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FIG. 3. Taylor microscale versus downstream distance (data of Comte-
Bellot and Corrsin?’). (O: 25.4 mm grid; *: 50.8 mm grid.)
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FIG. 4. Integral scale versus Taylor microscale (data of Comte-Bellot and
Corrsin®) (50.8 mm grid, X: lateral, O: longitudinal; 25.4 mm grid, (:
lateral.

experiment be the same, which has not always been the
practice of experimenters.

Another test of the theory here is whether or not the
integral scales are directly proportional to the Taylor mi-
croscale. In the experiments of Comte-Bellot and
Corrsin,*® the transverse integral scale was computed by
integrating the transverse velocity correlation to the point
where it crossed the r axis. The longitudinal integral scale
was obtained from the measured one-dimensional spec-
trum in the limit of zero wave number. Neither of these
procedures is particularly satisfactory, as pointed out by
_ the authors, because of the high-pass filtering of the data by
ac coupling, and the difficulties in carrying out the extrap-
olations. In addition, there must always be some concern
as to whether the largest scales of motion reasonably ap-
proximate an isotropic turbulence in an infinite environ-
ment. The results are, however, in general agreement with
prediction as illustrated in Fig. 4, which plots the measured
integral scales versus the measured Taylor microscale for
the two grids at various x/M. It is suggested that the val-
ues at larger x/M are most susceptible to the problems
mentioned above (since the spectrum progressively shifts
to lower frequencies and larger scales), and are therefore
the least reliable.

X1il. THE SPECTRAL SCALING

The principal difficulty in verifying the spectral predic-
tions of the theory is that, despite the numerous experi-
ments in grid turbulence over the past 50 years, there exist
only a few sets of experimental data that are both well
tabulated and over a wide range of downstream positions
for fixed initial conditions. The exceptions to this are the
experiments of Comte-Bellot and Corrsin®® for which the
spectral and decay data have been conveniently tabulated.
Therefore these experiments will be examined in detail
first, then other experimental evidence will be considered.

Before carrying out this examination of the spectral
data, however, it is useful to review what comparisons will
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TABLE I. Dependence of spectral scaling on x/M for n=—1.2.

Scaling Wave number Spectrum
Taylor kA ~ k[x/M)*? E\/u'A ~ [x/MYE,
von Karman/

Howarth kd ~ kfx/MP? En/utl ~ [x/MIPE,, .
Kolmogorov kg ~ K fx/ M E/V e~ x/ MPVE)

be made and what kind of agreement (or disagreement)
with other theories might be expected. Since the data are
usually presented as a function of position behind the grid
x/M, it is interesting to note how the various scaling pa-
rameters vary with x/M. Three types of scaling are of
interest: the Taylor scaling proposed here, the von
Karman-Howarth scaling, and the Kolmogorov scaling.
The appropriate spectral scalings are summarized in Table
L

Of particular interest will be the degree to which the
spectral data at different x/M can be collapsed, and espe-
cially the range of wave numbers for which the scaling
appears to be valid. Since the von Karman-Howarth scal-
ing is proposed for only the energy-containing range, it
should not successfully collapse the high-wave-number re-
gion (since the Reynolds number also varies with distance
from the grid). The Kolmogorov scaling, on the other
hand, should collapse only the high-wave-number region
and not the low since it is based on the local similarity of
the smallest scales of motion. The Taylor scaling proposed
here must be expected to collapse the entire spectral range
from lowest to highest wave numbers if the theory is cor-
rect.

This uniformity of collapse over all scales for the pro-
posed theory will be seen to be the most useful test of the
proposed theory’s validity. The reasons for this can be seen
by examining how the various scaling parameters vary
with distance from the grid. All measurements can be
shown to be consistent with a power-law decay for the
energy and a square-root growth of the Taylor microscale,
and to be adequately described by the frozen field hypoth-
esis. The rate of dissipation can thus be shown to be pro-
portional to

x—xg]" !

