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A simple spectral model is used to examine what is required to determine the energy
and integral scale in homogeneous isotropic turbulence. The problem is that these
are determined in part by the largest scales of the turbulence which are either not
simulated at all by DNS or experiments, or cannot be estimated because of an
insufficient statistical sample. The absence of scales an order of magnitude below
the peak in the energy spectrum is shown to affect the determination significantly.
Since this energy peak shifts to lower wavenumbers as the flow evolves, the problem
becomes progressively worse during decay. It is suggested that almost all reported
integral scales for isotropic decaying turbulence are questionable, and that the power
laws fitted to them are seriously in error. Approximate correction using the spectral
model shows that recent DNS data which decay as u2 ∝ tn with constant n, are also
consistent with L ∝ t1/2.

1. Introduction
There have been numerous attempts over the past four decades to determine the

integral scales of isotropic decaying turbulence, both from experiment and more
recently using DNS. Of particular interest has been how the integral scale varies
with time during decay. Most use a power law variation, L ∝ tm with values of m
ranging from 2

7
(Kolmogorov 1941) to 1

2
(Dryden 1943). The latter value is of some

special interest since it was originally derived by Dryden from an extension of
the von Kármán & Howarth (1938) similarity hypothesis, and subsequently from a
more general equilibrium similarity theory by George (1992). In fact, both of these
approaches concluded that the integral scale and Taylor microscale, λ, should remain
in constant ratio throughout decay. George (1992) showed that the experimental
longitudinal and lateral integral scales obtained by Comte-Bellot & Corrsin (1971)
appeared to confirm this. By contrast, Wang et al. (2000) observed that the ratio
of L/λ continued to drop slowly for the DNS data of Wray (1998), a matter of
considerable concern for them, since the equilibrium similarity theory accounted for
numerous other features of the data.

Comte-Bellot & Corrsin (1966) summarized the variation of integral scale with time
for a number of experiments. The data were fitted by powers in time with exponents
ranging from 0.30 to 0.53. It is commonly believed (e.g. Lohse 1994) that 0.4 was the
preferred choice of these authors, but a careful reading of their manuscript makes it
clear that they were extremely skeptical of all values because of the limited number
of data points. Nevertheless, it has become more or less universal because it is in
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approximate agreement with the infinite Reynolds number idea that L ∝ u3/ε if
u2 ∝ t−1.25, as is also commonly believed (Batchelor 1953; Sreenivasan 1984).

In fact, experiments and DNS routinely produce values of the energy decay ex-
ponent n which are quite different from n = −1.25. Moreover, the cited value of
Comte-Bellot & Corrsin (1966) for the integral scale variation of m = 0.4 appears to
have been chosen only because it agreed well with the correlation discard simulations
of Deissler (1961) (and about which they also expressed reservations). Comte-Bellot
& Corrsin (1971) expressed even more reservations about the integral scales, both be-
cause of their concern that tunnel size limitations affected the large scales, and because
of problems presented by its determination. In particular, they used a parabolic fit to
the one-dimensional spectra at low wavenumbers, but expressed concern that their
spectra may not have been measured to low enough wavenumbers for the parabolic
approximation to be valid (see their appendices).

The DNS data would appear, on the surface at least, to be able to settle at
least some of these questions. DNS computes periodic turbulence, so the results are
at best only an approximation to isotropic turbulence for wavenumbers above the
lowest wavenumber in the simulation. As noted by de Bruyn Kops & Riley (1998)
and Wang et al. (2000), there are reasons to suspect that there is a problem if the
peak in the energy spectrum is at wavenumbers not sufficiently greater than the
lowest wavenumber. Even when this does not seriously affect the overall energetics
or integral scales early in the calculation, there is reason for concern about the later
times since the scales grow with time. However, in addition to concern about the
actual energetics, there is also concern about information which is not available
owing to averaging limitations. The simulations of decaying turbulence provide useful
information about averaged quantities only for scales sufficiently smaller than the
computational domain where spatial averages can be used to approximate ensemble
averages. Thus, the estimate of integral scales from the spectrum, for example, can
be severely reduced by the unavailability of the lowest wavenumbers which may
contribute most to it.

