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The far field of an incompressible swirling jet has been studied using two-component laser Doppler anemometry.

Three pairs of symmetric injectors were used to produce weak-to-moderate swirling jets. Velocity profiles of the

mean and fluctuating streamwise and azimuthal velocity components were measured in jets with two swirl numbers

(S� 0:15 and 0.25) at axial locations up to 50 jet exit diameters. The velocity and turbulence intensity profiles,

centerline decay, and growth rates for the various swirling jets have been compared with those obtained in the same

facility without swirl (S� 0). Like the previous observations for the near jet, there was no observable effect on the

properly scaled far jet for the S� 0:15 case. The results were virtually identical to the nonswirling jet. For the

S� 0:25 case, the only statistically significant effect was a shift in the virtual origin (from x=D� � 0:75 to�2:9). The

recent predictions of equilibrium similarity theory were found to be in excellent agreement with the experimental

results. In particular, the mean azimuthal component of velocity falls off as the inverse square of the downstream

distance. By contrast, the mean streamwise velocity and turbulence intensities fall off with the inverse of the

downstreamdistance.As a consequence, themean azimuthal equation uncouples from the rest, and so the asymptotic

swirling jet behaves like the nonswirling jet.

Nomenclature

A, Bu, C = growth rate constants for self-preserving
axisymmetric jet

D = nozzle exit diameter
f = normalized axial velocity function in the

momentum integral
G� = axial component of angular momentum flux
g = normalized azimuthal velocity function in the

momentum integral
L = axial length scale
Mx = axial momentum flux
mx = mass flux in the axial direction
Neff = number of effectively independent samples
R = nozzle exit radius
Re = Reynolds number based on the jet diameter
S = swirl number, G�=MxR
U, V,W = mean axial, radial, and tangential velocity

components in the flow
U0 = average exit axial velocity
u, v, w = fluctuating axial radial and azimuthal velocity

component
x, r, � = cylindrical coordinate system
xo = virtual origin for self-preserving axisymmetric jet
� = thermal diffusivity
� = volumetric thermal expansion coefficient
�1=2 = jet half-width

�2 N
= relative statistical error of estimator  N

"� = viscous dissipation
� = normalized radial coordinate in the momentum

integral

Subscripts

c = centerline
max = maximum value
o = jet, nozzle exit condition
rms = root mean square value
1 = freestream or ambient conditions
� = scaled property

I. Introduction

T URBULENT jets have continued to interest researchers for
many years, both because of their numerous applications and

their importance to our fundamental understanding of turbulence. Jet
flows with swirl are of particular interest, especially in combustion,
and many experimental and theoretical studies have tried to address
the questions of the stability and dependency on the initial condition
of jet flow. But even the nonswirling axisymmetric jet has proven to
be a considerable challenge to researchers, and only recently has the
role of upstream conditions and downstream similarity been fully
recognized [1–3]. Only with this recognition has it become possible
to sort out the apparently conflicting results for even the single-point
turbulence statistics [4,5].

Swirling jets add to the interest of this class of flows because swirl
can be considered as a significant change in the jet flow’s initial
conditions. Farokhi et al. [6] and Gilchrist and Naughton [7]
investigated the effect of swirl on the near-field flow of an
axisymmetric jet and showed that moderate swirl (below vortex
breakdown) enhances the growth rate and mixing, compared with
those of a nonswirling jet. The latter presented evidence that the
enhanced growth rates persisted to 20 diameters downstream of the
jet exit, even though the swirl had decayed to a point at which it was
barely detectable [7]. Such changes in the flow characteristics in the
near field would suggest that some turbulence structure of the
swirling jet must persist far downstream.
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Although swirling jets have been studied for a long time, detailed
measurements of the far-field flow under carefully controlled
conditions are lacking. The objective of the present study is to make
such measurements in the jet far field using laser Doppler
anemometry (LDA) to complement our existing knowledge of these
flows. The LDA data acquired here are used to assess the
characteristics of the swirling jet in the far field and to compare these
results with those in the near field. In contrast to the earlier studies of
the near field, the present results for the far jet show a linear growth
rate for the far field of swirling jet that is the same as for the
nonswirling jet. Moreover, if the statistical moments are properly
scaled using the rates at which momentum and mass are added at the
source, there appears to be no effect of swirl in the far field other than
to move the virtual origin of the flow. The overall findings
substantiate the theoretical analysis of Ewing [8], who used
equilibrium similarity considerations to argue that the effects of swirl
on the asymptotic jet should be negligible.

