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ABSTRACT

The turbulence natural convection boundary layer inside a
infinite vertical channel with differentially heated walls is an-
alyzed based on a similarity solution methodology. The dif-
ferences between mean temperature and velocity profiles in a
boundary layer along a vertical flat plate and in a channel flow,
make it necessary to introduce new sets of scaling parameters.
In the limit as H, — oo, two distinctive parts are considered: an
outer region which dominates the core of the flow and inner con-
stant heat flux region close to the walls. The proper inner scaling
velocity is showed to be determined by the outer parameters due
to momentum integral. The theory is contrasted with the one
suggested by George & Capp (1), the deficiencies of which are
identified.

NOMENCLATURE

C, specific heat at constant pressure.

F, dimensionless heat transfer rate (;gp) .

g gravitational acceleration.
h  channel half-width and outer length scale.

3
H H-number based on temperature difference, (gﬁé“i];wh) .
4
H, H-number for constant heat flux walls, (%) .

Gr, Grashof number for constant heat flux walls, (%)

Nuy,  Nusselt number based on 4, ( AFT(:ﬁx)'
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Pr Prandtl number 3.

qw wall heat flux.

T mean temperature.

T;; inner temperature scale.

T, outer temperature scale.

T,, wall temperature.

Tcr center-line temperature.

AT,, walls temperature difference.

U mean velocity in x direction.

U; inner velocity scale,constant heat flux wall.
U, outer velocity scale.

V  mean velocity in y direction.

x distance indirection parallel to walls.

y distance indirection perpendicular to walls.
7 dimensionless outer variable, = (y/h).

y*  dimensionless inner variable, = (y/n).

o thermal diffusivity.

B thermal expansion coefficient.

M inner length scale for constant heat flux wall.
p density.

Vv  viscosity.

T,, wall shear stress.

€ length scales ratio, = (n/h).

INTRODUCTION
Despite its great importance in many industrial and environ-
mental processes and several decades of attention, the basic scal-
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ing parameters for turbulence natural convection flow near verti-
cal surfaces are still the subject of some debate. In the modeling
of such flows, the near wall behavior of the turbulence quantities
is essential in determining the relations among temperature, heat
fluxes and velocity. Like other wall-bounded flows, the problem
is usually approached by seeking scaling laws for the different
regions of the flow, then exploring the consequences of match-
ing the various regions. For the past three decades, the primary
model under consideration has been that of George & Capp (1),
who noted the absence of a constant stress layer (due to gravity).
They then postulated the existence of a buoyant sublayer within
the constant heat flux layer in which the buoyancy flux from the
wall, gBF,, was the crucial parameter, where g is the gravitational
acceleration, [ is coefficient of thermal expansion and F, is the
wall heat flux divided by density and specific heat. Using this as-
sumption they proposed inner and outer scales for velocity to be
(gBF,00)'/* and (gBF,h)'/? respectively, where o is the thermal
diffusivity and £ is the channel half-width. The theory has gen-
erally been found to be in excellent agreement with numerous
experimental studies for the temperature and heat transfer rela-
tions; in particular the temperature varies inversely with the cube
root of distance from wall in the buoyant sublayer, and the Nus-
selt number is proportional to the cube of the Rayleigh number
to within a factor dependent on the Prandtl number. The velocity
profile scaling, however, has long been recognized as problem-
atical, especially with more recent experiments and DNS. Al-
though the outer velocity scaling matched the experimental re-
sults, the inner scaling and cube root velocity profile in the buoy-
ant sublayer seemed to show systematic departures from the the-
ory which could not be explained. Experimental data (2) and
numerical simulation (3; 4; 5) of the natural convection inside a
differentially heated channel also shows that the mean profiles of
velocity and temperature do not follow the suggested asymptotic
behavior in channel flow. Also, the Reynolds shear stresses at the
center of the channel do not go to zero, unlike the flat plate with
semi-infinite fluid beside it. Therefore the momentum integral
equation across the channel will be seen to depend on the values
of the shear stress and viscous stress at the center of channel.

This work reconsiders the George & Capp (1) similarity
solution methodology and shows their result to be inconsistent
with the momentum integral in natural convection channel flow.
The proper inner scaling velocity is in fact determined by outer
parameters and the momentum integral to be u; = (gpF,h)'/3.
Since the inner and outer velocity profiles are now scaled by the
same parameter, the velocity profile in buoyant sublayer must be
logarithmic. The temperature and heat transfer laws are the same
as before.

