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ABSTRACT

Existing theoretical work on axisymmetric turbulent buoyant jets
is confined to integral techniques developed by Morton in the early
1950's. TFrom these techniques only centerline velocities and temper-
atures can be calculated. Experimental data for this type of flow are
essentially confined to centerline temperature measurements except for
pure jet or pure plume data which constitute the extremes for a buoyant
jet. The jet provides initial conditions, and the plume represents the
asymptotic state for a buoyant jet flow.

. This dissertation addresses the problem of developing a theoretical
model for an axisymmetric turbulent buoyant jet. The governing equations
for an axisymmetric turbulent buoyvant vertical jet are transformed using
jet similarity variables. 1In this transformation a length scale is
introduced which controls the buoyancy term in the jet equations. 1In
the limit as this length scale approaches zero, the‘buoyancy effects
vanish and the jet equations are recovered. As this length scale
approaches infinity, the plume equations~are obtained. The perturbation
expansion is developed for the near jet yielding a system of ordinary
differential equations. Asymptotic equations are developed from which
the plume solution is recovered. Analytical and numerical solutions
are carried out using several eddy viscosity models. The solutions
compare favorably with available experimental data on the buoyant jet
centerline. The off-axis jet data appear to be in error because the

mean velocity data fail to satisfy the momentum integral constraint.
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CHAPTER 1

INTRODUCTION

1.1 Flow Description

It is important that the reader distinguish the difference between
the terms jet, buoyant jet, and plume.
A jet is defined as a flow which is driven by the continuous

addition of momentum at the source.

A buoyant jet is defined as a flow which is driven by the
continuous addition of both bouyancy and momentum at the

source.

A plume is defined as a flow which is driven by the continuous
addition of buoyancy at the source.

Even if the rate at which momentum is added at the source is
sufficiently large to dominate the effect of the buoyancy discharge so
that the flow is jet-like, it will eventually evolve into a plume-like
flow since the initial buoyancy (no matter how small) continuously
produces additional momentum. The principal topic of this dissertation
is the study of how a hot axisymmetric turbulent jet evolves into a
turbulent plume in a neutrally stable and quiescent environment. Only

the case where buoyancy adds to the momentum will be considered.

1.2 Background

At the turn of this century little consideration was given to the



fluid dynamics associated with the discharge of pollutants‘from
municipal and industrial waste. In recent years laws have been enacted
which define both the permissible level of pollutants generated by a
given process and the permissible concentration of those pollutants in
the vicinity of the source. These laws have provided an impetus for a
more rapid development of an understanding of buoyant jets since such.
jets are representative of the techniques by which pollutants are dis-
charged.

The study of turbulent buoyant jets is rather recent. The problem
was first addressed by Morton (1) in 1959. This work was an extension
of a preceding work by Morton, Taylor, and Turner (2) in which an
integral technique was developed to describe buoyant turbulent plumes.

The history of turbulent buoyant plumes precedes that of the buovant
jet by only 20 years. The early plume work included Zel'dovich 3),
Schmidt (4), Taylor (5), Rouse, Yih, and Humphreys (6), Batchelor (7))
and the aforementioned work of Morton, et al. (2). The data of Rouse,
et al. (6) remained the basis for theoretical evaluations untilvrecently.

Studies of axisymmetric turbulent jets, on the other hand, were
undertaken in the 1920's. For example, in 1926 Tollmien (8) developed
a theoretical analysis for turbulent jet flow using Prandtl's mixing-
length theory. Gortler (9) developed the eddy viscosity model for jet
flow in 1942. (This analysis will be described in detail later.) Early
measurements of the jet mean velocities and temperatures include work
by Zimm (10), Ruden (11), Reichardt (12), Hinze and van der Hegge Zignen
(13) and Corrsin and Uberoi (14).

From this brief overview it is apparent that theoretical and

experimental knowledge of the plume and jet developed along separate



paths. 1In fact, only integral type solutions were discussed by Turner
in his review of plumes in 1969. In the mid 1970's Yih (15), Hamilton
and George (16) and Baker, Taulbee, and George (17) applied eddy vis-
cosify techniques to the plume problem. This was after Chen and Rodi
(18) and Tamanini (19) had begun to calculate bouyant plume flows using

higher order models.

