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Abstract

The consequences of some new ideas for the similarity of turbulent free shear and
boundary layer flows are considered. Unlike earlier the single length and velocity scales
of the traditional self-preservation approaches, each statistical quantity is allowed to have
its own scale which must be determined from the equations of motion. The equations
admit to similarity solutions if such scales can be determined so that all the terms in the
equations have the same streamwise dependence. For boundary layer flows, the same ideas
are applied to the inner and outer equations separately. Of particular interest is how the
solutions depend on the local turbulence Reynolds number.
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1 Introduction

Similarity theories were first applied to turbulence in the 1930’s, and have existed as the back-
bones of turbulence theory since then. Some scientists accept them as gospel, others consider
them as simply nice ideas which do not correspond to the world as we find it. This paper at-
tempts to summarize the developments in my own thinking on the subject over the past decade.
It was originally intended to be a review, but as so often happens when "reviewing”, new ideas
evolve from the concentrated effort. Such was the case here, and I have attempted to indicate
where that has occurred.

There are three parts to the presentation: First, there is a brief review of the turbulent energy
spectrum of isotropic turbulence. It is hoped that the reasons for this will make themselves
apparent to the reader. Second. the application of similarity ideas to free shear flows is discussed.
Third and finally. an extension of these ideas to turbulent boundary layers is presented. The
first of these, the discussion of spectral theory is present in any turbulence book (e.g., Tennekes
and Lumley 1972). The applications of the new ideas to free shear flows are primarily drawn
from George 1989, while the boundary layer theory is drawn from George et al. 1993 which
hopefully will soon be published.

This paper makes no effort, other than in passing. to convince the reader that the ideas are
consistent with experimental data. That effort lies in other places, and is largely incomplete. It



is my own personal view that there are no data which are not consistent with the new approach.
Nonetheless, the state of the data is such that one can use it to justify just about any theory one
truly believes in. Therefore the approach here is to focus on the ideas and assumptions which
constitute a similarity theory of turbulent shear flows. The emphasis is on building a logically
consistent theory of turbulence in which the number of assumptions is minimal and in which
they are clearly identified. It is hoped that by doing so, readers will either have to identify
the flaws in the proposed theoretical developments, or accept them pending experiments which
disagree. At very least it is hoped it will be impossible to ignore them.

A second effort in this paper is to try to identify when the theories of similarity should be
expected to work. The classical theories always implicitly depended on the assumption of infinite
Reynolds number. This is simply not too useful to experimentalists and numerical modelers
who are limited to the finite world. And their efforts to establish the bounds empirically have
been less than successful because it was impossible to distinguish between whether the limit
was simply not reached, or the theory wrong.

2 The Origin of Reynolds Number Effects

It may seem strange to begin a discussion on similarity of turbulent shear flows with a discussion
of the energy spectrum. However, a proper understanding of turbulence energy dissipation is
essential to understanding how viscous effects (as measured by the turbulence Reynolds number)
enter similarity theory, and dissipation is most easily discussed using the energy spectrum.
Now it has been commonly believed that viscosity has nothing to do with similarity theory
in turbulent flows since the viscous terms in the averaged equations of motion are negligible.
This is true — at least as far as the single point equations for the mean flow are concerned.
The Reynolds number of the turbulence, however, has a direct influence on how the dissipation
itself scales with respect to the other mean flow quantities: the velocity and length scales in
particular. And it is this scale relation which ultimately determines the growth rate of the
mean flow, and in some cases whether similarity is possible at all.

The essential elements of viscous dissipation and the energy transfer from scale to scale are
present in even isotropic turbulence, Therefore it suffices for the moment to consider only this
simplest of turbulent flows. Following Batchelor 1953, the two-point Reynolds stress equations
can be Fourier transformed. then integrated over spherical shells of radius % to obtain the
spectral energy equation given by
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The wavenumber. k = |Z| can be thought of as the inverse of the "size” of the disturbance. The
energy spectrum (or more properly, the three-dimensional spectrum function), E(k), integrated
over all wavenumbers yields the total kinetic energy per unit mass, ¢° =< u® + v + w”? >; i.e.,

= / " E(k)dk (2)
0

The integral of the last term yields the rate of dissipation of kinetic energy per unit mass (or

simply the dissipation), ¢; i.e., )
=2y E(k)dk (3)
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Figure 1: Energy and dissipation spectra at different Reynolds numbers

The second term is the result of the non-linear interactions of the turbulence and is responsible
for the transfer of energy from one scale to another. It has been written so that ¢, is a spectral
flux across a given wavenumber. Since this term cannot neither generate nor destroy energy,
but only move it around, its integral over all wavenumbers is identically zero.

Figure 1 shows the effect of Reyvnolds number on the three terms of equation 1. For the
lowest. Reynolds number, the spectral dissipation is significant in the range where the energy
is concentrated. For the highest there is almost no energy dissipation at the wavenumbers
containing most of the energy. and little energy at the wavenumbers where the dissipation is
occuring. As a consequence, the dissipation is almost entirely dependent on the spectral transfer
to move energy from low to high wavenumbers so it can be dissipated. It is easy to see that
as the Reynolds number is increased without hound. the dissipation is moved to higher and
higher wavenumbers so that in the limit no energy is dissipated directly in the energy-containing
range, nor is there any energy in the dissipation range. In fact, if the Reynolds number is high
enough, there is an intermediate range called the inertial subrange where there is little energy
or dissipation, and energy is simply “passed through™ on its way from the low wavenumbers
(large scales) to the high wavenumbers (small scales). If so, equation 1 can be split into two



equations, one for low wavenumbers given by
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and one for high wavenumbers given by
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In the inertial subrange between these limits, the equation is simply
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In the hmit as the turbulence Reynolds number becomes infinite (and only in this limit), the
“approximately equal” becomes exactly equal.

Now an immediate consequence of the high wavenumber equations is the famous Kolmogorov
1941 spectral scaling which argues that at very high Reynolds number, the smallest scales of the
turbulence are determined mostly by ¢ and v. (For example, the only length scale characterizing
the dissipative scales is (¢3/£)1/4.) Moreover, the spectral flux, ¢;, must nearly be equal to the
dissipation, ¢ in the inertial subrange. (This is easily seen by integrating both sub-equations
over their respective ranges and noting that all of the dissipation is in the highest range.) In
fact, in the limit of infinite Reynolds number,
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in the inertial subrange, and Kolmogorov’s approximate scaling becomes exact. Moreover, since
viscous effects must be negligible in the inertial subrange, i1t follows from simple dimensional
analysis that E(k) ~ £2/3k=5/3 there, another famous result due to Kolmogorov.

Now since the integral of the non-linear spectral transfer term must be zero, then it follows
from the integral of equation 4 that the low wavenumber range must be entirely determined
by only ¢ and z. Thus, in the limit of infinite Reynolds number (and only in this limit!), the
length scale characterizing the energy containing scales must be

=L (8)
or 3

=L

! (9)

Note that a length, [, can always be defined by equation 8; however, it i1s an actual physical
length in the flow only in the limit of infinite Reynolds number. This is a point of considerable
confusion in the turbulence community since the relation ¢ ~ ¢3/L is often used to estimate
the dissipation using a physical flow length, L (eg., an integral scale). The key word here is
“estimate” since L ~ [ only at infinite Revnolds number. This 1s easily seen by noting that
at very low Reynolds numbers where the dissipative and energy ranges overlap, ¢ ~ v¢”/L* or
¢~ (¢®/L)Y/(qL/v). Thus, in general, if L is a physical length, then

'1L)r13

v ' L (10)

e= fl



where f is-a function of the turbulence Reynolds number, R = ¢L/v, and has limits f — 1 as
R— o and f— R~!as R— 0.

