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of a contraction on turbulence. The classical rapid distortion theory is
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centerline of the contraction. These theoretical findings will be verified

using the experimental results presented in Part 1 of this study. The impact

of these results on turbulence models will also be explored. An important

finding is that the coefficient of the rapid pressure-strain correlation for
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Nomenclature

A, B Constants of proportionality

Bsi,j Time-dependent scaling functions for two point velocity correlations, m2/s2

Bsp,i Time-dependent scaling functions for pressure-velocity correlations, kg/ms3

Bi,j Two-point velocity correlation tensor. m2/s2

Bp,i Two-point pressure-velocity correlation, kg/ms2

Bi,jk, Bij,k Triple velocity correlations, m3/s3

C2 Parameter in rapid pressure strain-rate model

I(t) Integral of strain-rate, m

k Kinetic energy of turbulence, m2/s2

Li Integral scale in xi-direction, m

M Mesh size of grid, m

m, n Constants

p Fluctuating pressure, kg/m2s2

q2 〈u2〉 + 〈v2〉 + 〈w2〉 (= 2k)

r Radial coordinate, m

R 〈v2〉/〈u2〉

S Mean strain rate, s−1

t Time, s

to Virtual origin in time

U, u Mean and fluctuating streamwise (or x) velocities, m/s

Uo Mean velocity at grid

V, v Mean and fluctuating radial velocities, m/s

Vc Contraction volume as function of distance from exit

W,w Mean and fluctuating velocity components in z direction

x Streamwise coordinate, m

x′ Integration variable for streamwise coordinate

xi Coordinates (i = 1, 2, or 3)

β Coefficient of proportionality

ν Kinematic viscosity , m2/s

ε Rate of dissipation of turbulence energy per unit mass, m2/s3

ρ Density, kg/m3
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I. Introduction

Contraction flows are commonly used in wind tunnel design, usually to accelerate the flow

after it has been expanded through a diffuser in order to minimize pressure drop through flow

manipulators like screens, honeycomb and heat exchangers (Uberoi,1 Loehrke and Nagib2).

The importance of studying contracting turbulence goes however far beyond windtunnel

design. There are numerous engineering applications that involve contraction flows (e.g.,

turbomachinery and water turbines), and our ability to faithfully predict such flows becomes

crucial in our quest for ’the optimal’ design. Moreover, the solution to one class of flows

has implications for others as well. Similar but ‘reversed physics’, for example, occurs in

stagnation point flows and flows around bodies and airfoils, all of which are also dominated

by strong strain-rate fields.

In Part 1 of this paper, Han et al.3 demonstrate that the effect of the contraction on

the unsteady flow must be considered in two parts: its effect on the coherent part and its

effect on the turbulence part. It was demonstrated that all velocity components associated

with the coherent part are amplified by the contraction and increase in proportion to the

mean streamwise velocity, hence their magnitude relative to the mean flow remains constant

throughout the contraction. By contrast, the contraction reduces the streamwise component

of the turbulence part while amplifying the radial and azimuthal components. And finally,

throughout most of the contraction the kinetic energy balance of the turbulence part along

the centerline was almost entirely a balance between the mean convection of the turbulence

and the production of turbulence energy by the working of the normal stress difference

against the streamwise mean velocity gradient.

The flow along the centerline of an axisymmetric contraction is mathematically simi-

lar to homogeneously temporally varying strained turbulence. This feature makes this flow

configuration particularly suitable for theoretical assessment. Homogeneously strained (and

sheared) turbulence essentially forms the backbone for turbulence model formulations. There

are numerous studies reported in the literature that are concerned with axisymmetric tur-

bulence and its implications on turbulence modelling, only a few of which are Lee,4 Sjögren

and Johansson,5 and Sambasivam et al.6 The added complexity of structural disequilib-

rium due to the time varying background shear exhibited in this particular case makes it

especially challenging. In fact, the majority of current models are calibrated against homo-

geneous turbulence in the structural equilibrium limit (e.g., Pope,7 Gatski and Speziale,8

and Johansson and Hallbäck9). The non-equilibrium characteristics of the flow through the

contraction therefore makes the present study particularly valuable.

