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ABSTRACT

The fine scale characteristics of turbulent flow resulting
from an axisymmetric jet exhausting into a quiescent environment is
investigated. Measurements are carried out in the far field of the
Jet with exit Reynolds numbers of 10°. Moments of the velocity and
mean-square derivatives of the velocity field are obtained using
flying hot-wire anemometry.

The measured derivative correlations are used to test the
conditions for the requirements of local-isotropy. It is found that
the relative magnitudes of the measured mean-square derivative
correlations are better described by the relations for axisymmetric
homogeneous turbulence. Results of the velocity moments and the
rate of dissipation of kinetic energy are presented. Comparisons of
the results of flying hot-wire errors with those from laser Doppler
anemometry and stationary hot wire probes are used to assess hot-
wire cross-flow and rectification errors for high turbulence
intensity flows.
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1. Introduction

The present work consists of an extensive investigation of an axisymmetric
turbulent jet using flying hot-wire probes. The overall objective is to provide
a basis for evaluating turbulence closure hypotheses from measurements of the
moments of the velocity and the rate of dissipation of turbulence energy. The
secondary objectives are: a direct measurement of the dissipation, an evaluation
of hot-wire errors in this high turbulence intensity flow, and an evaluation of
prior LDA data.

The high turbulence intensity in a jet gives rise to cross-flow and
rectification errors on hot-wires (Tutu and Chevray 1975). These errors as well
as the effect of the fluctuating convection velocity on the measured derivatives
can be reduced by superimposing a velocity on the hot-wire, thereby reducing the
effective turbulence intensity. This was accomplished by using hot-wires mounted
on a rotating wing which reduced the effective turbulence intensity from 30% to
11% at the centerline of the jet and to a maximum of 38% at the outer edge.

Measurements of the dissipation in the past always relied on the assumption
of Taylor’s frozen field hypothesis and the assumption of local isotropy. The
former is known to fail in high turbulence intensity flows while the Tatter has
never been confirmed experimentally in Tlaboratory shear flows. In this
experiment, spatial velocity derivatives were measured using parallel single-
wires and a new AXI-probe which consisted of 1 - 1/2 x-wires. The superposition
of a mean velocity on the wires enabled both the evaluation of the effects of
turbulence intensity on Taylor’s hypothesis, and the use of this hypothesis to
obtain the velocity derivative in the streamwise direction. The derivative
measurements showed that the flow could not be considered Tocally isotropic, but
did satisfy the derivative relations for axisymmetric homogeneous turbulence.

2. Governing equations for the dissipation and kinetic energy

Momentum equation

The momentum equation of incompressible isothermal steady state turbulent
flow is obtained from the Navier-Stokes equations. For an axisymmetric jet with
no swirl the turbulent shear stresses <u,u,> and <u,u,> are zero, the azimuthal
component of the velocity field U, is also zero. The equations governing the mean
velocity are:
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The velocity and lengths in the above scale as,
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For a jet issuing into a quiescent environment assuming a thin shear layer
approximation ¢/L << 1, equations 1 and 2 the following first order momentum
equation is obtained.
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the continuity equation is,
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The validity of the measured data can be verified by utilizing the
integrated form of above equations (see section 4.2).

The interest in measuring the terms in the momentum equations stem from the
classical problem of the turbulence equations being an uncliosed set of
equations. The aim of modelers is to determine the mean velocity from the above
momentum equations. Because of the presence of the Reynolds stress there are more
unknowns than equations making it necessary to find a way of closing the
equations.



Reynolds stress equations

The transport equations for the Reynolds stresses are:
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For high Reynolds number flow the viscous diffusion term is negligible. The
third moments which represent the diffusion by the turbulent velocity
fluctuations, <u,u;u,>, are modeled in terms of the Reynolds stress terms. The
terms containing the diffusion of pressure correlations, <pu> are also modeled
in terms of velocity correlations, Lumley (1978). The pressure-strain
correlations p<du,/dx+du,/9x;>/p are modeled in terms of an anisotropic stress
~tensor which can be related to the Reynolds stress.

In evaluating these models it is advantageous to measure as man terms as
possible in the above equation which makes it crucial to measure the dissipation
term directly. This direct measurement of the dissipation can be a cornerstone
in the evaluation of the quality of these models.