In the following sections, the implications of the governing
equations and the similarity results are reviewed. It is argued that the
swirl introduces another length scale into the problem, with the
consequence that the swirl number is a ratio of length scales. Next,
the experimental facility and experiments are described and the data
are presented. Finally, the implications of the similarity analysis on
the results are considered.

II. Implications of the Governing Equations

A. Basic Scaling Parameters

The basic equations have been carefully reconsidered recently by
Ewing [8] and Shiri [9]. Of primary concern for this paper are the two
fundamental integrals of the Reynolds-averaged Navier–Stokes
equations for the fully developed asymptotic turbulent swirling jet.
The first isMx, which is the total rate of transfer of kinematic linear
momentum across any downstream plane (say, at location x). At high
Reynolds numbers and in the absence of an external flow, this
reduces to [8]

Mx � 2�

Z 1
0

�
U2 �W

2

2
� hu2i � hv

2i � hw2i
2

�
r dr (1)

Moreover, because there are no net forces other than pressure
[which is accounted for in Eq. (1)] acting on any control volume
containing this plane and the exit plane of the jet, Mx must remain
equal to its source valueMo at all downstream positions x [5].

The second fundamental parameter G� is that rate at which
kinematic angular momentum is swept across any downstream
plane. From integration of the angular momentum equation with the
same preceding assumptions, this reduces to [8]

G� � 2�

Z 1
0

�UW � huwi�r2 dr (2)

Like the linearmomentum,G� should remain constant at its source
value Go, because in an infinite environment, there are no torques
acting on any control volume containing the source plane and any
plane that cuts perpendicularly through the jet axis.

B. Effect of Mass Addition at the Source

A third integral provides the rate at which volume (kinematic
mass) is swept across any downstream plane

mx � 2�

Z 1
0

Ur dr (3)

UnlikeMx andG�,mx is not constant at the rate at which kinematic
mass is being added at the source, mo, because mass is being
continually entrained by the jet. Nonetheless, in nonswirling jets,mo

(together with Mo) sets the virtual origin of the jet [1], because it
imposes a length scale D� at the exit plane. D� is the effective
diameter defined by

D� �

�������
m2
o

Mo

s
(4)

In fact, it is the ratio of the axial distance x to this length scale that
measures the evolution of the near jet into the far jet. In particular, it is
only when x� D� that the asymptotic free jet can be reached. Or,
said another way, only when the mass entrained by the turbulence
overwhelms that added at the source close the jet is the asymptotic
state attained.

The addition of mass at the source also introduces a velocity scale
U� into the problem. U� is defined by

U� �
M0

m0

(5)

BothD� andU� can simply be replaced by the exit diameterD and
exit velocityUo if (and only if) the exit profile has top-hat form (i.e.,
uniform velocity across the exit plane). This is easy to see, because in
the top-hat case,

D� �
����
�
p

2
D (6)

U� �U0 (7)

Much confusion in the history of the study of turbulent jets has
resulted from the failure to recognize the importance of usingD� and
U� if the exit profile is not a top hat. And often, the alleged effects of
source conditions can be eliminated with proper scaling. As will be
shown subsequently, proper scaling becomes even more important
when swirl is introduced, because the effect ofGo is to introduce yet
another length scale into the problem.

C. Role of Swirl

It is easy to show that the addition of both linear and angular
momentum imposes another length scale, L�, onto the flow, even
without mass addition at the source (i.e., point sources of linear and
angular momentum). L� can be defined as

L� �
Go
Mo

(8)

It is immediately obvious that if mass is also added, then another
length-scale ratio, the so-called swirl number, can be defined as

S� �
Go
MoD�

����
�
p

(9)

Note that the factor of
����
�
p

has been inserted into Eq. (9) to make it
reduce to the usual definition for top-hat exit profiles (which seldom
can be achieved when swirl is present); that is,

S� 2Go
MoD

� L�
D�

����
�
p

(10)

Clearly we should expect L� to replace D� as the length scale
governing downstream behavior only when the swirl number is large
(in much the same manner that x replacesD� for the far nonswirling
jet). Because (as will be reviewed subsequently) the effect of angular
momentum on the flow diminishes as the flow evolves downstream,
at low swirl numbers,L�will provide an indication of ameasure of, at
most, a change in the virtual origin of the asymptotic swirling jet.