GOVERNING EQUATIONS
An infinite vertical channel with differentially heated walls
is shown in figure 1. The distance between the two walls is 2k
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Figure 1. SCHEMATIC OF FULLY DEVELOPED TURBULENT BOUND-
ARY LAYER INSIDE AN INFINITE VERTICAL CHANNEL WITH DIFFER-
ENTIALLY HEATED WALLS.

and the temperature difference is AT,,. The kinematic viscosity
v, the thermal diffusivity o and the thermal expansion coefficient
B are the fluid properties and considered to be constant. A uni-
form and steady heat flux is applied across the walls. Assuming
the flow to be homogeneous in the streamwise direction, x, and
the channel to be of infinite extent, both the wall temperature and
wall heat flux must independent of x . The Boussinesq approx-
imation will be assumed to be valid, so density differences can
be neglected except as they affect the gravitational term. Further,
the temperature difference between the two sides is considered
to be small enough that we can assume (at least for the sake of
argument here) that density and temperature differences are pro-
portional; i.e., Ap/p, = —BAT.

We are herein interested only in fully-developed channel
flow, so the streamwise gradient of all properties is assumed to
be identically zero, so that all the mean convection terms become
identically zero. Also the velocity and temperature profiles are
antisymmetric across the channel, which gives the boundary con-
dition of zero values at the centerline of the channel. By contrast,
the derivatives of these profiles and Reynolds stresses are sym-
metrical with respect to the center-line. Also the y-momentum
equation of the flow can be used to eliminate the pressure in the
x-momentum equation. For the limit of very high Reynolds num-
ber, all these assumptions reduce the equations of motion and
energy for entire channel to:

o ( dU
0=35 <V8yuv> +gB(T — Trer) (1)
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and

o ( o _

Capital letters refer to mean values while lower case letters are
used for fluctuating quantities. These equations are valid both
for near wall and the core region of the flow, but the viscous
terms and conduction terms in the core (or outer) region of the
flow have less effect (and no effect at all in the limit of infinite
Reynolds number).

The energy (or temperature) equation 2 can be integrated
across the channel width (from wall to center-line) to yield

_aT
wiral = —p 3)

dy pCp

where g, is the wall heat flux and C, is the specific heat at
constant pressure. Equation 3 shows that the entire channel
boundary layer to be a constant heat flux layer and the total
kinematic heat flux, F, across the layer is independent of
distance from the wall (c.f., George and Capp (1)).

The momentum equation 1 can be similarly integrated
across the channel to give momentum integral equation as:

U 4 oU
—W+v—+/ 8B(T — Trep)dy =v=- @)
ay 0 8

o™
'y 1y=0 y=0

We can use the wall shear stress, T,, to define the friction
velocity, u, by:

oU
2 _ —
W= /p=var| 5)

Also, the kinematic boundary condition at the wall implies:

o =0. 6)

—uv

Using these conditions and choosing the reference point for the
temperature to be the centerline, say T¢z, equation 4 can be
rewritten as:

d h
;- (vU fwl ) = / gB(T —Ter)dy (1)
—=h y=h 0

Clearly as first noted by George and Capp (1), unlike forced flow,
natural convection flow does not have a constant stress layer be-
cause of the buoyancy term in the momentum equation. Thus

unlike forced flow in channels or pipes, it would appear that the
wall shear stress cannot be imposed as a constant parameter at all
distances from the wall.

Note that in general, all of the values at the left-hand side
of the equation are constant (i.e., x-independent and non-zero).
Thus we can define:

oU
3 b

—uv

®)

2
y=h

Although we might expect the viscous term to be negligible in
the limit of infinite Reynolds (or Peclet) number, the Reynolds
stress terms is most probably not due to the possible presence of
highly correlated motions (or coherent structures) that span the
channel. This undoubtedly accounts for the observations of Betts
& Bokhari (2) and also numerical simulations of the natural con-
vection channel flow (3) where the centerline Reynolds stress is
quite significant. It also represents an important difference from
the natural convection boundary layer next to a vertical surface
in which the Reynolds stress vanishes at large distances from the
wall. Recognition of this difference is part of the purpose of this
paper. And it raises interesting questions about why some recent
LES simulations of low aspect ratio channels seem to suggest
that the Reynolds shear stress vanishes even in channels (e.g.,

(6)).

