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ABSTRACT 
 
We report on the development of an LDA based method by 
which all the different terms in the dissipation rate tensor can be 
measured. It is shown that the homogenous part of this tensor 
can be expressed as a sum of two terms, the second derivative of 
the two point correlation tensor with respect to the separation 
between the points and the second derivative with respect to 
position of the Reynolds stress tensor. The inhomogenous part 
contains mixed derivatives of the same quantities. An error 
analysis is performed which shows that the dominating errors 
are due to the uncertainty in the determination of the distance 
between the measuring points and to misalignment of the laser 
beams. The method is applied to the study of a low Reynolds 
number circular air jet with Kolmogorov microscale of the order 
of 100 µm and, except for a region close to the outlet nozzle, the 
error is shown to be of order 5 - 10%. Some results from the 
measurements are also presented. 
 
 
1. INTRODUCTION 
 
Reynolds stress modelling of turbulent flow fields requires that 
an accurate and general model of the dissipation rate tensor is 
available. A number of such models have been proposed, but 
direct experimental verification of them is very difficult. For a 
discussion of these and related matters see e.g. George & 
Taulbee (1990). In the Reynolds stress equations the terms 
associated with dissipation usually appears as 
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where ν is the kinematic viscosity of the fluid, ui is the velocity 
vector and xi is co-ordinate direction. The overbar denotes an 
unbiased ensemble average. The terms appearing in equation (3) 
are sometimes written in slightly modified forms, but the way of 

expression used in equation (3) is best adopted to our way of 
measurement. 
 It must be noted that the upper index, h or n appearing in 
equations (1)-(3), are not tensor indices. h is used to indicate the 
homogenous part of the tensor and n the non-homogenous part. 
This convention is also followed for other quantities appearing 
as superscripts in this paper. 
 One of the main difficulties in experimental studies of 
dissipation is that they require that measurements are obtained in 
two nearby points, without the measurement in one of the points 
disturbs the measurement in the other, and that the small 
difference in velocity between the two points is well resolved. In 
addition to this the effective measuring control volume must be 
very small, of the order of the Kolmogorov microscale, to avoid 
that the velocity may vary noticeably across the measuring 
control volume or that the distance between the measuring 
points may not be accurately known.  
 The laser Doppler anemometer has for a long time been 
considered attractive for this kind of measurements, since it 
automatically solves one of the most severe of these problems; it 
measures without disturbing the flow. The size of the measuring 
control volume can also be made very small by using expanded 
laser beams and side scattering. It has however some severe 
drawbacks, in particular the influence of a rather high noise 
level, usually of the order of 1 percent, and influence of 
imperfect beam alignment. 
 We report here on the development of an LDA technique 
which solves these problems, thus making accurate direct 
measurements of all the elements in the dissipation rate tensor 
possible. Some results on a circular jet are included. 
 
 
2. THE DISSIPATION RATE TENSOR 
 
2.1 Homogeneous part of the dissipation rate tensor 
 
To try to measure the various terms appearing in the 
homogenous dissipation rate tensor by direct measurements of 
the velocity in two points simultaneously and forming the 
average of the product of their difference would lead to 
unacceptable error levels. This is due to the fact that the 
calibration constants of the two systems can not be determined 
accurately enough to permit the small difference in velocity 
between the two measuring points to be measured accurately. 
We therefore have to transform the expression (2) to a form that 
will permit more accurate measurements to be performed. We 
write 
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If equations (7) and (12) now are entered into equation (4) and 
an ensemble average is taken of the resulting expression we 
obtain 
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where we have written 
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It must be noted that the first term on the right hand side of 
equation (13) is the second derivative of a one-point correlation, 
R ij , with respect to the co-ordinate xk, while the second term is 

the derivative of a two-point correlation, Qij , with respect to 
the separation between the two points. 
 
