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One-component scalar, two-component vectorial, and three-component vectorial proper orthogonal

decompositions of the axisymmetric turbulent wake have been studied to investigate possible effects of the

number of components comprising the two-point correlation tensor forming the kernel of the proper orthogonal

decompositions integral equation. A wind-tunnel experiment has been performed 50 diameters downstream of the

wake generator, which was a disk of 20 mm in diameter. The Reynolds number based on the disk diameter was

20,400. Twelve cross hotwireswere used to obtain the simultaneousmultipointmeasurements. Six of the probeswere

located on a fixed rake and the other six probes were located on a movable rake, which was traversed from 10 to

180 deg in 10 deg increments. Two experiments were carried out to obtain first the streamwise and azimuthal

components of the velocity, and second to obtain the streamwise and radial components of the velocity. Seven out of

nine components of the two-point correlation tensorwere computed usingmeasured velocities and the remaining two

two-point correlations were extracted from the data using the continuity equations. The one-component scalar, and

two- and three-component vectorial decomposition results were essentially in agreement. Eigenvalues for the full

vector proper orthogonal decompositions integrated over frequency showed that Fourier mode 2 was the largest in

both the streamwise and azimuthal velocity. Azimuthal mode 2 peaks at the near-zero frequency, whereas azimuthal

mode 1 peaks at a frequency which corresponds to the vortex shedding frequency. Similar features in turbulence

kinetic energy distributions were also observed in the modally decomposed two-point cross-spectra and two-point

cross-correlations.

Nomenclature

D = diameter of the disk, mm
d = diameter of the suspension wires, mm
f = frequency, Hz
lw = length of the sensing wire of hot-wire probe, mm
m = azimuthal mode number
PODu = one-component scalar proper orthogonal

decomposition of streamwise fluctuations
PODv = one-component scalar proper orthogonal

decomposition of radial fluctuations
PODw = one-component scalar proper orthogonal

decomposition of azimuthal fluctuations
PODuv = two-component vectorial proper orthogonal

decomposition of streamwise and radial fluctuations
PODuw = two-component vectorial proper orthogonal

decomposition of streamwise and azimuthal
fluctuations

PODvw = two-component vectorial proper orthogonal
decomposition of radial and azimuthal
fluctuations

PODuvw = three-component vectorial proper orthogonal
decomposition of all components of fluctuations

Re = Reynolds number based on disk diameter
U1 = freestream velocity, m=s
Uc = flow convection velocity, m=s
Ux = mean velocity in streamwise direction, �Ux� � �U�,

m=s
Ur = mean velocity in radial direction, �Ur� � �V�, m=s
U� = mean velocity in azimuthal direction, �U�� � �W�,

m=s
ux = fluctuating velocity in streamwise direction,

�ux� � �u�, m=s
ur = fluctuating velocity in radial direction, �ur� � �v�,

m=s
u� = fluctuating velocity in azimuthal direction,

�u�� � �w�, m=s
x, r, � = cylindrical coordinate system
� = proper orthogonal decomposition eigenvalues
� = normalized proper orthogonal decomposition

eigenvalues

I. Introduction

T HE axisymmetric turbulent far wake was experimentally
investigated using the proper orthogonal decomposition (POD)

in this study. The main goal of this investigation was to address the
effects of the number of velocity components involved in
construction of the two-point cross-correlation tensor on the
azimuthal distribution of the eigenvalues. For this purpose,

Presented as Paper 3300 at the 25th AIAA Aerodynamic Measurement
Technology and Ground Testing Conference, San Francisco, CA, 5–8 June
2006; received 16 March 2007; revision received 15 November 2007;
accepted for publication 20 January 2008.Copyright©2008 by theAmerican
Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of
this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; include the code 0001-1452/08
$10.00 in correspondence with the CCC.

∗Ph.D. Student, Department of Applied Mechanics; also at Norwegian
Defence Research Establishment, Division of Protection, Post Office Box 25,
NO-2027 Kjeller, Norway; murat.tutkun@chalmers.se.

†Aerothermodynamics Engineer, Ph.D., Department of Aerothermody-
namics; peter.pj.johansson@volvo.com. AIAA Member.

‡Professor, Department of Applied Mechanics; wkgeorge@
chalmers.se. AIAA Associate Fellow.

AIAA JOURNAL
Vol. 46, No. 5, May 2008

1118

http://dx.doi.org/10.2514/1.31074


comparison of the eigenvalue distribution and eigenspectra of the
one-component scalar, two-component vectorial, and full, three-
component vectorial decomposition of the velocity field were
performed.

As a quantitative and unbiasedmethod, Lumley [1] introduced the
POD to identify and study the dynamics of the large-scale structures
in turbulent fields with finite total energy. The POD provides an
optimum deterministic description of the field, the so-called POD
eigenvalues and eigenfunctions (or eigenmodes). These are obtained
by seeking the largest projection onto the random velocity field in a
mean square sense, maximization of which results in an integral
eigenvalue problem (Fredholm integral equation of the second kind)
in which the kernel is the two-point cross-correlation tensor of the
velocity field. The POD has also been found very efficient at
extracting the most energetic modes of the flow, and ordering them
according to their energy content. Much information about the POD
can be found in George [2] and Holmes et al. [3].

Even though the POD was introduced as an optimal and
mathematical way of breaking the turbulence scales apart, utilization
of the method took some time, mainly due to difficulties associated
with the measurement and computation of the two-point cross-
correlation tensor. As pointed out by George [2], the POD needs
sufficient information on the two-point cross-correlation tensor so
that a complete space-time realization of the turbulent velocity field
can be obtained. Computation of the cross-correlation tensor from
the measured velocities is also difficult in terms of computing power
and speed capabilities.

The first successful experimental implementations of the POD,
almost two decades after Lumley’s proposal [1], came in the 1980s
from Glauser [4] for high Reynolds number axisymmetric mixing
layer andHerzog [5] for lowReynolds number pipe flow. Since then,
experimental utilization of the POD has been widely used to break
the turbulence scales apart [4,6–17].Glauser [4], Glauser andGeorge
[6], and Glauser et al. [7] implemented the POD to investigate the
coherent structures in an axisymmetric mixing layer. The
axisymmetric shear layer was created by means of a round jet and
the experiment was performed at 3 nozzle diameters downstream of
the nozzle. It was shown that the orthogonal decomposition was very
efficient at organizing the data such that the first POD mode
contained 40% of the turbulence kinetic energy, whereas the second
40% of the energy was represented by the second and third POD
modes. Following these studies, Glauser and George [18] performed
an experiment using the same facility, but with a rakewith cross-wire
probes to examine differences between the one- and two-component
decomposition, and found no significant effect due to including the
radial component of the velocity in the analysis. The basic features of
the extracted eigenspectra essentiallywere the same in that azimuthal
mode 0was dominant near the potential core and azimuthal modes 4,
5, and 6 were dominant outside of this region. This result motivated
Citriniti [19], who used a rake of 138 single hot-wire probes and
investigated the dynamics of the large-scale structures in a turbulent
axisymmetric shear layer at the same downstream position. The
results of this experiment supported the previous findings of Glauser
andGeorge [18]. An extension of this study for different downstream
positions in both the near field [14] and far field [15] of an
axisymmetric jet was performed to investigate the evolution of the
most energetic modes. The near-field study for three different
downstream locations, namely 2, 4, and 6 jet nozzle diameters
downstream of the nozzle, showed that azimuthalmode 0, whichwas
the dominating mode of Citriniti and George [12], died off rapidly
and the azimuthalmode 2 peaked shortly after the end of the potential
core of the axisymmetric jet. The results of Gamard et al. [15] for the
far-field region of the turbulent jet (15 to 69 jet nozzle diameters
downstream of the nozzle) were also in agreement with these
findings. They reported three major peaks in the azimuthal
distribution of eigenvalues: one peak at azimuthal mode 0 at near-
zero frequency, one peak at azimuthal mode 1 at a local Strouhal
number of about one, and one small peak at the azimuthal mode 0 at
near-zero frequency. They also showed that the eigenspectra for
different downstream positions were essentially the same as the one
obtained at the last downstream position of Jung et al. [14].