The key to applying similarity theory to real flows lies in understanding the difference
between equations 9 and 10. Similarity theories deal ultimately with physical length scales
(eg. flow half-widths and boundary layer thicknesses). It will shown below that the growth
rate of all simple shear flows ultimately depends how the dissipation scale varies with Reynolds
number, the velocity scale, and the length scale. For example, for the axisymmetric jet (and

for boundary layers!),
dé/de ~ D, /(U2/6) (11)

since ¢ ~ U, and L ~ é. Thus the growth rate of the jet can be independent of Reynolds
number only if D, ~ ¢3/6. From the above it is clear that this can occur only in the limit of
infinite Reynolds number, and in this limit the flow will spread linearly. For finite Reynolds
numbers, however, where ¢ # ¢3/l, the flow can behave very differently, depending on how
the local Reynolds number varies with z. Many of the difficulties in applyving the results of
similarity theory to actual flows arise from a failure to appreciate the implications of the finite
Reynolds number on the dissipation.

3 Free Shear Flows

3.1 Similarity versus Self-Preservation

Turbulent free shear flows have been the favorite application for similarity analysis since the
1930's. The single length and velocity scale hypothesis of von Karman (and made especially
popular by Townsend 1956 gave rise to a special “turbulence only” type of similarity analysis
called self-preservation or self-preserving flows. George 1989 pointed out, however, that the
single length and velocity scale hypothesis is both unnecessary (to make the problem tractable)
and is too restrictive to describe real turbulent flows (except possibly at infinite Reynolds
number).

In addition to the single length and velocity scale hypothesis (and often confused with it)
there is the idea that shear flows should become asymptotically independent of the details of
their initial conditions. In this view, all lows should asymptotically approach their point source
equivalents. In fact, as also pointed by George 1989, this idea is not a direct consequence of
either a similarity hypothesis or the equations of motion. Rather, it is based on a simple plausi-
bility argument which is not founded in principle. It has been widely accepted by theoreticians
because it is believed that it is consistent with experiments. It has been given begrudging
acceptance by experimentalists because they believed it to be a theoretical result. In fact, it
has presented great problems for experimentalists who have had to perform great manipulative
feats to make their data agree with it. The truth is that there is no theoretical justification
for it. and little experimental evidence. The vigorous efforts needed by the CFD community
to generate results independent of initial conditions is in itself evidence that turbulent flows
probably do remnember how they started for at least very long tinies and distances, if not forever.

The approach outlined by George 1989 is essentially the same as that utilized in applying
similarity analysis to any laminar flow, with none of the hocus pocus of the single length and
velocity scale hypothesis. In essence, every dependent variable is allowed to have its own scale.
This scale evolves downstream in a manner determined only by the equations of motion. subject
to the constraint that all terms in the equations evolve together. This is, of course, quite unlike



Figure 2: The plane (or two-dimensional jet

the single length and velocity scale approach where it is decided quite arbitrarily that the
Reynolds stress should scale as the square of the velocity scale (i.e., Ry = U2, c.f. Tennekes
and Lumley 1972). The example below illustrates the approach for a plane turbulent jet; other
examples may be found in George 1989.

3.2 The Plane Jet: The Equations Governing the Mean Flow

Consider the plane jet created by a source of momentum (as well as mass and energy) exhausting
into an infinite space. Considerations of the relative order of magnitude of the various terms
reduce the averaged momentum equation to

U(’?U ’,(7(7 _ O<ur>
gr ' Ay dy

+{—,0%(< v? > — <u? >)} (12)

Note that the appearance of v in the bracketed term results from integration of the y-
momentum equation to eliminate the mean pressure. Both the terms in brackets are of second
order in turbulence intensity (u'/U7) and are generally considered negligible. They can, how-
ever, make a slight contribution to the momentum integral equation obtained by integrating
equation 12 over all values of y, i.e.,

] ~ i 9 9
(1(_1/ [+ (<u” >— < v’ >)|dy (13)

-0
Integration from the source of the motion to z vields
o ) Ry -
/ (U7 4 (< u® > = < v” >)]dy = M, (14)
-0

where A, is the rate at which kinematic momentum per unit length is added at the source.
Thus, regardless of how the plane jet begins, the momentum integral is constant at Af,. (Note
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The local Reynolds number can be defined as
R=Udb/v (24)

It follows that for the plane jet R ~ 6/2. Thus, unlike the axisymmetric jet or the plane wake
where the local Reynolds number is constant, for the plane jet it will continuously increase as
the jet spreads. As noted above and shown below, this has important implications for dé/dz.

It is easy to show from equation 23 that all of the similarity relations involving U, are
proportional to dé/dx. Thus the mean momentum equation reduces to

1 .» " R, (d6\}
o = Ndn b = | =X | == ' ok
5 {f f A f(m) n} GE (m) ]g (25)
The only remaining necessary condition for similarity is
R, déb :
CTS- ~ (26)

Note that, unlike the similarity solutions encountered in laminar flows, it is possible to have
a jet which is similar without having some form of power law behavior. In fact, the x-dependence
of the flow may not be known at all because of the closure problem. Nonetheless, the profiles
will collapse with the local length scale. In fact, it is easy to show that the profiles for all plane
jets will be alike if normalized properly, even if the growth rates are quite different! The scale
velocity U, can be defined to be the centerline velocity U. by absorbing an appropriate factor
into the profile function, f(7,*). Also, the entire factor in brackets on the right-hand side of
equation 25 can be absorbed into the Reynolds stress profile, g(n, ). Finally, if the length scale
is chosen the same for all flows under consideration (e.g., the half-width, é;,,, defined as the
distance between the center and where U = U,/2), then the similarity equation governing all
jets reduces to,

n
Pt / F(@)di = —24' (27)

where f(0) = 1 and g(#) has the factor R, /(U2dé/dz) absorbed into it. Thus the mean equation
governing all plane jets is the same, regardless of initial conditions! As a consequence, all will
have the same similarity velocity profile (when scaled with U, and é;/2). This will not be true
for the Reynolds stress when plotted as — < wv > /UZ? (as is usually done) because of the
scale factor. Thus the collapse of mean velocity profiles for different source conditions does
not indicate a universal state, unless the Reynolds stress also collapses. The difficulties most
experimenters have in collapsing Reynolds stress data is because of the failure to consider the
scale factor for it.

It is immediately obvious from equation 25 that the usual arbitrary choice of R, = T_r’f
considerably restricts the possible solutions to those for which dé/dx = constant, or plane jets
which grow linearly. (Note that there is nothing in the theory presented here to this point
to argue that it does not.) However, even if the growth were linear under some conditions,
there is nothing in the theory to this point which suggests the constant should be universal and
independent of how the jet hegan.

The idea that jets might all be described by the same asymptotic growth rate stems from
the idea of a jet formed by a line source of momentum only, say pM,. Such a source must
be infinitesimal in width. since any finite size will also provide a source of mass flow. In the



absence of scaling parameters other than distance from the source, x, the only possibilities
are U, ~ (J\Io/:c)l/'-’, Ry ~ M,/x, and § ~ . Obviously, if it has already been assumed that
R, = U?Z, then it makes sense to argue that the constants of proportionality are “universal” since
there is only one way to create a line source jet. Thus this whole line of argument of universal
states is based on a faulty assumption at the outset; namely that the flow is characterized by
a single length and velocity scale.

The problem with the line (or point) source idea is not in the idea itself, but that it has been
accepted as the asymptotic state of finite source jets. The usual line of argument (eg., Monin
and Yaglom 1971) — if one is presented at all — is as follows: The jet entrains mass so that the
amount of mass which has been entrained increases with distance from the source. Eventually
the entrained mass overwhelms that added at the source. It is then inferred that the latter
can be neglected. George 1989 demonstrated for an axisymmetric jet that this is not the case,
and the same arguments apply here. Suppose that in addition to momentum, mass is added at
the source at a rate of pm, as in all real jets. Now there is an additional parameter to be
considered, and as a consequence, an additional length scale given by L,, = m3/M,. Thus the
most that can be inferred from dimensional analysis is that &/z, Usz1/2 /M, /? and Ry /M, are
functions of x/Ly,, with no insight offered into what the functions might be.