2.2 Inhomogenous part of the dissipation rate tensor and we, thus, have made a symmetric separation of the two 

points around the centre point x0.  
The primary expression to be considered when evaluating the 
inhomogenous dissipation  rate tensor is according to equation 
(3) 

 The first term on the right hand side of equation (4) 
contains only one-point correlations. By expanding them in a 
Taylor series around x0 we obtain after some algebra 
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This can be expressed as 

where 

  (8) R ij = uiu j u i ∂
=

∆

and it is understood that all terms on the right hand side of (7)  
are to be evaluated at the point x0. 
 The second term on the right hand side of equation (4) 
is of a different nature. It consists of products of velocity 
components obtained in two different points. If we write it in the 
form 
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where Rik and Qik is defined by equations (8) and (11) 
respectively. Note again that Rik is a quantity defined in one 
point, while Qik is a two-point quantity. 

we see that it is symmetric in ∆x. We will now consider each 
term in (9) as a two-point function, denoted by Qij, of the 
separation ∆xk. Due to the symmetry we thus have 
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where 

Similarly, if we expand the terms containing Qik in equation 
(14) in a Taylor series around ∆xj=0, keeping x0 constant, we 
obtain 
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Expanding this in a Taylor series around ∆xk=0 gives 
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If the last two expressions are entered into equation (14) and an 
ensemble average is formed on the resulting expression we 
obtain 
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The non-homogenous dissipation rate tensor can thus be 
expressed as 
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Figure 2. The measuring control volume. 
 
the reciprocal of the F-number of the emitted beams, which is 
given by the optics used and can be reduced by beam expansion 
modules. The length of the measuring control volume, see figure 
2, is determined by the receiving optics. In our case, we use 
Dantec probes and the length of the measuring control volume is 
then approximately 80% larger than the diameter of the beam 
waists. We obtain a diameter of 45 µm and a length of 80 µm. 

It is thus clear that the primary quantities to measure in order to 
obtain a measurement of the dissipation rate tensor are the 
Reynolds stress tensor, R ik , and the two-point correlation 
tensor, Qik .  Each pair of the probes are traversed symmetrically 

about a centre point. In this way a number of error terms directly 
proportional to the distance between the measuring control 
volumes vanish identically (as opposed to a case when only one 
of the probe volumes would be traversed). The probes are 
brought to measure the velocities in the two points at five 
different separation distances in turn and the correlation 
coefficient and the rms values of the measured velocity 
components are computed. These data are then fitted to a fourth 
order polynomial 

 
 
3. EXPERIMENT 
 
3.1 Measurement technique 
 
The basic requirement of an instrument used to measure the 
dissipation rate tensor is an ability to measure in two different 
points simultaneously. We accomplish this by using four fibre 
optic probes  operating in pairs, see figure 1. One probe in each 
pair is used to emit the laser beams and the other to collect the 
scattered light at 90˚ collection angle. With this arrangement it is 
possible to reduce the measuring control volume considerably. 
Its diameter decreases in proportion to  

 Cij = p0,ij +p2, ij ∆x( )2 + p3,ij ∆x( )3 + p4,ij ∆x( )4  (19) 

(if i = j, p3,ij = 0) and the parameter p2,ij is evaluated. The second 
derivative of Cij  with respect to ∆x as ∆x goes to zero is equal 
to twice the value of this parameter. In this way the second 
derivative of the correlation function at zero separation is 
properly obtained. The procedure is then repeated for separation 
in the other two co-ordinate directions. 

 

∆ x

 

 One of the probe pairs is always used to measure the 
velocity in the main flow direction, even in cases when we do 
not need to measure this component to obtain a particular 
element of the dissipation rate tensor  In this way we are always 
able to perform a speed weighting of our data, thus permitting us 
to compensate for particle statistical bias. 
 The Reynolds stresses were measured using one of the 
probe pairs in a conventional set up to measure all three velocity 
components simultaneously. 
 
3.2 The jet flow rig 
 
A simple experiment has been carried out. An air jet with a 
speed of 10 m/s at the outlet of a nozzle with a diameter d=8 
mm entered into a chamber 70∞70 cm in cross section and 1.2 
m high, see figure 3. The nozzle was made as a part of the 
bottom wall of the chamber and was turned in the shape of a Figure 1. Probe configuration. 