The experimental utilization of the POD has also been carried out
for a number of other turbulent shear flows, including plane mixing
layers and planar jets. Delville [8] used the POD technique to
characterize the scales of the turbulent plane mixing layer by
performing experiments similar to those of Glauser and George [18].
He carried out series of experiments [8] using one rake of single and
cross hot-wire probes and compared one-component scalar and two-
component vectorial decomposition. He reported an agreement
between scalar and vectorial decomposition in terms of distribution
of maximum energy, but noted that the vectorial POD represents the
organizations in the flow more effectively because of the number of
velocity components involved in the kernel of the problem. (Note
that the nomenclature used by Delville [8] has been followed in the
present study with an addition for three-component representation.)
Further investigations on the same facility were carried out by
Delville et al. [9] using two rakes of cross hot-wire probes. They
applied two-component vectorial POD and then extended this work
to three-component vectorial POD by using the spectral continuity
equation in conjunction with the Taylor’s frozen field hypothesis.
Their results showed that the shapes of the eigenspectra were very
similar for both cases. On the other hand, they also noted a small
difference in the values of the low spanwise and streamwise wave
number in the eigenspectra, and attributed this to the contribution of
involvement of the third velocity component to the low wave
numbers. Gordeyev and Thomas [10,11] focused on the organized
structures in the similarity region of the turbulent planar jet by
applying the POD on single, twin, and triple rakes of cross hot-wire
measurements. They also implemented the spectral continuity
equation and analyzed the eigenvalue distribution based on the full
three-dimensional kernel. The planar and nonplanar POD modes of
the two- and three-component decompositions were found to be in
agreement.

Recently, the axisymmetric wake behind a circular disk was
investigated by performingmultipoint single hot-wiremeasurements
and using the POD [13,16]. These experiments started at x=D� 10
and extended to x=D� 150. It was observed that azimuthal
Fourier mode 1 was dominant at the positions closest to the disk;
however, this dominance got weaker as the flow evolved
downstream and azimuthal Fourier mode 2 became the dominant
mode. After x=D � 40, which can be considered as the start of the
similarity region, azimuthal mode 2 was clearly the most energetic
mode.

All of these experiments and POD analyses seemed to agree that
the number of velocity components included in the two-point cross-
correlation tensor did not change the distribution of kinetic energy
over the modes significantly. Therefore, it was of considerable
surprise when Iqbal and Thomas [17] reported their results for the
near-field region of an axisymmetric turbulent jet, between 3 to 12
nozzle diameters downstream the nozzle, using a three-component
vectorial implementation of the POD by means of the spectral
continuity equation. They reported that azimuthal mode 1 was the
most energetic mode when the full Reynolds stress tensor was used,
whereas azimuthal mode 2 was the largest when only the streamwise
component was considered (consistent with the earlier results
[12,14,15]). Subsequently, Wänström et al. [20] carried out an
axisymmetric jet experiment using stereoscopic particle image
velocimetry (PIV) and investigated the azimuthal modal distribution
of the turbulent kinetic energy via the snapshot POD. The results
were in fact in agreement withwhat Iqbal and Thomas [17] observed,
and the azimuthal mode 1 was found to be the dominant mode even
in the far-jet region when the three-component vectorial POD
was used.

This paper presents results of an investigation of the effects of the
number of velocity components involved in the kernel of the POD
integral equation for an axisymmetric far wake. The axisymmetric
wake behind a disk was measured using a rake of cross hot-wire
probes and the POD analysis of the data was performed. Following
the previous applications of the spectral continuity equation
[9,11,17], a full, three-component implementation of the POD was
carried out. The modally decomposed two-point cross-correlation
and cross-spectra are discussed, and the eigenvalue distributions of
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the one-component scalar, two-component vectorial, and full, three-
component vectorial POD are compared.

II. Experimental Setup

A. Wind Tunnel and Suspension of the Disk

The Chalmers L2 wind tunnel is a closed circuit, low-turbulence
intensity wind tunnel with 60 ms�1 maximum speed. The freestream
turbulence intensity of the tunnel is about 0.03%. The test section
cross section area is 1:80 � 1:25 m2 and the length of the test section
is 3 m. The test section is octagonal because of corner fillets. The
corner fillets decrease downstream to increase the cross section area
to compensate for the boundary-layer growth. In the end of the test
section, there is a 20-mm-wide slot to match the pressure inside and
outside of the test section. The slot also sucks the boundary layers
which develop on the walls of the test section. The contraction ratio
of the tunnel is 4.8. The tunnel has a flow temperature control unit
which keeps the temperature constant with an accuracy of�0:1�C.

The tunnel velocity during the experiment was monitored using a
pitot tube connected to a Furness FCO510 digital micromanometer.
Themicromanometer was equippedwith an absolute pressure sensor
and a temperature sensor to provide the value of the tunnel velocity to
the computer. The tunnel velocity was kept constant at 15:3 ms�1

and the corresponding Reynolds number based on disk diameter and
the freestream velocity was 20,400. The measurement was
performed at 1 m downstream of the disk, which corresponded to
x=D� 50. Themomentum thickness � and transverse length scale �	
at this downstream location were found to be 7.1 and 42 mm,
respectively, which are in agreement with Johansson et al. [21], and
Johansson and George [22].

A circular disk with a diameter of 20 mm was placed in the
entrance of the test section using three pairs of suspension wires. The
disk had a thickness of 2 mm with sharp edges and was made of
aluminum. Steel piano wires were used to suspend the disk in the
tunnel. Each suspension wire had a diameter of 0.2 mm. Figure 1a
shows the disk with suspension wires and the rake of cross hot-wire
probes. As seen in the figure, the suspension wires were attached to
the wind-tunnel wall asymmetrically so as not to impose a symmetry
on the flow. The ratio between the area of the disk and the cross
section area of the tunnel was less than 0.014%, and so the flow
blockage was clearly negligible.

The possible effect of suspension wires on the axisymmetric wake
turbulence was recently investigated by Johansson and George [16],
who performed the same axisymmetric wake experiment twice; first
with three pairs of wires and then with four pairs of wires. They
studied the differences in distribution of the turbulent kinetic energy
and reported no detectable differences between the eigenvalue
distributions of the two experiments. Therefore, the effects due to the
suspension wires are assumed to be negligible in this study.