The objective of the present study is two-fold: firstly, to explore the theoretical conse-

quences of the observed balance between mean convection and rate of production of tur-
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bulence kinetic energy; and secondly, to investigate the theoretical implications of these

findings for turbulence model formulations. The paper is organized as follows. We will begin

with a brief review of the classical rapid distortion theory and clarify some misconceptions

about the manner in which is commonly used. In fact we will demonstrate that the classical

approach is fundamentally flawed for this application. The implication of an equilibrium

similarity approach (e.g. George10) is thereafter explored. Finally, we will explore the sur-

prising consequences for the component Reynolds stress equations, and especially for models

of the rapid pressure-strain correlation term.

II. Classical rapid distortion theory revisited

It has been customary since Batchelor11 (see Durbin and Pettersson Reif12 for a more

comprehensive treatment) to use the results of linear rapid distortion theory (or RDT)

applied to homogeneous turbulence to estimate the effect of a contraction on the upstream

turbulence, e.g. Tucker and Reynolds.13 This linear treatment leads directly to analytical

relations showing how the turbulence intensities depend on time and the applied strain rate.

The analysis begins by assuming a homogeneous turbulence which evolves in time when

subjected to a uniform and constant strain rate field. These time-dependent theories have

been applied to evolving flows (like contractions) by assuming the scale of the turbulence

to be much smaller than the size of the contraction, and by assuming the turbulence to be

convected along the flow so that time can be computed from the following equation

t − to =
∫ x

xo

dx′

U(x′)
. (1)

The final results provide ratios of local to upstream turbulence intensities as functions of

the local mean velocity ratio (or area ratio inferred from streamtube equations). Other

convenient results are the local turbulence anisotropy ratios, also as functions of the local

mean velocity ratio.

Unfortunately the relatively simple analytical expressions of linear rapid distortion anal-

ysis have led many to apply to method to contraction flows. They cannot be, even approx-

imately. The reason is that the underlying assumptions of rapid distortion theory (at least

of the classical variety) preclude its application in most contractions of practical interest. In

particular, the classical rapid distortion theory depends crucially on the assumption that the

applied strain rate is constant, both in time and space, and thus not only that the magnitude

of the shear rate parameter is sufficiently high. This, together with the assumption of small

disturbances, allows the applied velocity field, Ui(x), to be written as a linear combination

of the position vector, xi with constant coefficients, Aij; i.e.,
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Figure 1. Centerline mean velocity through the 11.3:1 contraction of Han et al.3 (M = 0.0254
m, Uo = 2 m/s)

.

Ui(x) = Aijxj. (2)

One can certainly hypothesis flows that behave this way (like the classical two-dimensional

irrotational sink or stagnation point flows). But this is not an accurate description of most

three-dimensional contraction flows where the flow slowly accelerates at the entrance, then

accelerates more rapidly as the area diminishes, and finally accelerates much less rapidly as

the exit is approached. As a consequence the fundamental assumption of the classical ap-

proach to rapid distortion that the mean deformation tensor is constant is violated; therefore

the exponential relations derived from it do not apply to these flows. An example of such

a flow is illustrated by Figure 1 which shows the variation of the centerline velocity with

distance in the contraction used by Han et al. 3 in Part 1 of this paper. Figures 2 and 3

show the streamwise velocity derivative plotted first as a function of distance along the cen-

terline (measured from the exit plane), then as a function of time obtained from equation 1.

Obviously the strain rate cannot be assumed constant over any range of interest, especially

during the rising part of the curve where the assumptions of homogeneity are most likely to

be valid.

The basic idea of rapid distortion is that the turbulence is stretched so rapidly that there

is no time for the non-linear interactions to occur, one consequence of which is that there
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Figure 3. Centerline mean velocity derivative
as function of time (using equation 1).

can be no significant dissipation of turbulent energy nor any turbulent transport. These are

important constraints that should be carefully considered whenever rapid distortion theory

is applied to measured or computed flow fields. Unfortunately, there has been considerable

misunderstanding about this in past investigations of contracting turbulence where both

transport and dissipation were playing a role, e.g. Sjögren and Johansson.14

It is clear from the above that we need to formulate a more general idea of ‘rapid dis-

tortion’ than in the classical analysis for contraction flows. We begin by considering the

turbulent kinetic energy (k) equation, which for a high Reynolds number axisymmetric flow

along the centerline can be shown to reduce to:

U
∂k

∂x
− [〈u2〉 − 〈v2〉]