3.3 The Plane Jet: The Reynolds Stress Equations

George 1989 further argued that some insight into the growth rate of the jet can be obtained by
considering the conditions for similarity solutions of the higher moment equations, in particular
the kinetic energy equation. The choice of the kinetic energy equation for further analysis was
unfortunate since it implicitly assumed that the three components of kinetic energy all scaled
in the same manner. This is, in fact, true only if dé/dx = const, which is certainly not true
a priori for turbulent shear flows. Therefore, here the individual component equations of the
Reynolds stress will be considered (as should have been done in George 1988).

For the plane jet the equation for < u® > can be written to first order (Tennekes and Lumley
1972) as

Ut7<ug>+‘,0<'u:'> _ 2<f)u>
die dy - Vo
d - ) U
+ {-— <u'v>} - 2<uv> (__——2€u (28)
Ay dy

where ¢, is the energy dissipation rate for < u” >.
By considering similarity forms for the new moments like

% <uv’> = Ky (2)k(n) (29)

du
<pz-m > = Py(2)pu(n) (30)

oz

1 2
—; <utr > = jru’;'v(?l?)t(n) (31)
v = Dy(x)d(n) (32)

and using R, = UZdé/dx, it is easy to show that similarity of the < u® >-equation is possible
only if

Ky ~ UZ (33)
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P, ~ 5 s (34)
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T3 35

Ty, U= (35)
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D, = (36)

All of these are somewhat surprising: The first (even though a second moment like the Reynolds
stress) because the factor of dé/dx is absent; the second, third and fourth because it is present.
Similar equations can be written for the < v® >, < w? >, and < —uv >-equations; i.e.

d<v?> 4 <v?> v
UV— Ve L = 2<p— >
Jx + Sy pé}y
d )
+ %{—-<1*3>—2<pv>}—2ev (37)
pO<w > a<uts L dw
dx dy TSPy
(- <) -2 (38)
57 Wt €w
U@<ut:> 4 V(ri<u1r>_ ) %_f_(?_t S
dx oy P\oy " o
d 5 9 U
By {—<uv >}—<1 > By (39)

When each of the terms in these equations is expressed in similarity variables, the resulting
similarity conditions are:

UK, dé

D, ~P, ~ T (40)
Dy ~ Py ~ U‘“f“’ % (41)
Ty ~ U“f” Z—‘: (42)
T.. rs g"u' :1'_‘: (43)
and the real surprise, .
Ry ~ T (3’9 (44)

There is an additional equation which must be accounted for; namely that the sum of the
pressure strain-rate terms in the component energy equations be zero (from continuity). Thus,
in stmilarity variables,

Pul)pu(i) + Pel@)pe (1) + Pe(@)pe(n) = 0 (45)
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This can be true for all 5 only if
P, ~ P, ~ P, (46)

An immediate consequence is that
Dy ~ D, ~ Dy (47)

From equations 34, 40 and 41 it follows that the constraint imposed by 46 can be satisfied
only if
Ry ~ Ky ~ Ry (48)

But from equation 44, this can be true only if

ﬁ = constant (49)
dx
The relations given by equations 48 and 47 were assumed without proof in the George 198
analysis. The additional constraint imposed by equation 49 was not derived, however, and
arises from the additional information provided by the pressure strain-rate terms.

Hence, similarity solutions of the Reynolds stress equations are possible only if

73
Ls

)

It is an immediate consequence of the earlier discussion on the nature of the dissipation that
there are only two possibilities for this to occur:

i) Either the local Reynolds number of the flow is constant so that the effect of the dissipation
on the energy containing eddies (and those producing the Reynolds stress as well) does not vary
with downstream distance; or

ii) The local turbulence Reynolds number is high enough so that the relation ¢ ~ ¢3/L is
approximately valid (for a physical length L ~ 61).

Unlike some flows (like the axisvmmetric jet or plane wake) where the local Reynolds number
is constant, for the plane jet it varies with downstream distance. Therefore the only possibility
for similarity at the level of the Reynolds stresses is (11). This can occur only when the turbulence
Reynolds number is large enough, typically 10%. Since the local Reynolds number for the plane
jet continues to increase with increasing downstream distance, this state will eventually be
reached. The higher the source Reynolds number, the closer to the exit plane the similarity of
the moments will be realized.

D(z) ~ (50)

3.4 Other Free Shear Flows

The plane jet is but one of the flows which can be analyzed in the manner described above.
A few of the possibilities which have already been analyzed are the axisymmetric jet, plane
and axisymmetric wakes (George 1989, Hussein et al. 1994). Other possibilities include free
shear layers, thermal plumes and the self-propelled wake to mention but a few. All of these
fall into the two categories described above: Flows which evolve at constant Reynolds number,
and flows which do not. The axisymmetric jet and the plane wake are of the former type, and
hence when properly scaled (using the techniques described above) will yvield Reynolds number
and source dependent solutions. These have been already discussed in detail in the cited papers
and will not be discussed further here. The second type of flows (those for which the local
Reynolds number varies with streamwise distances) also fall into two types: Those for which

11



the local Reynolds number increases downstream (like the plane jet, plume or the shear layer),
and those for which it decreases (like the axisymumetric wake).

When the Reynolds number is increasing with z, the flow will eventually reach the state
of full similarity where all of the mean and turbulence quantities collapse. This state will
be characterized by the infinite Reynolds number dissipation relation ¢ ~ ¢3/& which will be
manifested in the approach of dé/dx to its asymptotic value. (This has been shown above to be
constant for the plane jet, but will be different for wakes, for example.) Generally this approach
will coincide with a turbulent Reynolds number of ¢* /ev ~ 10* and the emergence in the spectra
of the k=%/3 range. Before this, the lack of collapse will be most evident in those quantities
which depend directly on dé/dz, like < —uv >, < v? >, etc. Other quantities like the mean
flow will collapse much earlier, and as noted above will collapse to profiles independent of source
conditions. The latter will not be the case for the second moment quantities since a dependence
in the asymptotic value of dé/dx due to the source conditions will result in differences in the
Reynolds stress equations themselves.

Perhaps the most troubling (and for that reason the most interesting) flows are those where
the local Reynolds number is decreasing — like the axisymmetric wake. In these cases, the
mean velocity profiles will collapse, assuming the Reynolds number to be large enough that
the viscous terms in the mean momentum equation are negligible. The asymptotic growth rate
(corresponding to £ ~ ¢2/& or in the case of the axisymmetric wake, § ~ 21/3) will only be
achieved as long as the local Reynolds number is high enough (again ¢*/cv ~ 10%). As soon as
it drops below this value, the growth rate and scale parameters will begin to deviate (perhaps
substantially) from the asymptotic power law forms. The turbulence quantities will begin to
reflect this in the lack of collapse — again first noticable in quantities with v?, etc. which have a
direct dependence on dé/dz. The mean velocity profile, however, will continue to collapse when
scaled in local variables. The same will be true for flows in which the source Reynolds number
is not high enough for the flow to ever achieve the requisite turbulence Reynolds number —
the mean velocity will collapse even though the x-dependence will be all wrong — at least if
asymptotic behavior is expected.

4 Boundary Layer Flows

4.1 The Asymptotic Invariance Principle

The problem with wall bounded flows is well-known and will be reviewed briefly below; namely
that the presence of the boundary and the no-slip condition imposed there forces the viscous
terms back into the mean flow equations, at least near the wall. The traditional approach to
the boundary layer equations (eg., Clauser 1954) has been to abandon the possibility of full
similarity at the outset. and seek instead local similarity solutions to inner and outer equations.
The local similarity solutions obtained are not really similarity solutions of any set of equations,
although the scaling arguments from which they are derived presume to capture the physics of
the problem in the respective regions of the flow.

