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Equilibrium similarity, effects of initial conditions and local Reynolds
number on the axisymmetric wake
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Equilibrium similarity considerations are applied to the axisymmetric turbulent wake, without the
arbitrary assumptions of earlier theoretical studies. Two solutions for the turbulent flow are found:
one for infinitelocal Reynolds number which grows spatially asx1/3; and another for smalllocal
Reynolds number which grows asx1/2. Both solutions can be dependent on the upstream conditions.
Also, the local Reynolds number diminishes with increasing downstream distance, so that even
when the initial Reynolds number is large, the flow evolves downstream from one state to the other.
Most of the available experimental data are at too low an initial Reynolds number and/or are
measured too near the wake generator to provide evidence for thex1/3 solution. New results,
however, from a laboratory experiment on a disk wake and direct numerical simulations~DNS! are
in excellent agreement with this solution, once the flow has had large enough downstream distance
to evolve. Beyond this the ratio of turbulence intensity to centerline velocity deficit is constant, until
the flow unlocks itself from this behavior when thelocal Reynolds number goes below about 500
and the viscous terms become important. When this happens the turbulence intensity ratio falls
slowly until thex1/2 region is reached. No experimental data are available far enough downstream
to provide unambiguous evidence for thex1/2 solution. The prediction that the flow should evolve
into such a state, however, is confirmed by recent DNS results which reach thex1/2 solution at about
200 000 momentum thicknesses downstream. After this the turbulence intensity ratio is again
constant, until box-size affects the calculation and the energy decays exponentially. ©2003
American Institute of Physics.@DOI: 10.1063/1.1536976#
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I. INTRODUCTION

The axisymmetric turbulent wake is a flow that h
puzzled researchers for more than a half-century, since m
sured results have been either inconclusive or contradic
In order to evaluate experimental data in the context of si
larity analysis, a ‘‘complete’’ set of measured data is need
Here, the term complete refers to the following necessary
of quantities: At least mean velocity and turbulence intens
distributions across the flow and the wake width. Figure
shows a sketch of the axisymmetric wake together with
coordinate system.U` denotes the free stream velocity,Uo

5U`2UCL is the centerline velocity deficit, andd is a mea-
sure of the wake width.

The axisymmetric wake is a challenging flow to meas
because of the small velocity deficit, the slow decay of
velocity deficit downstream and a turbulence intensity of
same order as the deficit. In fact, the far axisymmetric w
still is at the threshold of what is possible to measure to
using even the best wind tunnels and the most stable l
noise anemometer equipment. Also, unlike many other
shear flows for which thelocal Reynolds number remain
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constant or increases downstream, in the axisymmetric w
it drops slowly. Thus viscous effects continuously beco
more important until eventually they may dominate~if the
flow extends far enough downstream!. These varying viscous
effects, together with the many very different possibilities f
the structure of the near wake from different generators, c
siderably complicate interpretation of the data. The goal
this study is to useequilibrium similarity theoryto sort out
these different effects and isolate the regions in which th
dominate or in which they can be ignored.

II. HISTORICAL REVIEW

The first complete set of data in the wake of an axisy
metric disk perpendicular to the flow was presented
Carmody,1 who measured mean velocity, turbulence inte
sity, Reynolds stress and wake growth in an axisymme
disk wake at a Reynolds number (RD) of 70 000 whereRD is
based on the free stream velocity and the disk diame
Based on these measurements, the wake appeared to be
similar 15 diameters from the disk, meaning that the me
velocity profiles appeared to collapse when normalized
the centerline deficit and a lateral length scale determi
from the profile itself. The disk wake was also investigat
© 2003 American Institute of Physics
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FIG. 1. Axisymmetric wake coordinates and defin
tions.
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by Hwang and Baldwin,2 who measured turbulence intensi
and wake growth rate at up to 900 diameters downstre
distance from the body. They did not, however, present c
terline mean velocity decay. Both the Carmody1 and Hwang
and Baldwin2 data show a significant scatter, presumably d
to the limitations of the anemometers used at that tim
Uberoi and Freymuth3 measured the sphere wake atRD

58600 and stated that the wake achieved self-similar beh
ior at 50 diameters downstream, although they only m
sured a few more points farther downstream. Bevilaqua
Lykoudis4 investigated the wakes of a sphere and a por
disk atRD510 000 with the same momentum deficit~drag!,
and reported that these became self-similar in terms of m
velocity and Reynolds stress profiles within ten diameters
the sphere and within twenty diameters of the porous dis
but not in the same manner; i.e., the sphere and the po
disk did not reach the same state of similarity. They co
cluded that this result wasnot consistent with the idea tha
the turbulence forgets how it was created, as commonly
lieved ~cf. Townsend5,6!.

A recent extensive experiment was reported by Cann7

who investigated the axisymmetric far wake behind five d
ferent wake generators~disk, sphere and three porous dis
with varying porosity!, all having the same drag and Re
nolds number based on the momentum thickness ofRu

5U`u/v'3500, whereU` is the free stream velocity,v is
the kinematic viscosity, andu is the momentum thicknes
defined by
m
n-

e
.

v-
-
d
s

an
f

us
-

e-

n
-

u25 lim
R→`

1

U`
2 E

0

R

U~U`2U !rdr . ~1!

This corresponds to values ofRD of 13 000 for the solid disk,
14 000–17 000 for the screens, and 21 500 for the sph
The measurements extended over a range ofx/u from about
35 to 500. There were no conclusions about when the fl
achieved self-similar behavior, and in fact it was not obvio
that the turbulence intensities ever did.

During the last decade, researchers have primarily
cused on the early development of the wake behind dif
ently shaped axisymmetric bluff bodies; among them: I˙lday
et al.,8 Ostowari and Page,9 Portiero and Perez-Villar,10 and
Sirviente and Patel.11 All concluded that the wake becam
similar in meanvelocity but the turbulence intensity profile
did not collapse. The initial evolution has also been stud
numerically by Basuet al.,12 who made a direct numerica
simulation~DNS! of the axisymmetric wake forRD51500.
The authors claimed that the solution approached the s
similar state in a slow manner, but the computation was
terrupted before this could be verified. From all the da
referred to above, it is impossible to conclude whether
axisymmetric wake in general becomes self-similar at
and if it does, when.