  

  
Figure 3. The jet flow rig. 
 
circular arc, see inset in figure 3. The walls of the chamber were 
made of glass to permit the laser beams to enter into the 
chamber from the probes which were placed outside the 
chamber. The flow returned through triangular channels at the 
corners of the chamber. The flow was driven by a carefully 
regulated fan. Between the fan and the nozzle a number of 
screens were placed to reduce the disturbance level of the air 
stream entering the nozzle. The outlet velocity profile had a top 
hat shape with very constant velocity across the nozzle and a 
low turbulence level. 
 
 
4. ERROR ESTIMATES 
 
Our method to measure the different terms in the dissipation rate 
tensor involves the use of two separate LDA systems. The 
Doppler frequency measured by one of the systems (I) in point 
xa at the particular instant of time xl is given by 

 FD
I xa ,tl( )= FD

I xa ,tl( )+ fD
I xa ,tl( )+ fn

I xa, t
l( ) (20) 

 FD
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 f D
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where we have split the velocity vector V into its average V , 
and its fluctuation v . Note that the overbar denotes a non-biased 
average. Further, cI is the "calibration" constant of the system I, 
giving the ratio of the detected Doppler frequency of the 
projection of the velocity vector V in the direction sI (unit 
vector), which points in the direction of the bisector to the two 
emitted beams of system I. f n

I   is the noise contribution to the 

detected Doppler frequency. Analogous formulas are of course 
available for the measurement in the point xb using system II. 
 To carry the analysis further using general expressions 
would make our formulas very cluttered. We therefore choose to 
proceed by developing the expressions only for a certain 
specific choice of combination of velocity components and to 
imply the others by way of analogy. We will also confine 
ourselves to an analysis of the Qij  - terms and leave the R ij  - 
terms since these are much smaller than the two point 
correlations and varies with position at a much smaller rate than 
Qij  and thus contribute very little to the final error estimates. 
 Each system is, at a certain phase of the experiment, 
used to measure the velocity component in the direction of one 
of the co-ordinate axis. The unit vectors in which we measure 
are therefore always one of the following 
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with analogous expressions for system II. ε x
I , ε y

I  and ε z
I  are 

small components of the unit vectors due to some inescapable 
misalignment of the laser beams. 
 We now consider the specific example of obtaining 
Q12. With the aid of the above expressions and equation (10) we 
obtain 
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where we have implicitly assumed that system I is measuring in 
position xa and system II in position xb. In addition to this we 
have also here written the velocity vector as (u, v, w). 
 The directional errors, ε, are often of the order 
of~0.01. This implies that they can safely be neglected 
compared to 1 in the square roots in the denominator of equation 
(24). We further assume that the noise terms, f n

I  and f n
II , are 

uncorrelated with all other terms except when correlated with 
themselves. Forming a non-biased average of Q12 based on a 
large number of samples we then get 
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If these expressions are entered into equation (28) we find after 
considerable algebra 
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where 
When deriving this expression we have also neglected term 
which contain products of directional errors. These term are of 
order 10-4 times smaller than the dominating terms. In this 
specific example (Q12) we note that all noise terms have been 
cancelled since no terms where they were correlated with 
themselves were present. 
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         If we further note that f D
I c I ≈ u(xa )  and f D

II c II ≈ v (xb )   
we find that the last three terms in equation (27) representing the 
error in the measurement of Q12  leads to relative errors of order 
0.01 since all correlations u iu j are of the same order of 
magnitude and the ε:s are of order 0.01. This error is thus of the 
order of a few percent. Note that signal noise does not contribute 
to this error.  
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 It turns out that the scatter in the Q12  data is larger 
than the scatter in the corresponding correlation coefficient, 
which is defined as 

 C12 =
Q12

u2 (xa) v 2 (xb )
 (28) 

When deriving equations (29) - (35) we have as before neglected 
terms which contain products of directional errors, correlations 
of noise terms with anything except themselves and products of 
noise and directional errors  
 The α- terms contain only one-point data, which 
changes very slowly compared to two-point terms. The terms 
are small, of the order of 0.01, and the second derivative of these 
terms can safely be neglected. A word of warning is however in 
place, since the noise terms may, due to spurious effects, vary 
also over short distances. 