B. Probe Configuration, Hot-Wire Anemometry, and Data

Acquisition

A detailed schematic of the rake with the numbering of the probes
and the way of traversing the movable wing can be seen in Fig. 1b.
Twelve cross hot-wire probes were used in a rake of two wings.
Details about the mechanical properties of the rake can be found in
Johansson and George [22]. Each wing carried six cross hot-wire
probes radially spanning the wake. One of the wings was fixed as a
reference point at zero degrees and the otherwas able to rotate around
the centerline of the rake. The probes were equally spaced on the
wings at a distance �r of 14 mm, with the first probes located at
28 mm, 2�r, away from the centerline.

The rake was originally designed for a 15 probe configuration and
a minimum of 15 deg angular separation between the wings [16,22].
To be able to decrease the minimum possible angular separation, the
probe closest to the centerline from each wing was removed in this
study. This allowed angular separation from 10 to 350 deg in 10 deg
increments with an accuracy of�1 deg. The angular motion of the
wing was performed by a completely automated, computer
controlled traverse mechanism. No probe was located on the
centerline of the rake in this study.

Brass telescopic tubeswith an outer diameter of 4mmwere used as
probe holders. One end of the probe holder was fixed to the rake and
the other end held the probes. The lengths of the probe holders were
90 mm for the probes carried by the movable wing and 135 mm for
those attached to the fixed wing. A ceramic tube (part no. R43,
Scientific Instrument Services, Inc., Ringoes, New Jersey) with an
outer diameter of 2.4 mm was used to insulate the prongs of the
probes which were made of 0.4 mm steel piano wires. The ceramic
tubing was placed in another brass tube with an outer diameter of
3.2mm to assemble the probe. The distance between the probe holder
and the end of the ceramic tube before the prongs was 60 mm for all
probes. The lengths of the prongs after the ceramic tubing were 7.5
and 5.5 mm for the long ones and the short ones, respectively. The
free ends of the prongs were cut by angle of 45 deg to get the sensors
normal to each other. The sensing wire was made of tungsten with a
diameter of 5 �m and a length of 2.8 mm. The spacing between the
sensors of the cross-wire probe was 0.7 mm.

The wire length used in this study put some limitations on
resolvable turbulence frequencies, because hot-wire probes only
can resolve scales larger than twice the wire length. Therefore,
the probes act as a low-pass spatial filter. On the other hand, this
filtering property can be used to reduce spatial aliasing of turbulent
velocity fluctuations as suggested by Glauser and George [23].
Further investigations on the spatial filtering due to finite size
hot-wire sensors by Citriniti and George [24] demonstrated how
the sensor filters out the turbulent kinetic energy at high
frequencies. The cutoff frequency of the probe sensor was computed
by [23]

Fig. 1 Test section with the rake and the disk, and the traversing scheme.
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fc �
Uc

2 � ‘w
(1)

where ‘w was the probe sensor length and Uc was the flow
convection velocity. In this application, the freestream velocity of the
tunnel (15:3 ms�1) was taken as the convective flow velocity due to
the small velocity deficit of the far wake (approximately 2% of the
freestream velocity at the corresponding downstream location).
Therefore, the resulting wire cutoff frequency was found to be about
2730 Hz, meaning that frequencies higher than this cutoff frequency
were filtered out by the probe itself. This was not of concern in this
investigation, because the primary purpose of this experiment was to
study large, energetic scales and to apply the POD to determine the
evolution of the energy containing turbulent structures (and not to
resolve the small-scale turbulence).

Twenty-four single channel, Dantec Miniature-CTA 54T30 hot-
wire anemometers were used for the measurement. The analog
outputs of the anemometers were digitized using an IO Tech
Wavebook 516 16 bit 1 MHz sample and hold A/D converter with
two expansion modules to enable 24 channel simultaneous sample
and hold. TheA/D converter was connected to the computer via a fast
parallel port peripheral component interface (PCI) board. The control
of sampling the data together with the traverse system was managed
by a LabView program. The sampling frequency was set at 8 kHz to
satisfy the Nyquist criteria. The analog low-pass filters built into the
Miniature-CTAwere adjusted to 3 kHz to avoid aliasing due to high-
frequency electronic noise.

Measurements were made simultaneously for all 12 cross-wire
probes through 24 channels. Sufficient information on the two-point
cross-spectral tensor to apply the POD and obtain good convergence
of the eigenfunctions was ensured by collecting 200 blocks of data
per wire for each angular separation, which gave 7% variability for
the power spectra. Each block had 8192 samples (corresponding to
2000 integral time scales), so that each block length was long enough
to neglect the effect on the spectral measurement of the finite size
record length [23,25]. There was a separation of 2000 integral time
scales between each successive block to insure that each block was
statistically independent.

Two sets of experiments were performed to obtain first the
streamwise and azimuthal components of the velocity (ux and u�,
respectively), and second the streamwise and radial components of
the velocity (ux and ur, respectively). The second measurement was
made possible by turning all the probes by 90 deg on their axes. The
traversing of the rake from 10 deg angular separation to 180 deg
separation between the wings was repeated by 10 deg increments for
both experiments.

C. Effect of the Measurement Grid in �� and r

The two-point correlations are homogeneous in the azimuthal
direction and periodic over one revolution in this direction.
Therefore, a Fourier series expansion in the azimuthal coordinate
was optimal, at least in terms of representing the energy [2]. Fourier
modes were used in this direction. A major concern of Fourier
analysis in this type of experiment is that the turbulent kinetic energy
at higher azimuthal Fourier modes could alias into the lower
azimuthal Fourier modes [23]. To overcome the problem of spatial
aliasing, the number of measurement positions should be more than
twice the number of azimuthal modes which must be resolved. For
the axisymmetric turbulent wake, 12 measurement points in the
azimuthal direction were estimated as being enough to prevent the
aliasing problem in corresponding modal space [13,16], and so the
angular separation between the wings and the increments was set at
15 deg. In the present study, the angular step size was decreased to
10 deg, yielding 18measurement locations in the azimuthal direction
to provide better resolution.

The measurement grid in the radial direction is also important
because it must satisfy the minimal resolution to apply the POD. The
maximumnumber of the PODeigenfunctionswhich can be extracted
from the decomposition is limited by the number of radial positions at

which themeasurements have been taken and the number of velocity
components included in the Reynolds stress tensor [8]. The sampling
theorem of Glauser and George [23] states that ifM eigenfunctions
are required to represent the turbulent field, then at least M
measurement locations are required. Lumley [26] showed that the
minimum number of eigenfunctions M required to represent the
inhomogeneous field, which is the radial direction in this study, is
proportional to the ratio of the lateral extent of the flow and the
integral scale in that direction. Following these suggestions,
Johansson and George [16] used a measurement grid of 7 � 7 probes
for their setup. They further investigated the grid size dependence of
the eigenvalue distributions at x=D� 50, and found very small
differences only in eigenvalue of azimuthal mode 0. They also
reported that the first six POD modes cover 98% of total turbulence
kinetic energy.