This paper uses a simple spectral model to examine the effect of missing large
scales (or low wavenumbers) on the determination of the integral scale (and energy as
well). The model will allow a quantitative evaluation of how the ‘measured’ integral
scale deviates from the ‘true’ integral scale that would have been obtained had all
the necessary low wavenumbers been present or accurately simulated. The model
will be used to approximately correct two recent DNS attempts to simulate decaying
homogeneous turbulence.

2. The fundamental equations and the spectral models
In the analysis presented herein, semi-empirical forms of the three-dimensional

energy spectrum function, E(k, t) will be considered. E(k, t) is the integral over spherical
shells of radius k of the trace of the three-dimensional spectrum, which is itself
the three-dimensional Fourier transform of the two-point velocity spectrum tensor
(Batchelor 1953). The theory of isotropic turbulence assumes an infinite domain, hence
the E(k, t) to which this theory strictly applies must be defined over all wavenumbers.
Thus, any attempts to realize such flows are, at best, approximations. This is, of
course, well-known, yet there is only limited understanding of the consequences. As
a result, theoretical results are called into question because they differ from the
experiments, even though the experimental results might have been anticipated. The
approach used here is to assume the theory for an infinite domain (as detailed below)
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Figure 1. E(k) versus k for the Wray (1998) DNS data.

to be correct, then show that the measurements can be accounted for by considering
the contribution of the largest scales which the experiments and simulations cannot
produce.

Of primary interest here will be the kinetic energy, 1
2
〈uiui〉 ≡ 3

2
u2, and the inte-

gral scale, L. For homogeneous, isotropic turbulence, these are related to E(k, t) by
(Batchelor 1953):

3
2
u2 =

∫ ∞
0

E(k, t)dk, (2.1)

and

L =
π

2u2

∫ ∞
0

E(k, t)

k
dk. (2.2)

It is clear from equation (2.2) that the integral scale determination is more heavily
weighted by the lowest wavenumbers. This is the source of the problems addressed
by this paper.

The problem posed by the missing wavenumbers is clearly evident in figures 1
and 2 which show plots of E(k) and E(k)/k versus k of the DNS data of Wray
(1998) for various times during decay. Although for small times, there are several
spectral estimates below the peak in E(k), by the end there is only one. For DNS of
decaying turbulence, the spectrum is obtained by ‘averaging’ the modulus squared of
the Fourier coefficients over finite-thickness shells between k − ∆k/2 and k + ∆k/2
(instead of the more familiar ensemble averaging or time averaging of a stationary
experiment). This presents a special problem at lowest wavenumber, both because of
the very few Fourier coefficients available and the fact that the spectrum is changing
most rapidly there. The problem can be easily avoided by moving the spectral peak to
much higher wavenumbers, but this means the simulations will be at proportionally
lower Reynolds numbers. So most opt for the highest Reynolds number possible by
squeezing the low end, since it is presumed the highest wavenumbers are of the most
interest. Only recently has what is happening at the lowest wavenumbers been of
major concern (e.g. Wang et al. 2000)
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Figure 2. E(k)/k versus k for the Wray (1998) DNS data.

3. The importance of the missing low wavenumbers
As noted above, in the real world of experiments and computer simulations,

wavenumbers below a certain value, say kL, are not available because the scales are
larger than the size of the facility or computational domain, or simply because they
have not been measured or computed because of other limitations (like instrument
response or averaging). Whatever the cause, without arbitrary interpolation the por-
tion of the energy that can be determined from the realized spectrum, say 3

2
u2
m, is

only:

3
2
u2
m ≡

∫ ∞
kL

E(k, t)dk. (3.1)

Similarly, the most that can actually be computed from the data is the ‘measured’
integral scale, Lm defined by the partial integral:

Lm ≡ π

2u2
m

∫ ∞
kL

E(k, t)

k
dk. (3.2)

To proceed further requires a knowledge of the spectrum, E(k). In general, E(k, t)
increases from zero at zero wavenumber as some power of k; peaks somewhere near
the inverse of the integral scale, say kp; then rolls-off approximately as k−5/3 through
an inertial subrange; and finally, rolls-off exponentially in the dissipative range. Also,
as the energy decays, the spectral peak shifts to lower and lower wavenumbers and
the overall spectral levels diminish (see figure 1). For the purposes of this paper,
neither the exponential roll-off in the dissipative range nor the deviations from the
k−5/3 roll-off are important.