Very recently, Gourlayet al.,13 presented the first DNS
of the high Reynolds number (RD510 000) ‘‘late’’ wake
~which can be directly compared with the ‘‘far’’ wake!. The
FIG. 2. Cross-stream length scale,d* /u versusx/u.
For the screen wakes, the porosity,s, is defined ass
5(solid area)/(total area).
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simulation did not resolve a wake generator, but started fr
a Gaussian velocity profile consistent with a laminar wa
~cf., Townsend5,6 or Schlichting14! with superimposed ran
dom noise. The simulation ran to very large times, wh
corresponded to very large downstream distances, a
x/D'43105 or x/u'33106! This is almost three orders o
magnitude larger than any existing laboratory experime
There was a brief comparison to the results of classical s
larity analysis to check the reliability of the numerical da
but Gourlayet al.13 did not make any statements about wh
or if the wake became self-similar.

Even more recently, the axisymmetric disk wake fro
x/D510 to 60 was studied with the proper orthogonal d
composition ~POD! technique by Johanssonet al.15 This
work was extended to cover downstream distances up
x/D5150 by Johansson.16,17The latter provided mean veloc
ity and streamwise velocity fluctuation profiles. These da
as well as those of Gourlayet al.13 will be used extensively
below.

The following observations can be made from all t
investigations listed above:

FIG. 3. Mean velocity profiles for the porous disk withs50.70, data from
Cannon~Ref. 7!.

FIG. 4. Mean velocity profiles for disk, data from Johansson~Refs. 16 and
17!. Solid line shows a curve fit according to Eq.~C7!.
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~i! Different initial conditions affect the growth rates
contrary to the classical theory which states that
wakes should depend only on the downstream d
tance,x, and the drag, 2prU`

2 u2 ~Townsend5,6!. Here,
r is the fluid density,U` the free stream velocity, and
u the momentum thickness defined in Eq.~1!. This is
most strikingly illustrated by the flow visualizatio
photographs of Cannonet al.18

Data from Carmody,1 Uberoi and Freymuth,3 Bev-
ilaqua and Lykoudis,4 Cannon,7 Gourlayet al.,13 and
Johansson16,17are plotted in Fig. 2.~The data of Gour-
lay et al.13 cover much largerx/u than shown here,
and will be discussed later.! These show the variation
with x of the transverse length scale~wake width!
defined by

d
*
2 5 lim

R→`

1

Uo
E

0

R

~U`2U !rdr , ~2!

whereUo is the centerline velocity deficit. The dat
shown clearly do not collapse to a single curve ind
pendent of the wake generator. Note that the data
Bevilaqua and Lykoudis4 are for two generators with
the same drag, and that the data by Cannon7 is for five
generators with approximately the same drag. Th
source dependent effects do not seem to vanish, e
for large Reynolds numbers or large downstream d
tance.

~ii ! In apparent contradiction, the mean velocity profil
from all experiments collapse onto a single cur
when scaled with centerline velocity deficit andd* ,
as illustrated in Figs. 3 and 4 for the data of Canno7

and Johansson,16,17 respectively. The other reference
show just as good a collapse.

~iii ! The turbulence intensity profiles presented
Carmody1 and Cannon7 do not collapse at all, even
for fixed upstream conditions as shown in Fig. 5 f
the data of Cannon7 for the porous disk withs
50.70. Here, very large downstream distances, up
x/u.500, are covered. By contrast, Fig. 6 shows p
files of umax8 /Uo for various downstream distances fo
the disk wake of Johansson.16,17 Here, the turbulence
intensity profiles seem to indeed collapse, but not
fore x/u'200.

~iv! Finally, curve fits to the screen wake data by Canno7

indicate that square root and cube root downstre
dependencies describe the wake growth equally w

Clearly, there is much remaining to be explained. These
sues cannot be reconciled simply by attributing them to m
surement errors alone. Not all investigators could be inco
petent, and in fact the internal consistency of the d
suggests the opposite~e.g., momentum conservation, etc!
Nor are the problems presented by wake measurements
difficult than for grid turbulence for which hot-wire measur
ments have long been accepted.

The classical self-preservation approach to free sh
flows was first questioned by George,19,20 who argued that it
was based on assumptions that were not in general valid
proposed a new methodology calledequilibrium similarity
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analysis, and demonstrated with it that solutions were po
sible which dependeduniquelyon the upstream conditions
The new theory was in striking agreement with the nea
concurrent experiments of Wygnanskiet al.21 for two-
dimensional wakes, which showed dramatic differences
tween spreading rates and eddy structure that depende
the wake generator.

George19 also argued that the axisymmetric wake wou
behave similarly. He predicted that the mean velocity profi
from the different experiments would be the same, if sca
by the centerline deficit velocity and velocity deficit ha
width, even if the wakes grew at different rates. This is co
sistent with the observations shown in Figs. 3 and 4. T
result is very important, since previous researchers have
ten used the collapse of mean velocity profiles alone to ar
that wakes are independent of upstream conditions.
whole point of George’s analysis, however, is thatproperly
normalized mean velocity profiles always collapse, and the
source-dependent differences only show up in the sprea
rate and the higher turbulence moments. This is clearly ob-
served as noted above.

George19 was unable to resolve whether the asympto
axisymmetric wake would evolve asd;x1/3 or asd;x1/2. In
fact, he showed fromad hocassumptions about the dissip
tion that both solutions were consistent with the equatio
depending on the Reynolds number. It did not appear to
possible, however, to decide which, if either, would be o
served, or whether the flow would evolve from one to t
other. Or even if such an evolution occurred, which would
observed first. As the careful experiments of Cannon7 de-
scribed earlier make clear, these questions are still very m
in doubt.