∂U

∂x
= −{

∂

∂x
[
1

ρ
〈pu〉 +

1

2
〈q2u〉] +

∂

∂r
[
2

ρ
〈pv〉 + 〈q2v〉]} − ε (3)

by using l’Hôpital’s theorem and mass conservation. Note that q2 ≡ 2k, and 〈〉 denotes

ensemble average. The terms on the left-hand-side represent the convection by the mean

flow and the production respectively, and the terms on the right-hand-side are the turbulence

transport and dissipation. Obviously in any new theory, production and transport by the

mean flow should dominate the kinetic energy equation, consistent with at least one of the

ideas behind the classical theory. This can be illustrated by the kinetic energy balances

(along the centerline) computed from the measurements presented in Part 1 of this paper,

and which have been repeated here in Figure 4. In these three experiments the turbulence

was generated by a grid upstream of the contraction. By changing the distance between the

grid and the contraction over distances from approximately 20 to 120 grid mesh lengths, it
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was possible to vary the turbulence intensity and length scales of the turbulence entering

the contraction. For case I (upper left), corresponding to the grid at only 24 mesh lengths

upstream of the contraction entrance, the dissipation was negligible, but the transport terms

were of becoming of importance by the middle of the duct (x/M > −10). For case II (upper

right), corresponding to the grid at 44 mesh lengths upstream of the contraction entrance,

the dissipation was negligible and the transport terms were also of some importance near

the middle of the duct (but less so). And for case III, corresponding to the grid at 68 mesh

lengths upstream of the contraction entrance, the dissipation and transport terms were even

less important over entire duct.
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Figure 4. Upper left: grid at 24 mesh lengths upstream of contraction entrance. Upper right:
grid at 44 mesh lengths. Lower: grid at 68 mesh lengths. The term labelled ‘dissipation from
energy balance’ represents the net effect of all terms except production and mean transport.
The measured dissipation is negligible in all cases.

Instead of using the two ideas of the classical rapid distortion theory (namely, linearized

equations and the constancy of the deformation tensor), we will instead use only the Reynolds

stress equations. Two approaches have been used: one working directly from the two-

7 of 19



point Reynolds stress equations for a homogeneous turbulence subjected to a time-dependent

strain-rate field; and the other using the single-point Reynolds stress equations. The former

will prove particularly useful in understanding the physics and in setting the direction, the

latter in understanding the implications for turbulence models.

III. Equilibrium similarity of the two-point Reynolds stress

equations

The theoretical problem can be most easily posed by considering in Cartesian coordinates

a homogeneous turbulence subjected to a time-dependent, but spatially uniform strain-rate

field, S(t) = ∂U/∂x1 = −2∂V/∂x2 = −2∂W/∂x3. The 1,1 component of two-point Reynolds

stress equations is given by:

∂B1,1

∂t
+ Sr1

∂B1,1

∂r1

−
1

2
Sr2

∂B1,1

∂r2

−
1

2
Sr3

∂B1,1

∂r3

= −2B1,1S −
1

ρ

∂

∂r1

[B1,p − Bp,1] +
∂

∂rj

[B1,j1 − B1j,1] + 2ν
∂2

∂rj∂rj

B1,1 (4)

where B1,1(r1, r2, r2, t) = 〈u1(x1, x2, x3, t)u1(x1 + r1, x2 + r2, x3 + r3, t)〉 with similar relations

for the pressure velocity and triple velocity moments. Similar equations can be written for

the 2,2 and 3,3 components.

We will seek an equilibrium similarity solution to these component Reynolds stress equa-

tions. We are interested only in solutions for which the viscous dissipation can be ignored

— in fact we will ‘define’ this to be what we mean by the term ‘rapid distortion’. It will

not be necessary to assume anything about negligibility or non-negligibility of the non-linear

terms. The basic approach can be outlined as follows: we seek solutions of the form:

B1,1(r1, r2, r3, t) = Bs1,1(t)f1,1(η1, η2, η3) (5)

Bp,1(r1, r2, r3, t) = Bsp,1(t)fp,1(η1, η2, η3) (6)

etc ...

where η1 = r1/L1(t), η2 = r2/L2(t), η3 = r1/L3(t). All of the explicit time dependence is in

the scaling parameters Bs1,1(t), Bsp,1(t), etc., and the length scales L1(t), L2(t), and L3(t).

