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- .The angular response of an x-wire is studied at low velocities (0.25-1.4 
m/s) .  It is found that the k-factor in the modified cosine law is strongly 
velocity-dependent. The implications of this for multicomponent measure- 
ment are explored, and a practical scheme for incorporating it is proposed. 
At lower velocities a total loss of direction sensitivity is observed that leads 
to additional errors in x-wire measurements. Expressions are derived for 
evaluating when cross-flow errors begin to affect x-wires. Also, a "dropout" 
phenomenon is observed in which certain voltage pairs from an x-wire 
cannot be converted into the velocity components. The implication of this 
dropout on the turbulence measurements is also discussed. 
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I N T R O D U C T I O N  

It can be shown [1] that for laminar flow past an infinitely 
long and uniformly heated cylinder placed obliquely to a 
uniform undisturbed velocity field, the heat  transfer is 
propor t ional  only to the normal  velocity component .  This 
result is known as the cosine law because it implies 

Ue2f = Uc~ cos 2 (b, (1) 

where & is the angle between the flow velocity vector and 
the plane normal to the wire as shown in Fig. 1. 

In most hot-wire applications, however, the flow is not 
laminar and the tempera ture  distribution is not uniform. 
Nonetheless,  the cosine law is still the basic relationship 
on which empirical  relations are based. There  are situa- 
tions in which the mean velocities are high and the 
turbulent  intensities are small and the cosine law may 
work satisfactorily. There  have been, however, few propo- 
nents of the cosine law for high-intensity turbulent  flows 
since the work of Champagne and Sleicher [2], which 
showed significant deviations from this simple response. 

Real hot wires depar t  from the cosine law because of 
their  finite length and because of end losses to the prongs. 
The effect of both of these is to make the tempera ture  
distribution across the wire nonuniform. Hinze [3] and 
Webster  [4] suggested the relation 

(u fft2 k2 Uo ] = cos 2 q5 + sin 2 4~, (2) 

where the sum on the r ight-hand side accounts for the 

cooling caused by the velocity component  along the wire. 
Hinze found the value of k to be between 0.1 and 0.3, 
whereas Webster  found it to be 0.2. Champagne and 
Sleicher [2], in a systematic study on heat  transfer of 
inclined wires, found k to be a function of the wire 
length-to-diameter  ratio, l /d .  They found k = 0.2 for 
l / d  = 250. Other  researchers have repor ted  different val- 
ues of k; for example Kawall et al. [5] report  k = 0.1 for 
l / d  = 250. 

In addit ion to its angular sensitivity and the problems it 
creates at high turbulence intensity, there are additional 
problems that arise under  these conditions. Hot  wires, 
when used in the conventional way, respond only to the 
magnitude of velocity and are insensitive to its direction. 
As a consequence, the wire cannot distinguish when the 
sign of the velocity vector changes. This phenomenon is 
known as rectification and can be a major source of error  
in situations where flow reversals occur on the wire. The 
errors associated with rectification and cross flow can be 
greatly reduced by using the techniques of Kawall et al. 
[5], Legg et al. [6], and Lekakis et al. [7], all of whom 
employ a three-wire probe instead of the conventional 
x-wire. The problems associated with the conventional 
x-wires are discussed in detail in these references and also 
by Tutu and Chevray [8]. 

This paper  at tempts to summarize experience at our 
laboratory in using x-wires in high-intensity turbulent flows 
and in flows with low mean velocity, specifically, the effect 
of the lat ter  on the velocity dependence  of the angular 
response, the loss of directional sensitivity, and "dropout ."  
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Figure 1. Geometry for inclined wire showing relation of 
effective velocity,/Jeff, to flow velocity U 0. For the cosine law, 
f e f  f = U 0 COS ~ .  

E X P E R I M E N T A L  RESULTS A N D  D I S C U S S I O N  

The tungsten wires used in this study were 2.5 ~ m  in 
d iameter  and were gold-plated at the ends to give an 
effective l / d  of 250. These were opera ted  in the 
constant - temperature  mode using a Dantec  55M10 sys- 
tem. The overheat  ratio was 0.4. This low overheat  was 
used to optimize the wire response for its use in a non- 
isothermal flow and to reduce the velocity at which natu- 
ral convection effects dominate.  An  addit ional  hot wire 
was opera ted  in the constant-current  mode to obtain the 
tempera ture  that was used to extract velocity information 
from the x-wire probe.  