The simplest model containing the essential features is a generalization of the model
spectrum originally proposed by von Kármán & Howarth (1938). In non-dimensional
form using u2 and L it is given by:

E(k, t) = u2L
Cp(kL)p

[1 + (k/ke)2]p/2+5/6
. (3.3)
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Figure 3. Ratio of energy above kL to total energy versus kL/kp.
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Figure 4. Ratio of portion of integral scale above kL to total integral scale versus kL/kp.

This particular spectrum is the infinite Reynolds number limit of the spectrum recently
created by Gamard & George (2000) using near asymptotics to fit the extensive grid
turbulence spectra of Mydlarski & Warhaft (1996), and is identical to it for the low
wavenumbers of primary interest here. The coefficients Cp and ke (or equivalently L)
are interrelated and can be uniquely determined as a function of p by substitution
into equations (2.1) and (2.2). The details and results are summarized in Appendix
A. The primary advantage of this spectrum is that it leads to the analytical solutions
derived below for the missing wavenumbers.

Figures 3 and 4 show plots of u2
m/u

2 and Lm/L as functions of kL/kp where kL is the
lowest available wavenumber and kp is the wavenumber at which the energy spectrum
peaks. The ratios were computed by substituting equation (3.3) into equations (2.1),
(2.2), (3.1) and (3.2). The details of this computation are in Appendix B, but the
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results are simple and given by:

u2
m

u2
= Iz

(
1
3
, 1

2
(p+ 1); z

)
, (3.4)

Lm

L
=
u2

u2
m

Iz(
5
6
, 1

2
p; z) =

Iz(
5
6
, 1

2
p; z)

Iz(
1
3
, 1

2
(p+ 1); z)

, (3.5)

where Iz is the incomplete beta function and the variable z is defined by:

z ≡ 1

[1 + (3p/5)(kL/kp)2]
. (3.6)

It can be seen from the plots that energy ratio is relatively insensitive to the value
of p, the exponent of the spectrum near k = 0. It is also obvious from figure 3 and
the equations above why it is possible to obtain the overall energetics of the decay
to within a few per cent even for values of kL/kp = 0.5, which is not uncommon
near the end of DNS attempts to simulate decaying homogeneous turbulence (e.g.
Wray 1998). Even at this late stage in the calculations, the missing wavenumbers
contribute less than 10% to the total energy, and have only a tiny effect on the
decay rate (which is proportional to the integral of k2E, and hence barely sensitive
at all). By considering the flux of energy to the low wavenumbers and requiring it be
negligible, de Bruyn Kops & Riley (1998) suggest that kL/kp should be less than 0.3.
This appears from figure 3 to be approximately correct, but clearly this ratio must be
maintained throughout the simulation to estimate the energy decay rate properly. It
is important to note, however, that even the progressive loss of a few per cent of the
energy can make an important difference in the apparent power law exponent of the
decay, especially if the decay exponent is to be determined to two decimal places as is
customary. This loss can make the power law exponent appear to be time-dependent
even if it is not.

The integral scale ratio shown in figure 4, by contrast, is very sensitive to the
low-wavenumber behaviour, so the choice of p is crucial in evaluating the errors.
For example, for p = 2, the integral scale computed from the spectral data above kL
is more than 40 % low for the same kL/kp = 0.5 used above for the energy. These
missing wavenumbers have an effect on the apparent temporal variation which is not
small, and lead to significant underestimates of the growth rate exponent, m, or make
it appear to be time-dependent.

4. Correcting the integrated spectra for the missing wavenumbers
A significant advantage of these analytical results is that they can be used to

estimate what the proper values of u2 and L might have been had the missing low
wavenumbers been available. This is only obvious when the variable z defined by
equation (3.6) is expressed in terms of the true integral scale L. In Appendix A it is
shown that:

kpL =
3π

4

[
3p

5

]1/2 B( 5
6
, 1

2
p)

B( 1
3
, 1

2
(p+ 1))

, (4.1)

so the conversion from kL/kp to kLL is trivial. It is always assumed that kL is known.
Obviously, correction is not simple because the true integral scale, L, appears

on both sides of equation (3.5). This implicit relation can be solved, however, by
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straightforward iteration: simply supply the values for u2
m and Lm along with the

cutoff wavenumber, kL, and iterate the choices of u2 and L until equations (3.4) and
(3.5) are satisfied. The only problem is how to choose p without biasing the answer.
As should be clear from the spectral plots above, it is not possible to make this
choice by fitting the spectral data since there are no estimates to fit. The results of an
alternative procedure will be presented below, along with discussion of the validity of
the entire procedure.