D. Equilibrium Similarity Implications for the Far Swirling Jet

The similarity of the asymptotic swirling axisymmetric jet has
recently been reconsidered [8,9]. The results can be summarized as
follows.

1) The profiles of mean streamwise velocity and turbulence
normal stresses can be described by single length and velocity scales.
The convenient choices (and those used to scale the data in this paper)
are the centerline velocity Uc and the velocity half-width �1=2
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(defined as the distance from the centerline to the point at which the
mean velocity falls to half its centerline value, shown in Fig. 1). Thus,
the normalized radial coordinate is �� r=�1=2, exactly like the
nonswirling jet.

2) The spreading rate of the asymptotic jet is linear; that is,

�1=2 � A�x � xo	 (11)

where xo is a virtual origin that can depend on the Reynolds number
and swirl number. The coefficient A (or d�1=2=dx) can (in principle,
at least) depend on the jet exit conditions. Both sides can be
normalized byD�, but normalization byD introduces a dependence
on the exit profile (which can be nonuniform with swirl). Note that if
done rigorously, the result of Eq. (11) is not particularly
straightforward to obtain, but follows from a detailed consideration
of the Reynolds shear stress equations and the behavior of the
dissipation [1,5].

3) The Reynolds shear stress huwi scales with U2
c d�1=2=dx. The

linear growth of the far jet implied byEq. (11)means that the factor of
d�1=2=dx is constant, and so these moments scale the same as the
turbulence intensities. However, it should be noted that the depen-
dence of the coefficient on upstream conditions means that scaled
profiles may differ from experiment to experiment.

4) From the conservation of linear momentum [Eq. (1)], it follows
immediately that the mean centerline velocity falls asymptotically
inversely with increasing �1=2. Although this is well known [1,5], it is
instructive to briefly review the reasons, because similar
considerations apply to the angular momentum considered
subsequently. First, ignore for the moment the swirl and turbulence
contributions, and substitute the similarity profile for the mean
velocity into Eq. (1) to obtain

Mx � �U2
c�

2
1=2�2�

Z 1
0

f2� d� (12)

where �� r=�1=2 and f�U=Uc. Because the integrand depends
only on the similarity variable � that is integrated over the entire
domain, all of the x dependence on the right-hand side is in the
square-bracketed term. But the left-hand side is equal to a constant
becauseMx �Mo. Therefore, Uc must be inversely proportional to
�1=2; that is,

Uc / ��11=2 (13)

Inclusion of the turbulence terms only modifies the constant of
proportionality, because they too can be shown to scale withU2

c . The
swirl contribution (from the radial pressure gradient), W2=2 will be
shown subsequently to vanish downstream relative to the other

terms, and so the effect of its omission decreases with distance.
Combining Eqs. (12) and (13) with the linear growth rate of Eq. (11)
implies that

Uc � Bu
M1=2
o

�x � xo	
(14)

where B is a constant. In fact, B and A cannot be independent, but
must also be linked to each other and the shape of the profile through
Eq. (1). Alternatively, the centerline velocity can be normalized
by U�:

U�
Uc
� 1

Bu

�
x

D�
� x0
D�

�
(15)

Note that Uo can be also used if the exit profile is top hat, but if it is
not, this introduces an artificial dependence on jet exit conditions.