An alternative approach (which does not seem to have been previously attempted, at least
before George et al. 1993) is to seek full similarity solutions of the inner and outer equations
separately. Since these equations are themselves exactly valid only in the limit of infinite
Reynolds number. then their full similarity solutions can at most be exactly valid only in
this limit. Seen another way, since the equations themselves have neglected terms which are
Reynolds number dependent and lose these terms only in the infinite Reynolds number hmit,

12



Figure 3: The turbulent boundary layer

solutions to them will likewise be Reynolds number dependent and lose this dependence only at
infinite Reynolds number. This idea will be referred to as the Asymptotic Invartance Principle.

The Asymptotic Invariance Principle (although not called by this name) has always been
applied to turbulent free shear flows, since similarity solutions for those flows (when they exist)
are infinite Reynolds number solutions because the equations from which they are derived are
strictly valid only at infinite Reynolds number. The difference in application here is that for
the boundary layer there will be two sets of solutions — one which reduces to a full similarity
solution of the outer equations at infinite Reynolds number, and another which reduces to a
full similarity solution of the inner equations in the same limit. For finite Reynolds numbers,
the Reynolds number dependence of the equations themselves, however weak, dictates that the
solutions can not be similarity solutions anywhere. But, as noted above, this is no different
than for free shear flows which only asymptotically show Reynolds number independence.

In the following sections, the Asymptotic Invariance Principle will be applied to some of
the single point equations governing the zero pressure gradient turbulent boundary layer. In
particular, solutions will be sought which reduce to full similarity solutions of the equations
in the limit of infinite Reynolds number, first for the inner equations and then for the outer.
The form of these solutions will determine the appropriate scaling laws for finite as well as
infinite Reynolds number, since alternative scaling laws could not be independent of Reynolds
number in the limit. Once the method has been established by application to the equations
governing the mean momentum, then the same principle will be applied to equations governing
the Reynolds stresses and the statistical quantities appearing in them, just as for the free shear
flows described earlier.

4.2 Governing Equations and Boundary Conditions
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The equation of motion and boundary conditions appropriate to a zero-pressure gradient tur-
bulent boundary layer (with constant properties) at high Reynolds number are well-known to
be given by (Tennekes and Lumley 1972)

au ot 0 ou
J e S = — | — 3 — ) 1
L f)a:+‘ 99 — 9y <uv>+1/ay (51)

where U — Uy asy—ocand U =0 at y = 0.

The presence of the no-slip condition precludes the possibility of similarity solutions (at least
for the entire boundary layer), and so solutions are sought which asymptotically (at infinite
Reynolds number) satisfy the following outer and inner equations and boundary conditions:

¢ Quter Region
Lou oU 0 -

S0 we 59
t dz dy 63/[ <uv>] (52)
where l/v —_— (’/roo as y — oG,
[ ] Inner (OI' near Wall) region
0= 91- <uv >+ o (53)
= (A v
dy ¢ dy °

where 7 — 0 at y = 0.

The neglected terms in both inner and outer equations vanish identically only at infinite
Reynolds number. However, there is nothing in the development of these equations which
precludes their approximate validity from the time the flow begins to develop unsteady distur-
bances, as long as the Reynolds number is large.

Equation 53 for the inner region can be integrated directly to obtain

ou 9
-l U > fv—/— = w = u; (54)
dy P

where my is the wall shear stress and u. is the corresponding friction velocity defined from it. It
is clear that in the limit of infinite Reynolds number (but only in this limit) that the total stress
is constant across the inner layer. and hence its name “the Constant Stress Layer”. It should
be noted that the appearance of u. in equation 54 does not imply that the wall shear stress
is an independent parameter (like v or U.;). It enters the problem only because it measures
the forcing of the inner flow by the outer; or alternatively. it can be viewed as measuring the
retarding effect of the inner flow on the outer. Thus w. is a dependent parameter which must
be determined by matching solutions of the inner and outer equations.

It is also interesting to note that the inner layer occurs only because of the necessity of
including viscosity in the problem so that the no-slip condition can be met. The outer layer,
on the other hand, is dominated by inertia and the effects of viscosity enter only through the
matching to the inner layer. Thus the outer flow is effectively governed by inviscid equations,
bui with viscous-dominated inner boundary conditions set by the inner layer.
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4.3 The Velocity Scaling Laws

Before applying the new similarity approach (the AIP) to the zero-pressure gradient boundary
layer, it is useful to review how the more traditional approach of local similarity developed
and what conclusions were drawn from it. The phrase local similarity or local self-preservation
which is commonly used to describe these traditional approaches (c.f. Clauser 1954, Tennekes
and Lumley 1972) really means that the investigator suspects that there should be similarity
solutions even though the equations do not appear to admit to them. As shown below, these local
solutions are arrived at primarily by dimensional and physical inspection, and not by rigorous
analysis. The AIP proposed above has some of the same features, but adds the additional
constraint that the local solutions must reduce to full similarity solutions of the inner and
outer equations separately in the limit of infinite Reynolds number. Solutions to the governing
equations are sought which depend only on the streamwise coordinate through a local length
scale é(x). Thus, for the mean velocity

U=U(y,6Us uxv) (53)

It should be noted that u. cannot be viewed as an independent parameter since it is deter-
mined once Uy, ,v and z (or &) are given. This dependence can be expressed from dimensional
considerations as a friction law by

U _ _(—f _ -
= \3 =g (€) (56)
where y
€= 3 (57)
o= e g (58)

3pUs, UL

Application of the Buckingham Pi theorem to the velocity itself yields a number of possibil-
ities, all of which describe the variation of the velocily across the entire boundary layer. Among
them are:

% = fi[Le (59)
[T;\UM -/, [%76] (60)
U;x(TOO _F [%6] (61)

Note that since u. /U, and € (or u.é/v) are related by equation 56, either can be retained (and
the other omitted) in equations 59 — 61 with no loss of information.

In the limit as ¢ — 0 (or equivalently. w.é/v — oc or u. /17 — 0). equation 59 becomes
asymptotically independent of § and [/.,. and thus can at most describe a limited region very
close to the wall, i.e.,

U yu .
= = fiee [£] (62)
U v

This is, of course, the familiar Law of the Wall expressed in inner variables as originally proposed

by Prandtl (1932)



A similar limiting argument for f, and F, yields two quite different candidates for an outer
profile; namely,

and Ut v
Coteohe () o

Both cannot, of course, be Reynolds number independent (and finite) in the limit since the
ratio u. /Uq continues to vary.

The first form given by equation 63 has only been fleetingly considered by the fluid dynamics
community, and discarded in favor of the second alternative. Millikan, for example, appears to
have considered it briefly, noted that it leads to self-preserving power law solutions of the outer
equations, and then dismissed these solutions as interpolation formulas. Clauser 1954 (see also
Hinze 1975) plotted only the highest and lowest Reynolds number data of Schultz-Grunow 1941
in deficit form, and concluded that the collapse using equation 63 was not as satisfactory as
that obtained using the deficit formn of equation 64. There is no evidence that either of these
conclusions has been refuted, or even questioned.

The second form given by equation 64 is the traditional choice. It was originally used by
Stanton and Pannell 1914 for pipe flows and adapted by von Karman 1930 to the boundary layer.
Millikan 1938 matched the ‘inner’ scaling of equation 62 to the ‘outer’ scaling of equation 64 in
the limit of infinite Reynolds number to obtain the familiar inertial sublayer profiles as

71
v_1, (E) +B (65)
Ux K 7
U-Us 1 Y
= =-m (5) + B, (66)
and a friction law given by
[es 2 1 -
= /—=—=In(e)+ (B - By) (67)
U cf K

where £, B, and B are presumed to be universal constants. (Actually Millikan only analyzed
the pipe and channel flows, but indicated that a boundary layer application would follow. One
can presume that this second paper was the 1954 Clauser paper.)