1.3 Experimental Investigation

1.3.1 The Jet
Hinze (20) provides an extensive review of the available data for
- an axisymmetric jet which will be only briefly summarized here. The
velocity data are summarized in Figure 1 adapted from Wygnanski and
Fiedler (21) which also includes two theoretical solutions to the jet
equations which will be discussed later. The data are presented in
terms of the jet similarity variables /ﬁ; and x where pM0 is the rate
at which momentum is added at the source and x is the distance from the
source.

The data from all investigations are seen to be in good agreement
if plotted in similarity variables. The empirical fit (discussed in

detail later) is calculated from
U= B @ x'1[1+An2]'2 _ 1.3.1

where B1 = 5.6 and A = 62.5 represent a reasonable fit for data in the
core regilon. As discussed at the end of this section, the data beyond
n=0.05-0.1 are subject to increasing measurement errors and are probably
not reliable. In fact, the measured profile will be shown in Chapter 3

to be incorrect.



U/UE = £(n)/£(0)

Figure 1.

n=r/x

Comparison of jet mean velocity data with theory. 1 - Data
fit Wygnanski and Fiedler (21). 2 - Data fit Hinze and van
der Hegge Zignen (13). 3 - Theory equation 1.3.1.



The temperature data are summarized in Figure 2. The approximate
. . , v -1
similarity variable for temperature will be shown to be F x //ﬁo where
pFo is proportional to the rate at which heat is added at the source.1
Like the velocity data, the data of different investigators is seen to
be in good agreement if plotted in similarity variables. The empirical

fit (discussed in detail later) is calculated from

gBAT = BZFO'x_l//ﬁ; [1+An2]—1'5 1.3.2

where B2 = 6.0 and A = 62.5 as before. From these data it is not
difficult to see that the width of the temperature profile is greater
than that of the velocity profile. (Width can be defined by any con-
venient measure, e.g., distance from centerline at which variable has
dropped to half its centerline value.)

In summary, the extensive data on the turbulent jet appears to be
of high quality, at least near the centerline. For reasons which will
be addressed in the next section, however, the profiles should be viewed
with suspicion for values of n > 0.1 because of the high local turbulence
intensities in this region. In addition, it will be shown that neither
the data nor the fit given by Equation 1.3.1 satisfy the momentum

integral for this flow.

1.3.2 The Plume
The plume data of Rouse, et al. (6) show that the velocity and

temperature profiles are self-preserving when scaled with the rate at

pFO = gg%— where g is the gravitational acceleration and H is the rate
P

at which heat is added at the source.



T/T, = e /()

0
l [ l [

0 .04 .08 .12 .16
n=r/x
Figure 2. Comparison of jet mean temperature data with theory. 1 =~

Data fit Hinze and van der Hagge Zignen (13). 2 - Theory
equation 1.3.2.



which buoyancy is added at the source and the streamwise distance from

the source. For the axisymmetric case empirical fits to the data are

given as
U=4.7 Fol/3 x—l/3 exp(-96r2/x2) 1.3.3
gBAT = 11 F02/3 x /3 exp(-71r2/x%) 1.3.4
where
Fo = rate of buoyancy added at source
B = thermal expansion coefficient
r = radial direction
x = height above source.

The mean temperature profile is seen to be wider than the mean velocity
profile, the opposite of the jet. These data were obtained using vane
~anemometers and thermocouples to measure mean velocities and temperatures.
Although the flow measurement techniques have advanced over the
years, the data of Rouse, et al. remained the basis for theoretical
evaluation until 1974, At that time, George, Alpert, and Tamanini (22,
23) published measurements made in an axisymmetric plume with a parallel
hot wire probe. These data include mean velocity and temperature pro-
files, temperature and velocity fluctuation profiles, and the first
measurements of the streamwise turbulent heat flux. The data confirm
the self-preserving conclusions of Rouse, et al., but the basic profile
shapes do not agree. The empirical data fits recommended by George, et

al. are

4 F 1/3 X_l/3

o exp(-—55r2/x2) 1.3.5

U = 3.



