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ABSTRAGT

The averaged spectral equations governing the
decay of temperature fluctuations in an isotropic
turbulent field are considered and found to admit to
fully self-preserving solutions which retain a

dependence on the initial conditions. The
characteristic length scale for the decay is shown to
be the scalar Taylor microscale, and the

characteristic temperature is the square root of the
scalar variance. In addition to recovering the well-
known empirically established power law decay for the
variance, the mechanical/temperature time scale ratio
is shown to be constant. The invariants of scalar
decay are discussed and a number of questions are
raised which require further research.

1. Introduction

The decay of temperature fluctuations in
isotropic turbulence has been a subject of
considerable interest since the early 1950's.
Corrsin (1951a,b) was the first to write equations
describing the dynamics of the spectrum and
correlation functions in isotropic flow. Monin and
Yaglom (1975) provide a comprehensive review of
attempts to scale and close these equations.

There have been numerous attempts over the years
to establish the characteristics of the decay of
temperature fluctuations introduced into grid-
generated turbulence (Mills et al. 1958, Lanza and
Schwarz 1966, Yeh and Van Atta 1973, Lin and Lin
1973, Warhaft and Lumley 1978). Warhaft and Lumley
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(1978) showed that each attempt generated a decay
rate and spectral shape uniquely determined by its
initial conditions. In addition they showed that the
mechanical/thermal time scale ratio defined by

r = /1, = (q2/€)/(82/¢y) (1)
was unlikely to achieve the expected equilibrium
value of unity, but were unable to establish a
physical reason as to why.

Recently George (1987a,b) has shown that the
dynamics of isothermal decaying isotropic turbulence
achieve a self-preserving state, and that the
spectrum throughout decay can be scaled by a single
length scale, the Taylor microscale defined by

A2 = 15y u?/e¢ (2)
and a velocity scale defined from the kinetic energy
by

1 —)1/2
u = [5 qz] / (3)

A further consequence of the theory is that the
turbulence energy undergoes a power law decay u?~tn.
Both n and the spectral shape are determined by the
initial conditions.

It is the purpose of this paper to extend these
self-preservation arguments to the scalar field. The
result will be shown to again be that the spectrum
(this time the scalar spectrum) scales with a single
length scale, the thermal Taylor, microscale A,, and
the scalar intensity, 6 = (87)!/2. The consequences
of self-preservation on other turbulence properties
of interest will be explored. Finally, the results of
the analysis will be shown to be reasonably
consistent with experiment.

2. The Scalar Spectral Equation

The equation governing the evolution of a
homogeneous, 1isotropic passive temperature field,
f(x,t), in a homogeneous, isotropic turbulence 1is
given by (Monin and Yaglom 1975)

a3
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where a is the thermal diffusivity, E, = E0 (k,t) is
the three-dimensional scalar spectral function
(hereafter referred to as the scalar spectrum), and
Ty = Ty (k,t) is the scalar spectral energy transfer
function. The integral of the scalar spectrum over
all wavenumbers is one-half of the scalar variance,
i.e.

0

1 1

— 02 = - §2 = E k,t)dk 5

> - Jﬂ) (5)
o

It can also be shown (Monin and Yaglom 1975) that the
scalar dissipation rate, €4, 1s given by

0

d (1, , ]
o= -3 |5 0% =2 | KE (kt)ak (6)
(o]

3. The Self-Preservation Analysis

We seek self-preserving solutions for which all
of the terms in the scalar spectral equations remain
in relative balance throughout the decay. We define
scaling functions Egs(t): Tﬂs(t) and Lﬂ(t) so that

Nng = kLg(t) (7)

Eg(k,t) = Egs(t)fg(ﬂg) (8)
and

To(k,t) = Tgs(t) gy ('79) ¢D)

These can be substituted directly into the scalar
spectral equation to yield

- E, L aE
Zf4s—4 - — |=8s
[Egs]£q + [ L, }”afa = [Tso] e [ 13 Jzﬂﬁfa (10)

For self-preservation, all of the bracketed terms
must have the same time-dependence. For convenience,
the entire expression can be divided by the last
bracketed term to yield

Eg ;L% L L Ts ;L%
- 7 £, + b ngfh = ZsfA=f gy ~ [1]2n§f0 (11)
B g o 2
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Now since the 1last bracketed term is time-
independent, all the others must also be time-
independent for self-preservation. Therefore, the
conditions for self-preservation are