Kinetic energy equation

The equation for the transport of the kinetic energy is given by

_'Pi( = —_a .;.(qz <puk> -V ak - LU aUl
Dt Ox, | 2 P Ox, 177 ox

A1l the terms in the above equation except the pressure transport term
(which is modeled) can be measured. Earlier investigators ( Taulbee et al 1987)
used the dissipation as a closing term. Measuring the dissipation directly,
provides the data necessary to evaluate the terms involving the pressure.

3. Experimental facility and measurement hardware
3.1 The jet facility

The jet apparatus was the same one utilized by Capp (1983) (see also
Taulbee et al. 1987), for which the measured velocity profile at the exit had a
velocity overshoot at the jet edges of 3% relative to the centerline velocity.
This effect was balanced by the boundary Tayer thickness (approximately 2% of the
exit radius). The error term in the momentum integral arising from the adoption
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of a top hat profile based upon the centerline velocity and the exit diameter is
Tess than 3%. The exit conditions listed in Table I were used for all
experimental measurements reported here.

3.2 The enclosure

While the jet apparatus shown on Figure 1, was the same as used by Capp
(1983), the enclosure was different. In this experiment the apparatus was used
in the large 5m x 5m x 25m room utilized in the measurements of Taulbee et al.
(1987). The size of the room was determined using the criterion proposed by Capp
(1983) (see also George et al. 1986) to ensure that the momentum integral was
constant to within 5% at 150 diameters. The jet was mounted on a table 2.5m
above the floor to place the exit near the geometrical center of the room cross-
section. The temperature of the room was monitored throughout the experiment and
was constant to within + 3-C.

The axisymmetry of the jet was very carefully documented. A three
dimensional traversing system designed for this experiment was utilized to obtain
velocity contours which show excellent axisymmetry. The collapse of the profiles
when scaled with the centerline velocity and downstream distance indicates a well
established similarity region. The virtual origin of the Jet was found to be 2.7
diameters from the exit. The measurements reported here were taken at only 70
and 100 diameters downstream of the jet exit in the stationary probe experiment,
and 70 diameters downstream with the moving probe.

3.3  Flying hot-wire anemometry

Flying hot wires in turbulent flows were used in the past by various
investigators. Uberoi (1975) used a flying wire in his study of entrainment in
shear flows. Cantwell & Coles (1983), Watmuff et al. (1983), Panchapakesan and
Lumley (1986, 1987) are other investigators that applied the moving wire
techniques in a wind-tunnel, wake and a heated Jet respectively. There are
various reasons why the moving wires were used. In this work the objective is
two-fold; to decrease the errors due to cross-flow and rectification, and to
enable a correct implementation of Taylor’s hypothesis. These particular
advantages of a moving probe appear to have first been noted by George and
Beuther (1979).

The moving wire experiments were performed by whirling the probes about an
axis perpendicular to the axis of the jet. To decrease the interference of the
supporting arm, the probes were mounted on a one meter long, Tow drag symmetric
NACA 0010 airfoil. A one horse-power motor was used in combination with a set
of reduction gears and counter weights to obtain a smooth rotation of the wing.
The entire mechanism was mounted on a one dimensional manual traversing system
which was used to traverse the probes across the jet. A sketch of the apparatus
is shown in Figure 2.

The effect of the wing on the flow was carefully studied. The wing had a
Tow coefficient of drag Cq of 0.0045 and a Reynolds number of 1700 at 1 m/s. The
large scale characteristics of the flow around the moving wing were observed with
smoke wires. The results showed minimal amounts of flow disturbances on the jet
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as the wing rotated through it.

The data were collected only when the probe was parallel to the axis of the
Jet. This was accomplished by using an encoder pulse that triggered the A/D
converter to collect data. The short charging time of the sample and hold of the
A/D (nanoseconds) insured that the measurement was effectively taken at a point.
One data sample was collected for each revolution and 4800 samples were taken at
each radial position.