1/3 -5/3
X

g8AT = 9.1 F_ exp (~65r>/x2) 1.3.6

The width of the temperature profile for these data is narrower than

the velocity profile, this is opposite to the conclusion of Rouse, et al.
These profiles of George, et al. are substantiated in a similar (and
almost concurrent) experiment of Nakagome and Hirata (24).

The most extensive set of data available are the recent measure-
ments of Beuther, Capp, and George (25) and Beuther (26). These measure-
ments were obtained using a special three-wire probe having two velocity
sensors in an X-array and one temperature éensbr.. Measurements aré‘
presented of mean velocity and temperature profiles, mean square velocity
and temperature fluctuations, Reynolds stress, axial and radial turbuient
heat flux, and mean and fluctuating momentum and energy balances for an
axisymmetric turbulent plume.

Profiles of mean velocity and temperature were fifted by the semi-

empirical equations

1/3 2.-2

U= 3.4 F <301 1 3202758 1.3.7

-3

213 301 432?73 1.3.8

gBAT = 9.4 Fo
Beuthef, et al. (25) found Yih's (15) solution, if used as an empitical
equation provided a better fit for the velocity data than the Gaussian
type fit used by previous‘investigators. Yih's solution and the
Gaussian curves for the temperature are indistinguishable over the
range of interest.
A summary of plume mean velocity and temperature data is shown in

Figures 3 and 4. The discrepancy in the early data may be attributed to
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Figure 3. Comparison of plume velocity data. 1 - Data fit Beuther, et
al. (25). 2 - Data fit George, et al. (22). 3 - Data fit
Rouse, et al. (6).



2BAT x5/3/F 2/3

0 .04 .08 .12 .16
n=r/x
Figure 4. Comparison of plume temperature data. 1 - Data fit Beuther,

et al. (25). 2 - Data fit George, et al. (22)., 3 - Data
fit Rouse, et al. (6).



the instrumentation. The uncertainty in the recent data is smaller but
important. This scatter might reflect the difficulty in establishing

a pure buoyant plume flow in a uniform ambient which.Beuther (26) found
to be a critical problem. The differences in the temperature profiles
is primarily due to uncertainty in the determination of F0 from the

data,

1.3.3 The Buoyant Jet

The data for axisymmetric bouyant jets are scarce, but measurements
of centerline temperatures and mean temperature profiles have been
reported. These include measurements by Abraham (27), Kotsovinos and
List (28), Ryskiewich and Hafetz (29) and Pryputniewicz (30), which are
included in Chapter 4, and discussed in Chapter 7. There are no velocity

measurements for the buoyant jet region.

1.3.4 Data Reliability

Discrepancies in the recent hot wire measurements have given rise
to critical questions concerning the current hot wire probe techniques
used in sampling high intensity turbulent flows and in particular, most
of the data cited above. Beuther, et al. (25) do not have confidence in
the velocity measurements taken for a similarity coordinate value (n=r/x)
greater than 0.10. According to Beuther, et al. (25):

"The x-wire can only resolve velocities
within an angle of 90° with respect to
the probe axis, and the calibration
functions used to relate the output
voltage of the anemometers to a real

value of velocity are accurate within
an angle of 70°." ‘



Consequently, if the flow direction is at an angle of less than 35°
relative to the probe wire, it cannot be measured accurately. This
problem is depicted in Figure 5. It is further stated that this
probleﬁ occurs in approximately 10% of the data at the centerline.

The data rapidly deteriorate as the distance from the centerline is
increased. This problem cannot be alleviated with laser Doppler
anemometer techniques because of the inherent reflective index limita-
tions in heated flows as indicated by Buchhave, Geofge, and Lumley (31).
A moving probe technique is presently being devéloped by George and

his co-workers to eliminate this problem, but these results will not

be available for some time.

1.4 Theoretical Background

1.4.1 The Jet

The tuyrbulent jet has been the subject of numerous theoretical
investigations over the past 50 years. These are reviewed in the recent
text of Hinze (20), and only those points relevant to this work will be
included here.

| The first theoretical treatment of the axisymmetric jet was pre-

sented by Tollmien (8) in which the jet flow field was modeled using
Prandtl's mixing-length hypothesis. Tollmien was able to obtain an
analytical solution which showed good agreement with the data near the
outer edge but predicted too large a curvature near the centerline.