As noted in the previous section, the two innermost probes were
removed in this experiment to be able to decrease the minimum
azimuthal separation between the wings. Therefore, the possible
effects of probe removal on the energy content of the field were
investigated by checking the total energy distribution over the radial
span. It was found by comparison with the previous results of
Johansson and George [16] that removal of the innermost probes of
the rakes did not affect the eigenvalue distribution.

D. Calibration of Cross Hot-Wire Probes

The cross-wire probes were calibrated simultaneously in the
wind tunnel. A special traverse system was designed to be able to
perform both the calibration in a range of�40 deg and the angular
rotation of the wings from 10 to 350 deg. Johansson et al. [13] and
Johansson and George [22] reported that the root mean square of
streamwise fluctuations of the axisymmetric wake at x=D� 50 is
about 2% of the freestream velocity, so that the probability of a
�4:5 deg change in the direction of the velocity vector, for the wake
at this downstream location with 15:3 ms�1 freestream velocity, was
found to be less than 0.1%. Therefore, the angular calibration of the
rake was performed between �12 deg in 4 deg increments. The
reference angle was 0 deg for the rake at which the fixed wing was
located during the experiments. Because of the low turbulence
intensity, the effect of crossflow on the cross wire was negligible
[27,28].

Twelve different tunnel speeds varying between 11 and 18 ms�1

were used for the calibration. This range of tunnel speeds provided
�10 standard deviations around the freestream velocity of the
experiment. For each tunnel velocity, seven angular variations of the
probes with respect to tunnel velocity vector were scanned.

Effective cooling velocities for the cross-wire arrangement were
written as formulated by Champagne et al. [29]. A linearizing
scheme expressing the effective cooling velocities as the sum of
powers of the anemometer output voltages was implemented [30]. A
fourth-order polynomial was used for the linearization, even though
orders lower than four could have been applied due to the low level of
turbulence intensity in the far wake. This resulted in two nonlinear
equations for each probe. In each nonlinear equation, output voltage,
tunnel speed, and the angle between the flow axis and the probe axis
were known. The unknowns of each equation (coefficients of the
polynomial part of the equation, the angles between the normals of
thewires, and the yaw coefficient) were determined using a nonlinear
least-square curve fit. A built-inMATLAB functionwas used for this
purpose.

This methodology yielded a functional relation between the
effective cooling velocity and the anemometer output voltage for
each wire. Once the voltage was read from the experiment,
the effective cooling velocity for each wire was computed using the
obtained functional relations. The ratio of the effective cooling
velocities was rearranged using trigonometrical relations, and the
resulting quadratic equation was solved for the angle between
the normal of one of the wires and the flow velocity vector. By
knowing this angle, it was straightforward to calculate themagnitude
of velocity and the angle between the velocity vector and the probe
axis. Finally, the velocity was decomposed into its components.
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III. Background Theory

A. Formulation of the POD for an Axisymmetric Wake

ThePODseeks a deterministicfieldwhich has themaximummean
square projection onto the original random velocity field [1]. The
maximization of the normalizedmean square projection� results in a
Fredholm integral equation of the second kind, where the symmetric
kernel is the two-point cross-correlation tensor, which can be written
for an axisymmetric flow as follows:

~R i;j
x; x0; r; r0; �; �0; t; t0� � hui
x; r; �; t�uj
x0; r0; �0; t0�i (2)

where 0 denotes different positions for x, r, and �, and a different time
for t. Ensemble averaging is represented by h i. The subscripts i and j
denote appropriate components of the velocity, such as the
streamwise velocity u by ux, the radial velocity v by ur, and the
azimuthal velocity w by u�. Because the axisymmetric wake is
stationary in time and statistically homogeneous in the azimuthal
direction, the two-point cross-correlation tensor is a function of only
the separations in these direction. If � � t0 � t and ��� �0 � �
represent the separations in time and in the azimuthal direction,
respectively, then the two-point cross-correlation becomes

~R i;j
x; x0; r; r0; �; �0; t; t0� � Ri;j
x; x0; r; r0; ��; �� (3)

The proper orthogonal decomposition reduces to the Fourier
decomposition in stationary and homogeneous directions [1,2,26].
Also, if the flow is both homogeneous and periodic (as in the
azimuthal direction), the decomposition in this direction becomes a
Fourier series expansion. Therefore, Fourier transformations in time
and the azimuthal direction are first performed on the two-point
cross-correlation tensor, and then the proper orthogonal decom-
position is applied to the Fourier coefficients, i.e., the cross-spectral
tensor given by

Si;j
x; x0; r; r0;m; f�

� 1

2�

Z 1
�1

X2�
0

Ri;j
x; x0; r; r0; ��; ��e�i
2�f��im��� d��� (4)

where f is the frequency corresponding to � and m is the azimuthal
Fourier mode number corresponding to ��.

If only one downstream location is considered, as in this study, the
x in Eq. (4) is treated as a parameter and the POD integral equation
reduces to the so-called slice POD [6,10–14,16]. On the other hand,
because of the very low turbulence intensities of the three-
dimensional wake, to an excellent approximation the field can be
considered frozen in time as it convects by the probes [31]. Thus, the
streamwise dependent variable x is identical to time, and the integral
equation reduces simply to

Z
r0
Si;j
r; r0;m; f��	
n�j 
r0;m; f�r0 dr0 � �
n�
m; f��


n�
i 
r;m; f�

(5)

where �
n�
m; f� and �
n�i 
r;m; f� represent the eigenspectra and the
eigenfunctions, respectively. Because domain is bounded in the
inhomogeneous direction, the Hilbert–Schmidt theory applies.

The solution to this eigenvalue problem, Eq. (5), can be found
using standard numerical schemes if the kernel is Hermitian
symmetric. Because of the nature of the polar coordinate system of
the axisymmetric wake, the r0 on the left-hand side of Eq. (5) creates
an asymmetry in the kernel. Hermitian symmetry of the kernel can be
satisfied by multiplying both sides of the equation by r1=2 and then
rearranging the terms as follows:

Z
r0
r1=2Si;j
r; r0;m; f�r01=2|�����������������{z�����������������}

Wi;j
r;r0;m;f�

�	
n�j 
r0;m; f�r01=2|������������{z������������}
�̂
	
n�
j

r0;m;f�

dr0

� �
n�
m; f�|����{z����}
�̂
n�
m;f�

r1=2�
n�i 
r;m; f�|����������{z����������}
�̂

n�
i

r;m;f�

(6)

The rearranged POD integral equation with a Hermitian symmetric
kernel can be written as follows:

Z
r0
Wi;j
r; r0;m; f��̂	
n�j 
r0;m; f� dr0 � �̂


n�
m; f��̂
n�i 
r;m; f�

(7)

The number of the eigenvalues and eigenfunctions which the
resulting eigenvalue equation [Eq. (7)] produces is determined by the
velocity components included in the kernel. The number of
eigenvalues can be easily computed by multiplying the number of
grid points (hot-wire probe locations in this study) by the number of
velocity components included in the computation of the two-point
correlation tensor [8].

B. Spectral Analysis Technique and Numerical Implementation

Following previous numerical implementations [6,10–14,16], the
steps to be able to establish the final POD equation [Eq. (7)] can be
summarized as follows:

1) Instantaneous velocities are measured simultaneously at two
points.