The hot-wire signal was transmitted from the probes to the anemometers
using Tow noise s1ip-rings. The slip-rings were enclosed in a grounded aluminum
housing so as to avoid stray electromagnetic noise. The coaxial cables
connecting the slip-rings to the anemometers were also shielded. The noise due
to the slip-rings was estimated to be of the order of 1 mV. Both the original
velocity signal and it’s time derivative were recorded for each of the wires.

3.4 Measurement procedure of the velocity derivatives

The measurements of the spatial derivatives were done by measuring the
velocity components at two points that are in close proximity to each other, and
taking the difference to approximate the velocity gradient. The noise in the
difference signal is due to either quantization and electronic noise or to
uncertainty in the calibration of the two wires. The voltage to velocity
transformation is accurate to within 0.1%, the quantization error is of the order
of 0.6 mv, and rms electronic noise is of the order of 3 mv. A conservative
estimate of the error in the measured mean square derivatives from these sources
is less than 10%.

3.5 Experimental procedure
Data acquisition and sampling considerations:

The hot-wire signals were digitized using a 15 bit, 16 channel A/D
converter with a throughput rate of 150 kHz. The anti-aliasing filters used were
Bessel Low-Pass Filters (manufactured by Frequency Devices, Model 848 P8195) and
were tunable over a frequency range of 200 Hz to 51.2 kHz.

Measurements of all of the components of the velocity were made and all the
moments to the fourth order were computed. Care was taken to ensure that record
Tengths were Tong enough to ensure that statistical convergence was achieved, and
that the dynamical ranges were adequate to minimize adversely affecting the
higher moments by clipping the tails of the probability distributions.

The streamwise gradients of the velocity components were computed from
Taylor’s hypothesis using the time derivative of the velocity and the Tocal mean
velocity. The former was obtained by substituting the time derivative of the
anemometer output into the derivative of the wire calibration. The
differentiation of the electronic signal was accomplished by utilizing the high-
pass filter characteristics of the Dantec 55D26 signal conditioning unit. It is
well-known that differentiation corresponds to +6 dB/octave frequency response
function which is also the low frequency asymptote of a single-pole high pass
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filter. To ensure that the deviations from this asymptote near the breakpoint
were negligible, the high pass cut-off frequency was chosen about five times
higher than the highest frequency of interest in the signal, that corresponding
to the Kolmogrov microscale. For the moving probe experiment this corresponds
to a high frequency cut-off of 65 kHz.

Description of hot-wire probes:

The two different types of hot-wire probes used in this work were a
standard parallel wire probe and a three wire probe that was designed for these
experiments. ATl the wires used on the probes were Wollaston (Pt-10%Rh) with 2.5
micron diameter. Since the wires originally had a silver coating, a sensing
element 0.2mm Tong was etched by a nitric acid solution. Compared to the
Kolmogorov scales in this flow which are about 0.16mm at the centerline of the
jet, the wires were sufficiently short so that the variances of the measured
derivatives were not affected by length effects (1, < mn where n is the
Kolmogorov microscale, Wyngaard 1968). The small diameter of the wires was
chosen since smaller diameter wires have higher resistance and hence better
signal to noise ratio (Doughman 1972).

The anemometers used were Dantec 55M constant temperature anemometers
operated with 0.6 overheat ratio. To avoid aliasing of the signals, signal
conditioners were used to low pass the signals. The highest frequency in the
flow (corresponding to the Kolmogorov microscale) was 12 kHz, so the low pass
setting for the filters was at 15 Khz. This cutoff frequency was calculated
using the sum of jet velocity and superimposed velocity as the convection
velocity.

The parallel wire probe shown on Figure 3 was used in two different
experiments. The first experiment was performed with the probe oriented in such
a way as to measure <du,/dx,>’. The velocity from each wire and their difference
was computed digitally from the sampled voltages. In addition to the spatial
derivative, the time derivative of the velocity signal was also recorded. The
second experiment was done with the probe rotated 90 degrees to measure
<du,/ox,>".