In this paper, the analysis of George19 is re-visited, cor-
rected, and extended. It will be shownwithout ad hocas-
sumptions that two different equilibrium similarity solution
for the axisymmetric wake are indeed possible: One for v
high local Reynolds numbers, and another for low. Most im

FIG. 5. Turbulence intensity profiles for the porous disk withs50.70, data
from Cannon~Ref. 7!.
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portantly, because thelocal Reynolds numberdecreaseswith
distance downstream, the flow will be shown to eventua
evolve from the high Reynolds number state to the lower,
matter how high the initial Reynolds number of the flo
And if the initial Reynolds number of the flow is too low, th
high Reynolds number solution will not be observed at a
The available experimental and numerical data is analyz
especially addressing the particular points listed above.
surprisingly~given the state of confusion!, most of the labo-
ratory experiments are shown to take place in the evolu
region. The direct numerical simulation of Gourlayet al.13 is
the only case where both the high and low local Reyno
number solution are found, since it is the only investigati
that covers far enough downstream distances with h
enough initial Reynolds number.

III. EQUILIBRIUM SIMILARITY ANALYSIS

The necessary equations to study are: the momen
equation, conservation of momentum, continuity, and the
dividual transport equations for Reynolds stresses in cy
drical coordinates. These are summarized in Appendix
since they are not easily available in standard texts. In
spirit of George,19,20we seek solutions of the form~explicitly
written here for the momentum equation andu2 equations,
Eqs.~A1! and ~A4!, only—the others are treated similarly!

U2U`5Us~x! f ~h,* !, 2uv5Rs~x!g~h,* !, ~3a!

1

2
u25Ku~x!ku~h,* !,

1

2
u2v5Tu2vtu2v~h,* !, ~3b!

p

r

]u

]x
5Pu~x!pu~h,* !,

1

r
pu5Pu

D~x!pu
D~h,* !, ~3c!

«u5Du~x!du~h,* !, ~3d!

whereh5r /d(x) and * denotes a possible~unknown! de-
pendence on initial conditions. Note that two different sets
solutions will be found below, so the symbols will have d

FIG. 6. Turbulence intensity profiles for disk, data from Johansson~Refs. 16
and 17!.
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ferent meanings depending on which is being discuss
Since each regime is discussed separately there should b
confusion.

For the particular type of ‘‘equilibrium’’ similarity solu-
tions suggested in George,20 the terms in the governing equa
tions must maintain the same relative balance as the fl
evolves. These ‘‘equilibrium’’ similarity solutions exist only
if the terms within square brackets in Eqs.~B3!–~B8! have
the samex-dependence, and are independent of the simila
variable,h. ~Thus, the bracketed terms must remain prop
tional to each other as the flow evolves.! This is denoted by
the symbol; which should be interpreted as ‘‘has the sam
x-dependence as.’’~Note that the symbol; has nothing to do
with ‘‘order of magnitude’’ in this paper.!

For the mean momentum equation of Eq.~B3!, these
equilibrium similarity constraints reduce to

d

Us

dUs

dx
;

dd

dx
;

Rs

U`US
;

v
U`d

. ~4!

There is nothing in the equations or the theory which s
gests that the constants of proportionality are independen
source conditions, nor in fact do they appear to be. Thi
contrary to the usual assumptions in self-preservation an
sis ~cf., Townsend5,6!. It is trivial to show that the relation
between the first and second terms of Eq.~4! is satisfied by
the momentum integral result of Eq.~B2!.

The proper scale for2uv is obtained by using the sec
ond and third terms, which yields

Rs;U`Us

dd

dx
. ~5!

It is immediately obvious how the equilibrium similarity ap
proach yields a different and more general result than
classical approach, where it isassumedwithout justification
that Rs5Us

2 ~cf. Tennekes and Lumley22!.
The same equilibrium similarity hypothesis can be a

plied to the component Reynolds stress equations; nam
that all of the bracketed terms should remain proportio
~i.e., have the samex-dependence!. For example, inserting
Eq. ~3! into Eq. ~A4! yields after some elementary calculu
Eq. ~B5!. Thus equilibrium similarity can be maintained on
if

d

Ku

dKu

dx
;

dd

dx
;

Tud

U`Ku
;

Dud

U`Ku
;

v
U`d

. ~6!

Similar relations arise from the other component equatio
Eqs.~B6!–~B8!.

All of these relations cannot simultaneously be satisfi
given the constraints already placed onUs , d, andRs from
the mean momentum equation. A solution is possible, h
ever, if the viscosity is identically zero, since then all terms
involving the viscosity fall out of the problem. And alsoa
solution for finite viscosity is possibleif it can be shown that
the production term,2v2](U2U`)/]r , in the Reynolds
shear stress equation, Eq.~A7!, is negligible relative to the
leading terms.

It will be demonstrated below that these are in fact li
iting solutions for very largelocal Reynolds number, and fo
d.
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very low local Reynolds number. Note that the latter solutio
shouldnot be confused with the laminar solution, but inste
identified with turbulent flow for which the velocity spectr
do not have a developedk25/3 range~see George20!. And by
contrast, the high Reynolds number limit applies to a flo
which has an easily apparent inertial subrange in the spe
Further it will be demonstrated that no matter how high t
Reynolds number of the drag-producing device, sayRu

5U`u/v, the diminishing local Reynolds number down
stream will cause the equations~and the solutions as well! to
slowly evolve from one regime to the other.

IV. THE INFINITE REYNOLDS NUMBER SOLUTION

A solution having the samex-variation as the classica
solution can be derived by setting the viscous terms in E
~B4!–~B8! exactly equal to zero, which corresponds to t
limiting solutions at infinite Reynolds numbers. It is straigh
forward to show that all of the remaining constraints can
satisfied. Of particular interest are the following:

dd

dx
;

Dud

U`Ku
, ~7!

Ku;Kv;Kw;Us
2, ~8!

Du;Dv;Dw;Us
3/d. ~9!