Figure 2 illustrates the angular dependence  of a hotwire 
at velocities from 0.25 to 1.4 m / s .  These low velocities 
occur in buoyancy-dominated flows such as plumes and at 
the outer  edges of  many other  free shear flows. It is clear 
that the angular  response is strongly dependent  on the 
velocity U 0. Also note that a higher inclinations the wire's 
angular response is significantly reduced.  Other  investiga- 
tors have noted this velocity dependence,  although the 
effects were weaker  because the velocities were not as 
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Figure 2. Angular response of an inclined hot wire for dif- 
ferent flow velocities. For comparison purposes, the cosine 
law response is also shown. 
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Figure 3. Variation of the factor k 2 with the flow velocity U 0 
for the data shown in Fig. 2. The solid line is the curve fit to 
the data. 

low. No experiments were conducted to study the effect of 
different length-to-diameter  ratios of  hot wires on the 
results shown in Fig. 2. 

The phenomenon illustrated in Fig. 2 can be at tr ibuted 
to the increased ratio between the conduction to the end 
supports  and the forced convection. This implies that the 
tangential  cooling increases in comparison with the forced 
convection cooling caused by the flow and thus causes 
larger deviations from the Cosine Law. 

Based on the results of Fig. 2 an alternative to Eq. (1) 
can be taken as 

Ue,)2 
= c os2 6 + k2(U0) sin2 ~b, (3) 

where k is dependent  on the total velocity U 0. This 
dependence  can be expressed by a polynomial  

k 2 ( U 0  ) = B o + B I U  0 + B2 U2 + " " .  ( 4 )  

Figure 3 shows the values of k 2 with U 0 along with the 
polynomial  fit. Due to the velocity dependence  of k, the 
solution of  (3) requires an iterative procedure.  First a 
guess of U 0 is made  and the corresponding k is calculated 
from (4). Then (3) is solved to get a new value of U 0. The 
procedure  is repeated  until two consecutive values differ 
by a specified tolerance. The simple cosine law can be 
used to make the initial guess of U 0. 

C R O S S - F L O W  E R R O R S  

The most basic limitation on the hot wire is due to the 
so-called cross-flow errors, which arise from the fact that a 
vector field (the velocity) is being mapped  into a scalar 
(the cooling velocity) by the wire. It is possible to evaluate 
when these cross-flow errors become significant by ex- 
panding the cooling velocity about the state where the 
fluctuating velocities are zero. This has been carried out 
in detail  in [3] for a hot wire placed normal  to the flow, 
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Figure 4. Nomenclature for the velocity components for an 
inclined hot wire. 

and here we will extend these analyses to the x-wire. 
Consider  Fig. 4, which shows a hot wire inclined at an 
angle a to the vertical direction. The effective cooling 
velocity for this wire is given by 

~2 = ( t  c o s  a + 0 s in  a )2 R eft 

+ k 2 ( t  sin a - 0 c o s  0~) 2 q- I,~ 2, ( 5 )  

where if, is the velocity component  normal to the uv 
plane, that is, the cross-flow component .  For  simplification 
it will be assumed that a is constant and is equal to 45 °. 
Therefore,  

~2 = } ( t  q- /~)2 q- ½k2(  t _ 0 )2  -{- 1~2. ( 6 )  Reef 

Since when using an x-wire the ff component  is not 
known, the effective cooling velocity must be assumed to 
be 

-2  1 ~ )2 1 2 ~ ~ 2 
Her f = ~-(R m 4- On, q- 2 k ( u m  - urn) , ( 7 )  

where we have used the subscript m for the velocities 
measured using a hot wire in order  to distinguish them 
from the true velocities. It is obvious from Eqs. (6) and (7) 
that the cross-flow error  arises due to the neglect of if,2 in 
Eq. (7). 