By substituting the inner and outer scaling laws into the defining integrals for the displace-
ment and momentum thicknesses, Clauser 1954 showed that

b U ;
— = A 68
5 1T (68)
8 T u
- =A—=|1- 4,—= 69
P 14 Um] (69)

where A4; and 44 are universal constants which can be evaluated from integrals of the outer
velocity profile function. It follows that the shape factor is given by the asymptotic relation

(70)



Thus as ¢ — 0 and u. /U — 0, H — 1.

The underlying assumption of the above matching is that the inner and outer scaling laws
used for the profiles, in fact, have a region of common validity (or overlap) in the limit as ¢ — 0
or u./Us — 0. Long and Chen 1981 have remarked that it is strange that the matched layer
between one characterized by inertia and another characterized by viscosity does not depend
on both inertia and viscosity, but only inertia (hence the term ‘inertial sublayer’, Tennekes and
Lumley 1972). They further suggested that this might be a consequence of improperly matching
two layers which did not overlap. The fact that the limiting ratio of the outer length scale é to
both of the commonly used integral length scales, é, and 6, is infinite lends considerable weight
to their concern. In particular, this implies that from the perspective of the outer flow, the
boundary layer does not exist at all in the limit of infinite Reynolds number. If one imagines
approaching this limit along a semi-infinite plate where the boundary layer continues to grow,
the outer length scale increases faster than any dynamically significant integral length. This
is particularly troubling since & itself is unspecified by the theory and can not be related to
physically measurable length scales except through the degenerate expressions above.

Theoretical objections notwithstanding. there has been widespread acceptance (canonization
might be more accurate) of the Millikan/ Clauser theory because it is believed to be consistent
with the experimental data. This has never been entirely true, and as better data have been
acquired it has become even more evident to be false. Even Coles 1962, whose careful deternm-
nations of the constants are the most often cited, expressed puzzlement at the apparent failure
of the outer velocity profile (the "wake” constant in particular) to achieve Reynolds number in-
dependence when scaled with u.. The recent careful review of Gad-el-Hak and Bandyopadyhay
1994 lists a number of experiments where persistent Reynolds number trends in the mean profile
deficit are observed, even at relatively high Reynolds number. And there have been persisent
and nagging problems in trying to reconcil direct measurements of wall shear stress (either by
sensors on the wall or direct measurements in the linear layer) with the shear stress inferred from
the logarithmic region using the "accepted” counstants, the so-called Clauser method. Finally,
when the same scaling arguments are extended to the higher order turbulence moments (second
moments and above), they fail to collapse the data outside of the viscous sublayer (y* > 10 or
s0) (v. Gad-el-Hak and Bandyopadyhay 1994).

In view of the above, it is useful to examine whether and why wu, should be a scaling
parameter for the outer flow at all, especially since there is an alternative which does not use it.
First note that it is only in the limit of infinite Reynolds number where the inner layer is truly
a constant stress layer. Thus, only in this limit is the shear stress experienced by the outer flow
exactly measured by uZ. At all finite Reynolds numbers it only approximately measures the
effect of the inner layer on the outer. While the use of u. as an outer scaling parameter may give
reasonable results over a rather large range of Reynolds numbers, it can not be an appropriate
choice for the cornerstone of an asymptotic analysis of the outer boundary layer. (This has also
been pointed out by Panton 1990 who tries to “fix” the problem with a higher order analysis
while retaining the same deficit law.) This is in contrast with fully-developed turbulent pipe
or channel flow where the overall halance between pressure and viscous forces on a section of
the flow dictates that both the inner and outer flow scale with wu., a direct consequence of
the streamwise homogeneity. An obvious consequence of these observations is that the wall
layers of these homogeneous flows are fundamentally different from those of the inhomogeneous
boundary layer, contrary to popular belief (¢.f. Monin and Yaglom 1972. Tennekes and Lumley
1972).

There have been numerous attempts to place the Millikan/Clauser theory on a more secure
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footing and extend it to higher order, especially notable amoung them: Bush and Fendell 1974,
Long and Chen 1981, and Panton 1990. All began with the same velocity deficit, and therefore
will not be considered further here. In the remainder of this paper,the alternative formulation
of the outer profile given by equation 63 and the Law of the Wall will be shown to follow directly
from the hypothesis that the outer and inner flow equations should admit to similarity solutions
of the more general form described earlier. The consequences of matching two regions governed
by different parameters will be explored, and the governing relations for a variety of turbulence
gquantities will be derived.

4.4 Full Similarity of the Inner Equations

In keeping with the Asymptotic Invariance Principle set forth above, similarity solutions to the
inner equations and boundary conditions are sought which are of the form

U = Usilx)filyh) (71)
@ = Ral)n(y*) (72)
where
= (73)
n

and the length scale 5 remains to be determined.
Substitution into equation 54 and clearing terms yields to leading order

u? R, v
* ‘82 / [d
| ===t |—=|fi 74
[l’s‘iJ [Us'i] 7 [77[31'] d ()
The choice for 5 is obviously

n=v/Us (75)
from which it follows immediately that similarity solutions are possible only if the inner Reynolds
stress scale is given by

R, = U} (76)
It is now alsoc obvious that the inner velocity scale must be the friction velocity so that
Usi = us (77)
It follows that

N = v/u. (78)
Ry = (79)

The integrated inner equation can now be written (to leading order in ¢) as
T=ri+ f/ (80)

The similarity variables derived above are the usual choices for the inner layer, and thus the
law of the wall is consistent with full similarity of the mmner equations, in the limit of infinite
Reynolds number. For any finite (but large Reynolds number) the solutions for inner layer will
retain a Reynolds number dependence (as discovered from the Pi-theorem in deriving equation
59) since the governing equations themselves do so. It is obvious that it is equation 59 which
reduces to the proper limiting form to be a similarity solution for the inner layer, and thus it is
the real Law of the Wall. For finite Reynolds numbers, however, it describes the velocity profile
over the entire layer. These ideas are not incompatible, since from the perspective of the inner
layer the outer layer is never reached in this limit (i.e.. 67 — ).
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4.5 Full Similarity of the Outer Equations

In accordance with the Asymptotic Invariance Principle, solutions of the outer momentum
equation and boundary conditions will be sought which reduce to similarity solutions of those
equations in the limit of infinite Reynolds number. It is important to again note that no scaling
laws are assumed at the outset, but rather will be derived from the conditions for similarity of
the equations.

For the outer equations, solutions are sought which are of the form

U—-Uw = UcfolT) (81)
—-uv = Rsoro(?) (82)

where
v=u/s (83)

and Usy. Reo, and 6 are functions only of x. The velocity has been written as a deficit to
avoid the necessity of accounting for its variation across the inner layer. This is, of course,
not possible with the Reynolds stress since it vanishes outside the boundary layer. The V-
component of velocity has been eliminated by integrating the continuity equation from the
wall, thus introducing a contribution from the inner layer which vanishes identically at infinite
Reynolds number.

Substitution into equation 52 and clearing terms yields

7 r
[(E—E) — "fh,} 1. + %] 12 - [( df] 71"
PN | 2 S R
It 1s clear that full similarity (or self-preservation) is possible only 1f
Uso ~ Ux (85)
and L ds
Reo ~ U= (86)

Thus. if the outer equations admit to similarity solutions, the velocity scale for the velocity
deficit law must be U.., and not u, as suggested by Von Karman 1930 and widely utilized since
(eg. Clauser 1954, Coles 1956).