2) Fourier transformation of the instantaneous velocities is per-
formed in time for the finite size record length, i.e.,

û i
r; �; f� �
Z
T=2

�T=2
e�i2�ftui
r; �; t� dt (8)

where the ûi
r; �; f� are called the Fourier coefficients and T
represents the record length for each block of data. A fast Fourier
transformation algorithm can be used to compute the Fourier
coefficients efficiently.

3) Steps 1 and 2 are repeated for all pairs of points.
4) Cross-spectra are computed and block averaging is performed

as follows:

~S i;j
r; r0; ��; f� �
hûi
r; �; f�û	j 
r0; ����; f�i

T
(9)

where h i and 	 denote the block averaging and complex conjugate,
respectively.

5) The doubly transformed cross-spectra are computed by the
numerical approximation to the Fourier series expansion of Eq. (9) in
the azimuthal direction, i.e.,

Si;j
r; r0;m; f� �
1

2�

XN
m�0

~Si;j
r; r0; ��; f�e�im�� d
��� (10)

where N is twice the total number of angular separations �� in the
azimuthal direction. Note that the second half of the measurement
plane is created using the symmetry conditions as detailed here:

~S i;j
r; r0; ��; f� � ~S	j;i
r0; r;���; f� (11)

where i and j denote appropriate components of the velocity as
described for Eq. (2). We also performed measurements at
����80, �90, and �100 to be able to check the accuracy of the
symmetry conditions. The results were satisfactory and the
difference in statistical quantities obtained at�� and ��� for these
three angles was negligible.

6) The final eigenvalue problem is solved for each frequency and/
or azimuthal Fourier mode after construction of the Hermitian
symmetric kernel.
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C. Determination of Unmeasured Correlations

Using cross-wire probes, only two components of the
instantaneous velocity vector can be obtained simultaneously. In
the polar coordinate system, these components will be either pairs of
the streamwise and radial components of the velocity (ux; ur) or pairs
of the streamwise and azimuthal components of the velocity (ux; u�).
By two separate experiments to measure these two possible velocity
combinations, seven members of the full two-point cross-correlation
tensor can be directly computed using measured velocities.
However, the cross-correlations between the radial and azimuthal
velocities, hur
x; r; ��u�
x0; r0; �0�i and hu�
x; r; ��ur
x0; r0; �0�i,
cannot be computed from the obtained velocities because the
simultaneous measurement of pairs of the radial and azimuthal
component are not possible with a single cross wire. On the other
hand, the spectral continuity equation can be used to extract these
unmeasured cross-correlations from the measured ones.

We start with the continuity equation at two points:

@ux
x; r; ��
@x

� 1

r

@�rur
x; r; ���
@r

� 1

r

@u�
x; r; ��
@�

� 0 (12)

@ux
x0; r0; �0�
@x0

� 1

r0
@�r0ur
x0; r0; �0��

@r0
� 1

r0
@u�
x0; r0; �0�

@�0
� 0 (13)

Multiplying Eq. (12) by u�
x0; r0; �0� and Eq. (13) by u�
x; r; ��, and
taking the average of each equation, results in

@Rx;�
r; r0;��; ��
@x

� 1

r

@�rRr;�
r; r0;��; ���
@r

� 1

r

@R�;�
r; r0;��; ��
@�

� 0 (14)

@R�;x
r; r0;��; ��
@x0

� 1

r0
@�r0R�;r
r; r0;��; ���

@r0

� 1

r0
@R�;�
r; r0;��; ��

@�0
� 0 (15)

Because of the low turbulence intensities in the far wake, Taylor’s
frozen field hypothesis can be used to replace the streamwise
differentiation by the time differentiation such that @=@x
�@=
Uc@t� [31,32]. Application of this hypothesis implies that
Eqs. (14) and (15) can be rewritten as

� 1

Uc

@Rx;�
r; r0;��; ��
@t0

� 1

r

@�rRr;�
r; r0;��; ���
@r

� 1

r

@R�;�
r; r0;��; ��
@�

� 0 (16)

� 1

Uc

@R�;x
r; r0;��; ��
@t

� 1

r0
@�r0R�;r
r; r0;��; ���

@r0

� 1

r0
@R�;�
r; r0;��; ��

@�0
� 0 (17)

where Uc represents the convection velocity, which is taken as the
freestream velocity in this study due to the small velocity deficit
(<2% of the freestream velocity at x=D� 50). Note that the low
turbulence intensity of the far wake (a few percent) makes this
methodology much more reliable than its earlier applications to
axisymmetric mixing layer [18], planar mixing layer [9], planar jet
[11], and axisymmetric jet [17], where the turbulence intensity is
substantially larger.

Because the field is stationary in time, differentiation with respect
to t and t0 can be written in terms of � � t0 � t, i.e., @=@t��@=@�
and @=@t0 � @=@�. Similarly, homogeneity in � implies that
differentiation with respect to � can be converted to the
differentiation with respect to ��� �0 � �, i.e., @=@���@=@
���
and @=@�0 � @=@
���. Thus, Eqs. (16) and (17) can be reduced to

1

Uc

@Rx;�
r; r0;��; ��
@�

� 1

r

@�rRr;�
r; r0;��; ���
@r

� 1

r

@R�;�
r; r0;��; ��
@
��� � 0 (18)

� 1

Uc

@R�;x
r; r0;��; ��
@�

� 1

r0
@�r0R�;r
r; r0;��; ���

@r0

� 1

r0
@R�;�
r; r0;��; ��

@
��� � 0 (19)

Finally, Fourier transformation of these equationswith respect to �
and the Fourier series expansion in the azimuthal direction yields

i2�f

Uc
Sx;�
r; r0;m; f� �

1

r

@�rSr;�
r; r0;m; f��
@r

� im
r
S�;�
r; r0;m; f� � 0 (20)

� i2�f
Uc

S�;x
r; r0;m; f� �
1

r0
@�r0S�;r
r; r0;m; f��

@r0

� im
r0
S�;�
r; r0;m; f� � 0 (21)

Rearranging the resulting equations and integrating from r to1
yields equations for computing the unmeasured correlations in the
frequency and Fourier modal space:

Sr;�
r; r0;m; f� �
i2�f

rUc

Z 1
r

rSx;�
r; r0;m; f� dr

� im
r

Z 1
r

S�;�
r; r0;m; f� dr
(22)

S�;r
r; r0;m; f� � �
i2�f

r0Uc

Z 1
r0
r0S�;x
r; r0;m; f� dr0

� im
r0

Z 1
r0
S�;�
r; r0;m; f� dr0 (23)

IV. Results

A. Two-Point Cross-Spectra

The primary purpose of this study is to investigate possible effects
of the number of velocity components used in the construction of the
Reynolds stress tensor on the eigenvalue distribution of the proper
orthogonal decomposition of the axisymmetric wake. The modally
decomposed two-point cross-spectra of the streamwise–streamwise,
radial–radial, and azimuthal–azimuthal components of the velocity
fluctuations for r� r0 are shown in Figs. 2–4, respectively. In these
figures, only first the six azimuthal modes up to 750 Hz are shown,
because there is no pronounced activity at higher azimuthal modes
and frequencies. Only the real parts of the cross-spectra are shown
because the magnitude of the imaginary part is significantly smaller
than the real parts.