5) The mean azimuthal (or swirl) velocity component scales with
its maximum value at any cross section, Wmax, and falls off as the
inverse square of �1=2 (or x � xo). This is a surprising result
(originally shown by Ewing [8]), but can be seen immediately by
substituting similarity profiles for the mean velocity [say, U=Uc �
f��	 and W=Wmax � g��	] into the angular momentum integral of
Eq. (2). Because huwi is negligible, the result is

Gx � �UcWmax�
3
1=2�2�

Z 1
0

fg�2 d� (16)

The integral in similarity variables can, at most, depend on the exit
conditions and is independent of x. Also, the left-hand side is
constant because conservation of angular momentum requires that
Gx �Go. Using Eq. (14) implies

Wmax / �Uc�31=2��1 / ��1=2��2 (17)

It follows immediately fromEq. (11) that the swirl velocityWmax falls
off inversely with the square of the downstream distance. Combining
Eq. (16) with Eqs. (11) and (14) yields

Wmax � C
Go

M1=2
o �x � xo	2

(18)

where C is a constant (at most, dependent on the jet exit conditions).
Note that just asA andB are linked by the linear momentum integral,
C is linked to both by the angular momentum integral.

Because the mean velocity falls off only inversely with distance,
but the swirl falls off as inversely with the square of distance, the
swirl should appear to die off. This is exactly what was noted in the

Fig. 1 Schematic of the early development of a jet.
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experiments of Gilchrist and Naughton [7]: the swirl dies off
downstream. Moreover, as first pointed out by Ewing [8], this means
that the asymptotic swirling jet should behave exactly as a
nonswirling jet with, at most, different values of A, B, and C that
could in turn depend only on the jet exit conditions. A particular goal
of the experiments described subsequently was to test if and how
these things happen.

Note that the fact that the swirl appears to die out relative to the
streamwise flow does not mean it is gone: angular momentum is still
being conserved, it is just being spread over a larger area. As a
consequence, the swirl (or azimuthalmean equation) uncouples itself
and plays no role in the evolution of the streamwise and radial
equations, which behave as though the jet were nonswirling.

III. Experimental Setup

A. Jet Facility

The free jet used in the experiment is shown in Fig. 2. It was a
preexisting Turbulence Research Laboratory facility [5] that was
modified to produce both axial and tangential velocity at the exit.
Two contractions were used to reach the jet exit diameter of 25.4mm
(1 in.). One blower was used to supply axial flow, and six 15-mm
injectors connected to a different blower were used to add the
swirling component independently. The resulting swirling jets had a
solid-body-like swirl distribution at the nozzle exit. As noted by
Hussein et al. [5] (see, especially, the Appendix), there can be
significant differences between a jet in a confined or semiconfined
enclosure and one in an infinite environment, because of the
recirculating flow entrained by the jet. The 10 
 3:5 
 3:5 m
enclosure was designed to minimize the backflow momentum to at
least 100 diameters and also to provide uniform spatial seeding for
the LDA measurement. A closed-loop circulation was achieved by
placing the blower inlet inside the tent, but far from the jet exit.

B. Laser Doppler Anemometry Method

A two-component laser Doppler anemometry system (Dantec)
was used in a backscatter arrangement for the present study. Theflow
was seeded with an aerosol, and bursts produced by particles passing
through the control volume were analyzed by Dantec burst spectrum
analyzers. The sampling rate of the LDA system was not fixed, but
rather a burst mode was used in which all particles were sampled as
they arrived. The particles produced by a Safex fog generator that
generates a dense white fog by evaporation and condensation of a

water-based fog liquid. The mean droplet size was around 1 	m and
a closed-loop circulation of air kept the particle density constant
during the measurement. The particle time constant was estimated to
be approximately 2:3 	s, which can be compared with the smallest
Kolmogorov microtime (at x=D� 10) estimated as 160 	s, using
the results of Hussein et al. [5]. The most notable effect of the
additional swirl velocity component was to reduce the particle
concentration near the jet exit at the centerline jet, compared with the
nonswirling jet.