These are substituted into the component Reynolds stress equations. Then it is demanded

that all the terms (except the viscous term which has been neglected) have the same relative

value at all times for given values of η1, η2, and η3. This is the equilibrium similarity

hypothesis.15 It is relatively straightforward to show that such solutions are possible if the
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following conditions are satisfied:

L̇1

L1

∝
L̇2

L2

∝
L̇3

L3

∝ S(t) (7)

Ḃs1

Bs1

∝
Ḃs2

Bs2

∝
Ḃs3

Bs3

∝ S(t) (8)

with additional conditions for the triple velocity and pressure-velocity correlations. These

will be ignored for now, but it should be noted that they are both non-zero, so non-linearity

can remain part of the solution.

Now the conditions of equation (8) can be readily seen to imply that the logarithm of all

of these quantities are proportional to the integral I(t) defined by

I(t) ≡
∫ t

to
S(t′)dt′, (9)

which sometimes is referred to as the reference natural strain. In other words

ln L1(t)/L1(0) = βI(t) (10)

ln Bs1,1(t)/Bs1,1(0) = mI(t) (11)

ln Bs2,2(t)/Bs2,2(0) = nI(t) (12)

etc ...

where β, m, n, etc. are constants which can at most depend on the upstream conditions,

and must be determined either from experiment or other considerations.

In order to apply this theory to the experiments, it is necessary to relate the integral I(t)

to the variation of mean velocity in the contraction, i.e. U = U(x) only, so S = dU/dx. Now

if the turbulence intensity is small, then increments in time, dt, can be related to increments

of space in exactly the manner of equation (1). (Note that a similar integral I(t) occurs in the

classical rapid distortion approach, but here without the requirement that S be constant.)

Thus we have:

I(t) =
∫ t

to

dU

dx

dx

U
= ln U/Uo (13)

It follows immediately that all of the scaling quantities vary as powers of the mean velocity

U ; i.e.,

L1(t)/L1(0) = (U/Uo)
α (14)

Bs1,1(t)/Bs1,1(0) = (U/Uo)
m (15)

Bs2,2(t)/Bs2,2(0) = (U/Uo)
n (16)
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etc ...

Moreover, the corresponding single point quantities, like 〈u2〉, 〈v2〉 and 〈w2〉 must likewise

be simply proportional to powers of U .

IV. The component Reynolds-stress equations

The experiments presented in Part 1 certainly satisfy the assumptions of the rapid dis-

tortion equilibrium theory outlined above, at least until the scales grow to where the flow

can no longer be assumed homogeneous and until the transport terms become important.

But there are two additional problems, both related to the axisymmetric geometry. In the

following paragraphs, a slightly different approach will be outlined using the single point

Reynolds stress equations applied along the centerline of the flow. Like the two-point solu-

tions above, the turbulence intensities will be seen behave as powers of U , at least as long as

the assumptions are valid. But unlike the two-point approach, it will be possible to derive

specific values for the exponents.

The transport of the kinematic Reynolds-stress components 〈uiuj〉 is governed by

∂〈uiuj〉

∂t
+ Uk

∂〈uiuj〉

∂xk

= −

(

〈uiuk〉
∂Uj

∂xk

+ 〈ujuk〉
∂Ui

∂xk

)

︸ ︷︷ ︸

Pij

− ν
∂2〈uiuj〉

∂xk∂xk
︸ ︷︷ ︸

Dν
ij

−
1

ρ

(

〈p
∂ui

∂xj

〉 + 〈p
∂uj

∂xi

〉

)

︸ ︷︷ ︸

φij

− 2ν〈
∂ui

∂xk

∂ui

∂xk

〉
︸ ︷︷ ︸

εij

+
1

ρ

(

∂

∂xi

〈ujp〉 +
∂

∂xj

〈uip〉

)

︸ ︷︷ ︸

Dp

ij

−
∂

∂xk

〈uiujuk〉
︸ ︷︷ ︸

Dt
ij

(17)

where Pij and Dν
ij are the rate of production due to mean shear and viscous diffusion,

respectively. The remaining terms on the right-hand-side comprises the pressure-strain (φij),

rate of viscous dissipation εij, and pressure (Dp
ij) and turbulent (Dt

ij) diffusion, respectively.

Cartesian tensor notation is used here and [x1, x2, x3] denote the axial, radial, and azimuthal

directions.