When taking the second derivative of Q12 , as is required to 
obtain the homogenous dissipation rate tensor according to 
equation (13), this is of importance, and we thus prefer to work 
with the correlation coefficient. 

 The rms values u2 (xa )   and v 2 (x b )  can be 
computed from equations (20) -  (22) in a way analogous to the 
derivation of equation (27). We find 
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 The second term, βC, in equation (33), contain terms 
which are also small, of the order of 0.01. However, they, 
contain two-point data, which are expected to vary in space at 
approximately the same speed as the dominating term in 
equation (33). This implies that they will contribute an error 
term to the homogenous dissipation rate, which is of the same 
order as their contribution to the correlation term. 
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 The homogenous dissipation rate is finally computed 
as 
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We have demonstrated that the relative errors due to noise and 

misalignment in Q12 , u(x a)( 2)  and v (x b )( 2)  are all of 
the order of a few percent. The errors involved in the measu-
rement of R 12  is of the same nature and thus of the same order 
of magnitude. Moreover, the second derivative of R 12  is to be 
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obtained with respect to xk, while the derivative of Q12  is to be 
evaluated with respect to ∆xk. The variation in space of any 
quantity with respect to xk is an order of magnitude slower than 
the variation with respect to ∆xk, and, thus, the error in D  is 
dominated by the error in Q

12
h

12 . In the following we will 
therefore neglect all errors except those in Q12 . 

12

12

 The first error, ∆0, was evaluated during the 
adjustment of the measuring control volumes. We found that the 
coincident data rate changed noticeably when we moved one of 
the measuring control volumes a distance of 5 - 10 µm. This 
turns out to be the dominating error in the determination of the 
effective distance between the measuring control volumes. This 
is thus our estimate of the zero position error.  
 The particles cross the measuring control volumes at 
arbitrary positions. The separations were such that the main flow 
direction had one of the relations to the measuring control 
volume depicted in figure 4.  

 We have so far considered errors due to signal noise 
and misalignment of the laser beams. There are however some 
additional errors that must be considered. These are 
  
a) Statistical uncertainty in the measurement of Q . 

a)

b) c)

 

b) Errors in the determination of cI , CII. 
c) Error due to the finite size of the measuring control 

volumes. 
d) Errors in the determination of the effective distance 

between the two measuring points. 
e) Particle statistical bias. 
f) Particle density bias. 
 
The statistical uncertainty, in the measurement of Q12 , has been 
investigated experimentally. In a certain point and for a certain 
separation we measured Q12  20 times. From this ensemble of 
Q12 -values, the mean and rms values could be calculated. The 
central limit theorem then tells us that this ensemble can be 
modelled as having a Gaussian distribution, and thus the 
uncertainty in the determination of the mean value of Q   can 

be estimated as 
1.96σ

20
 at 95% confidence, where σ is the rms 

value of the ensemble. We found that if each measurement of 
Q12   was based on 2.5 minutes integration time, the error was 
less than 1%. We thus concluded that if we based our estimates 
of Q12   on 50 minutes records the corresponding error should 
be of this order or less. 

 
Figure .4 The possible relations between the inflow of particles 
to the measuring control volume and their separation. 
 
In figure 4a) the measuring control volumes are separated along 
their longest dimension and the main flow direction is from 
below. In b) the measuring control volumes have been separated 
in the main flow direction and in c) they are separated sideways 
such that the main flow is coming out of the paper. It is 
immediately realised that in cases a) and c) the influence of the 
randomness in position of the particles do not change the 
effective distance. In case b) we examine the cases that the 
particles give samples of equal probability either anywhere in 
the two measuring control volumes or  anywhere in the lower 
halves of them. In either case we obtain the result that the 
effective distance between the two measuring control volumes is 
unaffected by the randomness of the particle position.  