M

It follows immediately that the length scale of the von
Karman-Howarth theory is given by

€~

(70)

W [x—xo)™? .
and the Kolmogorov microscale is given by
v 174 x_xo (l—’l)/4 72
ng= E M ( )

The magnitude of the differences that can be expected
can be estimated by taking a nominal value for the energy
decay exponent as n=—1.2 for which the three length
scales vary as the 0.4, 0.55, and 0.50 power of
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FIG. 5. Spectra from 25.4 mm grid normalized in von Kdrman-Howarth
(energy) variables (data of Comte-Bellot and Corrsin®). (A: x/m=45;
V: 120; —: 240; +: 385.)

(x — x¢)/M, respectively. The implications of these slight
differences in the length scale variation on the spectral
scaling' are summarized in Table I. Since x/M varies by
less than a factor of 10 in all the experiments, the difference
between the Taylor scaling and the others will be less than
25%. Thus it will be most difficult to sort out these differ-
ences from just the quality of the collapse. The uniformity
of the collapse required by only the theory proposed herein
is, therefore, an important and distinguishing feature.

The two sets of experimental data to be considered
from Comte-Bellot and Corrsin*® were obtained in a 1.0
X 1.3 m wind tunnel at an airspeed of 10 m/sec. Two grids
of 25.4 and 50.8 mm mesh size were used corresponding to
grid Reynolds numbers of 17 000 and 34 000, respectively.
The one-dimensional spectrum was measured for the 25.4
mm grid at downstream positions corresponding to Ut/M
of 45, 120, 240, and 385, and for the 50.8 mm grid mea-
surements were reported at 42, 98, and 171. The spectral
data are tabulated by the authors as E,,(k;) vs k, in Table
2 and the relevant data on scales in Table 4 of their paper.
[Note that the authors also computed the spectrum E(k)
by graphically differentiating E,(k,) and using the isotro-
pic relationship relating them. Thus these data contain no
more information than already present in the one-
dimensional spectra, and, in fact, are not as reliable as
them because of the procedures employed to derive them.
Hence the comparisons below utilize only E|,.]

Figures 5-7 show plots of the logarithm of the spec-
trum versus the logarithm of wave number using the three
nondimensionalizations for the 25.4 mm grid (for which
x/M variation is the greatest). The spectra plotted in von
- Karman-Howarth variables (Fig. 5) collapse equally well
over the entire range of wave numbers (especially if the

15603  Phys. Fluids A, Vol. 4, No. 7, July 1992

10 ° —rrrrmid rrrrrt—r—rrre——— e —rrr
3 rr—
E 4 Ay
10 * 4 mﬂ’ -
E tl% 3
»
. =
' % El
¢ R 1
10 '—E b %‘
A$ 3
< ]
i‘ 107 4 “ E
3 Y 3
(4 v
Swouf & - . }
W v x/M = 120 3
7 @ 3
D x/N = 240 1
10 -3 T
E + x/M = 385 v i
Q L
10 [3] {
q
Io.‘ -z I
10.. A e | llllli D I ' |
10 10 10~ 10° 10 10°
in

FIG. 6. Spectra from 25.4 mm grid normalized in Kolmogorov variables
(data of Comte-Bellot and Corrsin™). (A: x/m=45; V: 120, —: 240; +:
385.)

position closest to the grid is ignored), and, in fact, better
at the high wave numbers than the Kolmogorov scaling
(Fig. 6). This is particularly curious since the Kolmogorov
scaling collapses the data also almost as well at the lowest
wave numbers as at the highest. Both of these observations
are contrary to previous expectations (see, for example,
Batchelor'?). 4 :