By using l’Hôpital’s rule and the continuity equation, the diagonal components of 〈uiuj〉

along the centerline (neglecting the viscous transport and dissipation terms) can be shown

to be given by:
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• Axial (centerline):

0 = −U
∂

∂x
[
1

2
〈u2〉] − 〈u2〉

∂U

∂x
− 〈

p

ρ

∂u

∂x
〉 − {

∂

∂x
[
1

ρ
〈pu〉 +

1

2
〈u3〉] +

∂

∂r
[〈u2v〉]} (18)

• Radial (centerline):

0 = −U
∂

∂x
[
1

2
〈v2〉] +

1

2
〈v2〉

∂U

∂x
+ 2〈

p

ρ

∂v

∂r
〉 − {

∂

∂x
[
1

2
〈uv2〉] +

∂

∂r
[
2

ρ
〈pv〉 + 〈v3〉 − 〈v2w〉]} (19)

• Azimuthal (centerline):

0 = −U
∂

∂x
[
1

2
〈w2〉] +

1

2
〈w2〉

∂U

∂x
+ 〈

∂

∂r
[
p

ρ

∂w

∂θ
]〉 − {

∂

∂x
[
1

2
〈uw2〉] +

∂

∂r
[
2

ρ
〈pw〉 + 2〈w2v〉]} (20)

The primary difference from the kinetic energy equation is the presence of the pressure-strain

rate terms which can move energy from one component to another (φii = 0). As before, the

viscous transport terms have been neglected, and the turbulence transport terms (bracketed

{}) are usually negligible also.

Since the turbulence transport terms are usually negligible, it is readily seen that where

there is no streamwise mean velocity gradient (as in most of the duct flow), the energy is

simply redistributed among the various diagonal components of the Reynolds-stress tensor,

dissipated, or convected away by the mean velocity. When the mean flow is accelerating

in the contraction, however, it follows immediately that there is positive production of the

radial and azimuthal components since ∂U/∂x > 0. By contrast, the “production” term in

the streamwise component equation is negative, however, implying that this term actually

acts to decrease 〈u2〉. This explains the observed reduction of the streamwise normal stress

component in Part 1 (at least after the coherent disturbances were removed).

A. A power law solution

The equilibrium similarity solutions derived above represent very special forms of the equa-

tions after the flow has evolved to an equilibrium state. These should not be expected to

apply in general, since the flow may be evolving too rapidly for equilibrium to have been

achieved. In fact, the flow is by its very definition in a state of structural disequlibrium,

since the mean strain rate varies in time. True structural equilibrium is only obtained if the

turbulence anisotropies (〈u2〉/k,〈v2〉/k, and 〈w2〉/k), and the turbulent-to-mean-flow time

scale ratio, Sk/ε, are constant. Although both of these constraints are violated here it is

possible to show that certain features of these solutions are more general by considering only

the kinetic energy equation and assuming there is a balance between advection and mean
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shear production as discussed earlier; i.e.,

U
dk

dx
=
(

〈v2〉 − 〈u2〉
) dU

dx
. (21)

Along the centerline of the contraction, the turbulence is axisymmetric so that k = (〈u2〉 +

2〈v2〉)/2 such that Udk/dt = U/2d〈u2〉/dt+Ud〈v2〉/dt. Solutions are now sought of the form

〈u2〉 = AUm and 〈v2〉 = BUn where A and B are constants possibly dependent on upstream

conditions. Substitution yields:

(
mA

2
Um + nBUn

)
dU

dx
= (BUn − AUm)

dU

dx
(22)

or equivalently,
A

B
Um−n

(

1 +
1

2
m
)

= (n − 1) . (23)

Since the right hand side is independent of velocity, this equation has two possible solutions:

(i) m = n = A−B
A/2+B

(24)

(ii) m = −2, n = 1, (25)

but only the latter is viable (i.e., 〈u2〉 = AU−2 and 〈v2〉 = BU) since the turbulence is

anisotropic in general through the contraction. This solution can be shown to be consistent

with the exact result b22/b11 ≡ −1/2 in axisymmetric turbulence, where bij = 〈uiuj〉/(2k)−

δij/3 denotes the Reynolds-stress anisotropy tensor, c.f., Lee.4
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It should be noted that the power-law behavior is only a consequence of the assumed

balance between the advection and rate of mean-shear production of turbulent kinetic energy.

Figures 5 and 6 show plots of 〈u2〉U2 and 〈v2〉/U versus distance through the contraction for

the three experiments reported in Part 1. The plot for 〈u2〉 is approximately constant until

x/M < −10, which is approximately where the transport terms begin to be important in the

kinetic energy balances of figure 4. Moreover, the weaker the transport terms, the closer the

data are to the power law behavior. For 〈v2〉, however, the power law solution is valid for the

entire duct (x/M > −24). This is consistent with the fact that 〈v2〉 increases through the

contraction so that its production term increases relative to the neglected transport terms.

