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1 Introduction

There have been numerous attempts over the past four decades to determine the
integral scales of isotropic decaying turbulence, both from experiment and more
recently using DNS. Of particular interest has been how the integral scale varies
with time during decay. Most use a power law variation, L o t™ with values
of m ranging from 2/7 to 1/2 [3]. The latter value is of some special interest
since it was originally derived by Dryden from an extension of the von Kar-
man/Howarth [5] similarity hypothesis, and subsequently from a more general
equilibrium similarity theory by George [4]. In fact, both of these approaches
conclude that the integral scale and Taylor microscale, A, remain in constant
ratio throughout decay. George [4] showed that while the experimental lateral
integral scales obtained by Comte-Bellot and Corrsin [3] appeared to confirm
this, the longitudinal integrals scales were problematical. The ratio of L/A is
definitely not constant for recent DNS data [8].

2 The problem and solution

The problem is that both the energy and integral scale are determined in part by
the largest scales of the turbulence which are either not simulated at all by DNS
or experiments, or can not be estimated because of an insufficient statistical
sample. Figure 1 and 2 show plots of the energy spectra, E(k,t) and E(k,t)/k
of the recent 512° DNS by de Bruyn Kops and Riley [2]. The integrals under
these are proportional to the energy and integral scale respectively. Clearly
the missing spectral estimates at low wavenumber can significantly affect the
integrals estimated from them.

A simple spectral model is used to examine what is required to determine
the energy and integral scale in homogeneous, isotropic turbulence (see Wang
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and George [9] for details). The model is a modified von Karman type spectrum
given by:
Cp(kL)P
21p/245/6 (1)
[1+ (k/ke)*)P
where 1 < p < 4. The values of C}, and k. depend on p, and are determined by

requiring F and E/k to integrate to the energy and integral scale respectively;
ie.,

E(k) = u?L

gu2 = /OOOE(k)dk (2)
o [ E(k)
L = o ; — .k (3)

3 The results

Figures 3 and 4 are produced from the spectral model for integer values of p, and
show the ratios of the integrals estimated from above the lowest wavenumber,
kr, to the complete integral for the energy and integral scale respectively. It is
clear that the absence of scales more than an order of magnitude below the peak
in the energy spectrum, k,, significantly affect the determination of the integral
scale, and the error depends significantly on p. The energy is similarly affected
but much less so. Since the spectral energy peak shifts to lower wavenumbers as
the flow evolves, the problem becomes progressively worse during decay. This
progressive deterioration can significantly affect the estimates of decay exponents
of power law fits and make them appear to be time dependent, even if they are
not. The effect is to overestimate the energy decay rate and to underestimate
the growth of the integral scale.

By an iterative process [9], it is possible to approximately correct the DNS
data using the spectral model. Considerable effort was applied using the theory
of homogeneous turbulence [1] to ensure that the correction did not imply the
result. Of particular importance is the behaviour of the time derivative of the
Taylor microscale squared (shown in Figure 5), which was nearly constant for the
corrected data (unlike the uncorrected data), implying a power law decay with
constant exponent. Figure 6 shows the corrected and uncorrected integral scale
for the de Bruyn Kops/Riley DNS data. The results are consistent with L o /2
to within a few percent, and the ratio of integral scale to Taylor microscale is
constant to within less than 0.4 % for the entire simulation.

4 Conclusions
The results imply (at least for this simulation and the Comte-Bellot/Corrsin

experiments as well) that for the decay of turbulence in time for fixed initial
conditions, L/A = constant, exactly as argued by George [4] from equilibrium
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similarity considerations. Moreover these results imply that the Kolmogorov
relation is not satisfied; i.e., Le/u® # constant (c.f., Batchelor [1] or Sreeni-
vasan [6]). This is contrary to popular belief, but not surprising theoretically,
since no experiments or simulations satisfy the high Reynolds number conditions
for Kolmogorov’s equilibrium range hypothesis from which it derives [1]. Fig-
ure 7 shows the corrected data for L/, along with the constant value and the
variation that would be followed were Kolmogorov correct (i.e., L/A oc Ry").
Similarly, Figure 8 shows the corrected data for Lu®/e, the constant value were
Kolmogorov correct, and the variation predicted by George (Lu®/e x R, for
fixed initial conditions).