Such a correction procedure makes sense only if the part of the spectrum that
is available from the data itself reasonably models a homogeneous turbulence. This
subject was recently considered in detail by George et al. (2001), the considerations
of which apply here. The approach used there was first to show that the data under
consideration are consistent with a homogeneous turbulence undergoing a power law
decay (i.e. u2 ∝ tn) with constant power law exponent, n. Then the spectral exponent
p was determined from the similarity relation of George (1992), i.e.

p = −2n− 1. (4.2)

Finally, the choices and corrections made are shown to be consistent with the
kinematical and dynamical constraints of decaying isotropic homogeneous turbulence.

If the turbulence is decaying as u ∝ tn with constant n, then it is easy to show
from the definitions that the Taylor microscale squared must grow linearly (Batchelor
1953), i.e.

λ2 = 2Aν(t− to), (4.3)

where to is a virtual origin. Moreover, the coefficient can easily be shown to be
determined entirely by the decay exponent to be exactly:

A = −5

n
. (4.4)

The entire question of the virtual origin can be postponed by considering the derivative
of equation (4.3) which reduces to:

1

ν

dλ2

dt
= −10

n
. (4.5)

Thus, if the turbulence is decaying as a power law in time with constant exponent, n,
a plot of dλ2/dt versus time shows a flat region, and its level yields unambiguously
the power law decay exponent, n.

Figures 5(a) and 5(b) show plots of the corrected and uncorrected values of dλ2/νdt
for the DNS data sets of Wray (1998) shown earlier and the de Bruyn Kops & Riley
(1998) data. Both are 5123 simulations. For the Wray data, after a long transient
there is at most a small region (5.0 < t < 6.3) where the exponent can be reasonably
assumed constant, before it tails off slowly. (However, even for this limited ‘flat’ region
the value drops from 6.7 to 6.5.) The de Bruyn Kops & Riley data, by contrast, settle
quickly into an extensive region (0.4 < t < 0.7) which is nearly flat (for the corrected
data to within one per cent). The roll-off for large times of the uncorrected data is
compensated for by the correction for both data sets (perhaps a bit too much for the
very late times of the de Bruyn Kops & Riley data), suggesting that both are better
approximations to an n = constant decay than was immediately apparent from the
original data.

The corrected data was computed by solving equations (3.4) and (3.5) above for
each time step using the values of u2

m and Lm determined by integrating the DNS
spectra from and above kL using a trapezoidal rule. A new value of decay rate and λ2
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Figure 5. Corrected and uncorrected dλ2/νdt versus t for (a) Wray (1998) DNS data, (b) de
Bruyn Kops & Riley (1998) DNS data.
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was then computed from the new u2. This process was continued until the assumed
value of p was consistent with equations (4.5) and (4.2). Unlike the usual curve-fitting
where almost any choice of exponent can be made to work (usually by choosing a
virtual origin), this process was quite sensitive and there was virtually no latitude for
arbitrary choices. The processs required numerous iterations to achieve accuracy to
the second decimal place in n (or p). The uncorrected values were n = −1.3 and −1.6
for the de Bruyn Kops & Riley and Wray data, respectively. The final values for the
corrected data were n = −1.17 (de Bruyn Kops & Riley) and −1.5 (Wray), which
correspond to p = 1.34 and p = 2, respectively.

Figures 6(a) and 6(b) show the variation of the Taylor microscale squared for both
data sets before and after correction. The virtual origin has been chosen for the best
linear fit to the constant power exponent region, to = −0.35 for Wray and +0.078 for
de Bruyn Kops & Riley. The coefficient given by equation (4.4) provides the slope.
These choices are nearly perfect for both data sets, fitting the de Bruyn Kops & Riley
data over the constant power law range to within 0.06%, and the Wray data to within
0.01%.