The Taylor variable scaling (Fig. 7) works well over

10 —r—rrrrr———rrrrrr e
Iy 1
el ﬂmﬁ% I
L
[
10 = &7¢ »
E B
- hA
10" =4 b 1
: %
107 < -
£ 4 a E
= E ] 3
-
& ¢ 1
o ‘o.._g A x/N = 45 . T
v x/M o= 120 e
04 O  x/M = 240 i
+  =/M = 385 o 3
r o
10 % ] T
g
107 4 1
i iy ~t
10 - t t t
10t 10 10 0! 10 *

3
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the entire range of wave numbers from well below I~'to
above 3¢ !, This is as predicted from the theory presented
herein. Figure 8 shows the spectral data from the 50.8 mm
grid plotted in Taylor variables, and the same collapse over
all wave numbers is indicated. Even without the relative
comparisons among the three scalings, the collapse in Tay-
lor variables over the entire spectral range of nearly nine
decades and three decades in wave number is quite spec-
tacular.

Figure 9 shows the spectra from both grids plotted
together. It is clear that each experiment has its unique
spectral shape. This is also consistent with the theoretical
interpretation provided earlier, which emphasized the de-
pendence on initial conditions.

Prior to the experiments of Comte-Bellot and Corrsin,
there were numerous efforts over the years to establish
experimentally the self-preserving character of turbulence
decay behind a grid. Particularly noteworthy were the re-
sults of Stewart and Townsend*® and Uberoi.** Monin and
Yaglom!'® provide an excellent review of these efforts. De-
spite the lack of a theory of self-preservation that utilized
the turbulence intensity and Taylor microscale (except for
the final period of decay), these investigators did plot some
of their spectral and two-point correlation results using
u? and A. Unfortunately, often the data from experiments
at different initial conditions (especially grid mesh Rey-
nolds number) were plotted on the same piot. As remarked
earlier and demonstrated above, turbulence behind differ-
ent grids or even similar grids at different Reynolds num-
bers is not universal. Therefore some of the scatter in these
early experiments can be attributed to the differing shapes
associated with different initial conditions.

Stewart and Townsend* show plots of both the two-
point velocity correlation and the one-dimensional spec-
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FIG. 9. Spectra from both grids plotted in Taylor variables showing
different spectral shape for each grid (data of Comte-Bellot and
Corrsin®). (25.4 mm grid, A: x/m=45, V: 385; 50.8 mm grid, —: 42, +:
171.)

trum normalized by »? and A. A cursory study of their
results would appear to indicate the scaling to be less suc-
cessful than for the later Comte-Bellot and Corrsin exper-
iments. The reasons for this can largely be attributed to
three causes. First, the plots include data from as close to
the grid as x/M =10 whereas there is now a general con-
sensus that a self-preserving flow cannot be achieved before
x/M=40. Second, the low turbulence intensities behind
the grid and the broadband nature of the signals seriously
stretched the limits of 1940-50s electronic technology, es-
pecially when the multiplication of signals was involved.
When these factors are taken into account, the Stewart and
Townsend measurements are not inconsistent with the pro-
posed scaling, and had the present analysis been available,
might have been offered in support of it. Uberoi’® presents
measurements at three positions (x/M =48, 72, and 110)
behind a grid at a single-grid Reynolds number. The decay
measurements are in relatively close agreement to those of
Comte-Bellot and Corrsin. However, Uberoi provides ex-
tensive plots of the one-dimensional spectrum normalized
by the turbulence intensity and the Taylor microscale cal-
culated from the measured decay rate, and by the turbu-
lence intensity and the integral scale (determined from the
spectral intercept). Both of these scalings (and especially
the former) are successful over the entire spectral range.
This is, of course, the expected result since the integral
scale and Taylor microscale should be (from the analysis
presented herein), and are, proportional.

In summary, the proposed Taylor variable scaling is
consistent with the measured spectral data. Aside from the
inferences that can be made regarding the quality of the
collapse at high and low wave numbers, it will not be pos-
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sible to further distinguish between the Kolmogorov and
Taylor scalings until experiments are carried out over a
wider range of decay parameters.