Note that this is the solution obtained by George19 by assum-
ing the dissipation relation of Eq.~9!. The scaling for the
dissipation is just what one should expect for an infinite R
nolds number solution where the dissipation is complet
controlled by the energetic turbulence~i.e., e}u3/ l in the
usual notation of texts!.

It follows immediately after some manipulation that

d*
u

5aFx2xo

u G1/3

, ~10!

Us

U`
5bFx2xo

u G22/3

, ~11!

wherea5a(* ), b5b(* ), andxo5xo(* ) is a virtual origin.
This is, of course, the classical solution with but a sing
difference—the dependence of the coefficients on upstre
conditions,* . This possible dependence must be ackno
edged, since there isnothing in the equations themselvesto
suggest independence of upstream conditions. The mean
locity profile, on the other hand, can be shown to be in
pendent of upstream conditions. This is achieved by inc
porating a factor of@Rs /(U`Us)dd/dx# into the definition
of g so that there are no parameters at all in Eq.~B4!, as
noted by George.19

V. BOUNDS ON THE VALIDITY OF THE INFINITE
REYNOLDS NUMBER SOLUTION

It was noted in the introduction that the cube root so
tions simply do not account for most of the data, and es
cially the careful data of Cannon.7 So where might the prob
lem be? Firstly, even if the Reynolds number of the wa
generator is high enough for the flow to be nearly inviscid,
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FIG. 7. Maximum turbulence intensities, data of J
hansson~Refs. 16 and 17!, Cannon,~Ref. 7!, and Bev-
ilaqua and Lykoudis~Ref. 4!. Shaded area shows limi
of near-wake transient for disk.
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required for the similarity theory to be valid, it clearly ca
only apply after the transients from the wake generator h
died off. Coincident with this, the turbulence intensity rat
u8/Us , must also reach a constant value, as demanded
Eq. ~8! above. Note that appropriate choices for the simil
ity parametersKu and Us are Us5Uo and Ku5umax82 , the
centerline velocity deficit and maximum of the mean-squ
streamwise fluctuating velocities, respectively.

The ratioumax8 /Uo is plotted in Fig. 7 versusx/u for the
data of Johansson,16,17 Bevilaqua and Lykoudis,4 and
Cannon.7 There is a large uncertainty as to whether the d
of Bevilaqua and Lykoudis4 and Cannon7 reach a horizonta
line. Note that the data of Cannon7 for the screen withs
50.70 is based on Fig. 5 and the data of Johansson16,17 are
obtained from Fig. 6. The data from Johansson16,17 tends to
fall onto a line, at least afterx/u'120. The error bars indi-
cate an uncertainty in the data of 4%. This error origina
primarily in the difficulty of estimating the centerline mea
velocity difference, since the mean velocity data is affec
by drift in the anemometer calibration. This is discussed
detail in Johansson.16,17There is no doubt, however, that th
flow is still developing until at leastx/u5120 (x/D'30),
beyond which it appears to have settled in to an equilibri
similarity state.

This conclusion can be compared to the findings of
POD studies of Johanssonet al.15,23 ~see also George
et al.24!, who showed that the POD modal distribution w
changing untilx/D'50 (x/u'184). The energy distribution
went from an azimuthal mode 1 dominance atx/D510 to an
azimuthal mode 2 dominance byx/D550, with both modes
being equally important atx/D530. Beyondx/D550, the
decomposition hardly changed at all. By contrast the tur
lence intensity seems to have settled in byx/D'30 (x/u
'120), but the overshoot betweenx/u'120 and 200 may
be significant. Other quantities, such as the growth rate m
be taken into account before specifying the exact location
the start of the equilibrium similarity range. Uberoi an
Freymuth3 concluded that their sphere wake became s
similar after x/D550 ~corresponding tox/u'300 in their
e
,
by
-

e

a

s

d
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e

-

st
f

f-

case!. Given the difference in initial conditions, there are n
particular reasons that the these two flows should develo
exactly the same way, either initially or far downstream.

It is easy to show that, unlike most other free she
flows, this infinite Reynolds number solution contains t
seeds of its own destruction. The product ofU`d* /v and
dd* /dx controls the relative importance of the neglect
viscous terms in the mean momentum@Eq. ~B4!# and Rey-
nolds shear stress equations@Eqs. ~B5!–~B8!#. This product
can be simply related to thelocal Reynolds number,R
5Usd* /v, by substituting Eqs.~10! and ~11! into the defi-
nitions to obtain

U`d*
v

dd*
dx

5
a2

3

U`u

v Fx2xo

u G21/3

5
a

3b
R, ~12!

where

R5
Usd*

v
5abRuFx2xo

u G21/3

. ~13!

Thus, no matter how large the initial Reynolds number,Ru ,
eventually far enough downstream thelocal Reynolds num-
ber,R, is diminished until the viscous terms can no longer
neglected. And if the viscous terms are not negligible, th
the infinite Reynolds number similarity solution cannot
even approximately true. This is illustrated in Fig. 8, usi
the data of Johansson,16,17 Carmody,1 Cannon,7 Uberoi and
Freymuth,3 Bevilaqua and Lykoudis,4 and Gourlayet al.13

Clearly the local Reynolds numbers in the experiments dr
drastically as the flow evolves downstream, so eventually
viscous terms become important, even if initially negligib

The effects of the changinglocal Reynolds number,R,
can also be clearly seen in the one-dimensional velo
spectra of Uberoi and Freymuth3 and Gourlayet al.13 shown
in Fig. 9. As noted by George,20 high Reynolds number so
lutions apply only if there is a clear inertial subrange in t
power spectrum. This insures that the energy and Reyn
stress scales of motion are effectively inviscid. ForR greater
than 1600, this is clearly the case, with about two decade
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FIG. 8. Local Reynolds number. Shaded areas sh
lower limit for high Reynolds number solution and limi
of near-wake transient for disk.
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inertial subrange. ByR5400, the existence of an inertia
subrange is questionable, and byR5200 it is clearly gone.