One of the distinct features seen in two-point cross-spectra of all
fluctuating velocities is the azimuthal Fourier mode 1 peak at the
shedding frequency of 97Hz. This is consistentwith the observations
of Johansson and George [16], and suggests that the initial condition
effects associated with the vortex shedding are mainly carried by the
azimuthal Fourier mode 1. The peak at 97 Hz is observed over the
entire radial span of the wake. In the case of the streamwise–
streamwise two-point cross-spectra as seen in Fig. 2, there is almost
no sign of the vortex shedding in the other azimuthal Fourier modes.
The amount of turbulence kinetic energy of the coherent azimuthal
structures represented by the azimuthal Fourier mode 1 is of the same
order of magnitude as azimuthal Fourier modes 0 and 2 at the radial
location closest to the centerline. This changes drastically at the
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following radial positions toward the edge of the wake, where most
of the turbulence kinetic energy is instead carried by the azimuthal
Fourier mode 2. The azimuthal mode 1 peak at the vortex shedding
frequency is always very sharp and followed by a sudden decrease in
the energy level to almost zero.Most of the turbulence kinetic energy
at the radial positions larger than 2�r is due to the coherent structures
associated with the azimuthal Fourier mode 2. The main feature of
the azimuthal Fourier mode 2 is the peak at near-zero frequency. This

is observed for all radial positions. The largest amount of turbulence
kinetic energy at the azimuthal mode 2 exists in the second radial
position, r� 3�r.

Figure 3 shows the two-point cross-spectra of the radial velocity
fluctuations, which exhibit quite different behavior than those of the
streamwise velocityfluctuations, especially for the azimuthal Fourier
modes 0 and 1. Azimuthal mode 0 does not have any energy at
frequencies lower than the vortex shedding frequency. This is true for
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Fig. 2 Two-point cross-spectrum Sx;x�r; r
0;m; f � as function of azimuthal mode number m and frequency f at different radial positions:

a) r� r0 � 2�r� 0:67��, b) r� r0 � 3�r� 1:00��, c) r� r0 � 4�r� 1:33��, d) r� r0 � 5�r� 1:67��, e) r� r0 � 6�r� 2:00��,
f) r� r0 � 7�r� 2:33��.
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all radial positions across the span of the wake. The kinetic energy at
the azimuthal mode 0 increases considerably at the shedding
frequency and then rolls off slowly at higher frequencies. Azimuthal
mode 0 peak has itsmaximum at the innermost probe location among
different radial positions and decays in the radial direction.

There also exists an azimuthal Fouriermode 1 peak at the shedding
frequency for the radial fluctuating velocities similar to the
streamwise fluctuations, but it is more pronounced in this case, as

shown in Fig. 3. The turbulence kinetic energy of azimuthal mode 1
at all radial positions, except the innermost probe location, first
appears at the shedding frequency for the radial fluctuations.
Frequencies lower than the shedding frequency do not show any
turbulence activity.

Azimuthal Fourier mode 2 in the two-point cross-spectra of the
radial velocity fluctuations has its peak at near-zero frequency,
similar to the cross-spectra of the streamwise fluctuations. However,
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Fig. 3 Two-point cross-spectrum Sr;r�r; r
0;m; f � as function of azimuthal mode number m and frequency f at different radial positions:

a) r� r0 � 2�r� 0:67��, b) r� r0 � 3�r� 1:00��, c) r� r0 � 4�r� 1:33��, d) r� r0 � 5�r� 1:67��, e) r� r0 � 6�r� 2:00��,
f) r� r0 � 7�r� 2:33��.
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there are some important differences between Figs. 2 and 3 involving
azimuthal mode 2, which can be listed as follows:

1) The effect of vortex shedding also appears at the shedding
frequency of azimuthal mode 2.

2) The amount of the turbulence kinetic energy of the azimuthal
mode 2 is on the same order of magnitude, or less than, that of the
azimuthal mode 1.

3) The total turbulence kinetic energy of azimuthal mode 2 has its
maximum at the innermost probe location and decreases with
increasing r.

Two-point cross-spectra of the azimuthal velocity fluctuations are
shown in Fig. 4.A very strong azimuthalmode 1 peak at the shedding
frequency is observed at the first radial position. The strength of
azimuthal mode 1 peak goes down for the second radial position and
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Fig. 4 Two-point cross-spectrum S�;��r; r

0;m; f � as function of azimuthal mode number m and frequency f at different radial positions:

a) r� r0 � 2�r� 0:67��, b) r� r0 � 3�r� 1:00��, c) r� r0 � 4�r� 1:33��, d) r� r0 � 5�r� 1:67��, e) r� r0 � 6�r� 2:00��,
f) r� r0 � 7�r� 2:33��.
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it continues to decay for the next radial position outward. The most
interesting observation from the cross-spectra of the azimuthal
fluctuations is that there is always a peak at the shedding frequency
for odd azimuthal modes. On the contrary, there is a trough at the
shedding frequency for even azimuthal modes. Azimuthal modes 0
and 2 have similar shapes for r� 2�r; however, mode 0 dies off
faster thanmode 2 in the radial outward direction in thewake. For the

azimuthal fluctuations, the turbulence energy captured by the
azimuthal modes 1 and 2 are at the same order ofmagnitude as can be
seen in Fig. 4.

The total turbulence kinetic energy distribution over different
azimuthal modes and frequencies is presented in Fig. 5. The total was
found by summing the kinetic energies from all three components of
fluctuations. Therefore, Sk;k
r; r0;m; f� is simply equal to
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Fig. 5 Two-point cross-spectrum Sk;k�r; r
0;m; f � � Sx;x�r; r

0;m; f � � Sr;r�r; r
0;m; f � � S�;��r; r

0;m; f � as function of azimuthal mode number m and

frequency f at different radial positions: a) r� r0 � 2�r� 0:67��, b) r� r0 � 3�r� 1:00��, c) r� r0 � 4�r� 1:33��, d) r� r0 � 5�r� 1:67��,
e) r� r0 � 6�r� 2:00��, f) r� r0 � 7�r� 2:33��.
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Sx;x
r; r0;m; f� � Sr;r
r; r0;m; f� � S�;�
r; r0;m; f�. As shown in
Fig. 5, azimuthal mode 2 hasmore turbulence kinetic energy than the
other azimuthal modes. The peak of azimuthal mode 2 is at near-zero
frequency and reaches its largest value at r� 3�r. The strong
azimuthal mode 1 peak at the shedding frequency is also present. A
very weak contribution from the vortex shedding also exists in
azimuthal modes 0 and 2 at the shedding frequency. The general
features are very similar to the distribution of the streamwise
fluctuations, which is due to the relatively large contribution of the
latter to the total energy.

B. Modally Decomposed Two-Point Cross-Correlations

Themodally decomposed two-point cross-correlations for thefirst
four azimuthal Fourier modes are shown in Fig. 6 in the samemanner
previously suggested byWänström [33]. (Note that absolute value of
the modally decomposed two-point correlations are only plotted in
the figure.) These results represent the full Reynolds stress tensor
decomposed in the azimuthal direction using Fourier series
expansion. These were obtained by integrating the two-point cross-
spectra Si;j
r; r0;m; f� over the frequency. Sr;�
r; r0;m; f� and
S�;r
r; r0;m; f� were computed using Eqs. (22) and (23),
respectively, and then integrated over the frequency in the same
manner.