E, ,L2
(1) —s478 constant (12)
aEsg

L,L

(ii) ol et
a

T. L%

(iii) —%ﬁ—ﬁ = constant (14)
a
sf

constant (13)

Equation (13) can be integrated directly to
yield

Lg x a (t-t,) (15a)
or
Lg = 2A a (t-t,) (15b)

where the origin in time, t=o, is suitably chosen to
absorb the initial condition in the mechanical energy
equation (see below), A is a coefficient determined
by the initial conditions, and the factor of 2 is
introduced for convenience. Thus the length scale
increases with the square root of time measured from
the origin of the scalar field, t=t,.
Equation (12) can be integrated to yield

q
t-t
E o = 2| E (16)
sd [tl-to] Sglt-to;—tl-to
where t; is an arbitrary reference time and q is an
exponent determined by the initial conditions. Thus

the scalar spectrum undergoes a power law decay.

The spectral decay constant can be related to the
decay of the scalar variance by substituting the
self-preserving forms into the integral of equation
(5) to yield

0

02 = [EgoLy ] J £, (ng)dnyg (17)
o]

B |

Thus,
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It follows immediately from equations (15)—(18) that

2 o (t-tg)m (19)
where
- l (20)
m q 2

Thus the scalar variance also undergoes a power law
decay with an exponent which is determined by the
initial conditions.

The length scale L, can be related to a
physically meaningful length scale by using the
dissipation integral relation. By substituting the
self-preserving forms into equation (6) it follows
that

(=]
eg = [oEgyLy %] 2 J ng £4(ng)dng (21)
or using equation (18)?
€ < a02/L§ (22)

The scalar Taylor microscale, Ao, is defined
from (Monin and Yaglom 1975)

482 262
&)= 5 ‘2”
x ;

For an isotropic scalar field the dissipation can be
shown to be

ag 2 g2
= 3a |=| = 6a -— 24
€6 @ [;x] “ Ag (24)

Comparison of equations (23) and (24) makes it
immediately clear that

Ly « Ag (25)

so that the scalar Taylor microscale is proportional
to the self-preservation length scale. Therefore
without loss of generality we choose the constant of
proportionality to be unity (and absorb a factor into
fﬂ)’ i.e.
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The constant of proportionality in equation (15b)
can be shown to be uniquely related to the scalar

variance decay exponent m. From equations (6) and
(24),

1

d-62

2 92 9

By substituting from equations (22) and (18b) for 62
and )\0 it follows that

12

,\5 - - a (t-t,) (28)
or
A= — 6/m. (29)
The scalar spectral transfer scaling function T,  can
be evaluated using equations (14), (18) and (26§ as
62
Ty © @ ~ (30a)
]
or
g2
Tgg = Bg @ g (30b)

where B, is the constant of proportionality.

Note that there 1is nothing in the self-
preservation analysis which determines the value of
the constants. Therefore these will be wuniquely
determined by the initial conditions. There will be
a coupling, however, between the energy decay
exponent m, the spectral transfer coefficient B,, and
the shape of the energy spectrum since these are
linked by the spectral energy equation. This
coupling can be easily seen by substituting the self-
preservation conditions (18), (28), and (30b) into
equation (11) with the result that the scalar
spectral equation becomes

m[12£, — 293£, + Bygy| + 6mpfy + 6£5 = O

In summary, the scalar spectral equation has been
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found to admit to self-preserving solutions which
have the following properties:

(i) The length scale is the Taylor microscale, Ag

(ii) The scalar variance undergoes a power law
decay.

(iii) The Taylor microscale grows as the square root
of time (measured from its own virtual
origin).

(iv) The scalar spectrum and scalar spectral

transfer function collapse at all wavenumbers
when plotted as

E,(k,t
_ﬁ_(_’)_ vs. kxa

2
and
ATy (k, t)
Y vs. kAa
(v) The spectral shapes and constants are

determined by the initial conditions.

4. The Time Scale and Taylor Microscale Ratios

It follows from equations (6), (19), and the
power law decay for the energy that

r = m/n D

where n is the energy decay exponent. Since n and m
are determined by the initial conditions, so must be
the time scale ratio, and no universal value should
be expected,

A fact of immediate interest is that both the
mechanical and scalar Taylor microscales grow as the
square root of time, although with different virtual
origins. Thus asymptotically,

Aa/A = constant, (32)

the exact value being. determined by the initial
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conditions. The constant in equation (32) can be
shown to be given uniquely by the time scale ratio r
defined by equation (2). From equations (2), (23)
and (3) it follows that

r=nm/n= 3(A2/15u)/(A§/6a)

18 (a X )2
-1 [ ) @

so that

A 2_ B} m 5 (34)
A Teln) T8
where o is the Prandtl number.