Plots of the corrected and uncorrected energy look almost identical to each other,
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so are not shown. The power law with constant n fits the Wray and de Bruyn Kops
& Riley data to within 0.2% and 0.3%, respectively, for the time ranges identified
above using the same virtual origins. It should be noted that the corrected values of
u2 are not significantly different from what would have been obtained by a simple
interpolation of the energy spectrum to zero (as is often done), since the error is
not very sensitive to p. Such a simple interpolation is not reasonable for the integral
scale, however, since the low-wavenumber contribution is strongly dependent on the
assumed value of p, hence this iterative procedure.

Figures 7(a) and 7(b) show the variation of the corrected and uncorrected integral
scale with time for both sets of data. By comparison to the corrections to the energy
and Taylor microscale which were quite small, the integral scale differences are large,
especially for the longest times. The reasons for this, of course, are obvious from
the spectral plots (shown in dimensionless form in Appendix A), since there are few
data for wavenumbers below the spectral peak. Also shown on each plot is a line
showing a square root variation with time using the virtual origin determined from
the Taylor microscale above. The fit to the de Bruyn Kops & Riley data over the
region where the exponent is constant is to within 0.2%, and thus consistent with
the George (1992) prediction. The square root line is less satisfactory for the Wray
data for which the variation is about 1% over even the very limited approximately
constant exponent range. The reason for the difference is not clear, but is perhaps
attributable to the fact that there is really no range where dλ2/νdt is constant for this
data set, even when corrected.

Figures 8(a) and 8(b) show the variation of L/λ with time for the two sets of data.
The value of L/λ is 3.4 for the corrected de Bruyn Kops & Riley data to within 0.1%
over the constant power region. However, the same ratio is also nearly constant (to
within 0.4 %) for the entire range of the data. The Wray data, by contrast, drops
from 4.45 to 4.31 over the region 5 < t < 6.3. Even so, the relative drop is about
the same as for dλ2/νdt for this region, consistent with the suggestion above that
the integral scale behaviour is closely linked to the constancy (or lack of it) of n. As
noted in Appendix A, the spectra for both sets of data show a remarkable collapse
for all wavenumbers (except the lowest one) when normalized with u2 and λ. This
also implies L/λ is constant, since both the integral scale and the Taylor microscale
are determined from the spectrum.
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5. Summary and conclusions
A simple spectral model was used to evaluate the effect of the missing large scales

on estimates of the energy and integral scales in homogeneous turbulent flow. The
results apply both to experiments (which are limited by the tunnel dimensions) and to
DNS data (which are limited by computational box-size or the lowest wavenumber).
The fundamental idea is that periodic and box turbulence can be viewed as models
of isotropic turbulence in an infinite environment, but with the largest scales simply
missing. This has long been implicitly assumed by the turbulence community, but
there has been no systematic methodology for examining the differences. The most
likely reason for the success of this simple approach is that the largest scales of
motion interact only weakly with the rest of the flow since their time scales are very
large. Even so, the approximation must break down for very large decay times, unless
it can be shown that there would be no flux of energy into wavenumbers below
the low-wavenumber cutoff. This might indeed be the case if the cutoff is in the
low-wavenumber spectral region believed (at least by some, e.g. George 1992) to be
invariant.

For the energy and Taylor microscales, the dependence on the specific behaviour
at low wavenumbers is weak as long as the ratio of the lowest wavenumber to
the peak wavenumber is less than 0.2. Even a small error, however, creates an
apparent time dependence of the decay parameters. For the integral scale, however,
the dependence on the specific form of the spectrum near k = 0 is quite important,
and the limitations on the ratio of lowest wavenumber to peak wavenumber are much
more severe. Typically, kL/kp < 0.1 is necessary to ensure less than 10% error. Almost
no experimental or DNS data to date satisfy this criterion except for the earliest decay
times. Similar criteria apply to the important ratio of integral to Taylor microscale,
which can be substantially reduced during decay by the missing wavenumbers.

It was shown to be possible to correct the estimated integral scales of the ap-
proximately isotropic decaying turbulence for the effect of the missing wavenumbers
by solving equation (3.5) interatively. Application to two different DNS data sets
produced conflicting evidence. The most that can be said is that L ∝ t1/2 if the energy
decays as a power law in time with constant exponent (i.e. n = constant), but if
n 6= constant (for whatever reason) perhaps it does not. The somewhat slower growth
rates reported in the literature as well as their variation are most probably directly
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related to the missing large scales, exactly as suggested earlier by Comte-Bellot &
Corrsin (1971).