The triple wire probe shown in Figure 3. was designed to measure all the
terms in the dissipation equation assuming locally axisymmetric homogeneous
turbulence (George and Hussein 1991). The criteria used in design of this probe
were that it have the least amount of probe interference, and acceptable spatial
resolution for the derivative measurements. The probe was built from three angle
wires. The spacing of the wires was approximately 0.2 mm which is close enough
in regards to the Kolomogorov microscale to avoid spatially filtering the
derivative signal. This probe was used in two different experiments. In the
first, the probe was aligned with the jet in such a way that the terms <du,/dx,>%,
<0u,/9x,>*, <du,/ax,>*, <du,/dx,>’, were measured. In the second, the probe was
rotated 90 degrees to obtain <du,/dx,>*, <du,/dx,>*, <du,/dx,>*, <Bu,/dx,>’.

The hot-wires were calibrated in a Tow turbulence intensity calibration
tunnel. A fourth order polynomial as described in George et al. (1987) was used.
The error in predicting the measured velocity from measured voltages was



typically less than 0.1% over the entire range. Once the coefficients were
found, they were used for the determination of instantaneous velocity from the
instantaneous voltages sampled by the A/D. The calibration data was verified at
the end of each experiment to insure that the calibration did not shift during
the course of the experiment. The angle calibration for the cross-wires was done
using a modified cosine law with a velocity-dependent k-factor (Beuther et al.
1987).

4. Experimental Results
4.1 First and second moments of the velocity field

Figure 4a shows the variation of the centerline mean velocity with the
distance from the jet exit. Both the stationary and moving wire results are in
excellent agreement with those measured by Capp using LDA and those obtained
earlier by Peng (1985) in the same facility using stationary hot-wires. This is,
of course, the expected result since the turbulence intensity is a minimum at the
centerline and the hot-wire cross-flow errors are less than a few percent of the
mean value there. Also shown for comparison is the centerline data of Wygnanski
and Fiedler (1969). These have been discussed in detail by Capp (1983) who
attributed the difference to problems in their facility (see also Capp et al.
1989, Taulbee et al. 1987).

The data for x/D > 30 are described to within the experimental error by the
similarity relationship.

10
L ] (10)
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The virtual origin is 2.7 diameters and is consistent with that determined
in the Capp (1983) experiment.

The mean axial velocity normalized by the centerline velocity, u/u,, is
plotted versus the non-dimensional radial coordinate,n=r/x, in Figure 4b. (Note
that x is measured from the virtual origin established above.) To avoid clutter,
the data of Wygnanski and Fiedler (1969) has been plotted only as a smooth line.
The mean profiles of the current facility collapse by 30 diameters with a virtual
origin of 2.7 times the diameter of the jet, a value consistent with that
obtained from the centerline mean velocity decay. The stationary wire profile
gives a half width of 0.102 which is wider that the value of 0.094 obtained with
the LDA (Capp 1983). This behavior is expected, since a binomial expansion of



the error in the mean velocity due to cross-flow effects reveals the leading
error term is positive. The moving wire results for leading cross-flow error
term is less than 5% across the flow.

4.2 The second order moments

The Reynold’s stress terms that are non-zero in this axisymmetric jet are
<u>*,<u>*,<u>’, <u,u,>. These terms non-dimensionalized by the square of the
centerline velocity are shown on Figures 5,6,7 and 8 respectively. The moving
wire results for all moments were in very close agreement with the LDA results
reported by Capp (1983) (see also Taulbee et al. 1987), but differ substantially
from the stationary wire results. This behavior is consistent with the effects
of the cross-flow errors which cause greater contamination than for the mean,
since for the second-order moments the leading terms are negative and depend on
the third order moments.

The inter-consistency of the data and the degree to which the flow
represents a free jet can be evaluated by checking to see whether they satisfy
the governing equations (v. George 1988). Figures 9,10 and 11 show the measured
Reynolds stress for the Stationary wire, LDA and moving wire data. As shown on
the figures, the measured Reynolds stress terms are compared to that calculated
from the remaining terms in the integrated momentum equation (v. Taulbee et al.
1987). The excellent agreement for the moving wire results (shown on Table II)
confirm the validity of the data. The stationary wire data shows a consistent 20%
discrepancy across the flow because of the hot wire errors.

4.3 Derivative measurements

The streamwise derivatives of the three velocity components were calculated
from their corresponding measured temporal derivatives of <du,/dt>, <du,/dt>,
<du,/dt>. The issue of the applicability of Taylor,s hypothesis was addressed by
utilizing the flying wire mechanism. Appendix II reproduces analysis for the
approximation of Taylor’s hypothesis from George et al (1991). The effect of the
fluctuating convection velocity is most prominent in the breakdown of Taylor’s
frozen field hypothesis (Lumley 1965).