C. Statistical Uncertainty

All statistical moments were computed using the residence time
weighting [10,11] as employed by Hussein et al. [5]. A fixed
sampling period of 200 swas used, and inmost locations, the number
of samples was at least 40,000 at each point in high-velocity regions
and more than 4000 at regions with a velocity less than 1 m/s. The
largest estimate of the integral time was 0.25 s, and so the minimum
number of effectively independent samples was 400. Thus, the
relative statistical error can be estimated as [12]

�2 N �
1

Neff

var� N � h i	
h i2 (19)

where  is the statistical quantity being estimated and  N is the
estimator usingN independent estimates. The relative statistical error
for the mean streamwise velocityU is estimated to be less than 2.5%
(high-velocity regions at the far field of the jet) and, at most, 7% (at
low-velocity regions of the jet) for the second-moment statistics.
Most problematic for these measurements was the mean swirl
velocityW, for which Eq. (19) reduces to

�2WN
� 1

Neff

hw2i
W2

(20)

The mean square azimuthal velocity hw2i is about equal to the
other turbulence normal stresses and scales withU2

c , but the expected
value of W drops rapidly with increasing x (as previously noted).
Therefore, even if great care is taken in aligning the optical system to
enable accurate measurement of W, statistical errors greatly
complicate its determination. At the farthest downstream location,
the relative statistical error of the measurement of Wmax was
estimated to be 23%. Note that similar problems occur for the
measurement of the radial component, but these can be overcome by
computing V from U using the continuity equation (at least if
similarity is established).

D. Test Cases

Surveys were made at several locations downstream (x=D� 5,
10, 20, 25, 30, 35, 40, and 50) and also at the jet exit. The latter
measurements were necessary to quantify the rates at which mass,
momentum, and angular momentum were added to the flow. These
were crucial in scaling the data and in establishing the swirl number
of each for the flow. Aswill be illustrated subsequently, the exit axial
velocity profiles for the two flows differed slightly from the near top
hat of the nonswirling jet. As a consequence, a simple scaling with
the source velocity was neither possible nor desirable.

Mean velocities in the axial and azimuthal directions at the exit of
the jet were measured to calculate the swirl strength and Reynolds
number of the jetflow.A list of the test cases is provided in Table 1, in
which each case has been listed by its swirl strength S. The axial and
tangential velocities have been adjusted to produce three cases of
flow at the same Reynolds number value of Re� 45; 000.

Fig. 2 Photograph of the jet nozzle and exit flow using smoke for

visualization.

Table 1 Test cases for the present study

Case number S Uc;0, m=s Wmax;0, m=s U�, m=s D�, mm Mo mo S�

Case 1 0 26.3 0 25.9 22.7 0.347 0.0268 0
Case 2 0.15 27 6.7 24.8 22.9 0.323 0.0260 0.145
Case 3 0.25 28.4 10 22.9 23.5 0.289 0.0252 0.239
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IV. Results

A. Exit Velocity Profiles

The exit velocity profiles for the three cases are shown in Fig. 3.
The nonswirling jet has a top-hat axial mean velocity profile at the jet
exit. But the swirling jet profiles all exhibit profiles with a peak axial
velocity on the centerline. Also, the magnitude of the centerline
velocity increases with increasing swirl number. Similar axial
profiles have been observed by Gilchrist and Naughton [7] and
Farokhi et al. [6]. Panda andMcLaughlin [13] also saw this peak and
provided an explanation based on vortex tubes becoming spirals.

B. Mean Velocity Profiles in the Far Jet

It is clear from Fig. 3 that the velocity profiles for the swirling jets
are not top-hat profiles, nor is the centerline velocity at the exit
representative of the exit flow. Therefore, to have a reliable
comparison between three different cases, it is necessary to scale the
far jet data with the D� and U� [defined by Eqs. (4) and (5),
respectively]. Figure 4 shows the mean axial velocity profiles for all
three cases (S� 0, 0.15, and 0.25) and all downstream positions
(x=D� � 20, 25, 30, 35, 40, and 50). The mean velocity has been
normalized by its centerline value Uc, and the radial coordinate has
been normalized by the jet half-width �1=2 (determined as described
in the next section). In all three cases, the normalized velocities show
collapse of the data for all cross sections in the far-field region of the
jet. Moreover, there is very little (if any) difference from one set of
data to the next. Both of these observations are consistent with the
theory presented earlier that the far asymptotic swirling jet should
appear to be independent of swirl.