 Errors in cI  and CII enters in the computation of the 
rms-values multiplying the two-point correlation coefficient in 
equation (36). These quantities can usually be determined within 
1%, and thus contributes to the relative error in the homogenous 
dissipation tensor with the same value. 
 The measurement of dissipation is essentially a 
measurement of the variances of spatial derivatives of the 
velocity components. It is thus clear that the measuring control 
volumes must have a linear dimension significantly smaller than 
a distance over which the instantaneous velocity changes 
noticeably. This distance is the Kolmogorov microscale. In our 
experiment this scale varied from about 70 to 180 µm. Our 
measuring control volumes had a shape like a circular cylinder 
with diameter 45 µm and length 80 µm. This is considered to be 
a sufficient spatial resolution to make the error due to the finite 
size of the measuring control volume negligible. 

 The third position error, ∆t, due to imperfect 
translation of the probes is believed to be very small. The 
mechanical devices used for the translation was very stable and 
the scales used to read the translations were accurate to within 2 
µm. A check on the translation error was performed by returning 
the probes to zero distance every time the measurements at the 
longest translation was finished. We were in all cases able to 
recover the original correlation coefficient very closely 

 Errors due to the uncertainty in the determination of 
the effective distance between the two measuring points can be 
evaluated as follows. There are three sources of this error, an 
imperfection in the determination of the position where the two 
measuring points coincide, ∆0, an error due to the fact that 
scattering particles cross the measuring control volume at 
varying positions, ∆p,  and an error in the traversing of the two 
measuring control volumes, ∆t. 

 The errors in the primarily measured quantities Qij  

and R ij  due to the uncertainty in the determination of the 
effective distance between the two measuring volumes is 
dominated by the zero position error ∆0. In order to estimate the 
error in the homogenous dissipation rate tensor, D , due to this ij

h



  

error a numerical simulation was performed. The parameter p2,ij 
in equation (19) was evaluated for three sets of separation 
distances, corresponding to ∆0 =-10µm, ∆0 =0 and ∆0 =+10 µm. 
In our particular case we found that p2,ij varied between 2 - 6% 
at different position at the centreline in our jet flow. 
 Two possible sources of bias errors are at hand, 
particle density bias and particle statistical bias. The first of 
these is due to the fact that only the flow coming out of the jet 
was seeded. The flow was however recirculated and the flow 
was seeded at short time intervals, which indicates that the 
seeding level should be fairly uniform. Although we cannot give 
a quantitative estimate of the error due to this effect we believe 
that it is smaller than or at the most of the same order of 
magnitude as the averaging error, i.e. of the order of 1%. 
 It is well established that the particle statistical bias is 
caused by the increased probability to obtain a sample when the 
volume flow rate through the measuring control volume is high. 
One can correct for this effect in single point measurements by 
weighting each sample with the reciprocal of the volume flow 
rate, see e.g. McLaughlin & Tiederman (1973) or Buchhave et al 
(1979). In two point measurements the situation is slightly more 
complicated, but in our case it is simplified by the fact that, due 
to the short distance between the measuring control volumes, the 
volume flow rate is very nearly the same in both points. The 
proper weighting factor is then again the reciprocal of the 
volume flow rate through either of the measuring control 
volumes. In all our measurements we have measured the 
longitudinal velocity component in at least one of the measuring 
points, i.e. even when the primary interest was to measure the 
two radial or the two tangential velocity components. In this 
way we were able to correct properly for the particle statistical 
bias effect in all measurements. 
 We have thus found that two sources of error 
dominates, the error due to misalignment of the laser beams and 
the error due to the zero position offset. Our analysis shows that 
the total error in the homogenous dissipation rate tensor thus can 
be estimated to be of the order of 5 - 10%. 
 