XIV. THE VELOCITY DERIVATIVE SKEWNESS, THE
SPECTRAL TRANSFER, AND THE TRIPLE-
VELOCITY CORRELATION

The first measurements of the velocity derivative skew-
ness were due to Batchelor and Townsend.?' Subsequently,
there have been only a few attempts to document its vari-
ation with increasing distance behind a grid. There has
been no shortage of theories, however.

The Kolmogorov® theory for the universality of the
small-scale motions implies that the velocity derivative
skewness in high Reynolds number turbulent flows should
be constant. The modified Kolmogorov theory
(Kolmogorov'*), which attempts to account for the inter-
nal intermittency of turbulent flows, and the phenomeno-
logical theories of Corrsin*’ and Tennekes* imply that the
skewness should increase with Reynolds number. While
there is evidence that this is the case for turbulent shear
flows, particularly in the atmosphere, there is no support
for these theories from the grid turbulence experiments for
fixed initial conditions. For example, Mills e al.,*? Frenkiel
and Klebanoff,** and Bennett and Corrsin®® all state explic-
itly that, in their experiments, the velocity-derivative skew-
ness increases with increasing distance from the grid (or
with decreasing R). This is consistent with Eq. (46) since
n < —1 for all these experiments.

Figure 10 summarizes the velocity-derivative skewness
data as a plot of S vs R;. (Note that this plot is an ex-
panded version of that provided by Tavoularis et al.'? but
with the data for fixed initial conditions identified as such.)
The data of Bennett and Corrsin®® at very low-grid Rey-
nolds numbers are not included, but show the same trend
as the other experiments. While the scatter is significant
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and the Reynolds number variation is limited (because of
the limited distances from the grid as discussed earlier),
the data are in reasonable agreement with the prediction of
Eq. (44) that S ~ R;'. Also, clearly evident is the depen-
dence of the constant SR, = y{=) on the initial conditions.
This was first noticed by Batchelor and Townsend,’' but its
significance was apparently not understood, perhaps be-
cause of the small variation of both R; and S in their
experiments.

Other features of the derivative skewness can also be
seen in Fig. 10. The first is that the derivative skewness has
an apparent maximum value, consistent with the argu-
ments of Secs. V and VII that it should. Whether this is a
consequence of the limited extent of the tunnel, or actually
reflects a real limiting value needs further investigation.
The second feature is the diminishing range of variation of
both R; and S for the higher Reynolds number experi-
ments. This is consistent with the postulated increase in the
decay exponent toward n= — 1 for which all of the data at
the highest Reynolds numbers would be expected to con-
verge to a single line given by the limiting value of deriv-
ative skewness of Eq. (56).

The relation between the velocity derivative skewness
and the spectral transfer has already been noted in Eq.
(42). By substituting for T'(k,t) from Eq. (1), we can
relate the velocity derivative skewness directly to the mo-
ments of the one-dimensional energy spectrum by

S=8§,+5, (73)
where S is defined by
—3(d/dD) SR IAE (ki t)d,

[5¢ BEW (k) dk, ]2

S|= (74)

and S, by

s —2vfEKYE, (k) dk,
= [f;k%En(li)dkllm )

It is easy to see from Eq. (74) that S is simply related
to the time rate of change of the dissipation, i.e.,

(75)

—(3/7)(d/dr)[e/15v] 76)
= [e/15v]** (
But for the power-law decay of Eq. (67),
3P d & 77
E=T2aMdx/M U’] an

since for the wind tunnel experiments d/dt=Ud/dx. It
follows after some algebra that

S, =2¥[(n—1)/n1R{", (78)

which is exactly the first term of Eq. (47). Thus the fact
that the energy decay is described experimentally by a
power law dictates that at least a part of the velocity de-
rivative skewness scales in a manner consistent with the
proposed self-preservation.