C. Variation of Uc and �1=2 with x

The jet velocity half-width is defined as the distance between the
centerline and the location where the axial velocity drops to half of
the centerline velocity. To calculate these values for each curve, the
following empirical jet profile was fitted to each profile [14]:

U

Uc
� sec h2

�
a
r

x

�
(21)

The results are shown in Fig. 5. The solid lines drawn on thefigure for
S� 0 and 0.15 are regression fits of Eq. (11) with both sides divided
by D�. For both, the slope of the curves A is 0.093 and the virtual
origin is at xo � 0:75. The value of A is very close to the value of
A� 0:94 in the nonswirling jet of Hussein et al. [5]. The virtual
origin, however, is closer to the exit plane, undoubtedly reflecting the
differences in the way the flows were generated.

The same regression fit to the S� 0:25 case yields 0.96 and�3:2,
respectively. Drawn instead on the S� 0:25 data is a solid line with
the same slope as for the S� 0 and 0.15 cases, which clearly
provides an almost equally goodfit to the data. This suggests strongly
that there is really no statistically significant difference in the
spreading rate for the three swirl values. There is most certainly,
however, a change in virtual origin, which even with the modified
curve fit has moved from the zero and low swirl values to xo ��2:9.
The fact that there are no differences at all when the flow has a low
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Fig. 3 Axial and tangential mean velocity profiles at the jet exit for three different swirl numbers.
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swirl number is consistent with the earlier observations that the swirl
number must exceed certain value (between S� 0:15 and 0.25) for
any effect to be noticed on the near field [7].

Themean streamwise centerline velocity is plotted as a function of
downstream location in Fig. 6 in the region where the jet can be
assumed to be self-preserving (x=D� > 20). The solid lines shown
are regression fits of Eq. (15). Because the local centerline velocity
appears in the denominator of the ordinate, the 1=�x � xo	 decay rate
is manifested as a straight line in the figure, the slope of which is
1=Bu. For the S� 0 and 0.15 jets, the values of Bu are nearly

identical at 6.87 and 6.86, respectively, and the virtual origins are the
same at xo � 0:75. (Note that the virtual origins are the same as for
the curvefits to �1=2, as theymust be.) These values are slightly higher
than the equivalent value fromHussein et al. [5] that, when converted
from D� to D, yields Bu � 6:55.

The regression fit to the data for the S� 0:25 case yields a
somewhat smaller value of Bu � 6:61 case, with a virtual origin of
�1:65. But as with the preceding half-width plots, a curve can be
drawn on this data with the same slope as the others; only the virtual
origin need be modified.

Fig. 5 Streamwise variation of the velocity profile half-width.
Fig. 6 Streamwise variation of centerline mean velocity.
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Fig. 7 Normalized plots of u0=Uc and w
0=Uc for all positions for different cases S� 0, 0.15, and 0.25.
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Therefore, the data as plotted behave according to the expected
linear functions of the axial distance. To within the statistical error,
there is no change on either the spreading rate or the rate at which the
centerline velocity decays, other than the change in virtual origin for
the S� 0:25 case. The fact that this shift occurs for S > 0:2 is
consistent with the changes observed by others [7,15].

Before leaving this section, it should be noted that all values of the
preceding chosen parameters satisfy the constraint imposed by the
similarity form of the linear momentum conservation expressed by
Eq. (13). For all three data sets, A2B2

u � 0:405� 1%. This, together
with the collapse of the profiles in similarity variables, is a necessary
consequence of momentum conservation.

D. Turbulence Quantities

Figure 7 shows the distribution of two components of turbulence
intensity available from this experiment: urms=Uc and wrms=Uc.
Unlike mean streamwise velocity profiles, in these profiles, there are
some variations in the core for swirling cases for x=D < 30, which
might indicate that the swirling cases are collapsing slower. For the
region further than x=D� 30, the second moments are consistent
with all previous jet measurements [4,5] and, in fact, the swirl seems
to have had no effect at all on the secondmoments. This is consistent
with the theoretical prediction of Ewing [8] and confirms the
equilibrium similarity approach, at least for the second moments.

Figure 8 plots the correlation coefficient between the two
fluctuating velocity components (i.e., huwi=urmswrms). This
correlation coefficient is zero to within the statistical and
measurement error. This is consistent with the expected azimuthal
homogeneity of the flow and confirms the passive role of the mean
equation forW.