The modally decomposed turbulence kinetic energy is the
diagonal of the figures from the left bottom corner, showing the
kinetic energy due to the streamwise fluctuations, to the right top
corner, presenting the contribution of the azimuthal fluctuations. The
contribution of the azimuthal fluctuations to the turbulence kinetic
energy is smaller than the kinetic energy caused by the other two

components of fluctuations. The energy of the azimuthal fluctuations
in the azimuthal Fouriermode 0 is concentrated toward the innermost
probe locations. Azimuthal modes 1, 2, and 3 carry some turbulence
kinetic energy due to azimuthal fluctuations. Figure 6 shows that the
largest contribution comes from the streamwise velocity
fluctuations. Azimuthal Fourier mode 2 is the dominant mode to
the turbulence kinetic energy due to predominance of the streamwise
fluctuations. The radial velocity fluctuations also have a significant
contribution to the turbulent kinetic energy. The contribution of the
azimuthal Fourier modes 0, 1, and 2 due to the radial fluctuations are
at the same order ofmagnitude.However, the azimuthalmode 1 is the
dominant mode for radial fluctuations.

As shown in Fig. 6, the cross-correlations between the streamwise-
azimuthal fluctuations (or azimuthal-streamwise fluctuations) and
the radial-azimuthal fluctuations (or azimuthal-radial fluctuations)
are not as active as the other cross-correlations. This is observed for
the azimuthal modes both presented in the figure and the higher
modes. By contrast, the modally decomposed Reynolds shear stress
terms, Bx;r
r; r0;m� and Br;x
r; r0;m�, are significant over all the
azimuthal modes, except the azimuthal mode 0 which does not have
any Reynolds shear stress term. This observation suggests that the
azimuthal mode 0 cannot produce the kinetic energy by Reynolds
stress working against mean velocity gradient (which also rules out a
linear instability mechanism). Because energy in mode 0 is also
observed for the full three-dimensional, three-component decom-
position considered later (for which there is no aliasing from higher
modes into lower), the turbulence kinetic energy of the azimuthal
mode 0 would seem to be attributable only to the nonlinear energy
transfer from higher azimuthal modes. The strength of the Reynolds
shear stresses at azimuthal mode 2 is higher than that at azimuthal
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mode 1, and decreases for the higher azimuthal modes. This is
consistent with the fact that the single point correlations involving
the azimuthal velocity are identically zero due to the axisymmetry,
whereas it is the correlation between the streamwise and radial
velocity that is the primary source of energy production from the
mean flow gradient.

C. One-Component Scalar Proper Orthogonal Decomposition

First, the eigenspectrum �
1�
m; f� of the one-component scalar
proper orthogonal decomposition of the streamwise fluctuations as a
function of azimuthal mode number (m) and frequency (f) is
presented in Fig. 7a. Only the first six azimuthal modes and first
400 Hz of the spectrum are shown in the figure, because eigenvalues
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at higher azimuthalmodes and frequencies are not as important as the
first ones, in terms of the magnitude. There are two distinct peaks in
the eigenspectrum: the first peak appears in azimuthal mode 1 and is
at the frequency corresponding to the shedding frequency. The peak
at near-zero frequency is in the azimuthal mode 2. The previous
analysis of the eigenspectra for different downstream positions done
by Johansson and George [16] is in excellent agreement for the same
downstream location at x=D� 50.

The eigenspectra for all POD modes have been integrated over
frequency f to show the distribution of kinetic energy over the
azimuthal modes. These are presented in Fig. 7b in their normalized
form. Normalization of eigenvalues is done using the following
equation:

�
n�
m� �
R1
0 �
n�
m; f� dfP

M�1
m�0

P
N
n

R1
0 �
n�
m; f� df (24)

where M and N are the maximum number of the azimuthal modes
and POD modes, respectively, and f stands for frequency. Each bar
represents the turbulence energy of the POD modes at the
corresponding azimuthal Fourier mode. For the clarity in the figure,
first four PODmodes for each azimuthal Fourier mode are presented.
The 	 sign shows the total kinetic energy of the azimuthal modes,
which are computed by summing all PODmodes for each azimuthal
mode numbers. As also shown by Johansson and George [16],
azimuthal mode 2 dominates the other azimuthal modes in terms of
total energy contribution to the turbulent kinetic energy. Notice that
for the one-component scalar decomposition, the total energy in the
system is only due to that one-component of the fluctuations, and so
summation over all m is unity.

Following in the same manner, the first eigenspectrum �
1�
m; f�
of the one-component scalar decomposition of the radial component
of the fluctuations is given in Fig. 7c. The function of both azimuthal
modes and the frequency is given by �
1�
m; f�. There is only one
distinct peak which appears at the shedding frequency, and it is an
azimuthal mode 1 peak. Other than this phenomenon, there is no
significant contribution to the kinetic energy budget from the radial
fluctuations. It could be concluded that the radial fluctuations are
linked to the vortex shedding at the disk. Another interesting result
Fig. 7c reveals is the very low, or almost zero, magnitude of
azimuthal mode 1 at near-zero frequencies. Azimuthal mode 1 is
almost shutoff until the effect of the shedding begins to affect the
distributions.

The eigenspectra integrated over frequency can be seen in Fig. 7d.
This is also a normalized version of the integrated eigenspectra using
Eq. (24), but this time based on the radialfluctuations only.As seen in
Fig. 7c, azimuthal mode 1 has the largest amount of energy for the
first POD mode. Therefore, it is not surprising to see the integrated
eigenspectrum peaking at azimuthal mode 1.

The first eigenspectrum of the one-component scalar decom-
position of the azimuthal fluctuations, for the first six azimuthal
Fourier modes and up to 400 Hz as before, are plotted in Fig. 7e. As
seen in this figure, there is just one azimuthal mode 1 peak at the
shedding frequency and it is very small when compared with the
POD of the streamwise and radial fluctuations.

Figure 7f shows the integrated eigenspectra over the frequency f
as a result of PODw. The eigenspectra are also normalized by
Eq. (24). As can be seen in the figure, the total contribution
of azimuthal mode 2 is slightly larger than the total contribution of
azimuthal mode 1.

D. Two-Component Vectorial Proper Orthogonal Decomposition

Figures 8a, 8c, and 8e, show the eigenspectra of two-
component vectorial decomposition of the streamwise-radial,
streamwise-azimuthal, and radial-azimuthal fluctuations, respec-
tively. The three-dimensional eigenspectra in these figures show that
the distribution is similar to the distribution of the one-component
scalar decomposition of streamwise fluctuations. The azimuthal
fluctuations do not have any significant effect on the distribution of
eigenvalues. This is simply related to the contribution of the

individual fluctuating components to the turbulent kinetic energy of
the flow. As the eigenspectrum of the first POD mode of PODu

shows, it is the largest in magnitude, in contrast with that of PODw,
which is the smallest in magnitude. Therefore, 1) when streamwise
fluctuations are included in the analysis, the result is similar to the one
from streamwise fluctuations alone, and 2) when azimuthal
fluctuations are included in the analysis, the result is similar to the
result obtained by the other pairs’ analysis alone.