INNER AND OUTER SCALING
The Temperature Profile

George and Capp (1) argued that natural convection chan-
nel flow at high turbulence Reynolds numbers should in fact be
viewed as a classical inner-outer problem, with viscosity and
thermal conductivity dominating the inner (or near wall) layer
but having no effect on the core region. A direct consequence
of this is that the viscous and conduction terms in the equations
above are negligible in the core region. By contrast, the com-
bination gf3, and the kinematic heat flux, F,, were important ev-
erywhere. Thus the very near wall region could be completely
characterized by gB, F,, o and v. Note that equation of the near
wall region do not really know about the channel width, A, nor do
they know the net temperature difference AT,, = T,, — T,; (since
at least a small part of it occurs across the outer layer)!

The core region in the limit of infinite Reynolds number,
by contrast, knows only about the channel width, h, gf, and

I'The choice of inner scales is actually quite problematical. It can be argued
that AT, should be included, since it occurs explicitly in the momentum equa-
tion at the wall. Or it might be argued that since the temperature and heat flux
determine a length scale, these should be included and g ignored (c.f. Wosnik
and George (7), Wosnik et al. (8). Unfortunately this does not seem to lead to
the expected heat transfer law, perhaps because A7, and F, are not independent
parameters, one being determined if the other is specified. Hence we have opted
herein for the original George & Capp (1) formulation.
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F,, the latter because of the constancy of the kinematic heat
flux across the flow. It followed immediately on dimensional
grounds that the only choice for an outer temperature scale was
T, = (gBF(,h)l/ 3. And on similar grounds, the inner temperature

scale was chosen to be 7} = F;'*/(ga)!/# (although v could
have been used instead of o, implying a residual Prandtl num-
ber dependence of the inner layer). The obvious choice of length
scale for the core region was the channel half-width, 4, while
the inner length scale was chosen on dimensional grounds as
Ni = [0®/(gBF,)]'/*. Note that the latter could have equally
been chosen as 1;, = [v3/(gBF,)]'/4, but o was preferred on ex-
perimental grounds since it varies with v in gases, and has sig-
nificantly less dependence on temperature in liquids.

A major contribution of George & Capp (1) was the recog-
nition that there must exist a layer in between the inner and outer
layers, the so-called buoyant sublayer, in which both the thermal
diffusivity and kinematic viscosity could be ignored, as well as
the outer length scale, A. It follows on dimensional grounds alone
that dT /dy = [FZ'* /(gB)"/*]y~*/3. This layer was presumed to
lie between the molecular viscosity/diffusivity dominated region
very close to the wall (the viscous and conductive sublayers re-
spectively) and the peak in the mean velocity profile.

Integration across the inner layer leads immediately to two
equivalent forms for the temperature in the buoyant sublayer, one
in inner variables and one in outer variables, both of which are
equally valid if the whole idea of the overlap region is sound. For
the inner profile the result is:

T_Tw 2|:y
Ty

~1/3
= - A(P 9
mj AP ©)

where the Prandtl number dependent additive constant reflects
the Prandtl number dependence of the inner layer. By contrast,
integration from the centerline yields the same profile in outer
variables as:

+Ai (10)

where A is expected to be universal, or at most dependent on the
nature of the core flow (i.e., coherent versus incoherent motions).

Such a buoyant sublayer region can be expected to exist only
when there exists a region for which y << & and simultaneously
y >> 1y and y >> 1y,. Thus a necessary condition for the ex-
istence of a buoyant sublayer is that the ratio of inner to outer
length scales be much greater than unity; i.e., H*1 /4 >> 1 and

Gr}/4 >> 1 since:

h apFh*] " 1/4
4 1/4
Iv N

where H, and G, are defined respectively by:

gBF.h*

H =5 (13)
F,h*

Gr. = &l (14)