Correction of any data is never a satisfying proposition, no matter how carefully
performed, since in some sense it presumes the answer. Therefore, it can at most pro-
vide tentative conclusions which point the way to further experiments or simulations.
Even so, the spectral theory used to correct the data here was quite independent of
the similarity analysis, except for the assumed value of p, the exponent describing the
behaviour of the spectrum for small k. It can certainly be said that the corrected data
were internally consistent with the single-point constraints for isotropic homogeneous
turbulence; the relation between the decay exponent and the time derivative of the
Taylor microscale squared (equation (4.5)) is most important. This relation does not
seem to have been previously applied to other attempts to determine the appropriate
energy power law for either simulations or experiments, but it should be in all future
efforts.

What is the significance of these results? First, this study makes clear once again
that considerable care must be taken before using the results of experiments and
DNS to infer the behaviour of isotropic turbulence. A perfect experiment and a
perfect simulation is at best an approximation to this ideal state. And even though
it may provide an adequate approximation for one statistical quantity, it may not
for another. Secondly, the turbulence community as a whole has been all too willing
to dismiss the contributions of isotropic turbulence theory and especially similarity
theory as being wrong or irrelevant. This study suggests the opposite. When carefully
applied, both provide powerful tools for evaluating the limitations of our attempts to
study turbulence in the laboratory or by computer.
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asked here. Therefore, the authors are especially grateful to Dr A. Wray of NASA
Ames and Dr S. de Bruyn Kops and Professor J. Riley of the University of Washington
for graciously making their data available to us. We would also like to thank S.
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Appendix A. Details of the spectral model
The spectral model of equation (3.3) is repeated here for convenience:

E(k, t) = u2L
Cp(kL)p

[1 + (k/ke)2]p/2+5/6
. (A 1)

The coefficients Cp and ke (or equivalently L or kp) are interrelated and can be
determined by direct substitution of equation (3.3) into equations (2.1) and (2.2). The
resulting normalization integrals for the energy and integral scale are:

3
2

= Cp(keL)p+1

∫ ∞
0

xp

[1 + x2]p/2+5/6
dx, (A 2)
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p 1 1.34 2 3 4
kpL 1.3630 1.2943 1.2272 1.1804 1.1570
keL 1.7597 1.4437 1.1203 0.8798 0.7468
kp/ke 0.7746 0.8965 1.0954 1.3416 1.5492
Cp 0.3229 0.4535 0.8455 2.2249 6.2528

Table 1. Spectral parameters as function of p.

and

1 = 1
2
πCp(keL)p

∫ ∞
0

xp−1

[1 + x2]p/2+5/6
dx. (A 3)

By using t = 1/(1 + x2), the integrals can be transformed into the familiar beta
function defined by:

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt. (A 4)

The results are:
3
2

= 1
2
Cp(keL)p+1B( 1

3
, 1

2
(p+ 1)), (A 5)

and

1 = 1
4
πCp(keL)pB( 5

6
, 1

2
p) (A 6)

The relation between ke and L is easily determined by dividing equation (A 6) by
equation (A 5). The result is:

keL =
3π

4

B( 5
6
, 1

2
p)

B( 1
3
, 1

2
(p+ 1))

. (A 7)

Thus, as noted above, keL is a constant dependent only on the value chosen for p.
The value of the coefficient Cp can now be determined by substitution of equation

(A 7) into either equations (A 5) or (A 6). The result is:

Cp =

[
4

πB( 5
6
, 1

2
p)

]1+p [
B( 1

3
, 1

2
(p+ 1))

3

]p
. (A 8)

Another wavenumber of interest is the wavenumber at which the spectrum E(k, t)
has its maximum, say kp. It is straightforward to show (by setting dE/dk = 0) that kp
is given by:

kp

ke
=

[
3p

5

]1/2

. (A 9)

Using equation (A 7) yields equation (4.1), i.e.

kpL =
3π

4

[
3p

5

]1/2 B( 5
6
, 1

2
p)