It is interesting to note that Egs. (73)-(75) can be
written as
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TABLE Il Variation of G and R,S with R, (data of Batchelor and
Townsend’'). -t

Ry G RS SR,/R\}
5444 8.0 74 0.10
10 888 10.0 114 0.11
15 392 11.5 14.4 0.12
30 784 14.0 19.4 0.11
SR;=%[(n—1)/n]-2G, (79)
where
d'p
G=A1* 80
7t (80)

r=0

and p is the longitudinal correlation coefficient. For n=
—1, Eq. (79) reduces to the result of Batchelor and
Townsend.’! Figure 10 of their paper shows both the con-
stancy of G and its dependence on the initial conditions.
These experimental results could be previously understood
only by assuming that the decay exponent was given by
n=—1, but are clearly consistent with the more general
theory proposed here. Another immediate consequence of
Eqgs. (69) and (56) is that SR, varies asymptotically as
R'72, as suggested on empirical grounds by Batchelor and
Townsend.?' Table II summarizes their results and dem-
onstrates that SR;/R}/? is constant at about 0.11 for their
grid. '

Table III shows the results of an attempt to use the
grid data of Comte-Bellot and Corrsin®® to calculate S,
from Eq. (75). While there is considerable scatter in the
computed values of SR;, this is largely due to systematic

" errors in the spectral data at the very highest wave number
which are perhaps attributable to the method for thermally
compensating the constant current hot wires used. Thus
even these data are consistent with the proposed scaling. It
should, however, be noted that the values of the velocity
derivative skewness computed using the spectra are con-
siderably higher than those reported using direct measure-
ments. Unfortunately, there appear to be no results where
both spectral and direct derivative measurements can be
used to check the internal consistency of the data.

There have been only a few attempts to measure the
spectral transfer (Van Atta and Chen,** Helland et al. *
and Uberoi**). Only Uberoi presents data at several down-
stream distances so that scaling arguments can be evalu-
ated. The spectral transfer function collapses reasonably
well when normalized by #° and plotted as a function of

TABLE II1. Calculated velocity derivative skewness (1 in. grid, Comte-
Bellot and Corrsin®®).

x/M R/l S|R,1 SzR). SR,‘ S
45 48.6 79 —36.2 ~283 —0.58
120 41.1 7.9 -32.8 —249 ~0.61
240 38.1 19 —-43.6 —35.7 -0.93
385 36.6 79 —-42.6 ~347 -0.96
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TABLE IV. Maximum of triple-velocity correlation (Mills ef al.’).

x/M R/l kmu kmuRl
17 26.5 -0.056 1.48
32 26.1 0.062 1.63
69 209 0.067 1.41

wave number normalized by integral scale. This is not in
accord with the theory presented here, which requires nor-
malization by Rj 'u’ instead of u’. However, for this ex-
periment, the ratio of &* and Ry 'v’ is proportional to
(x/M)°%!, and therefore the ratio (and R; itself) varies by
only 9% over the entire range of the data. Thus it is not
possible to distinguish between the two scalings, both col-
lapsing the data to within the experimental error. It is
interesting to note that Helland et al.,* using the data of
Schedvin et al.,*? introduced on empirical grounds a self-
preserving form of the spectrum to compensate for a very
limited range of downstream positions (x/M =37—41).
Their empirical scaling can be shown to be indistinguish-
able from that proposed here over the range of data con-
sidered.

The measurements of Van Atta and Chen* of the one-
dimensional spectra and of the one-dimensional triple spec-
tra were made at only a single position (x/M=40) down-
stream of two geometrically similar grids operated at
identical Reynolds numbers. Since only a single down-
stream location was used and since the Reynolds numbers
(all of them) were the same for both grids, the results are
not useful for verifying the self-preservation theory pre-
sented here. However, unlike the experiments of Comte-
Bellot and Corrsin, where identical grids at different Rey-
nolds numbers gave spectra that were distinctly different,
the spectra of Van Atta and Chen collapsed perfectly.
(Note that the choice of Ly, A, or 7 is irrelevant since the
Reynolds number was the same.) This contrast highlights
the fact that the decay is determined by the conditions as
measured by grid geometry and grid Reynolds number.