To verify the accuracy the frozen field assumption, the mean square
derivatives are reported for a rotation rate of one revolution per second and for
no rotation at all. The rotation rate chosen corresponds to a ratio of probe
velocity to mean centerline velocity of 1.45. Figure 12 shows the radial
dependence of the mean square time derivatives for stationary and rotating
probes. The contribution of the terms depending on the fluctuating velocity in
equation A.II.16 are less than 4% for the rotating probe results, and they
therefore are close to the actual values of <du,/dx,>’.

Figure 13 shows the difference between the stationary and moving probe
results normalized by the Tlatter and plotted as a function of
[<u>™+2* (<u,>™+<u,>’) 1/ (U,+U)*. There is clearly a close agreement between the
isotropic result of equation A.II.16 and the measured difference as indicated
by the Tine. In summary, the experimental data gives considerable confidence in
the theoretical results.



Figure 14 shows the profiles of the velocity derivatives in the streamwise
direction. These derivatives satisfy the isotropic relations near the centerline,
but progressively deviate from tgem as the radius increases. On this figure2
<ou,/9x,>°, <auz/63x,>2 and <du,/dx,>° measured with the Axi-probe and <du,/dx,>
from a different experiment using a parallel wire probe are plotted as a function
of radial position across the jet.

The velocity derivatives in the azimuthal direction, <au,/ax3>2 and
<0u,/9x,>° were measured with the Axi-probe. The correlation term <au,/8x3>2 was
also meausred with the parallel wire probe in a seperate experiment and the
reults from both sets of experiments are shown on Figure 15. Another set
experiments were performed with the probes rotated by 90°. These experiments were
aimed at measuring the velocity gerivatives in_the radial direction. The results
from thig experiment, <du,/dx,>° and <aw,/ax2>>2 measured with the Axi-probe and
<ou,/9x,>° measured with the parallel probe are shown on Figure 16.

Axigymmetry requires that_the terms <au3/8x2>2 be equal to <du,/dx,>% and that
<du,/dx,>° be equal to <aum/ax,>2. These terms are shown on Figures 15 and 16, and
the results shown to within the accuracy of the measurements that the flow
appears to be truly axisymmetric in the small scales.

In addition to the above mentioned mean square derivatives, a number of
mixed derivative correlations which should be zero in Tocally axisymmetric or
locally isotropic turbulence were also measured. Two sets of these correlations
were measured. The first set, <du,/dx,> <du,/dx,>, <du,/dX,> <AU,/IX,>, <Au,/dx,>
<0U,/OX;> , <BU,/IX,> <BU,/X,>, <AU,/dX,> <AU,/dx,> and <du,/dx,> <du,/dx,> is shown
on Figure 17. The other set, <du,/dx,> <du,/dX,>, <du,/9x,> <Au,/dx,>, <du,/dX,>
<0u,/9X,> , <Au,/0X,> <Au,/8xX,>, <Au,/IX,> <Au,/dx,> and <du,/dx,> <du,/dx,> is shown
on Figure 18. The corresponding correlation coefficients were less than 5% over
most of the jet, verifying that at least these aspects of Tocal axisymmetry or
Tocal isotropy were satisfied to within the accuracy of the measurements.

The full implications of this local axisymmetry is presented in George and
Hussein (1991). The most significant consequence for the present experiment is
that the entire set of derivative correlations can be represented in terms of
four invariants which in turn, depend only on measurable quantities. Thus the
determination of the dissipation and mean square fluctuating vorticity is Timited
only by the measurement accuracy of the four independent derivatives.