Figures 8b, 8d, and 8f present the normalized eigenspectra
integrated over frequency f for the combination listed in the previous
paragraph. Here, the denominator contains only the energy
associatedwith the two components of thefluctuations. It can be seen
that for the two-component vectorial decomposition of the
streamwise and radial fluctuations, and for that of the streamwise
and azimuthal fluctuations, the maximum is at azimuthal mode 2, but
for that of the radial and azimuthal fluctuations, the peak has shifted
to azimuthal mode 1. The relative contribution of azimuthal mode 2
of the integrated eigenspectra distribution of the streamwise and
radial fluctuations is smaller than for the streamwise fluctuations
alone because azimuthal mode 1 is the dominant mode for the
decomposition of the radialfluctuations. Therefore, more energywill
be carried by azimuthal mode 1 comparedwith the single streamwise
component case. The same features are observed on the other
pairs too.

E. Three-Component Vectorial Proper Orthogonal Decomposition

The eigenspectra of the first POD mode of the three-component
vectorial decomposition, as functions of azimuthalmode number and
frequency, are plotted in Fig. 9a. As it can be seen in the figure, there
is almost no difference between the results of the one-component
scalar decompositions of the streamwisefluctuations, Fig. 7a, and the
three-component vectorial decomposition of all components of the
fluctuations. There are two distinct peaks in the spectrum: one is an
azimuthal mode 1 peak at the shedding frequency, and the other one
is an azimuthal mode 2 peak at the near-zero frequency. These
findings are in agreement with the previous findings of Johansson
andGeorge [16]. On the other hand, the difference between the peaks
of azimuthal modes 1 and 2 is smaller when all three components of
the fluctuations are included. This is because the components added
to systemwith dominantmodes, other than the dominantmode of the
streamwise fluctuations, rearrange the energy distribution over the
modes. Unlike the far jet results, however, the effect on the far wake
does not affect which mode corresponds to the peak.

Figure 10a shows the comparison between the eigenspectra of the
three-component vectorial decomposition and the summation of
the eigenspectra of one-component scalar decompositions of the
streamwise, radial, and azimuthal fluctuations. Figure 10b shows the
two-component vectorial decomposition, including streamwise and
radial fluctuations, and summation of the eigenspectra of one-
component scalar decomposition of the streamwise and radial
fluctuations. Figure 10c shows the two-component vectorial
decomposition, including streamwise and azimuthal decomposi-
tions, and summation of the eigenspectra of one-component scalar
decomposition of the streamwise and azimuthal fluctuations.
Figure 10d shows the two-component vectorial decomposition
consisting of radial and azimuthal components of velocity
fluctuations, and summation of corresponding one-component
scalar decompositions of radial and azimuthal components of the
fluctuating velocity. These eigenspectra are obtained by summing
the eigenspectra �
n�
m; f� over the POD modes n and azimuthal
mode numbers m. There is remarkable agreement between the
two-component vectorial decomposition and the summation of the
one-component scalar decomposition of corresponding velocity
components forming the vectorial decomposition. The eigenvalues
of the three-component vectorial decomposition are found to be
slightly higher than the summation of all eigenvalues from the one-
component scalar decompositions of the streamwise, radial, and
azimuthal fluctuations. Somewhat similar comparisons, for only
two-component vectorial and one-component scalar decomposi-
tions, were previously documented by Delville [8] for the turbulent
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plane mixing layer. Even though first, second, and third PODmodes
of one-component scalar decompositions of different velocity
components for the plane mixing layer were quite different, he also
reported an agreement between two-component vectorial decom-
position and summation of the corresponding one-component scalar
decompositions. He further noted that eigenspectra of the first POD

mode of the two-component vectorial POD is greater than or equal to
the summation of the eigenspectra of the one-component scalar POD
of the fluctuations included in the kernel of two-component vectorial
POD. Our findings presented in Fig. 10 also show that eigenspectra
of the vectorial decompositions are almost equal or slightly larger
than those of the summation of the individual one-component scalar
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decompositions of the fluctuating velocities included in the vectorial
decomposition.

V. Conclusions

In this paper, the one-component scalar proper orthogonal
decomposition, the two-component vectorial proper orthogonal
decomposition, and the three-component vectorial proper
orthogonal decomposition were studied for the axisymmetric
turbulent wake. First, the modally decomposed two-point cross-
spectra, together with the modally decomposed two-point cross-
correlations, were investigated to see how the turbulence kinetic
energy is distributed over different frequencies and azimuthal
Fourier modes. The results show that azimuthal mode 2 is the largest
in the resulting POD eigenvalue distribution. In addition to this, the
two-point cross-spectra indicated an azimuthal mode 1 peak at the
shedding frequency and an azimuthal mode 2 peak at near-zero
frequency. These results were consistent with the POD analysis of
the axisymmetric turbulent wake of Johansson and George [16]
based on only streamwise velocity measurements.

The one-component scalar POD were also performed for all
fluctuating velocity components. The data and analysis for the
streamwise component were in agreement with the previous studies.
The one-component scalar decompositions of the radial and
azimuthal fluctuations were performed to examine how their
contributions differed from that of the streamwise component, and
how their contributions differed from the full vector POD. Most
interesting was that the radial scalar POD peaked at azimuthal
mode 1.

Different combinations of the two-component vectorial PODwere
also studied. Themost obvious result for the two-component analysis
was that whenever the streamwise fluctuations were included in the
kernel of the integral equation, then the results were essentially the
same as the one-component scalar decomposition of the streamwise
fluctuations. The second finding was that the azimuthal fluctuations
have only a very weak effect on the results when the two-component
vectorial POD is performed.

Finally, the three-component vectorial PODwas performed on the
data using all nine components of the two-point velocity cross-
spectral tensor. The result was similar to that of the one-component
scalar decomposition. The only difference was the distribution of
energy over the azimuthal modes in terms of percentages. Azimuthal
mode 2 dominance was more pronounced when only the streamwise
component was used, because the effective energy content of the
flow increased by adding more components into the computation.

In summary, in axisymmetric wake turbulence, the one-, two-, or
three-component proper orthogonal decompositions give similar
results in terms of the azimuthal modal distribution of the
eigenvalues, or turbulent kinetic energy. The azimuthal mode 2 is
always dominant when the streamwise fluctuations are included in
the analysis. The similarity in the eigenvalue distribution of one- and
three-component POD for the wake can be attributed to how
turbulence is produced in this flow. As documented in Johansson
et al. [21], the transport equations for the Reynolds stresses show that
there is only one turbulence kinetic energy production term in the
axisymmetric far wake, and it is in the normal stress term due to
streamwise fluctuations hu2i. Therefore, as long as the streamwise
velocity is involved in computation, no significant difference is
expected in these one-, two-, and three-component implementations.
This is quite contrary to what has been observed in the axisymmetric
jet by Iqbal and Thomas [17] and Wänström et al. [20], where
different modal peaks were observed depending on which
decomposition was used, or even which partial integral or sum was
performed. Clearly, in spite of the axisymmetry of both flows, they
are very different structurally and dynamically.
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