 
5. SOME RESULTS AND DISCUSSION 
 
We shall show some examples of our results obtained along the 
centreline of the jet and limit ourselves to the diagonal elements 
of the homogenous dissipation rate tensor. At the centre line all 
the off-diagonal elements are zero. Figure 5 shows the two-point 
correlation coefficient C22 at x1/d=60, for separations in the 
three co-ordinate directions. It can be seen that C22 decreases 
roughly twice as fast in the x1-direction as in the x2-direction. In 
isotropic turbulence this is expected, but we would also have 
expected that C22(∆x1)=C22(∆x3) which clearly is not the case in 
our measurements. 
 A clearer impression of the second derivatives of the 
correlation coefficients is obtained by plotting it versus the 
square of the separation distance. This is done for i=j=1 in figure 
6. The open symbols show C11 versus (∆x2/x1)2 at x1/d=20, 40 
and 60. It can be seen that C11 drops with a constant slope down 
to approximately 0.95. The dominating terms in the series 
expansion, equation (19), are thus p0,11 and p2,11, the latter 
being half the second derivative of C11 with respect to ∆x2. The 
estimated values of p2,11 shown in the figure are obtained by 
fitting the data to the polynomial (19) including the (∆x2)4-term, 

but no higher order terms. Included in the plot is a measurement 
of C11 versus (∆x3/x1)2  
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at x1/d=40 (filled squares), which should be identical to the 
measurements for separation in the x2-direction. Although the 
measurements differ slightly at large separations the estimated 
values of p2,11 are very close. 
 A sensitivity analysis of the influence of the zero 
position error was made using these data. It was found that a 
position error of 10 µm changed the estimated value of p2  
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 Figure 8 shows ∂2Qii / ∂(∆x k )2  and its components  
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Figure 6. C11  on the centre-line, 20, 40 and 60 diameters 
downstream of the nozzle. 
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from the different two-point correlations, once again normalised 
by -x1

2/Ucl
2. If the first term on the right hand side of equation 

(36) is neglected, this represents D , and its components. ii
h / 2ν

 All quantities shown in figures 7 and 8 should go to 
zero near the nozzle and become independent of x1/d if the jet 
was self similar.  
 The normalised value of the scalar dissipation, Dii/2, 
can be obtained from figure 8, if the inhomogenous part is 
neglected. Normalising the kinematic viscosity with z1 Ucl  
yields =0.255 at x1/d=60. A number of estimates of 
this value have been published, preferably in the self similar  
region and at higher Reynolds numbers. Maybe the best 
comparison is made with Panchapakesan & Lumley (1993), who 
obtained the value of 0.174 (32% lower) from an energy balance 
in an air-jet at Re = 11 000. 

z1Dii / 2U cl
3

 
 
6. CONCLUSIONS 
 
We have here reported on a method by which all the elements in 
the dissipation rate tensor can be measured directly. This is 
accomplished by putting the expressions for the dissipation rate 
tensor into a form which contains second derivatives of the two 
point correlation with respect to the separation between the 
points and second derivatives for the Reynolds stresses with 
respect to the position for the homogenous part of the dissipation 
rate tensor and mixed second order derivatives of the same 
quantities for the inhomogenous part.  

Figure 7. Normalised second derivatives of Q11  . 
 
with about 6% at x1/d=20, decreasing to about 2% at x1/d=60. 

           At the centre-line ui
2 (x )  was found to be very close to 

a constant, why ∂2Qij / ∂(∆xk )2  becomes R ij∂
2 Cij / ∂(∆xk ) 2

11

, 
for i=j. This sum over k, and its elements are shown in figure 7, 
normalised with -x1

2 / Ucl
2. Note that ∂2Q / ∂(∆x3) 2  is equal 

to ∂2Q11 / ∂(∆x2 )2 due to symmetry.  

 The method works for flows with Kolmogorov 
microscale of the order of 100 µm or larger. It should be 
possible to extend this to higher Reynolds number flows by 
using more expanded beams and very stable high precision 
mechanical traversing. 



  

 It has been shown that error bounds can be computed 
for the different elements of the dissipation rate tensor. It turns 
out that an accuracy of the order of 5-10% is attainable. 
 The method has one severe drawback; it is extremely 
time consuming. To obtain the complete dissipation rate tensor 
in one point will typically require several days of measurements. 
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