4.4 Dissipation

Figure 19 shows the comparison between €, . obtained with the assumption

of local axisymmetry ande.., calculated from <au1/ax,>2 and <au1/8x2>2 assuming
Tocal isotropy. For the jet, the isotropic results differ from the dissipation
by about 25% at the centerline and by about 40% near the point of maximum mean
shear (r/x = 0.1). The results show no evidence of the off-axis peak reported
by Taulbee et al. (1987) who calculated the dissipation as a closing term in the
energy balance. In view of the present data, the off-axis peak in their
calculation can probably be attributed to inaccuracies in the determination of
the derivatives of the measured second and third moments near the axis.
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5. Summary and Conclusions

The velocity field and the statistical correlations of a number of the mean
square derivatives in the dissipation tensor are presented for the axisymmetric
turbulent jet. Three of the mean square derivatives were computed from their
corresponding measured temporal derivatives. The use of the moving wire probe
which reduces the effective turbulence intensity provides the only way to measure
these terms accurately in this flow, since Taylor’s frozen field hypothesis does
not accurately apply to the stationary wire results. Having obtained a set of
data with and without moving the wire, an assessment of the breakdown of this
hypothesis was done. It was found that the correction model which was introduced
by Lumley (1965) and George (1979) for the effect of the fluctuating convection
velocity on temporal derivatives measured with stationary probes gives good
results.

The issue of cross-flow and rectification errors was addressed with
pertinence to the use of hot wires in flows with turbulence intensities that is
higher than 30%. Comparisons between the results of the moving wire and
stationary wire enabled the evaluation of these errors. The results of the error
analysis for the moments of the velocity field were presented in this work.

This work also provides a considerable amount of data on the dissipative
scales of turbulence for the isothermal axisymmetric jet. It was proven that the
jet is not locally isotropic but rather locally axisymmetric in the small scale.
The direct measurement of the dissipation is presented for the first time for
this type of flow.
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TABLE 1

JET EXIT CONDITIONS

QUANTITY

Exit Diameter (m)

Velocity (m/s)

Volume Rate (m3/s)

Momentum Rate/Unit Mass (m*/s%)
Reynolds Number

TABLE II

MOMENTUM INTEGRAL RESULTS

v <u,>? <u>?
LDA 0.87 0.24 0.13
HW 0.99 0.14 0.07
FHW  0.914 0.193 0.044

0.058

1.005
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TABLE III. Curve Fits For Even Functions.

Value | Probe Co C, C. Ce D Error
Type
U L 1.0 1.212E-1 | 2.185 E3 111 | 2.60E-3
HW 1.0 -1.925 -- 63
FHW 1.0 -4.84 1.27 E3 84
— L 7.648E-2 | 1.729E-1 | -4.845 E2 | 5.864E4 | 156 | 2.49 E-4
u HW 7.779E-2 | 2.79 E-1 | -2.02 E3 | 4.30 E5 | 257
FHW 7.73 E-2 | 1.459E-1 | 1.11 E2 | 1.4 E4 147
— L 4.723E-2 | 2.222 5.174E-1 79 4 .52E-5
v HW 5.457E-2 | 0.355 -42.98 89
FHW 5.14 E-2 | 3.32 1.484E-1 120
- L 4.900E-2 | 2.316 5.754E-1 73 5.20E-5
w HW 5.78 E-2 | -1.71 2.173E-1 42
FHW 5.26 E-2 | 3.22 3.49 E+2 133
—3 L 2.139E-3 | 2.348 -1.551 1.889E3 | 134
u HW 2.14 E-3 | 1.008 -4.763E+1 | 5.54 E2 | 75
FHW
— L -1.25E-3 | 8.746E-1 | -7.080E-1 | 8.995E2 | 135
uv HW 2.200E-3 | 1.237 -5.288E+1 | 7.81 E2 | 95
FHW
- L -1.246E3 | 6.665E-1 | -7.729 1.133E3 | 155
uw HW 2.25 E-3 | 1.04 E-1 | -9.20 E+2 | 1.98 E4 | 65
FHW
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Table IV Curve Fits For 0dd Functions.