V. Vanishing Swirl Velocity

As noted earlier, the measurement of W, the mean swirl
component of velocity, was the most difficult part of the experiment.
Because it is almost 2 orders of magnitude less than the streamwise
mean velocity at the locations of interest, even fractions-of-a-degree
difference in the alignment of the laser beams introduces significant
errors. Also, because of the very low value ofW comparedwith hw2i,
there is considerable scatter in the results, purely because of the
statistical error. Nonetheless, by trying to account for the small offset
near the origin and fairing curves through points near the local
maxima, it was possible to make an estimate ofWmax for each of the
two values of S.

From conservation of angular momentum and equilibrium
similarity it was argued thatWmax is described by Eq. (18) and falls
off with increasing x as 1=�x � xo	2. Because Uc [described by
Eq. (14)] falls as only 1=�x � xo	, then Uc=Wmax / �x � xo	. If it is
argued that all of the integrals in similarity variables have constant
values (because the normalized profiles are independent of x), the
values of C (and B) should be independent of swirl. It follows
immediately that the slope of Uc=Wmax should be proportional to
Mo=Go; that is,

Uc
Wmax

� C
B

Mo

Go
�x � xo	;�

C

B
S�1�

�
�x � xo	
D�

�
(22)

Thus, the higher the swirl number, the farther downstream for the
swirl to die off relative to the jet centerline velocity. Alternatively,
from the definition of L� in Eq. (8), it follows immediately that

Uc
Wmax

� B
C

�x � xo	
L�

(23)

Thus, the role of L� as a second length scale is clear: it measures the
distance for the swirl mean velocity to die off.

Figure 9 plotsUc=Wmax versus x=D�. The fitted lines in the figure
use the same virtual origins obtained for the S� 0:15 and 0.25 cases
(i.e., xo � 0:75 and �2:9, respectively). From the considerations of
the preceding paragraph, the ratio of the slopes of the two plots
should be equal to the ratio of the values of Go=Mo itself, which is

0.59. The individual slopes are 0.395 and 0.593, respectively, the
ratio of which is 0.66. Thus, in spite of the considerable scatter in the
measurement of W and the data presented in Fig. 9, the overall
inferences from them are, at the very least, consistent with Ewing’s
theory [8].

VI. Conclusions

The far field of an incompressible swirling jet was studied using
two-dimensional laser Doppler anemometry. Three pairs of sym-
metric injectors were used to produce weak-to-moderate swirling
jets. Velocity profiles of the mean and fluctuating streamwise and
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Fig. 8 Normalized plots of huwi=urmswrms for all positions for different

cases: a) S� 0, b) S� 0:15, and c) S� 0:25.

Fig. 9 Uc=Wmax versus x=D� using the same virtual origins as before;

that is, for S� 0:15, xo � 0:75 and for S� 0:25, xo � 2:9.
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azimuthal velocity componentsweremeasured in jetswith two levels
of swirl (S� 0:15 and 0.25) at axial locations up to 50 jet exit
diameters. The velocity and turbulence intensity profiles, centerline
decay, and growth rates for the various swirling jets were compared
with those obtained in the same facility without swirl (S� 0). The
mean velocity and turbulence intensities collapsed to the same
profiles when scaled with the jet centerline velocity and half-width.
Thus, by contrast with previous observations for the near jet [7,15],
there was no observable effect on the properly scaled far jet for the
S� 0:15 case. The results were virtually identical to the nonswirling
jet. For the S� 0:25 case, the only statistically significant effect was
a shift in the virtual origin (from x=D� � 0:75 to�2:9), indicating a
more rapid initial spread rate that relates to jet growth in far-field.

The recent predictions of equilibrium similarity theory [8] were
found to be in excellent agreement with the experimental results. In
particular, the mean azimuthal component of velocity falls off as the
inverse square of the downstream distance. By contrast, the mean
streamwise velocity and turbulence intensities fall off with simply
the inverse of the downstream distance. As a consequence, the mean
azimuthal equation uncouples from the rest, and so the asymptotic
swirling jet behaves like the nonswirling jet. A second length scale,
L�, defined from the rates at which momentum and angular
momentum are added at the source, characterizes the distance that is
required for the swirl to become negligible.
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