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relative to the transport of these quantities by the turbulence. More-

over, the streamwise gradient of the turbulent normal stress difference
- -

(u
2 2
-v ) has been neglected in the momentum equation as has the stream-

wise gradient of the streamwise turbulent heat flux -a. The neglect

of both has been seen to be acceptable for both jet and plume (Chapters

2 and 3), at least as far as the shape of the profiles is concerned.

Both the momentum and temperature equations can be integrated across

the flow to yield the integral equations used by previous investigators.

These are

Momentum: U2rdr = 1: gBAT rdr

Temperature:
(Buoyancy)

CT

The initial condition

F
g@ATUrdr = g .

for the momentum integral equation is,

Jr 2 Mo
U rdr = E

4.2.4

4.2.5

4.2.6

which is the rate at which momentum is discharged at the source.

4.3 .The Transformed Equations

A hot jet is expected to behave initially as a forced jet, and the

buoyancy is expected to affect the flow gradually. A model to repre-

sent the velocity and temperature profiles for this flow must reduce

to the equations for a forced jet presented in Chapter 2 as either:

1) the buoyancy is reduced; or 2) the momentum and buoyancy source is

approached.
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The appropriate transformations which accomplish these goals are

u = r/x

g@T = Tj(x) tj (n,c)

gm = nj(x) hj(n&) . 4.2.7

The subscript j denotes the previously derived (Chapter 2) similarity

forms for the jet given by:

u = M 11.2 x-l
j 0

R = MO x
-2

j

T = F M -1" x-1
j 00

n. -2
J
=Fox . 4.2.8

It should be recalled that for the jet, the solution to the momentum

equatd.on depends on only x 2nd MO. Moreover, the presence of F. in T.
J

does not feed back (in the jet) into the momentum equation since

temperature is a passive scalar. Thus, in the representation presented

&bove, the buoyancy manifests its presence only through the new dependence

un 5 and the coupling of the temperature and veloc3ty equations through

the buoyancy term.
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Substituting equations 4&2*7 and 4V2e8 into the dynamical

equations 4.2.1 and 4.2.2, differentiating and collecting terms, and

using the continuity equation 4.2.3 to eliminate the radial velocity

’ yields

4.2.9

4.2.10

The terms on the left hand side are independent of < and are

readily identified as the only terms required to represent the forced ’

jet (equation 3.2.9 - 3.2.10 in Chapter 3). The terms on the right

hand side are seen to vanish identically in the limit as E + 0. In

particular the buo.yancy term in the momentum equation E2t
j
vanishes in

this limit.

Equations 4.2.9 and 4.2.10 are seen to exhibit precisely the

characteristics which are sought. The pure jet equations are recovered

as c + 0 and thus the jet solutions are recognized as limiting solutions

for vanishing buoyancy. (Note that prior to this there was no formal

assurance that the jet solutions were approached smoothly.) It is

clear from the equations that the buoyancy terms are controlled by E

and begin to modify the profiles as the flow moves away from the source

or as the rate at which buoyancy (or heat) is added increases.
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The transformed integral equations can similarly be shown to be

given by

rofj j
l t qdn = $- . 4.2.12

4.2.11

It is clear from the first of these equations that in the limit

as E + 0, the initial momentum is conserved as it should be for a jet.

The second equation expresses the now familiar conservation of energy

(or buoyancy).

4.4 Scaling Laws for the Buoyant Jet

The system of equations and integral constraints together with

the prescribed initial conditions and boundary conditions contains all

the information present in the original set (equations 4.2.1 and 4.2.3).

These equations could be solved directly if closure approximations

were made; however, there is little to suggest at this point which

modifications to the previously used closure approximations might account

for the modifying influence of the buoyancy correctly. More can be

gained at this point by seeking limi!ting solutions for small and large

values of E for which perturbation and asymptotic expansion techniques

provide both insight into the nature of the problem and guidance in

closing the equations.

A perturbation solution for small values of c is developed in

Chapter 5, and both analytical and numerical solutions are presented.,

In Chapter 6, the plume solutions developed in Chapter 2 are shown to

be asymptotic solutions to equations 4_2*9 and 4*2*10 for large values
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Before developing these solutions, however, it is important to

forced plumes or hmyant

in equations 4-2.7 and 4.2.8, these latter

scaling rvlations to collapse data for all

jets.

As pointed out earlier, the data in the mixed regime of h~uoyant

jets is limited to masmxnents of waterline temperature (or bxioyancy).

If the scaling proposrzd is correct, aI1 of these data should collapse

if plotted as

g5AT
5

- v e r s u s  E
T.
J

where T8 is the jet-like similarity variable given hy equation 4.2.8,

Tj = FoMo-1'2 x-l .

Figure 21, adapted from data given by Kotsovinos (34), sumrizes

most of the available data on buoyant jets. The data are seen to

collapse around a single curve to within the experimental error. This

curve is the function t
j
(n,<) for n = 0. .The jet asymptote (E + 0)

is seen to he horizontal as it should be since the temperature is

normalized by jet-like parameters. The plume asymptote (E + m) is

seen to roll off as E
-213

. This is what is to be expected from the

analysis of Chapter 6.
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