Value Probe C, C, Cs C, D
Type
L 5.500E-1 | -2.96E-1 | 1.282 E3 | -1.898E4 | 78
uv HW 4.375E-1 -3.93E-1 |1.55 E2 | 1.342 E4 | 90
FHW 4.89 E-1 | -6.451 4.095 E3 | -1.057E5 | 147
m—) L 3.870E-2 | 2.647E-1 | -7.988E2 | 5.340 E4 | 196
HW 3.33 E-2 | 1.59 E-1 | -2.87 E2 169
FHW
=] L 4.870E-2 | 3.518E-1 |[6.771 -6.250E2 | 65
HW 1.2 E-1 [7.29 E-1 [2.09 E3 246.00
FHW
HW 3.0 E-2 [5.17 -4.83 E2 | 7.527 E3 | 100.0
FHW -~ --
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Appendix I Locally-axisymmetric homogeneous turbulence

It have been of considerable interest to turbulence modelers and
theoreticians to obtain measurements of the rate of dissipation of turbulence
kinetic energy,e , given by (Hinze 1975):

dun\® sdu,\* du,
. + + [ —

< ax'> < ax2> < ax3>
du\* joun\® soun’
—_— + { —— + ({ —

< ax2> < ax3> < 8x1>

du,\®  joun’  soun’ du,\ sou,
+ + + —
<ax> <8x‘> <8x> <ax‘><axz>

2

2

AI.1

+

ou,\ sau, ou,\ sdu,
+ ( — R, + e [
<ax‘><ax3> <ax2><8x3>

The direction measurement of the average dissipation and mean
square vorticity clearly requires measurements of various components of the

spatial derivatives. Because of the near impossibility of ‘this in practice,
investigators have usually relied on the assumption of local isotropy and
Taylor’s frozen field hypothesis in determining the dissipation.
For isotropic turbulence (Hinze 1975): _
ou\> s8u.\’ 8u\’ ,8u\’ éur’ 3un’ ;ou,’
e R R Rt R R I
ox, \ox, ox, ax, ox, ox, ox,
up\" _jaunt gou’ AL3
&) &) (&)

3
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<jOuN gOu\ g un gBuy\  g8uy yBuny 1 U’ AL4
5 () "G (&) 2 (5) -

Thus only measurement of <du,/dx,>® is necessary. This has been usually
accomplished by measuring only the temporal derivative of the longitudinal
components of the velocity and using Taylor’s frozen field hypothesis.

The assumption of Tocal isotropy simplified the experiments significantly
but the accuracy of the results were impaired by the fact that shear flows such
as the jet did not usually satisfy the relations for local isotropy. For the
jet, this anisotropy of the small scales becomes more pronounced the farther one
gets form the centerline.

From the measurement of seven of the terms in equation (3) it was clear
from the data that these derivative measurements did not satisfy the conditions
for local isotropy. However, they were found to satisfy the conditions for
axisymmetric homogeneous turbulence (Batchelor 1946, Chandrasekar 1950) to within
the experimental error. Thus it is appropriate to use the concept of locally
axisymmetric turbulence introduced by George and Hussein (1991) for which

du\* du .\’
-3
ax2 ax3
du’ un’
-3
ox, ox,
<3U2> =<au3> AL7
ox, ox,
du\’ du\’
3 -3
ox, ox,
<au2> -1 <a_“> L1 <a_“> AI.9
ox 3 \ox, 3 \ox,/

ou,\ sau, _ ou,\ sdu, 1 au, : Al 10
N -GN = )
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dup Uy 1 youpnt 1 jdupy’ Al.11
<ax3><?§§> 6 <Eﬁ;> 3 <8x3>

From equation (3) it follows immediately that

2 2 a 2 2
£<Eﬂ> +2<ﬂ> o 2 +§<a“z> AL1
3\ox ox ox 3\ox
1 } 1 3
For isotropic turbulence equation (12) reduces to the familiar result,
du\*
. = 15v <_> AI.13
ox

1
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Appendix II - The Application of Taylor’s Hypothesis to Velocity Derivative
Measurements.

Lumley (1965) and Wyngaard and Clifford (1977) have presented analyses of
the effect of the fluctuating correction velocity on the Spectral and derivative
analyses. In both cases, the analysis of the fluctuating derivatives began with
the truncation of an assumed Gaussian Characteristic function for the turbulence,
and it was therefore believed to be Timited in some manner. The purpose of the
brief analysis below which is due to George and Beuther (1979), is to illustrate
that their result can be obtained without the Gaussian assumption, and should
therefore be applicable over a wider range of turbulence intensities than might
have been believed from the earlier analysis.