Finally, there have been several attempts to measure
the triple-correlation functions directly (Stewart and
Townsend,*® Mills et al.,*? Van Atta and Chen,* and Fren-
kiel and Klebanoff®*). The earlier measurements appeared
to suffer from high-pass filtering problems at the largest
wave numbers, while the latter report insufficient down-
stream positions for a definitive test of the various scaling
laws. Nonetheless, all of the data show an increase in the
triple correlation with decreasing R, as predicted. Stewart
and Townsend even show that appropriate length scale is
proportional to x'/2, although they did not relate it directly
to A. Table IV summarizes the values of the maximum
from the data of Mills ez al., which is consistent (to within
experimental error) with the proposed scaling which re-
quires kg, R, = const.

In summary, despite the very limited range of R; for a
given set of initial conditions, there is evidence that the
proposed scaling of the nonlinear terms may be correct, at
least until 2 maximum value of these terms is achieved.
While there has been a tendency to dismiss the variations
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in the measured values*of the velocity derivative skewness
as scatter in the data, there have been clear and persistent
warnings from the experimental community for the past 30
years that the trends in the data were not in accord with
previous theories. Had the present theory been available
when those measurements were made, it is possible that all
of the results would have been interpreted as confirming it.

XV. OVERALL ASSESSMENT OF EXPERIMENTAL
EVIDENCE

In addition to the body of data discussed above, there
exist the extensive experiments of decaying turbulence be-
hind grids by Ling and co-workers (Ling and Wan'® and
Ling and Huang*’). (These experiments appear to have
been the motivation for the theoretical contributions of
Barenblatt and Gavriolov,” which as noted, somewhat par-
allel the arguments presented herein.) These authors found
fully self-preserving decay in which the intensity decayed
as a power law with exponent dependent on the grid shape
and Reynolds number. Moreover, they found the second-
order correlation functions to collapse with a single length
scale that increased as the square root of the decay time (in
one case for nearly a decade in R;).

Finally, they noted that the decay exponent increased
toward —1 as the grid Reynolds number increased. In the
absence of a theory to explain the results, they identified
their turbulence as weak turbulence. These results are, in
fact, exactly consistent with the theory presented here, and
in the light of this new understanding, might more prop-
erly be labeled early turbulence since the nonlinear terms
(as measured in this case by the peak in the triple corre-
lation) never reached saturation and continued to increase
during decay.

Finally, the very recent results of Mohammed and
LaRue*” must be considered in which they both presented
their own measurements behind a grid, and reanalyzed
those of others. By focusing their attention away from the
initial period of decay in which the derivative skewness was
increasing they argued that all of the experiments can be
described by a single decay law with exponent equal to
about — 1.3. Whether or not this is an asymptotic state is
irrelevant to the present theory, since the present theory
can make no statement as to what happens once the non-
linear terms can no longer increase to ensure self-
preservation. What is relevant is the fact that, by limiting
their attention to the region where saturation occurred, the
authors excluded from consideration the very region where
the theory presented here applies. It is interesting to con-
trast the relatively rapid rise of the derivative skewness in
these measurements with the apparently slow rise in the
experiments of Ling and Huang cited above. Taken to-
gether they emphasize the role of the initial conditions,
which, in turn, probably account for much of the confusion
over the years in trying to make definitive statements about
the decay of grid turbulence.

It has long been récognized that experiments are most

useful when designed to test between conflicting theories
and hypotheses. At the very least the theory proposed-

herein would seem to provide a strong rationale for a new
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generation of experiments (or numerical simulations).
Such experiments should be especially designed to monitor
the evolution of the turbulence at great distance from the
grid, and should include measurements of the velocity de-
rivative skewness and spectral transfer with careful atten-
tion to ensuring consistency between the two. Only wheén
these second- (or third-) generation experiments are per-
formed will a more definitive verification be possible.