5. The Spectral Transfer and Triple Correlations

As pointed out by George (1987b), a consequence
of the spectral transfer scaling (or an equivalent
analysis of the von Karman-Howarth equation) is that
the triple correlation uZ(x) u(x+p) is given by

u?(x) u(x+p) = Ry u¥k(p/) R

where k(p/A) is not the usual non-dimensional triple-
correlation introduced by von Karman and Howarth
because of the R, ! in front of it, Thus the
velocity skewness (and the derivative skewness as
well) is inversely proportional to Ry, i.e.
ud uw s
sz " "R (36)
A similar relation can be derived from equation
(30b) for the velocity-scalar triple correlation (or
equivalently, the scalar spectral transfer). Showing,

u(x) 6(x) B(xtp) = = 62 B(p/Ap)
6

BB &) v
v w) PLP/ g (37)
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Thus the scalar-velocity triple correlation will
depend inversely on the Reynolds number and the
scalar to mechanical length scale ratio.

The scalar-velocity triple correlation can be
expressed in terms of the time scale ratio r using
equation (33) as

uez/[u? § = (5r/0)1/2 ;! (38)

Because u~t"/2 and A~t1/2, RA~t(n+1)/2; and it
follows that
g2 -

Thus the time variation of the scalar velocity triple
correlation coefficient depends only on the exponent
for the kinetic energy. Since n < -1 in all
experiments to-date, the normalized triple
correlation coefficient increases during decay, just
as does that for the velocity alone (George 1987b).

6. Comparison with Experimental Data

The preceeding analysis has predicted with no
assumption other than complete self-preservation,
that the kinetic energy and mean square thermal
variance should decay as some power of the time
measured from appropriate virtual origins. Such
power law decays have been 1long established

For example, Figure (1) is reproduced from Wahrhaft
and Lumley (1978), and illustrates both the power law
decay of the thermal variance and the dependence on
the initial conditions of the thermal fluctuations.

A second prediction of the theory is that the
mechanical and thermal Taylor microscales should vary
as the square root of time (or distance in a wind
tunnel) when measured from their respective virtual
origins. Since the Taylor microscale, however, is
computed from the decay data (eg. using equation 30),
and since a power law form for the thermal variance
(or kinetic energy) implies directly a square root
dependence, the Taylor microscale must behave in the
appropriate manner and can therefore not provide
independent confirmation. The same is true of
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relations like equations (32)-(34) relating the time
scale ratio to the mechanical and thermal Taylor
microscales, since these are satisfied identically
once the power law behavior is established for the
variances.

-1
10 m=-3.09. Lin&Lin(1973):
N Power (kW)
N = 145
m=-264~_ N « 55.0
102} NN = 1140
= NN 190.0
m=-249 "\, A\ o 190.
AN N e 2820
N\, \\ \\
m=-2.53 \\ \\ \\ \\
1073 SO LN
N OO N
~ \\ \\ \
e N
jad ~ AN \\\
® > N R
. < AN
:é‘ 10~4 -~ \\ \‘.‘ Q
& N\
8 N N _-‘bO\
E m=—-2.8q NN
g \\ N }( N
2 \ ~ LY
s \ * \,
8 1075 N .
[N N\
£ Yeh & Van Atta (1973), '\ \,\
= ‘m=-1.33
= m=-—1 ~~_ \\ \
~
Sepri (1976), m = —1.4 I
10-8}- Lanza & Schwartz (1966),"~_ "‘“;ga
mE—Lld SNg_. NOSR
Vo o~
Mills et al. (1958),m = —0.87=~__ LN,
~e
\’\\ \\
bl
10_7 - . \:\E’
10-8 1 [l 1 1 1 1 [
1 2 4 6 8 10 20 40 60,80100
x/M
Figure 1. Decay of temperature fluctuations behind

heated grid (from Warhaft and Lumley 1978).