We begin by analyzing the response of a randomly moving probe in a
homogeneous velocity field u (x). Let us assume the probe to respond only to the
1 - component of the turbulent velocity. Let us further assume that the turbulent
field is frozen and that the probe moves through it. The time varying signal
seen by the probe moves through it. The time varying signal seen by the probe
can be written as:

u, (¢) =[e™ % a(k) dk ALII.1

Where x° (t) represents the motion of the probe and 4 is the Fourier
transform of the velocity field.

We seek a relation between the time derivative of u (t) and the spatial

derivative of u(x).

Differentiating equation (1) we have,

o =]’eik'xp (ik %,) (k) dk A.11.2

From which it follows that
(@)% = -[[e?* 8% (kg ) (K'x%) 0 (k) 2° (X) dk d¥

If we assume the motion of the probe to be statistically independent from the
turbulence we can write

(@)% = -[e* &8 % (ki) (K&)) u (&) u (K dkdk’  A.11.4

A.I1.3

Since the field is assume homogeneous

8 (k) @* (k) dk dk/ = Fy, (k) 8(kK - k) dk dk” A-I1.5

Where F,, is the three dimensional spectrum of the turbulent velocity.
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The position of the probe is simply the time integral of its velocity
added to its initial position, 1i. e.

t
x,(t) = x_ (0) t[ﬁp (t,) dt, A.11.6

Where ﬁp is the instantaneous probe velocity. Thus

. I - A.Il.7
xb(t) = up(t) =U +u

Where U, is the mean probe velocity and u, is it’s fluctuating component.
It follows immediately that

[0, (012 = [ Tk + kuJ? Fy, (k) dk A.11.8

We consider the mean motion of the probe to be only in the 1 - direction
while we allow its fluctuating motion to be in all directions, i.e.,

1.9
u, o, 0) A
p
and gp = (um, u, s upﬁ
Inserting these into equation (7) yields the measures mean square time
derivative as

[a, (£)12 = Ugfkf Fy, (k) dk

+

u,? [ ki Fy (k) dk

+

2 Tou, f k, k, F, (k) dk
A.IT.10

-+

2 u_p'l'ﬁ;:fkl ky, Fy, (k) dk

+

ol [ K Fy (k) dk

+

2 T, [ Ky ky Fyy (k) dk

+uf [ K Py (k) dk

The integral of equation (8) can be readily recognized as the mean square
velocity derivatives.

Thus
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2T ou, oJu,
7t [ax, Bx, A.II.11
5 du, oJu,
nle |3, Ox,
du, oJu
*+2 upzupa a_XJZ. a_Xz
ou, oJu,
2 u, U, a—Xz 6_}{3
For homogeneous flow
ou, du _ ou, du, _ ou, adu, _ A.Il.12
Therefore;
-0z [25] « g [2u] . ge[3a] . g=[3a] ALLB
ol TR ox, Pr | ox, P2 | 9x, P | 9x,

At this point we identify our probe velocity to be equal and opposite to
the Local Fluid Velocity (which corresponds to a probe at rest in a moving
field). In doing this, we of necessity violate the condition of independence
of probe and fluid motions introduced earlier. However, we may assume the
condition to be approximately valid if we confine our attention to the small
scale turbulence which is nearly independent of that containing the turbulent
energy ( Lumley (1965)) has discussed time validity of this). The assumption is
particularly good if we confine our attention to high turbulence Reynolds Number
Flows because we are interested only in mean square velocity gradients which
receive their primary contribution from the dissipative scales, while the

convection of disturbances past the probe is primarily due to the move energetic
turbulence.

If we are further willing to assume the small scale turbulence to be
locally isotropic, the derivatives are related by
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2 2

ou, _ ou, -2 ou, A.11.14

Using these, the mean square derivative signal seen by a stationary probe in a
moving turbulent field is,

oy, AILIs
U2 ox, U?
Thus the primitive application of Taylor’s hypothesis to the time
g, |
derivative of the streamwise velocity yields a value of (7§§l) which is too
1
high by a factor of
_YZ
ou,
e —_—2 —2 —2
ox u u. +u
. n=1 . _J; . 2[ 2 = 3]J A.I1.16
ou, v
u,
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