Tutu and Chevray [8], by assuming a joint  Gaussaian 
probabil i ty density function for the two velocity compo- 
nents, have calculated the errors  in various turbulence 
moments  due to cross flow and rectification. However,  our 
objective here is to obtain algebraic expressions that an 
experimental is t  can use to est imate when these errors 
begin to affect his or her measurements  in boundary  free 
shear flows. To achieve this we equate  the true and 
assumed forms of the cooling velocity of Eqs. (6) and (7) 
to obtain 

( t  "-}- 0 )  2 -]- k 2 ( t  - t3) 2 + 21,v 2 

"~ ~ 2 
= ( t  m q- 0m )"  q- k 2 ( t m  - U m )  • (8) 

Similarly for the second inclined wire ( a  = - 45 °) we have 

(U -- 0 )  2 + k Z ( t  + 0 2 )  q- 2~ ,e 

( t im ~ 2 ~ 2 = -- U m )  + k 2 ( t m  + Om) . ( 9 )  

Equations (8) and (9) involve two unknowns, t m and 0m, 
and therefore  these two equations can be manipula ted to 
find expressions for t m and 0 m in terms of the true 
velocity components  fi, 0, and ~.  These expressions can 
then be used to form the statistical moments  such as 
mean velocities and their  root  mean square values, by 
carrying out the appropr ia te  decomposi t ion and averaging. 

Subtracting (9) from (8) yields 

tmUrn = t 0 .  ( 1 0 )  

Thus the measured product  of  the two velocity compo- 
nents is exactly the true product.  Substituting t = U + u 
and t3 = V + v into Eq. (10) and averaging gives 

UmU m = HU + ( U V  - UmVm).  (11) 

This equation shows that cross-flow errors in the mea- 
sured shear stress enter  only through the measured mean 
velocities. By using (10) to el iminate V from (8), we can 
get an expression that is quadrat ic  in the instantaneous 
measured velocity t .  The solution of this equation is given 
by 

-2  = t 2  02 - -  
Um 2 + + 1 + k 2 

1[( 
+ 2  f i 2+  + 1 + k  2]  - 4 t 0  , (12) 

where the positive root  is needed  to recover the proper  
expression for the case when ~2 = 0. To obtain an equa- 
tion for the mean measured velocity U m, Eq. (12) has to 
be simplified using binomial  expansions. The final expres- 
sion for t is then decomposed into a mean and a fluctu- 
ating part  and then t ime-averaged.  The algebra, although 
lengthy, is straightforward. In obtaining the following re- 
sults it was assumed that W = 0 (ie., t = U + t ,  0 = V +  
v, and ~ = w) and V ~ U, a situation that corresponds to 
the boundary-free turbulent  shear flows. The expressions 
that give the cross-flow errors in the measurements  of 
mean velocities with an x-wire are 

Um = 
1 

U 1 +  l + k 2  

W2 HW 2 

X U 2  U 3  

V 1 +  l + k 2  

(  w2 w2 2w2 ) 
× ~ - 2 - - ~ -  + - ~  + 3 - ~  + --- 

- 1 + 2 ~  + ... (14) 
(1 + k 2 )  2 

Vm = 

)1 
R2W 2 W 4 

+ U---- 7 -  - 2_-:-7_~ + ... , (13) 
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Similar analysis for a hot wire placed normal to the flow 
(page 106 of Hinze [3]) gives {1 
Vm=U +g 

× ~ ~ + ~ ~ ~ + "'" (15) 

It is clear from these expressions that the cross-flow errors 
for an x-wire are greater than for a hot wire placed 
normal to the flow by a factor of  2 / (1  + k2). Suppose we 

consider a flow where ff-~7/U = 0.25. Then for an x-wire 
(with k 2 = 0.2) the mean velocity will be overestimated by 
5.2% whereas for a hot wire placed normal to the flow it 
will be overestimated by 3.1%. 

Similarly we can obtain the following expressions, which 
give the errors arising due to the cross flow in the mea- 
surement of second moments u 2 and v 2 with an x-wire. 

( 2 
~ -  = u-~ 1 +  k2 um 1 + 

[uw2 u2w2 l[w---4~-(w~)2] ""1}  
X[u2g  u 2 U 2 - [ - - ~ t  gt2U 2 ] --F , 

(16) 

2 [[UW 2 ) 
U2 = U 2 1 -'}- l ~ [ t  U--'~V-}- "'" 

1 ( ~-~ - w---~2 ) ]} 
+ - -  + . . .  