The opposite occurs for 〈u2〉, so the approximation deteriorates rapidly beyond x/M > −10.

V. Implications for turbulence modelling

The power-law solution for the individual diagonal components of the Reynolds-stress

tensor can now used a priori to evaluate different turbulence model formulations. In the

present case, the components of the mean rate-of-strain and mean vorticity tensors are given

by

Sij =
1

2

(

∂Ui

∂xj

+
∂Uj

∂xi

)

=







S 0 0

0 −S/2 0

0 0 −S/2







, (26)

and

Wij =
1

2

(

∂Ui

∂xj

−
∂Uj

∂xi

)

=







0 0 0

0 0 0

0 0 0







, (27)

respectively. Before full differential stress models are considered, a brief analysis of two

different types of eddy-viscosity models will be carried out. These do not depend on the

power-law solution per se, but do illustrate some characteristic features of algebraic stress

models in general.

A. Linear algebraic Reynolds-stress models

The linear eddy-viscosity model is essentially based on Boussinesq’s proposal more than a

century ago, and is still the most commonly used closure model in applied computational

fluid dynamics. (The standard k − ε model, among others, utilizes this simple constitutive

relationship.) The hypothesis is essentially based on the notion that there is a linear algebraic
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relation between the turbulent stresses and the mean flow field:

〈uiuj〉 =
2

3
kδij − 2Cµ

k2

ε
Sij. (28)

The terminology ’linear’ alludes to the linear dependence of 〈uiuj〉 on the mean rate of strain

tensor Sij. The diagonal components of the Reynolds-stress tensor are thus explicitly given

by

〈u2〉 =
2

3
k − 2Cµk

Sk

ε
(29)

〈v2〉 = 〈w2〉 =
2

3
k + Cµk

Sk

ε
. (30)

Symmetry along the centerline of the contraction implies that 〈w2〉 ≡ 〈v2〉. Cµ = 0.09 is the

most frequently used value. Using this and imposing the realizability requirements 〈u2〉 ≥ 0

and 〈v2〉 = 〈w2〉 ≤ k in (29) and (30) respectively yields:

Sk

ε
≤

1

3Cµ

≈ 3.7. (31)

This result shows that only a very mild rate of straining can be represented by this simple

model. Clearly it can not hope to represent the physics at the values of Sk/ε commonly

encounter in contraction flows of the type considered in Part 1 (typically 30 - 50).

B. Explicit algebraic Reynolds-stress models

The next level of models within the eddy-viscosity framework are nonlinear constitutive mod-

els. The terminology ‘nonlinear’ refers to a nonlinear dependence of the Reynolds stresses

on the mean strain rate. There exist basically two different classes of nonlinear closures

and these are defined by the origin of the model: (i) the algebraic stress approximation of

the Reynolds-stress transport models (so-called EASM models), and (ii) ad hoc nonlinear

constitutive modeling using tensor calculus (NLEVM’s). The former class of models referred

to as explicit algebraic Reynolds-stress models (EASM) has experienced a growing popu-

larity among CFD practitioners. The terminology ’explicit’ is sometimes misleading and

perhaps redundant since all eddy-viscosity models are explicit in the stresses. The reason

EASM-models have gained popularity is the fact that these are exact solutions of the more

sophisticated differential stress-models in the limit of equilibrium homogeneous turbulence

(c.f., Pope7). As such these models are believed to encompass ‘more physics’ than ad hoc

NLEVM’s. It should be pointed out, however, that there exists a formal link between dif-

ferential stress models and EASM’s only in two-dimensional mean flow fields. The crucial

assumption of structural equilibrium that needs to be invoked in order to solve the differential
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stress equations ceases to be valid in three-dimensional flows. Three-dimensional flow can

not evolve to a structural equilibrium state; therefore the formal applicability of these models

is limited to two-dimensional flows, c.f., Durbin and Pettersson Reif.16 Three-dimensional

extensions of the the original EASM (e.g., Taulbee;17 Gatski and Speziale;8 Johansson &

Hallbäck9) are thus only ad hoc.