The analysis above makes it clear that of the possible candidates for an outer scaling law
for the velocity. only the profile represented by equation 60 is Reynolds number invariant in
the limit. Therefore this must be the appropriate scaling law for finite Revnolds numbers as
well. (This is, of the course. the whole idea behind the Asymptotic Invariance Principle.) On
the other hand, the usual deficit profile, equation 61. can not be Reynolds number invariant in
the limit. In fact, since the velocity deficit scaled with U7.. (f, from equation 60) i1s Reynolds
number invariant in the limit, it is clear why the usual veloc1t\ deficit profile scaled \\1th Uy
(F, from equation 61) also vanishes in this limit, since F, = (u.«/U)fo and w,/Us

The Reynolds stress scale, on the other hand, is not /2, but an entirely dlffelent bcale
depending on the growth rate of the boundary layer, dé/da. It will be shown below that R,
can be determined by matching the outer Reynolds stress to the inner Reynolds stress. The
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need for such a matching is intuitively obvious, since the only non-zero boundary condition on
the Reynolds stress in the outer flow is that imposed by the inner.

Some have objected to the type of similarity analysis employed here as leading to unphysical
results for the boundary layer. Certainly there is nothing unphysical about the velocity deficit
law using U, in and of itself, and a case for such a deficit law could have been made, even with
the data available at the time (as will be shown later). Thus the fundamental basis for this
objection must have been the condition on the Reynolds stress. However, this would have been
a problem only if it were also required or assumed af the outset that R,, = UZ,, for then it would
have also been necessary that dé/dxz = constant. Since the boundary layer was well-known not
to grow linearly, Millikan (and many before and after him as well) was forced to conclude that
full self-preservation (in the assumed sense) was not possible, and therefore had to settle for a
locally self-preserving solution.

As pointed out earlier for free shear flows, there is no reason to insist that Rs, = UZ2,. If
this arbitrary requirement is relaxed, then there is no longer the requirement for linear growth,
and both equation 86 and similarity become tenable. In fact, these conditions require that the
outer flow be governed by two velocity scales, U/, and a second governing the Reynolds stress
which is determined by the boundary conditions imposed on the Reynolds stress by the inner
laver. It will be shown below that the inner and outer Reynolds stresses can match (to first
order) only if

73 ? ~u} (87)
which resembles closely the momentum integral equation, both a surprising and gratifying
result. More will be said on this relationship later.

That the outer (and inner) equations admit to fully self-preserving solutions (in the sense
of George 1989 will come as no surprise to the experimentalists who have long recognized their
ability to collapse the outer mean velocity data with only U,, and é, 4., or . Hinze 1976 and
Schlichting 1968, for example, show profiles normalized by U/U,,, and document the variation
with Revnolds number of a power law fit to the entire profile. Even the fact that the outer
Reynolds stress scales with . (but only to first order) is in accord with common practice, since
it is assumed in the old theory — but in a way which could not account for the observed weak
dependence on Reynolds number. Thus one can speculate that Millikan’s conclusions might
have been quite different had he (and several generations after him) not been locked-in to a too
restrictive definition of self-preservation.

4.6 The Matched Layer: A New View

It is obvious that since both the outer and inner profiles are non-dimensional profiles with
different scales, since the ratio of the scales is Reynolds number dependent any region hetween
the two similarity regimes cannot be Reynolds number independent. However, as was shown
earlier from dimensional considerations, both inner and outer forms describe the entire flow if
either of the arguments w. /U, or ¢ = 1/é are retained. Therefore at finite Reynolds numbers,
both equations 59 and 60 describe the region between the two similarity regimes (and in fact
the entire flow field). This is quite different from the usual asymptotic matching where inner
and outer solutions are matched in an overlap region. Here hoth solutions are valid everywhere,
at least for finite Reynolds numbers. Hence the objective is not to see if they overlap and match
them if they do; rather, it is to determine if the fact that they degenerate at infinite Reynolds
number in different ways determines their functional forms in the common region they describe.
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There are several pieces of information about the two profiles which can be utilized in this
determination without further assumptions. They are:

o First, since both inner and outer forms of the velocity profile must describe the flow
everywhere as long as ¢ = /6 = 1/67 is finite, it follows from equations 59 and 60 that

1+ fo(g.€) = gle)fity™ €) (88)
Recall that g(¢) is defined by equation 56 and that ¢ — 0 as € — 0.

o Second, for finite values of ¢, the velocity derivatives from both forms of the velocity must
also be the same everywhere. It is easy to show that this requires that

=L = (89)

for all values of € and y.

e Third, in the himit, however, both f, and f; must become asvmptotically independent of
€. Thus f,(7.€) — f.(7), and fi{yt,¢) — fi(yT) as € — 0 (or otherwise the velocity scales
have been incorrectly chosen). This is, in fact, the Asymptotic Invariance Principle.

Now the problem is that in the limit as ¢ — 0. the outer form fails to account for the
behaviour close to the wall while the inner fails to describe the behavior away from it. The
question is: In this limit (as well as for all finite values approaching it), does there exist an
“overlap” region where equation 88 is still valid? Since both é and 7 are increasing with
streamwise distance along the surface, this “overlap™ region will not only increase in extent
when measured in either inner or outer coordinates, it will move farther from the wall in actual
physical variables. (Note that this is quite different from pipe and channel flows in which the
overlap layer remains at fixed distance from the wall because of the streamwise homogeneity,
as long as the external parameters are fixed.)

Because of the movement of the matched laver away from the wall with increasing x, it
is convenient and necessary to introduce an intermediate variable § which can be fixed in the
overlap region all the way to the limit, regardless of what is happening in physical space (v.
Cole and Kevorkian 1981). A definition of § which accomplishes this is given by

g=yte" (90)
or
yt =g (91)
Sice § = yte, it follows that
y — g(l—n (()2)
For all values of n satisfying 0 < n < 1, § can remain fixed in the limit as ¢ — 0 while g — 0
and yT — ~c. Substituting these into equation &8 yields the matching condition on the velocity
as
L+ folgel ™" €) = g(e) fi(ge™" €) (93)

Now equation 93 can be differentiated with respect to € to yield

NL+f,) 0y A+ f, d afi
( {’.f) 9 ( - fo) Ly A.f
a7y e Je Oe 7 de Ayt

Ayt Of
e ¢ de

y+} (94)
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Carrying out the indicated differentiation of y* and 7 by e (for fixed §), and multiplying by
¢/(1+ f,) vields (after some rearranging)

— + A A &
(1 =y P OAE Sy W7 00 cde {i%| _ ¢ Mt f) } (95)
(1+f) 95 e fi Oytle g de fi Oc iy 14f, 0 I3 '
It follows immediately from equation 89 that
7 01+ _edg  [edfi| e A1+1) (96)
1+f, 0y I gde | fi Oclyv 1+f, 09¢ Iy '
Equation 96 can be usefully rewritten as
y 01+ f, — -
Th7 (Tyf) =)+ a7 yT) (97)
where 4 = 4(¢) is defined by
€ dg N
Jde - 7(€) (98)
and p = p(e;g, y+) is defined by
¢ 0f; e 1+ f.) :
= {2 - - Je! 9
a {fi Oe ly+ 14+ f. 0de |y (99)

The first term on the right hand side 97 is at most a function of € alone, while the second term
contains all of the residual y-dependence.

It is easy to show that g — 0 as ¢ — 0 since f; and f, are asymptotically independent of €
and finite (since they were determined to be from the Asymptotic Invariance Principle). Thus
the first term on the right hand side, ¥, dominates in the limit (since y — 0 as ¢ — 0 and ¢
occurs in the denominator). and the additional terms, pu, represent the contribution of higher
order terms (which vanish identically in the limit). Thus, to leading order in € equation 96 can
be written as

g 0+ fo) ,
1+ —0—.37—" . =7(¢) (100)
From equation 89, it also follows that
yt df;
£ 20| =0 (10

These can be readily integrated to yield (to leading order in €},
1+ fo(@e) = Cole)@ (102)
fitvtoo = Gyt (103)

It follows immediately from equation 88 that

g(e) = ——e'e) (104)
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However, equation 98 must also be satisfied. Substituting equation 104 into equation 98

Al

implies that 4, C,, and C; are constrained by

dy d, [Ci -
1716;1; = d—eln I:FO] (100)

The functions C;(€), C,(¢), and v must still be determined, either from experimental data or a
closure model for the turbulence. The presence of the In(e) term on the left-hand side makes
it clear that whatever the variation of C; and C, with ¢, the variation of y will be less.
Equation 105 is exactly the criterion for the neglected terms in equation 96 to vanish
identically. Therefore the solution represented by equations 102 -~ 105 is, indeed, the first
order solution for the velocity profile in the matched layer at finite, but large, Reynolds number.