B( 1
3
, 1

2
(p+ 1))

. (A 10)

Values of kpL, keL, kp/ke and Cp are given in table 1 for p = 1, 1.34, 2, 3 and 4.
Figure 9 shows the de Bruyn Kops & Riley data plotted together with the model

spectrum equation (3.3). Only the data beyond t > 0.287 have been plotted, since this
is just before the region of constant power exponent decay begins. The data have
been normalized using the corrected values of u2 and λ discussed in § 4, and the model
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Figure 9. (a) E(k)/u2λ and (b) E(k)/u2λ/kλ versus kλ for the de Bruyn Kops & Riley (1998)
DNS data.

spectrum has been converted to these variables using the constant value of L/λ = 3.4.
The value of p = 1.34 was chosen by iteration and by requiring dλ2/νdt = 20/(p+ 1).
The model spectrum is in reasonable agreement with the low-wavenumber data for
all but the lowest wavenumber. This lowest wavenumber is always problematical for
the simulations, since it is at the very edge of the averaging integral. In fact, if p is
determined using only the lowest wavenumbers on these plots, it is less than unity,
suggesting strongly that the lowest wavenumber estimate is too low.

By contrast, the k−5/3 roll-off of the infinite Reynolds number model is a bit too
fast for these low Reynolds numbers, exactly as observed by Mydlarski & Warhaft
(1996) (see also Gamard & George 2000). Since all plots are normalized to integrate
to the same energy, the lack of exponential tail on the model spectrum used here
means there must be slightly less energy at low wavenumbers to compensate for
the extra energy at high wavenumbers. Even this effect is not evident in the plot
of E/k for which both models are in excellent agreement with the data for all but
the questionable lowest wavenumber. However, this behaviour is irrelevant to the
considerations here, since only the behaviour around and below the spectral peak
are important for the correction to the energy and integral scale. Thus, the ratios of
u2
m/u

2 and Lm/L are unaffected.
Figure 10 shows the same plots for the Wray (1998) data. A value of p = 2 was

determined to provide the best consistency with the dλ2/νdt plots, and a constant
value of L/λ = 4.4 was used to convert the model curve to these variables. As
noted above, the exponent of the power law decay is at most constant for only the
limited range from 5 < t < 6.3. Nonetheless, the normalization works remarkably
well, even though there is only a limited power law region. The spectral fit to the
higher wavenumbers is better than for the de Bruyn Kops & Riley data because the
Reynolds number of the data is higher. The problem with the lowest wavenumber is
also less severe.

Appendix B. Details of partial integrals for u2 and L using the spectral
model

The effect of the missing low wavenumbers on the integrals can be evaluated by
substituting the spectral model of equation (3.3) into equations (3.1) and (3.2) to
obtain the ratios u2

m/u
2 and Lm/L directly.
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Figure 10. (a) E(k)/u2λ and (b) E(k)/u2λ/kλ versus kλ for the Wray (1998) DNS data.

Again using t = 1/(1 + x2), the integrals can be transformed into the incomplete
beta function defined by:

Iz(a, b; z) ≡ [B(a, b)]−1

∫ z

0

ta−1(1− t)b−1dt. (B 1)

Equations (3.4) and (3.5) follow after some manipulation, i.e.

u2
m

u2
= Iz(

1
3
, 1

2
(p+ 1); z) (B 2)

and

Lm

L
=
u2

u2
m

Iz(
5
6
, 1

2
p; z) =

Iz(
5
6
, 1

2
p; z)

Iz(
1
3
, 1

2
(p+ 1); z)

, (B 3)

where z is defined by equation (3.6) as before. It is straightforward to express either of
these in terms of kLL using equations (A 7) or (4.1). These results have been plotted
in figures 3 and 4 for values of p = 1, 2, 3 and 4.

Several of the incomplete beta function integrals reduce to elementary analytical
expressions. For example, for p = 1, u2

m/u
2 can be expressed simply as:

u2
m

u2
=

1

[1 + 3
5
(kL/kp)2]1/3

(p = 1). (B 4)

For p = 2, Lm/L reduces to:

Lm

L
=
u2

u2
m

1

[1 + ( 6
5
)(kL/kp)2]5/6

(p = 2). (B 5)
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