The approximate lower limit for the high Reynolds num
ber solution ofR'500 is indicated on Fig. 8 by the horizon
tal shaded line. None of the data below this line satisfy
conditions for the high Reynolds number solution. Al
shown in Fig. 8 by the vertical shaded line is the appro
mate boundary of the transient~or near wake! region for the
disk as described above. Clearly most of the experime
data do not satisfy the conditions for the high Reynolds nu
ber solution to apply. Before examining in detail the expe
ments that do, the low Reynolds number solution will
developed below.

VI. THE LOW RE SOLUTION

As noted above~and by George19!, there is another equi
librium similarity solution to the same set of equations. T
difference is that this time all the terms involving viscos
are kept in both the mean and Reynolds shear stress e
tions. This produces one additional constraint of the m
momentum equation@Eq. ~B4!#

dd

dx
;

v
U`d

. ~14!

It is extremely important to note that even though some
the relations are the same~e.g.,Ku /Us

25constant), the con-
stants of proportionality~or more properly, the parameters
proportionality since they all depend on* , the unknown de-
tails of the initial conditions! are most likely different from
those governing the infinite Reynolds number solution.

There is one problem which at first glance appears to
quite serious. All of the constraints in the Reynolds sh
stress equation cannot be met, in particular the one ari
from the production term,v2](U2U`)/]r . This offending
term dies off with distance downstream faster than the
maining terms in the equation, in fact asx27/2 compared to
x25/2 for the rest. Therefore, it can also be neglected in
e

-

al
-

-

ua-
n

f

e
r

ng

-

e

analysis since it does not survive asymptotically~exactly like
the Reynolds stress convection terms in the outer bound
layer analysis of George and Castillo25!. But since the differ-
ence in decay asx27/2 andx25/2 is very small, it clearly will
take a considerable distance downstream to reach this
state of equilibrium. Moreover, this new state will be ve
difficult to recognize fromd* andUo alone.

It is straightforward to show that Eq.~14! can be inte-
grated to obtain

d*
u

5c Ru
21/2Fx2xoo

u G1/2

, ~15!

Us

U`
5d RuFx2xoo

u G21

, ~16!

where as beforec5c(* ), d5d(* ), and xoo5xoo(* ) is a
virtual origin which most likely is different than the on
obtained above. Unlike the infinite Reynolds number so
tions, the mean velocity profile cannot be shown to be in
pendent of upstream conditions because of the additio
term in the momentum equation. Note that the mean pro
is not the same as for the highlocal Reynolds number wake
at least in principle, because it is a solution to different eq
tions involving viscosity.~See, for example, Fig. 15 and Ap
pendix C.!

It is easy to show that the local Reynolds number co
tinues to fall with increasing distance downstream; therefo
the approximations improve with distance downstrea
Moreover, since the viscous stresses and Reynolds stre
both decay asx23/2, the flow will remain a lowlocal Rey-
nolds number turbulent wake forever.

An important clue as to if and when this low Reynold
number solution regime applies is the constancy of the ra
Ku /Us

2, or in the data the constancy of the ratioumax8 /Uo .
This is exactly the same condition applied above to iden
the high Reynolds number region; so if the constant is
same for both high and low Reynolds number solutions
will be extraordinarily difficult to tell them apart since the
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FIG. 9. Dependence of the spectra onlocal Reynolds
number.~a! Data of Uberoi and Freymuth~Ref. 3! @ l c

5D2/3(x2xo)22/3, xo512D#. ~b! Data of Gourlay
et al. ~Ref. 13!. Lines indicatek25/3 slopes.
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differ by only x1/2/x1/3. Fortunately, the intensity ratios ap
pear to differ significantly as will be seen below, so it is qu
easy to decide where the infinite Reynolds number reg
ends and where the viscous one begins, at least for the G
lay et al.13 data.

VII. IDENTIFICATION OF THE DIFFERENT REGIMES
FROM DATA

A necessary condition for any data to be considered
that momentum is conserved. For the near wake this requ
inclusion of the nonlinear term in Eq.~1!; but for all posi-
tions of interest here, momentum conservation reduces t

Uod
*
2 5U`u2. ~17!

All of the experimental data appear to satisfy this requi
ment, as does the DNS data of Gourlay forx/u.500. More-
over, as noted above, for similarity to be valid the ra
umax8 /Uo has to be constant. The constant may be, in princ
at least, different for the high and low Reynolds numb
n
ur-

is
es

-

le
r

regions. In fact, it is the constancy or lack of constancy
umax8 /Uo that most easily identifies the various similarity s
lution regimes.

As noted above, only a few of the many sets of expe
mental data actually satisfy the conditions for the infin
Reynolds number solution to apply. Only the experimen
data of Johansson16,17and the DNS data of Gourlay13 will be
considered further here. Of these, only the DNS data co
pletes the evolution to the low Reynolds number solution

A. A high Reynolds number experiment

The Johansson data were taken in the MTL tunnel of
Swedish Royal Institute~KTH!, Stockholm using rakes of 15
hot-wires. The disk was 20 mm in diameter and the flo
speed was 20.4 m/s, corresponding toReu57300. The 7 m
long test section and very low background turbulence int
sity permitted measurements downstream tox/D5150, or
x/u5552. The experiment is described in detail
Johansson.16,17 The mean velocity and turbulence intensi
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FIG. 10. ~a! Maximum turbulence intensity,~b! local Reynolds number,~c! wake width, and~d! velocity deficit. Data of Johansson~Refs. 16 and 17!. Shaded
areas show lower limit for high Reynolds number solution and limit of near-wake transient.
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profiles have already been shown in Figs. 4 and 6, res
tively. Figure 10 summarizes all the remaining important p
rameters mentioned above for the full picture of the h
local Reynolds number similarity region for the disk wake