Second order solutions, say ff,"’)(y. €) and f;z)(y'*.e) must satisfv

7 1+

e B TH (106)
and )
+ 92

ALY (107)

RN

Unfortunately, g is a function of both ¢ and y, so integration is not possible. It is possible,
however, to expand u about a fixed value of the intermediate variable g. If this point is chosen
properly so that p = 0, then the leading order solution is exact at this point. As distance from
this point is increased, the second order term will introduce an increasing y-dependence into
the profile away from the power law. The challenge to the experimentalist, of course, is to find
the point of tangency, particularly since v is not known, a priori. This analyls makes clear that
it will be at neither fixed y nor fixed g, but will vary with Reynolds number.

Thus the velocity profile in the matched layer (to leading order) is a power law with coeffi-
cients and exponent which depend on Reynolds number, ¢~ = w.é/v. Since equations 102 and
103 must be asymptotically independent of Reynolds number, the coefficients and exponent
must be asymptotically constant: i.e.

(€ — Jeo
Cole) — Coxe
(wz(() - C’IC\,
as € — 0. (Note that some earlier versions of this theory included additive constants which

were believed to be zero only on experimental grounds. The derivation here makes it clear that
these constants are indeed zero.)

The theory. to this point at least, does not yield values or functional forms for (', € and
4. These must, therefore, be determined empirically (as with the old theory), subject to the
constraint of equation 105. Of particular interest is that there are two possibilities for the
asvmptotic value of ¥ — zero or non-zero. While a non-zero value has appeal from at least
an engineers viewpoint, there is also the possibility that 4 simply continues to decrease as the
boundary layer develops (and its Reynolds number increases) to an asymptotic value of zero.
A rationale for this behavior is that the boundary layer becomes less and less inhomogeneous
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as it develops and approaches more and more closely the character of a homogeneous flow in x
(like the channel). Seen another way, the velocity derivative in the matched layer is given by
dU/dy ~ y*~1. If the limiting value of 7 is zero, then the limiting value of dU7/dy is y~! which
is the same as for a channel flow. However, the velocity profile can never be logarithmic because
even an infinitesimal value of ¥ is sufficient to dictate a power law. It was shown by George
et al. 1993 that the state of the experimental data is such that it is consistent with both zero
and non-zero values asymptotic values of 4 (because of the limited Reynolds number range).
This question is addressed further below when the similarity of the Reynolds stress equations
is considered.

It is reassuring to note if the inner and outer velocity scales are the same (as for the channel
flow, v. George et al. 1993), the procedure utilized above leads to the familiar logarithmic
profiles with coefficients which are Reynoids number dependent, but asymptotically constant.
The possibility of Revnolds number dependent constants in the log law for pipe and channel
flow is certainly contrary to the prevailing wisdom, but consistent with widespread speculation
in the experimental community over many decades.

5 A New Friction Law

The relation between u./U,, and € has already be established by equation 104. This friction
law can be cast in more convenient form by eliminating the dependence of the right-hand side

on uy; l.e.,
™ Co /14~ lrxé =¥/ (147}
() (5
or J(14)
7SN\ T2 Y
cr = B (l—z‘—é> (109)
where
Cv 2/(147)
B = (—C—o> (110)

Thus the friction law is also given by a power law, a considerably more convenient form than
the implicit logarithmic relation of the old theory (equation 67).

6 The Reynolds Stress in the Matched Layer

By following the same procedure as for the velocity, the outer and inner Reynolds stress profile
functions can he matched to yield

ro(7:5) = Do(e)g™"! (111)
Ble -
rilytie) = Dt (112)
where a solution is possible only if
R, D;
se — _.1_:*—/3 ll_
Rsi Dv~ ( 3)
and 13 d, [D
di d ;
In(s)—— = —In | — 114
ng )(15 de " [D(,:' ( )
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Unlike the velocity, however, more information about the Reynolds stress is available for
the matched layer since both equations 52 and 53 reduce to

%(—-<u17>)=0 (115)
in the limit of infinite Reynolds number. Thus, in the limit as ¢ — 0,
BRsoD.y" — 0 (116)
and
ARy Dyt —0 (117)

Since both D, and D; must remain finite, these conditions can be met only if
8 —0 (118)

Because of the presence of the Ins term in equation 114, it seems likely that 8 will vary quite
slowly with Reynolds number, much like 7.

From equation 80 for large values of y*, the Reynolds stress in inner variables in the
matched layer is given to first order (exact in the limit) by

rio=1 (119)

Since R,; = uZ, this can be consistent with equation 112 only if D; — 1 as ¢ — 0. It follows
immediately that

Di 9
R0 — —D—u; (120)

(4]
where D,(¢) — constant in the infinite Reynolds number limit.
Some insight into the behavior of D,(¢) and D;(¢) can be obtained by introducing the
momentum integral equation defined by

de u?
b _ v (121)
de UZ
Using this, equation 120 and the similarity relation for R, from equation 86 yields
D,(z 16/d i
(c) _ db/dx (122)

Di(e) ~ dé/dx

Tlie relationship between 8 and & will be explored in more detail below, and it will be found that
f/6 is asymptotically constant. Thus the scale for the outer Reynolds stress is asymptotically
proportional to u? as noted earlier, and the outer layer is indeed governed by two velocity scales.
Note that for finite Revnolds numbers. both D, and D; are Reynolds number dependent so
that u2 alone should not be able to collapse the Reynolds stress in the matched layer, except
in the limit of infinite Reynolds number. This has been observed by numerous experimenters
(eg. Klewicki and Falco 1990).



7 Scaling of the Other Turbulence Quantities

For the inner layer, there is only one velocity scale, u., which enters the single point equations;
therefore all single point statistical quantities must scale with it. This is, of course, the con-
ventional wisdom, but with an important difference: The inner layer ends when the velocity
gradient is no longer linear! This is contrary to the usual tendency to include the matched
layer as part of the wall layer. As shown before, since the inner and outer scales are different,
the matched layer variables must be expected to be functions of both, and thus Reynolds num-
ber dependent. Note that different considerations must be applied to the multi-point equations
since conditions at a point can depend on those at another, and in particular those at a distance.

From the preceding analysis, it is apparent that the outer layer is governed by not one, but
two velocity scales. In particular, the mean velocity and its gradients scale with U/, while
the Reynolds stress scales with uZ. Therefore it is not immediately obvious how the remaining
turbulence quantities should scale. In particular, do they scale with /s, or ., or both? If
the latter, then quantities scaled in the traditional way with only one of them will exhibit
a Reynolds number dependence and will not collapse. Note that since the ratio of velocity
scales, u./Us, varies as a weak inverse power of the Reynolds number, this Reynolds number
dependence would appear to reduce with increasing distance downstream and would lead to the
erroneous conclusion that certain quantities scaled with only one of them take longer to reach
equilibrium than others.

In view of the self-preserving nature of the outer equations for the mean flow and the
preceding success with free shear flows. it is reasonable to inquire whether the equations for the
other turbulence quantities also admit to fully similar solutions. The problems with treating
the kinetic energy of the turbulence as a single variable have previously been noted for the
plane jet. Therefore the individual components must be treated separately.