Thus unlike forced boundary layers where the local
Reynolds number 8" = u,.8/v is the ratio of length scales, here
it is the 1/4-root of H, (or the corresponding Raleigh, Ra, or
Grashof, Gr,, numbers). Many have concluded that values of H,
of order 10% are sufficient to achieve an asymptotic state, but in
fact it is clear from equations 11 and 12 that much higher val-
ues of these are necessary to achieve even a modest separation of
scales. (E.g., typically h/n;, or h/m;, greater than 10 would be
considered to be an absolute minimum for any asymptotic theory
to even begin to be valid.) Unfortunately there is very little ex-
perimental data and no DNS data satisfying these conditions; in
fact, recent attempts have typically been 4/, < 10 and some-
times even as low as 3 - 4 (e.g., refs. (2; 3)). So in spite of the
advances of experimental and computational techniques over the
past few decades, there has been (to the best of our knowledge)
virtually nothing to contribute to our understanding of a high H-
number buoyant sublayer, or the applicability of the theoretical
deductions from it.

The Heat Transfer Law
An immediate consequence from matching equations 9 and
10 is that the asymptotic heat transfer law given by:

Nu ' = —APr) + A (15)
So the corresponding heat transfer law is given by:
Nu=—APr)H* +A,H® (16)

Clearly A(Pr) < 0 is the only physically realistic possibility.
In the limit as H, — oo, the first term dominates so the
asymptotic heat transfer law is given by:
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Nu=—A(Pr)H* (17)

But this should only be expected for very large H,; i.e., when
Hl/é >>1(H, > 108 or greater), because of the 1/6th root de-
pendence of the additive term.

Note that the heat transfer ‘law’ could equally well be rewrit-
ten in the more familiar form as:

Nu=[-A(Pr)]*PH'? (18)

where H is defined using the temperature difference AT,, as:

_ gBATR?

H e

19)

The heat transfer result of George & Capp (1) was partic-
ularly significant, since it accorded with the long-standing ob-
servation of Arpaci and others that the heat transfer in channels
appeared to be independent of the channel width (Note the same
factor of & on both sides of equations 18 and 19.) The slightly
varying values of the coefficient can probably be attributed to
the absence of data at high enough values of H,, and fitting the
heat transfer law without the extra Hj /% term. Surprisingly there
seems to have been little effort over the past few decades to re-
late the parameters in these equations to the actual temperature
profiles as the theory suggests. Perhaps this is because of the
concentration of effort on relatively low H-number flows.

THE MEAN VELOCITY PROFILE
The Problematical George & Capp Inner Scaling

The second major point of this paper is that the George &
Capp (1) analysis of the mean velocity profile for the inner region
is incorrect. While the results for the temperature and heat trans-
fer laws above have been reasonably well-received by the re-
search community (recent low H-number experiments and DNS
notwithstanding), the George & Capp (1) results for the mean
velocity profile have always been problematical. First the mean
velocity near the wall does not seem to scale very universally
with their proposed inner velocity scale, (gBF, ) 1/4_Second the
predicted cube root region corresponding to the buoyant sublayer
does not seem to be the best fit to the data.

First let us note that almost all recent investigations (includ-
ing DNS and LES) conclude that it is the friction velocity, u,, and
the corresponding viscous length scale, v/u., which correctly

scales the velocity profile closest to the wall. In fact, this is not
a conclusion but a necessity. Since u, is defined from the wall
shear stress, which is turn proportional to the mean velocity gra-
dient at the wall, the only way scaling the mean velocity profile
there with u, and v would NOT work is if the experiments or
computations were incorrect.’

So if scaling by u, and v is not the right question, what is?
The real problem is how to relate these parameters to the remain-
ing parameters of the flow! In other words, what is the friction
law in terms of the boundary conditions and parameters of the
problem? Clearly the friction law proposed by George & Capp
(1) is incorrect, at least based on the data, and in fact in principle
as well. This can be demonstrated using the momentum integral
equation 7 as shown below.