The turbulence intensity normalized by the velocity de
cit at the centerline is constant beyondx/u'120. Thelocal
Reynolds number is above 500, even at the fartherm
downstream position. The plot of (d* /u)3 versusx/u is lin-
ear, as is the plot of (Uc /Uo)23/2, exactly as required by the
high Reynolds number similarity results of Eqs.~10! and
~11!, respectively. Linear regression yields values for
constants as:a51.14,b50.77,xo522.4u.
c-
-

-

st

e

B. Recent high Reynolds number DNS

The DNS data of Gourlayet al.13 cover very large down-
stream distances as mentioned in the introduction, and b
the high and low Reynolds number regimes can be obser
The original data were presented as a function of nondim
sionalized time,tU/L, where the reference velocityU51
and reference lengthL51. When converting to downstream
distance,x/u, it was first assumed thattU5x, and the ve-
locity profiles were then integrated according to Eq.~1!. All
results presented here are plotted versusx/u to facilitate
comparison with the experimental data.
of

e

FIG. 11. Maximum turbulence intensities, data
Gourlay et al. ~Ref. 13!. Inset shows the region 0
<x/u<104. Shaded area shows limit of near-wak
transient.
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FIG. 12. ~a! Maximum turbulence intensity,~b! local Reynolds number,~c! wake width, and~d! velocity deficit. Data of Gourlayet al. ~Ref. 13!. Shaded areas
show lower limit for high Reynolds number solution and limit of near-wake transient.
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In Fig. 11, the turbulence intensities of Gourlayet al.13

are shown. Two regions of constant normalized turbule
intensity can be observed: One for 1000,x/u,8 000 ap-
proximately ~see inset!, and the other for 200 000,x/u
,600 000 approximately. This wake clearly reaches the fi
equilibrium similarity region much farther downstream th
the disk wake of Johansson16,17considered above. This migh
be related to the level of turbulence intensity which is mu
lower ~almost a factor of two! than the disk wake results
~Note that the turbulence intensity is even lower for the p
rous screens of Cannon7 shown in Fig. 7.! Because of the
low turbulence intensity of these flows, it is possible it tak
such large downstream distances for the flow to reach e
librium because the time scale of the energy-containing
dies, d /u8, is correspondingly increased. Figure 12 su
*
e

st

h

-

s
i-

d-
-

marizes the important parameter variation for the first reg
identified above.

The turbulence intensity normalized by the centerli
velocity deficit begins to drop slowly afterx/u'8000, which
is about where the local Reynolds number has reached
previously suggested threshold of 500. Clearly, this reg
should be identified with the high Reynolds number solutio
As for the disk data, (d* /u)3 and (Uo /U`)23/2 are both
linear over the same range for which the intensity ratio
constant, and begin to deviate about when the intensity r
begins to drop and the Reynolds number drops below
threshold value. Regression fits of Eqs.~10! and ~11! yield
values for the constants of:a50.84, b51.44, and xo

5200u. These are quite different from the values above
of
FIG. 13. Mean velocity profiles, near wake data
Gourlayet al. ~Ref. 13!. Solid line shows the fit accord-
ing to Eq.~C7! to the data of Johansson~Refs. 16 and
17! shown in Fig. 4.



613Phys. Fluids, Vol. 15, No. 3, March 2003 Equilibrium similarity, effects of initial conditions
FIG. 14. ~a! Maximum turbulence intensity,~b! local Reynolds number,~c! wake width, and~d! velocity deficit. Data of Gourlayet al. ~Ref. 13!.
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the disk wake, making clear the effect of different initi
conditions.

Figure 13 shows the normalized mean velocity defi
profiles for this portion of the Gourlay data. Also shown
the plot is the best fit line to the mean velocity deficit data
Johansson shown in Fig. 4. These should be exactly the s
according to the similarity theory, since any differenc
should show up only in the growth rate and the magnitude
the Reynolds stress; and they are, but only atx/u51030. The
differences may be due to the scatter in the DNS data
cause of the limited statistical sample. Note that the D
data are not averaged over time, but instead spatially~see
Gourlay et al.13!. Alternatively, perhaps the mean veloci
profile is affected somewhat earlier than the turbulence
tensity ratio by the lower local Reynolds number of the DN
data. Or perhaps simply the curve fit of Fig. 4 should
slightly altered.

The low local Reynolds number similarity region ca
only identified in the DNS data of Gourlayet al.,13 the sec-
ond region of constant intensity ratio identified above. T
important parameters are shown in Fig. 14. The local R
nolds number is well below the threshold for the high Re
nolds number solution to be valid, so clearly the low Re
nolds number solution is appropriate. Thus it is n
surprising that the plots of (d* /u)2 and (Uo /U`)21 are re-
markably linear. Regressive fits of Eqs.~15! and ~16! yield
values for the constants ofc51.90, d50.28, xoo523.0
3105u. Note that the high value for the virtual origin i
consistent with the fact that this region does not begin u
d* /u'33! In fact, instead of a virtual origin, it might b
more appropriate to think of it as a starting value ford* /u
when the low Reynolds number equilibrium similarity regio
begins.

Figure 15 shows the normalized mean velocity defi
profiles for 1.963105<x/u<8.413105. The collapse is re-
t
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markable. Also shown is the curve fit to the high Reyno
number Johansson data. Clearly these are different, co
tent with the fact that the mean momentum equation is
ferent because of the presence of the viscous stress.
shown, overlaying the data almost perfectly is the expon
tial eddy viscosity profile developed in Appendix C. No
that this is not the same as the laminar solution: First beca
the ‘‘turbulent viscosity’’ is about 15 times the fluid viscos
ity; second, the turbulence intensity ratio is nonzero a
plays a significant role in the flow evolution.

Finally, Fig. 16 shows a linear-linear plot of the Gourla
data for all values ofx/u. Also shown are the curve fits
discussed above for the high and low Reynolds number
gimes. The figure makes clear how truly far downstre
these DNS data really go, and also what a small portion
the total is the truly high Reynolds number part of it. It
also clear why, in the absence of the theory developed he
previous experimenters have had such difficulty mak
sense of their data.