The following analysis is concerned only with models that are based on the equilibrium

solutions of the differential stress models. The most general constitutive realationship (which

thus is two-dimensional) can be written as:

〈uiuj〉

k
=

2

3
δij − 2C∗

µ

[

kSij

ε
+ α2

k2

ε2
(SikWkj − WikSkj) − 2α1

k2

ε2

(

SikSkj −
1

3
SkmSkmδij

)]

(32)

where the coefficient can be written as:

C∗

µ =
α0

1 − 2

3
η1 − 2η2

=
α0

1 − α2
1(Sk/ε)2

. (33)

The second equality is obtained by substituting η1 ≡ (k/ε)2(SkmSkm) = 3

2
α2

1(Sk/ε)2 and

η2 ≡ (k/ε)2(WkmWkm) = 0 for the present case. The model constants are α0 = 0.0567 and

α1 = 0.0437 for a given differential stress model (v. Gatski and Speziale8 for the details).

The normal-stress components are given by

〈u2〉

k
=

2

3
− 2α0

(

Sk

ε

)

1 − α1(Sk/ε)

1 − α2
1(Sk/ε)2

=
2

3
−

2α0(Sk/ε)

1 + α1(Sk/ε)
(34)

〈v2〉

k
=

〈w2〉

k
=

2

3
+ α0

(

Sk

ε

)

1 − α1(Sk/ε)

1 − α2
1(Sk/ε)2

=
2

3
+

α0(Sk/ε)

1 + α1(Sk/ε)
. (35)

Imposing the realizability constraints 〈u2〉 ≥ 0 and 〈v2〉 ≤ k in equations (34) and (35)

respectively yields the combined constraint:

Sk

ε
≤

1

3α0 − α1

≈ 7.9. (36)

Thus although the EASM model is able to handle somewhat higher strain rates than the

linear eddy-viscosity model, it too fails completely to represent the experimentally observed

shear rate (Sk/ε ≈ 50).

Thus it is clear that algebraic stress models tend quickly to become unrealizable as the

imposed straining increases. This problem has been recognized by Durbin18 who devised a

simple upper bound on the eddy-viscoity for linear models to avoid the problem in practical

computations (in fact this bound correspond precisely to the inequality of equation (31).

The constraint given by equation (36) provides the corresponding bound for the explicit
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algebraic stress model.

A comparison between the constitutive relations of equations (29) and (34) shows that

the linear eddy-viscosity model can be viewed as a special case of the more elaborate explicit

algebraic stress model in the limit as Sk/ε � 1; the only difference being that the constants

are slightly different (Cµ = 0.09 and α0 = 0.0567, respectively). Since the EASM was derived

from a differential stress model under the assumption of structural equilibrium (Sk/ε ∼ 6

in homogeneous shear) the present study elucidates the difficulties associated with applying

a model to a problem that exhibits different characteristics than those used to calibrate the

model in the first place.

C. Differential Reynolds-stress models

Turbulence models based on the differential Reynolds-stress approach constitute the most ad-

vanced level of RANS modelling currently used in practice, and it is a physically significantly

more appealing methodology than algebraic constitutive models. In particular, differential

stress models account exactly for the total rate of change of the turbulent stresses, the rate

of production of the individual Reynolds-stress components by the mean strain, as well as

for the viscous diffusion. No modelling is necessary for these terms; i.e., the terms on the

left-hand-side of equation (17) and the two first on the right-hand side. While the latter of

these terms is relatively unimportant, the two former terms are crucial.

Models need, however, to be provided for the remaining terms of equation (17), i.e., the

pressure-strain correlation, the viscosus dissiaption rate tensor, and the turbulent transport

terms. The latter can be neglected here. The pressure strain-rate terms are usually modelled

in two parts: the rapid part denoted by φR
ij, and the slow part (return-to-isotropy) denoted

by φS
ij. The most commonly used pressure strain-rate models are the IP (or isotropization-

of-production) model and Rotta’s linear return-to-isotropy given by:

φR
ij = −C2

(

Pij −
1

3
Pkkδij

)

, φS
ij = −C1ε

(

〈uiuj〉

k
−

2

3
δij

)

. (37)

The rate of dissipation is assumed to be isotropic; i.e.,

εij =
2

3
εδij (38)

and this term is included for completeness. Using these, the transport equations governing

the two independent Reynolds-stress components can be written as:

U
d〈u2〉

dx
=

[

−2(1 − C2)〈u
2〉 +

2

3
C2(〈v

2〉 − 〈u2〉)
]

dU

dx
+

2

3
ε(C1 − 1) − C1ε

〈u2〉

k
(39)
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U
d〈v2〉

dx
=

[

(1 − C2)〈v
2〉 +

2

3
C2(〈v

2〉 − 〈u2〉)
]

dU

dx
+

2

3
ε(C1 − 1) − C1ε

〈v2〉

k
(40)