The differences between the competing theories are small, but so is the varia-
tion of Ry, even for this extensive data set. Even so, the results are clearly more
consistent with equilibrium similarity than with the traditional view. This could
have profound implications for our view of turbulence, since equilibrium simi-
larity implies the energy decay is entirely determined by the initial conditions
as preserved in p and the constant ratio L/A.

References

[1] Batchelor, G.K. Homogeneous Turbulence, C.U.P., 1953.

[2] S. de Bruyn Kops and J. Riley. Direct numerical simulation of laboratory
experiments in isotropic turbulence. Phys. Fluids, 10, 1998, 2125 — 2127.

[3] G. Comte-Bellot and S. Corrsin. Simple Eulerian time correlation of full-
and narrow-band velocity signals in grid-generated, ’isotropic’ turbulence. J.
Fluid Mech., vol.48, part 2, 1971, 273-337.

[4] W. K. George. The Decay of Homogeneous Isotropic Turbulence. Physics of
Fluids A, 4, 7, 1992, 1492 — 1509.

[5] T. von Karman and L. Howarth. On the Statistical Theory of Turbulence.
Proc. Roy. Soc., A164, 1938, 192 — 215.

[6] K. V. Sreenivasan. On the Scaling of the Energy Dissipation Rate. Phys.
Fluids, 27, 1984, 1048 — 1051.

[7] G 1. Taylor. Statistical Theory of Turbulence. Proc. Roy. Soc. A151, 1935,
421 — 478.

[8] H. Wang, S. Gamard, J. Sonnenmeier, and W.K. George. Evaluating DNS of
Isotropic Turbulence Using Similarity Theory. Proc. ICTAM 2000, Chicago,
Ill., Aug 27 — Sept. 1, 2000.

[9] H. Wang and W. K. George The integral scale in isotropic turbulence. J.
Fluid Mech. to appear in 2002.



THE INTEGRAL SCALE IN ISOTROPIC TURBULENCE

L O time=0.287 i
60 x 0348
. 0.494
+ 0690
* 0800
50 ° B
o o
x
201 x 4
w * o
30 o i
+ x °
* x o o
o
20F Xk, ° 6 o 4
o, L o
* . LI ° o o .
10+ * X ox 4
° *E oty x
*
* R Pty N .
. , . , . , ! 3% %
o 05 1 15 2 25 3 35 4 45 5
3
14 T T T T T
)
= rn——
06| p=2 B
JE—
04f 00000 p=4 B
02f B
o 02 04 06 08 1 12
ok,
12 T T T T T T T T T
101 |<~constant exponent region 3 B
0000
000000 00°
8L Jesassed) ]
B
L er 1
=
]
at 1
0000000 1 corrected deBruyn Kops/Riley
2t % uncorrected deBruyn Kops/Riley B
Theory (n=-1.17)
0 01 02 03 04 05 06 07 08 09 1
time
5 T T T T
\
\
asf B
\
\
\
\
N
ar 1
asp Tl
o0 2000.0Q00
3k 1
25 . . . . . . . . .
o 01 0.2 03 04 05 06 07 08 09 1
time

Figure 7

110 T T T T T T T T T
100
G tme=0287
L x 0348
® © . 0494
N + 0.690
80 * 0800
70t
o
60
@
+
501 x
* o
a0t
x
30 °
"
20 M X o
+ X o
* x O o
10 £ Y29
L. Q
* % : R 9
, , . i P4 odi 2§88
05 1 15 2 25 3 35 4 45
K

Figure 2

Lm/L =1, (516, p/2; 2)/1, (U3, (p+1)/2: 2)
1, (516, pl2: 2) is incomplete Beta function

1, (113, (p+1)/2; 2) is incomplete Beta function
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