C. Summary of data analysis

Based on the results of the similarity theory stat
above, the evolution of the axisymmetric wake flow can
described as follows:

~i! In the vicinity of the wake generator, the ‘‘near wake
region, the flow does not obey the equations gove
ing the equilibrium similarity state presented in Ap
pendix A. In other words, the flow is in nonequilib
rium.

~ii ! Given the time~or downstream distance! to adjust, the
assumptions underlying the equilibrium similarity s
lutions are satisfied. When the flow has reached
‘‘far wake’’ region, characterized by the ratioAu2/Uo

being constant, and provided that the initial local Re
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FIG. 15. Mean velocity profiles, far wake data of Gou
lay et al. ~Ref. 13!. Dashed line shows the solution t
the eddy viscosity model, Eq.~C4!. Solid line shows the
fit according to Eq.~C7! to the data of Johansson~Refs.
16 and 17! shown in Fig. 4.
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rbu-
nolds number,R5Uod* /v ~that decreases down
stream!, is still is large enough, the flow will behav
like it is in equilibrium with d* ;x1/3, and Uo

;x22/3. For the disk wake of Johansson,16,17 this was
found to happen whenx/u'120. For the DNS simu-
lation of Gourlay et al.13 this was true after abou
x/u'1000.

~iii ! When the local Reynolds number,R, drops below a
threshold value, the flow is forced from its equilib
rium similarity state by the leading order viscou
term. Most notable is that the ratioAu2/Uo begins to
decrease. This slow decrease continues for an
tremely long distance downstream. The thresh
value ofR for the beginning of this decline is seen
be about 500, consistent with the disappearance of
inertial subrange in the spectrum noted earlier.

FIG. 16. Cross-stream length scale,d* /u versusx/u, data of Gourlayet al.
~Ref. 13!.
x-
d

e

~iv! After sufficient time, the flow readjusts into a diffe
ent equilibrium state, with different governing equ
tions including the leading order viscous term. He
Au2/Uo is again constant, and the wake width no
grows like d* ;x1/2, and the velocity deficit decay
like Uo;x21. This region was only found in the DNS
simulation of Gourlayet al.13 at aboutx/u'23105.

~v! After x/u'53105, the turbulence intensity drop
again, and seems to decay exponentially. This i
behavior found in other simulations when the comp
tational or experimental box-size is too small~e.g., by
Moseret al.26 and George and Wang27!. Shortly there-
after, the momentum integral ceases to be constan

VIII. CONCLUSIONS

Equilibrium similarity considerations can be applied
the axisymmetric turbulent wake, without the arbitrary a
sumptions of earlier theoretical studies. Two solutions for
turbulent flow are found: One for infinite local Reynold
number which grows spatially asx1/3; and another for smal
local Reynolds number, which grows asx1/2. Both solutions
depend on the upstream conditions. For both solutions,
local Reynolds number of the flow diminishes with increa
ing downstream distance. As a consequence, even when
initial Reynolds number is large, the flow evolves dow
stream from the high to the low Reynolds number state.

Most of the available experimental data were at too l
an initial Reynolds number and/or were measured too cl
to the wake generator to provide evidence for thex1/3 solu-
tion. New results, however, from a laboratory experiment
a disk wake and DNS are in excellent agreement with t
solution, once the flow has had large enough downstre
distance to evolve. Beyond this, the ratio of turbulence
tensity to centerline velocity deficit is constant until the flo
unlocks itself from this behavior when the local Reynol
number goes below about 500. When this happens the tu
lence intensity ratio falls slowly until thex1/2 region is
reached at approximatelyR5220. This contrary to previous
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assumptions that the high Reynolds number wake alw
appears far downstream and remains until the local Reyn
number is of order unity~cf. Tennekes and Lumley22!.

No experimental data is available far enough dow
stream to provide evidence for thex1/2 solution. The predic-
tion that the flow should evolve into such a state, howeve
confirmed by recent direct-numerical simulation~DNS! re-
sults which reach thex1/2 at about 200 000 momentum thick
nesses downstream, after which the turbulence intensity r
is again constant until box-size affects the calculation.

The primary conclusion of this paper is that initial co
ditions and local Reynolds number effects dominate the
symmetric wake. Thus previous speculations that near w
effects persist far downstream are correct. Moreover, c
trary to popular belief, this asymptotic dependence on
stream conditions is consistent with a proper equilibriu
similarity analysis. The effect of initial conditions does no
however, show up in the normalized velocity profiles, but
the growth rate and the higher velocity moments, exactly
the theory predicts.
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APPENDIX A: GOVERNING EQUATIONS

The Reynolds averagedx-momentum equation for the
axisymmetric far wake without swirl reduces to second or
to

U`

]

]x
~U2U`!52

1

r

]

]r
~r uv !

1v
1

r

]

]r S r
]

]r
~U2U`! D . ~A1!

Here, uppercase letters denote averaged quantities and lo
case letters represent the fluctuating part. A bar over
quantity denotes an ensemble average. The viscous ter
usually neglected, but retained here.

The momentum equation can be integrated over a c
section to yield an integral constraint for the conservation
momentum

U`E
0

`

~U`2U !rdr >u2U`
2 , ~A2!

whereu is the momentum thickness.
The equation of continuity for the mean and fluctuati

part of the velocities are
ys
ds

-
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s
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s
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er-
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ss
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]U

]x
1

1

r

]

]r
~rV !50,

]u

]x
1

1

r

]

]r
~rv !1

1

r

]w

]w
50.

~A3!