Dividing the first by 〈u2〉U , the second by 〈v2〉U , and then subtracting the former from

the latter yields:

d lnR

dx
=

d ln U

dx

(

3(1 − C2) −
2

3
C2(R

−1 −R) −
2

3
(C1 − 1)

ε

Sk

k

〈v2〉
(1 −R)

)

(41)

where R ≡ 〈v2〉/〈u2〉. If we further incorporate the power-law solution R = DUα where

α = n − m, and D = A/B, the equation reduces to:

d ln U

dx

(

α − 3(1 − C2) +
2

3
C2(R

−1 −R) +
2

3
(C1 − 1)

ε

Sk

k

〈v2〉
(1 −R)

)

= 0 (42)

Since from the above, m = −2 and n = 1, α = n − m = 3. Therefore:

C2 =
2

3
(C1 − 1)

[
ε

Sk

] [

k

〈v2〉

]

(1 −R)

3 + 2

3
(R−1 −R)

(43)

There are a number of interesting observations that can be made about the rapid coefficient

C2 = C2(R, C1, Sk/ε) which commonly takes the value C2 = 0.6. In particular:

1. It cannot take a constant non-zero value. Rather it should depend explicitly on the

turbulence anisotropy and vanish identically in isotropic turbulence; i.e., when R = 1;

2. It is related to the slow-pressure strain model through the coefficient C1;

3. It should depend inversely on the mean shear rate, Sk/ε, and its limiting value must

be zero in the limit as Sk/ε → ∞.

The latter dependence has been by used by Lee,4 for example, to develop a simple model for

the rapid pressure-strain correlation. It has in fact been rather common to make the slow

pressure-strain coefficient depend on the time scale ratio, Sk/ε. For example,, Speziale et

al.19 adopt C1 ∼ P/ε ∼ (Sk/ε)2. Sjögren and Johansson5 also speculate about incorporating

the time-scale ratio in C1 to account for the suppression of the return-to-isotropy at high shear

rates. Most interesting in this context, however, is that in the rapid shear rate limit (ε/Sk →

0) the limiting value of C2 must be exactly zero. This surprising behavior originates from our

demand that the model must be consistent with the theoretically derived (and experimentally

observed) power-law behavior of the Reynolds-stresses through the contraction. It should

also be emphasized that the result of equation (43) is preliminary; its application for practical

computations is outside the scope of the present study. Even so it certainly provides an

indicator of the direction improvements to the models might take.
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Summary and conclusions

It has been demonstrated that the classical rapid distortion theory does not apply to

contraction flows since the basic assumption of the theory is not satisfied. In particular, the

mean deformation tensor cannot be assumed constant for contraction flows. An alternative

definition of rapid distortion has been provided in which it is assumed that the dissipation

and turbulence transport terms are negligible. No assumptions about the deformation rate

nor even linearization were required.

The new definition was applied in two ways, both of which lead to solutions in which

the turbulence intensities were proportional to powers of the mean velocity. The assumption

of equilibrium similarity also provided relations governing the evolution of the two-point

pressure velocity and triple velocity moments, as well as the integral scales. These were

not tested against experimental data, but could most easily be tested using DNS. This

was however not within the scope of this paper. Application of the new definition to the

kinetic energy equation provided power law solutions in which the streamwise component of

the Reynolds stress varied inversely with the square of the mean velocity, while the radial

component varied linearly with the mean velocity. These showed good agreement with the

experimental data presented in Part 1.

The implications of contracting turbulence on various turbulence models ranging from the

linear eddy-viscosity model to a commonly used differential stress model were also explored.

It was shown firstly by a priori considerations that the application of algebraic stress models

was seriously limited to only small imposed shear rates and therefore not suitable for the

present case.

Finally, a commonly used differential stress model were used to investigate the implica-

tions of the theoretically derived, and experimentally observed power-law behaviour of the

Reynolds-stresses. It was shown that the only possible constant value of the rapid pressure-

strain model was zero. The analysis also showed that in order to retain a nonzero value,

the model coefficient must depend explicitely on the turbulence anisotropy as well as on the

shear rate. Further, it was shown that the rapid and slow pressure-strain model coefficients

can not be determined independently. Most interesting perhaps was the conclusion that the

only possible value of the rapid pressure strain-rate coefficient in the rapid distortion limit

is zero.
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