The theory predicts that the turbulence can be
characterized by a single length scale, the Taylor
microscale. Thus, all integral scales must be
proportional to it. While this would seem to provide



524 William K. Geo:

a straightforward test of the theory, unfortunately
the integral scale is one of the most difficult]
parameters to determine experimentally because of thef
large scales (or low wavenumbers) which determine it.
A better experimental test of the proposed scaling
laws (than the measured integral scales) is whether
the velocity and temperature spectra for a single
initial condition can be collapsed throughout the
decay. Figures (2) and (3) show the one-dimensional
spectral data for the heated grid experiment of
Wahrhaft and Lumley (1978, Figures 4 and 10).
normalized as Fj,/u?l versus kA and Fj, versus kX,
which are the one-dimensional spectral counterparts
of the proposed scaling laws. The collapse of the
velocity spectral data is over the entire range of
scales, including even the largest wavenumbers. This
last fact is particularly satisfying in view of the
problems cited above since the value of the spectra
at the origin can be related directly to the integral
scales. The collapse of the temperature spectra is
less spectacular but is generally supportive of the
theory.
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Figure 2, Velocity spectra of Warhaft and Lumley
normalized in Taylor variables.
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An additional feature of the proposed theory is
that each method of generating turbulence will
generate its own spectral and decay characteristics
which will persist throughout the decay. The entire
paper by Wahrhaft and Lumley (1978) 1is a
documentation of this fact and thus this feature must
be regarded as confirmed.
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Figure 3. Temperature spectra of Warhaft and Lumley,
normalized by Taylor variable.

Finally, the theory predicts that both the
mechanical and thermal spectral transfers should
scale inversely with the Reynolds number ul/v. While
the downstream development of these does not appear
to have been studied, Mills et al. (1958) present
measurements of the equivalent triple moments defined
by equations (35) and (37), both of which should also
show the inverse Reynolds number dependence. These
correlations collapse well up to the peak value when
plotted as -p(r) Ry and -k(r)RA versus r/A, but the
collapse deteriorates considerably for 1larger
separations, reflecting the same problem as for the
double correlations in this experiment. The peak
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values, however, are in approximate agreement with
the proposed scaling as shown in Table I which also
includes the velocity-derivative skewness.

TABLE I

Experimental Verification of Predicted Scaling for
the Triple Correlations and Velocity Derivative
Skewness (from Mills et al. 1958)

x/M 17 32 45 69
—Rey k.o 1.48 1.63 - 1.41
—oRey Ppax 0.95 1.09 - 1.07
—Rey Sy 10.6 11.0 10.3 9.6

7. Summary and Conclusions

There is enough evidence to indicate that the
predicted self-preserving behavior of the decay of
temperature fluctuations behind a grid is reasonable.
The theory predicts the oft-observed power law
dependence for the decay of the temperature
variation, the collapse of the spectra, and the
observed dependence on the initial conditions. The
evidence for the Reynolds number dependence of the
non-linear spectral transfer terms 1is more
speculative, and further experimental work would be
helpful.

It is interesting that the theory presented here
makes no assumptions regarding the relation of the
scalar spectral transfer to the mechanical nature of
the turbulence. Thus the existing arguments as to
the nature of this dependence would appear to be
unchanged, ai well as the predictions from them
(like the k™~ range, v. Monin and Yaglom, Vol. II).
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On the other hand, it is easy to see that the
existence of full self-preservation at all scales of
motion negates the possibility of a universal
equilibrium range, and with it the validity of the
Kolmogorov theory for the university of the small
scales (except possibly as the first term in an
expansion about the infinite Reynolds number 1limit,
see below). This has been discussed in detail by
George (1987a,b) for the mechanical energy spectrum,
and the arguments can easily be extended to the
scalar spectrum.

A related question has to do with how the self-
preservation arguments presented here are applicable
in the limit of infinite Reynolds number. The full
self-preservation presented here requires that the
spectral transfer be forever dependent on Reynolds
number. In effect, the spectral transfer adjusts
itself so as to provide the required amount of energy
dissipation (e ~ vu?/£2?) to maintain similarity. This
is the opposite of the conventional wisdom which
requires that the decay rate be determined only by
the energy-containing eddies (e ~ u3/%). The
Kolmogorov theory can be recovered in the limit of
infinite Reynolds number only if n - —1 in this limit
(as speculated by George 1987a).

In summary, there is evidence that the proposed
full self-preservation describes many of the observed
features of the behavior of isotropic temperature
fluctuations. The analysis has raised, however, a
number of questions which require additional
experimental or numerical simulation research.
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