The equations for the outer part of the boundary layer are nearly the same as for the plane
jet. and therefore will not be repeated here. (The boundary conditions are, of course, different.)
In fact, the results are exactly the same too, except that Us, ~ Uy and Ry ~ f'idé/dr ~ ul
from the boundary conditions as noted above. The implications of this on the turbulence scaling
has been discussed in detail by George et al. 1993 including a detailed comparison of the
results with experiment. The important subject to be discussed here (and missed there) is the
constraint which arises from the pressure-velocity correlations; namely that dé/dz ~ constant
for full similarity of these equations.

The most interesting of the scale constraints for the outer boundary layer (from the per-
spective of the earlier discussion, at least) is given by

dé D6
de U2

(123)

For the turbulent boundary layer . /U — 0 as U/,8/v — o0 Since dé/dx ~ 2 /UZ | it is clear
that the constancy of dé/dx can be achieved only in the limit, and the constant is zero. This
means that in the limit of infinite Jocal Reynolds number the houndary laver is growing linearly
with x, but with a coefficient of zero! Moreover, it is only in this limit that full similarity of
the turbulence quantities can be achieved. It is easy to show that this implies that the limiting
value of 4 is zero, consistent with the heuristic arguments presented above.

Now what constitutes a sufficiently high Reynolds number for an experiment to reasonably
approach this limit. Obviously considerable higher than ever reported. since values of u./U
are still quite large. Moreover, at even the highest reported Reynolds numbers, the boundary
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layer was not growing linearly. Therefore it is clear that this limit has not been reached in ex-
periments. It is therefore important to ask then, when should full similarity of the second order
turbulence quantities be observed in the laboratory? The answer lies again in the recognition
that the turbulence in the outer layer is effectively inviscid when ¢ ~ ¢3/6. From the previous
criteria, this behavior should be expected when ¢*/cv > 10* or approximately u.é/v ~ 10%.
This is beyond the limit of existing experimental data.

It is interesting to note that the limit 7 — 0 recovers the logarithmic profile. The limiting
value of the von Karman "constant” would be k = (';y. Since Cjo is finite, the limiting value
of the von Karman “constant” appears to be zero. The "universal” value usually assigned to
it arises from applying it to flows with Reynolds numbers which are orders of magnitude below
where the profile can reasonably be assumed logarithmic. That it appears to work at all is
probably due again the experimentalists efforts to make it work (usually by manipulating the
shear stress and choosing the point of tangency).

8 A Composite Velocity Profile

It is possible to use the information obtained in the preceeding section to form a composite
velocity profile which is valid over the entire boundary layer. This is accomplished by expressing
the inner profile in outer variables, adding it to the outer profile and subtracting the common
part (Van Dyke 1964). Alternatively, the outer profile could be expressed in inner variables,
etc. Since the overlap region provides the common part, the composite velocity profile in outer
variables is given by
U _ Uy _ _

[—,—=[1+fo(y«€)]+z,—[fi(y/iaf)—c'ft(y/c‘)w] (124)

oo oo
Recall that f,. f;. C; and 4 are all functions of the Reynolds number, as is u./Ux.

The composite velocity solution has the following properties:

e Asc—0oré/n— o0, U/Usxs — 1+ fo(7). Thus there is a boundary layer profile even
in the limit of infinite Reynolds number and it corresponds to the outer scaling law. This
can be contrasted with the Millikan approach for which U7/U,, — 1, a limit remarkably
like no boundary layer at all, even in its own variables.

¢ As G — 0, U/U — (ua/U)fi(T/2) for all 6/n. This is because the small § behavior of
[1 + F(7)] is cancelled out by the last term leaving only the inner solution.

o Asy/s — oo, U/Usx — 1+ f,. This is because of the large 3§/ behavior of f; which is
also cancelled by the last term.

e In the matched laver, only the power law profile remains.

[t is an interesting exercise to substitute the composite solution into the full boundary layer
equation given by equation 51. As expected. the equation reduces to equation 52 for infinite
Reynolds number and to equation 53 as the wall is approached. This can be contrasted with the
substitution of the Millikan law plus wake function (v. Cloles 1956) in which the outer equation
vanishes identically in the limit of infinite Reynolds number.



9 The Displacement and Momentum Thicknesses
The displacement thickness, é,, is defined by

Usobs s/ (Use — U)dy (125)
o}

This can be expressed using equation 124 as

bs

< =-L- LRs™! (126)
o é 1 I
where
o0
h= [ @ (128)
0
L= / [fi(w*) = Cig*™ — B dy* (129)
0
and the Reynolds numbers R; and R, are defined by
U6
Rs = — (130)
v
and U
Rs, = === (131)
v

The integrals I; and I are functions only of the Reynolds number and become asymptotically
constant; in principle, they can be evaluated from the experimental data.
The momentum thickness, €, is defined by

Ul6= / U(Ue = U)dy (132)
0

Again using equation 124, the result is

0 Ux
Z o= (I 4+ Is) = Ry~ | L+ 2y + L= (133)
8 U
or 3 1
o —1 ; U
;= Il+13{1+R(, [["“[H]"’Ux” (134)
where -
Ry = = (135)
vV
and .
Is E/ o (D) d (136)
0
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L= [ (A" - Cot" - B fo@ay® (137)
0

I = /0 [fi(y*) = Ciy*™ = Bi] dy* (138)

Since u,/Us varies as (I/oo8/v) ™/ (1+7) and gamma is positive but less than 1, all terms but the
first vanish in the limit of infinite Reynolds number. Thus, as for the displacement thickness,
the momentum thickness is also asymptotically proportional to the outer length scale, but with
a different constant of proportionality.
The shape factor can be computed by taking the ratio of equations 126 and 133. The result
is
H = 6./8
I + IQR;l

(I + I3) + Ry '(Io + 214 + Isu. JUs) (159)

For large values of Reynolds number, the asymptotic shape factor is easily seen to be given by

I

— 140
L+ 13 (140)

Note that since f, < 1 always, it follows from their definitions that I; < 0, I3 > 0 and |I;| > I3.
Therefore the asymptotic shape factor is greater than unity, in contrast to the old result, but
consistent with all experimental observations.

It is obvious from equations 126 and 133 that both the displacement and momentum bound-
ary layer thicknesses are asymptotically proportional the outer length scale (or boundary layer
thickness) used in the analysis. Note that it does not matter precisely how this outer length
scale is determined experimentally, as long as the choice is consistent and depends on the ve-
locity profile in the outer region of the flow (eg. &.gg versus épo5). This is quite different
from the Millikan theory where the displacement thickness vanishes relative to the unspecified
outer length scale. The result here is thus consistent with the experimental observation that
the velocity profiles can be collapsed over most of the boundary layer by any of these choices.

10 Summary and Conclusions

The consequences of a similarity hypothesis have been explored for both turbulent free shear
flows and boundary layers. In the latter case, an Asymptotic Invariance Principle was proposed
which required that the properly scaled inner and outer profiles reduce to similarity solutions
of the corresponding equations in the limit of infinite Reynolds number. An extension of the
same principle allowed determination of the velocity profile in the matched layer and a friction
law for the zero-pressure gradient turbulent boundary layer.

The turbulence Reynolds number, ¢L /v, was seen to be crucial in determining whether
similarity solutions were possible, especially for the turbulence quantities. Similarity solutions
to the Reynolds stress equations were seen to be possible for flows where the Reynolds number
was constant during the flow evolution downstream or where it increased. In both these cases,
asymptotic power law type behavior is realized, although with coefficients which depend on
source conditions. Flows where the Reynolds number decreased during decay were problematical
in that how they behaved and for how long depended on the source conditions. The key to both
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increasing and decreasing local Reynolds number flows was seen to be whether the turbulence
Reynolds number was sufficiently large for the dissipation to be governed by the energetic
motions (i.e., £ ~ ¢3/l) and for the energetic motions to be effectively inviscid.
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