First split the temperature integral in the buoyant sublayer in
inner variables at y/m;; = A so it can be written in two parts as:

U > /A T—T, v
2 w

u, — | v— —uv = gPT1; d—
( 3y |y=n = gBTiMe A T n

1
+ Th/
gBT, An/hgﬁ 7 9%

In the limit as H, — oo, the two integrals are simply numbers,
say I and II. Moreover, from the definitions above it follows
that Ty = (g[3F0Oc)1/2 = u% and T,h = (g[il”oh)z/3 = u2, which
are in fact just the squares of the inner and outer velocity scales
proposed by George & Capp (1). Thus the integral of equation 20
can be rewritten as:

v,
“ (Vay y=h ‘”V‘y;) = Lujge+11 e 1)

Dividing by u%GC and using the definitions yields the friction law
as:

2
1 oU
= 2(v’ ~ ] ){1+11Hj/6} (22)
Uige  Uige \ O hy=h y=h

But the right-hand side blows up in the limit as H, — oo. Thus
regardless of the problems presented by the second term on the
right-hand-side, the George & Capp (1) choice of an inner scal-
ing velocity is clearly not correct. In particular the dominant

2The same observation can be made for the mean temperature profile near the
wall as well: it must by definition collapse when normalized using AT,, if the
length scale is defined as aAT;, /F,. So collapse in these variables only implies
that the experimental measurements or computations are correct in this region.
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contribution to momentum integral is not near the wall, but far
from the wall. Hence the velocity near the wall is not a conse-
quence primarily of the local buoyancy there, but is in fact largely
a flow driven from the outside by the effects of buoyancy there.
This is actually somewhat counterintuitive, because almost all of
the temperature profile occurs near the wall; but it is the residual
outer temperature profile that dominates the integral because of
the much greater distance over which it must be integrated.>

The Friction Law

In fact it appears that the proper choice for an inner scaling
velocity parameter should have been the outer scaling velocity,
at least in the limit as H, — oo and including the extra terms from
the centerline. To see this, divide equation 21 by u2 = (gBF,h)?/>
to obtain:

w2 1 [ U _ ~1/6
. (Vay’y:h _w y=h> ~lmeen) @3

It is easy to see that this indeed slowly approaches a constant,
11, in the limit as H, — oo. Thus, as noted above the friction is
primarily determined by the outer velocity scaling, and the inner
velocity would be properly chosen proportional to it.

Implications for The Velocity Profile In The Buoyant
Sublayer

Thus it appears that at least in the limit as H, — oo, the inner
and outer velocity scales are the same; i.e., u, o< (gBF,h) 13 Ttis
well-known (c.f., George and Castillo (9)) that if the inner and
outer velocity scales are the same, an immediate consequence is
that the mean velocity profile in the overlap region must be log-
arithmic. Thus an immediate (and somewhat surprising) conclu-
sion of the above is that the mean velocity profile in the overlap
region should vary logarithmically. Thus in inner variables:

U Vs
— =K; In—+B(P 24

u* 1in—=+ (Pr) (24)
where B(Pr) may vary from fluid to fluid. In outer variables, the
corresponding mean velocity profile would be:

U - Us y
G " @R KRy 9

3Interestingly, the George & Capp (1) mistake is similar to that often made
for forced boundary layers where it is argued that most of the energy dissipation
is near the wall, when in fact the opposite is true. Even though indeed the peak in
the dissipation is very near the wall, the integral of the dissipation is dominated
by the overlap region and outer flow.

where B; should be universal only if the coherent structures of
the core region are the same. Clearly this should be a matter for
investigation.

Note that it might be tempting to associate K; with the usual
von Karman parameter, 1/x. As noted by George (10), there
is really no reason to believe this parameter to be the same for
different flows, and most certainly not for this one for which the
constant stress layer does not exist.

SUMMARY AND CONCLUSION

A new theory has been proposed for the velocity profiles of
a turbulent natural convection boundary layer in a differentially
heated vertical channel. The mean velocity and temperature scal-
ing parameters for inner and outer region of the flow have been
derived using local similarity solutions at the limit of infinite lo-
cal H-number. The inner and outer scaling parameters for the
mean temperature profile is the same as suggested by George &
Capp (1), as is the outer scale for the mean velocity. The inner
velocity scale and friction law, however, are quite different. In
particular both the inner and outer velocity scales are the same in
the limit; and given in the limit of infinite H, by u, o< (gBF,h)"/3.
An immediate consequence is that the mean velocity profile in
the buoyant sublayer is logarithmic. The shear stress is primar-
ily determined by the buoyancy integral and the value of the to-
tal stress at the centerline, neither of which can be assumed to
be zero. The latter represents a significant difference between
channel flow and the natural convection boundary layer next to a
vertical surface, and opens the possibility for the dependence of
the flow on the nature of the turbulence in the core region; i.e.,
coherent structures versus incoherent motions.
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