(1 + k2)  2 u2U2 

For a hot wire placed normal to the flow we have 

(17) 

[ uw2u2w2,(   ,2) ] 
"'~- = h -~ 1 + - -  + ~ - - ~  + " "  Um u--~U ~ 4- 

(18) 

In order to compare the errors in the measurement of  u 2 
from the x-wire to those of the hot wire placed normal to 
the flow, consider a case where -ff-W~w2/U 3= 0.01 and 

l f~/U = 0.40 (a situation that corresponds to a round 
jet or a round buoyant, plume). Equation (16) shows that, 
to the leading order, u 2 is overestimated by 10.4% by an 
x-wire (with k 2 = 0.2). In comparison, the hot wire placed 
normal to the flow overestimates it by 6.25%. Note that 
the sign of  the error depends on the sign of the third 
moment  uw 2. 

In summary these equations show that for x-wires the 
cross-flow errors can significantly affect the x-wire mea- 
sured moments when turbulence intensity is large. Note 
that because the higher order terms become increasingly 
important as the turbulence intensity is increased, these 
expressions can at best serve as indicators of  when cross 

flow is a problem. Furthermore, when using these expres- 
sions the assumptions behind them must be kept in mind. 

A D D I T I O N A L  E F F E C T S  D U E  TO D R O P O U T  

From the preceding it is clear that there are three primary 
sources of error in an x-wire signal at low velocities: 
rectification, cross flow, and lack of  directional sensitivity 
at higher inclinations. The problem of rectification is 
obvious for a hot wire placed normal to the flow in which 
the flow must reverse its direction for rectification to 
occur. Tutu and Chevray [8] have pointed out that rectifi- 
cation errors are more subtle and serious for x-wires than 
for hot wires placed normal to the flow. 

An additional manifestation of the rectification phe- 
nomenon is the occurrence of  voltage pairs that could not 
be resolved into velocity pairs from the angle calibration. 
In other words, the instantaneous voltage pairs obtained 
do not lie in the calibrated region of  the x-wire and cannot 
be inverted by Eq. (3). As a consequence these data must 
be dropped from the statistics. For such data the word 
"dropout"  is probably a more accurate description than 
"rectification." Dropout  is usually caused by a high inten- 
sity in the u or v component  and is especially trouble- 
some when the mean velocity is low. This is because wires 
are fairly insensitive to direction at low velocities and any 
small measurement error (electronic noise, prong support 
interference, velocity component  perpendicular to the x- 
wire plane, wake of one wire on another, or a velocity or 
temperature gradient between the wires) can create a 
large error in the output. The dropout  is small in the 
central regions of  flows such as buoyant plumes but has 
been observed to be as large as 40% at the outer edges. 

It is important to note that dropout  cannot be detected 
by common analog signal processing schemes (for exam- 
ple, summing and differencing circuits). As a consequence, 
the processed data will be incorrect without the experi- 
menter being aware of  the problem. The effects will be 
most noticeable in the higher moments where the scram- 
bled tails of  the distribution are most heavily weighted. 

The work reported herein formed a portion of the doctoral disserta- 
tions of P. D. Beuther and A. Shabbir. The research was supported 
by the National Science Foundation, Division of Atmospheric Sci- 
ences under grants ATM 78 08442, ATM 80 23699A01 and Division 
of Engineering grant MSM 831-6833. An earlier version of this paper 
was presented at the ASME Symposium on Thermal Anemometry, 
Cincinnati, Ohio, June 1987. 

NOMENCLATURE 

d diameter of hot wire, /xm 
k coefficient in Eq. (2), dimensionless 
l length of  hot wire, mm 

fi instantaneous velocity in x direction, m / s  
U mean velocity in x direction, m / s  

Uef f effective cooling velocity, m / s  
U 0 flow velocity, m / s  

t3 instantaneous velocity in y direction, m / s  
1/ mean velocity in y direction, m / s  

Greek Symbols 
a angle between the flow velocity vector and the plane 

normal to the inclined hot wire, rad 
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~b ang le  b e t w e e n  t he  flow veloci ty  v e c t o r  a n d  the  p l a n e  
n o r m a l  to  t he  ho t  wire,  r ad  
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