As noted by George,20 the momentum and continuity
equations alone are not sufficient to determine the simila
constraints. Even the inclusion of the kinetic energy equat
is not enough to close the system so that thex-dependence
can be determined. Instead, the individual Reynolds st
equations have to be investigated. These, together with
constraint of continuity on the pressure-strain rate terms, p
vide the necessary conditions. The component Reyno
stress equations for the far wake are

u2 balance

U`

]

]x S 1

2
u2D52uv

]

]r
~U2U`!2

1

r

]

]r S r
1

2
u2v D1

p

r

]u

]x

2
1

r

]

]x
pu1v

1

r

]

]r H r
]

]r S 1

2
u2D J 2«u ,

~A4!

v2 balance

U`

]

]x S 1

2
v2D52

1

r

]

]r S r
1

2
v3D1

vw2

r
1

1
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]rv
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1
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]

]r
rpv1v
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]r H 1
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]

]r S r
1

2
v2D J 2«v ,

~A5!

w2 balance

U`
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]x S 1

2
w2D52

1
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]
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uw2D2
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]
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w2D J 2«w , ~A6!

uv balance

U`
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]x
~uv !52v2

]

]r
~U2U`!2

1
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]

]r
~r uv2!1

uw2

r

1
p

r S ]u
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1

]v
]xD2

1

r S ]

]r
pu1
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]x
pv D

1v
]

]r H 1

r

]

]r S r
1

2
uv D J 2«uv , ~A7!

where«u , «v , «w , and«uv are the components of the ho
mogeneous dissipation.

APPENDIX B: TRANSFORMED EQUATIONS

1. The momentum integral

Substitution of Eq.~3! into Eq. ~A2! yields

Usd
2E

0

`

f hdh5U`u2. ~B1!
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It follows immediately that ifd[d* andUs[Uo

Us

U`
5F u

d*
G2

. ~B2!

2. The mean momentum and Reynolds stress
equation

Substituting Eq.~3! into the momentum equation, Eq
~A1!, and rearranging the terms yields

F d

Us

dUs

dx G f 2Fdd

dxGh f 85F Rs

U`Us
G ~hg!8

h
1F v

U`dG ~h f 8!8

h
,

~B3!

where8 denotes derivation with respect toh. To this point
the mean momentum equations have simply been tr
formed by the separation of variables in Eq.~3! so that all of
the explicitx dependence is in the bracketed terms. Thus
results are completely general and no similarity assumpt
have yet been made~although the form of the solutions ha
been restricted!. Using Eq.~B1!, Eq.~B3! can be rewritten as

2Fdd

dxG~h2f !85F Rs

U`Us
G ~hg!81F v

U`dG ~h f 8!8. ~B4!

Substituting Eq.~3! into the transport equations for Rey
nolds stresses yields:

u2-equation

FU`

dKu

dx Gku2FU`Ku

d

dd

dxGhku8

51FRsUs

d G f 8g2FTu2v

d G ~htu2v!8

h
1@Pu#pu2FdPu

D

dx Gpu
D

1FPu
D

d

dd

dxGh~pu
D!81FvKu

d2 G ~hku8!8

h
2@Du#du , ~B5!

v2-equation

FU`

dKv

dx Gkv2FU`Kv

d

dd

dxGhkv8

52FTv3

d G ~htv3!8

h
1FTvw2

d G tvw2

h
1@Pv#pv2FPv

D

d G~pv
D!8

1FvKv

d2 G S ~hkv8!

h D 8
2@Dv#dv , ~B6!

w2-equation

FU`

dKw

dx Gkw2FU`Kw

d

dd

dxGhkw8

52FTuw2

d G ~htuw2!8

h
2FTvw2

d G tvw2

h
1@Pw#pw

1FvKw

d2 G S ~hkw8 !

h D 8
2@Dw#dw , ~B7!

uv-equation
s-

e
s

2FU`

dRs

dx Gg2FU`Rs

d

dd

dxGhg8

5FKvUs

d G f 8kv2FTuv2

d G ~htuv2!8

h
1FTuw2

d G tuw2

h

1@Puv#puv2FPu
D

d G~pu
D!82FdPv

D

dx G~pv
D!

1FPv
D

d

dd

dxGh~pv
D!82FvRs

d2 G S ~hg!8

h D 8
2@Duv#duv .

~B8!

As before, the equations have simply been transformed
the similarity transformations so that all the explic
x-dependence is in the bracketed terms.

APPENDIX C: A SOLUTION FOR A CONSTANT EDDY
VISCOSITY MODEL

A solution of the momentum equation with the visco
term included@Eq. ~A1!# can be obtained if an eddy viscosit
assumption is made. Let

2
1

r

]

]r
~r uv !5vT

1

r

]

]r S r
]

]r
~U2U`! D . ~C1!

Using Eq. ~C1! and applying the similarity transformation
Eq ~3!, the governing equation in similarity form becomes

2Fdd

dxG~h2f !85F ṽ
U`dG ~h f 8!8

h
, ~C2!

where ṽ5v1vT . Grouping the terms in square bracke
settingk5(U`d/ ṽ)]d/]x, results in the following differen-
tial equation:

~kh2f 1h f 8!850. ~C3!

The boundary conditions aref (0)51, f (`)50, and f 8(0)
5 f 8(`)50. Assuming thatf (h) goes to zero faster than
polynomial, the solution is given by

f ~h!5e2kh2/2. ~C4!

Defining d5d* , Eq. ~B1!, gives

E
0

`

f ~h!hdh51, ~C5!

which is satisfied ifk51. Then, the actual value of the edd
viscosity is given by

vT5U`d*
dd*
dx

2v. ~C6!

From the low local Reynolds number solution, Eq.~15!,
we haved* dd* /dx5c2/2Ru , which finally results invT

5U`c2/2Ru2v. The value ofvT can be estimated using th
curve fit to the simulation of Gourlayet al.13 In this simula-
tion, c51.90,U`51 m/s, Ru51240, andv51024 m2/s, so
vT51.3531023 m2/s. ThusvT /v513.5, and this value is
maintained throughout the low local Reynolds number sim
larity regime.
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As noted by Johansson,16,17the simple exponential of the
eddy viscosity solution is not a good fit to the high Reyno
number profile data, since it is too narrow near the center
and falls off too slowly at large radius. Instead a curve w
fitted to the data of the form

f ~h!5~11ah21bh4!e~2ch22dh4!, ~C7!

where a50.049, b50.128, c50.345, andd50.134. This
curve is shown in Figs. 4, 13, and 15.
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