XVI. SUMMARY AND CONCLUSIONS

A new theory of self-preservation for decaying isotro-
pic turbulence has been proposed in which the kinetic en-
ergy and the Taylor microscale are the appropriate scaling
parameters for all scales of motion. The kinetic energy
decays as a power law in time, the Taylor microscale grows
as the square root of time, and the nonlinear terms (as
measured by the spectral transfer or the velocity derivative
skewness) vary during decay as R{'. The coefficients and
decay exponent are determined by the initial conditions.
The theory is valid at both finite and infinite Reynolds
numbers. By insisting that Kolmogorov’s theory be valid in
the limit of infinite (grid or initial) Reynolds number, the
von Karman-Howarth theory is recovered as the limiting
case. Because self-preservation is accomplished by the non-
linear spectral transfer terms, it is argued that these will
eventually saturate and thereby limit the range of applica-
tion of the theory to the initial period of decay in which
these terms are still increasing. After this point is reached,
there is the possibility that another self-preserving regime
is entered in which the turbulence decays as ¢~, but with
constants that may still depend on the initial conditions
(Speziale/Bernard suggestion'”). The theory appears to be
consistent with the wealth of experimental data.

The theory is used to reexamine the nature of integral
invariants in decaying isotropic turbulence, with the result
that the appropriate invariant is seen to be governed by the
decay exponent, and therefore by the initial conditions.
Also, the r=3/2 energy decay usually associated with the
final period of decay is shown to result directly from self-
preservation and the assumed constancy of the Loitsiansky
integral, with no assumptions required about the negligi-
bility of the inertial terms. From this, two types of ¢~
behavior were identified: one where the inertial terms were
important, and a second true final period where they were
negligible. It seems likely from experiments that the former
is only realized when the initial conditions permit by virtue
of the initial spectrum.

It has been the custom since the introduction of Kol-
mogorov's ideas on the statistical independence of the
small-scale motions to view turbulence as being made up of
large and small scales of motion that only weakly interact
through an energy cascade. The results of this paper would
certainly appear to call this view into question, at least at
finite Reynolds numbers. For isotropic turbulence (at
least), the local similarity theory of small-scale turbulence
(which may still describe many shear flows) gives way to
a higher principle—that of self-preservation at all scales—
at least when certain conditions are satisfied.
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It is also clear from the arguments presented here that
the large-scale structures must play a crucial role since
they determine the integral invariants that appear to con-
trol (or perhaps reflect) how the decaying turbulence
moves from one self-preserving regime to another. Kerr*
has suggested that the evolution of the large scale struc-
tures is, itself, the energy cascade. This is consistent with
the concept of a self-preserving flow where large eddies
evolve by vortex concentration and breakdown. Such a
process has recently been demonstrated by Glauser and
George® for an axisymmetric jet mixing layer, and may
manifest itself in different ways for different flows. The
initial conditions come into play by dictating how this ev-
olution begins, and the structures are then locked into this
evolution until the physics dictates otherwise.

In fact, if one considers the lifetime of a coherent struc-
ture in decaying turbulence to be characterized by the time
scale //u, then the distance behind the grid for this life
cycle to be completed is propomonal to Ul/u. Since [ is
typically of order M and u/U ~ 1072, this distance can be
measured in hundreds of mesh lengths from the grid. Thus
the decay of turbulence behind a grid may, in fact, repre-
sent just a random collection of single-vortical structures
(perhaps the generalized ‘vortrons” suggested by
Moffatt*®), which simply evolve until diffused by viscosity,
or until their vorticity is so concentrated that they break
down. Such an evolution would appear to be quite consis-
tent with the rather elegant idea of a flow in which all
terms in the averaged equations remain in relative balance.
If so, perhaps the first real links between coherent struc-
tures and the dynamics of turbulence will be found.
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