Gortler (9) presented an eddy viscosity model for the jet flow and
the analytical solution for this model. While this solution is in good
agreement near the centerlipe, the predicted values of velocity and

temperature are too large for n > 0.15. Schlichting (32) extended



Figure 5. Schematic of two-wire probe in high intensity turbulent flow.



Gortler's soluﬁion to include the temperature field. Briefly, these
solutions are successful in predicting the proper profile shapes near
the axis but cannot satisfy the integral constraints imposed by
momentum conservation and provide a reasonable data fit. This fact does
not appear to be well-known and led to considerable confusion in the
present investigation.

Recent theoretical work has concentrated on higher order turbulence
modeling and large eddy simulation techniques. These techniques have
encountered problems in modeling the jet using universal constants
determined from viscometric experiments. There 1is reason to believe
that the problem may be as much in the experiments as in the model.

The large eddy simulation techniques are new and are in a state of
development. Both the experiments and the model suffer from the

inability to define the large eddy.

1.4.2 The Plume and Buoyant Jet

After the introduction of the similarity analysis developed
independently by Zel'dovich (3), Batchelor (7) and Rouse, et al. (6),
integral methods were the only techniques used to model buoyant jet
and plume flows until the 1970's. The similarity solutions assumed
the form
Y3 3 e e 1.4.1

3 te/w) 1.4.2

b = Ax . 1.4.3



Morton, et al. (2) used these parameters in the integral forms of
the mean flow equations to develop a model to describe plumes. The

integral equations take the following forms:

a .2
i (b™U) = 20bU 1.4.4
4 (p22) = p2, 00 1.4.5
I g 5 .
1

-p dp
4 bPyg 2y =p2 L8 _o 3 1.4.6
dx Ol pi X

Equation 1.4.4 results from the integration of the continuity equation
and the so-called "entraimment hypothesis" -- in which it is assumed that
the radial velocity V, 1s proportional to the mean axial velocity U.

This assumption results in the appearance of the entrainment coefficient
. Equations 1.4.5 and 1.4.6 are the results of the integration of the
momentum and bueyancy (or temperature) equations. A solution of this
system of equations requires that the entrainment coefficient be known.

Morton, et al. (2) applied this technique to plumes in neutral and
stratified environments. Morton (1) extended this work to include
forced plumes (or bﬁoyant jets) by assuming that the entrainment
coefficient was the same for both jets and plumes and thus constant
throughout the entire flow field. This work remains the standard for
most engineering analyses,

The assumption that the entrainment coefficient was constant from
Jet to plume was shown to be incorrect and 1ncons19tent with experlments
by List and Imberger (33). The experimenters developed a first approxi-

mation of how the entrainment coefficient o should vary as a buoyant jet



becomes a plume by using an empirical model for o which behaved properly
in the limits. Kotsovinos (34) extended the development by List and
Imberger (33) by introducing an improved fit for a.

The first departure from the integral technigques for»modeling plume
flows is due to Yih (15), who used an eddy viscosity model, and Madni
and Pletcher (35), who used a mixing-length model. The work of Yih
stimulated the work of Hamilton and George (16) and Baker, Taulbee, and
George (36). In the present work similarity parameters are used to
develop similarity equations for continuity, momentum, and tempefature.
The momentum and buoyancy integrals used in the integral modeling
technique remain as integral constraints for the similarity solutions.
An eddy viscosity closure scheme is used together with the similarity
analysis to derive a set of similarity equations which can be solved to
predict the mean velocity and temperature profiles for assumed values
of the turbulent Prandtl number. The solution obtained by Yih is an
analytical solution which is valid for Prandtl numbers of 1.1 and 2.0.
In reference 36 and Chapter 2 numerical solutions are presented for a
large range of Prandtl numbers.

Because of the problems in existing data, it is questionable if
higher order modeling is justifiable at this time; however, some work
has been published in which higher order models are used to compute the
plume flow field parameters. Tamanini (19) and Chen and Rodi (18)
present results calculated using algebraic stress modeling (ASM). This
model can be used to predict a large number of flow parameters, but the
results are questionable for large values of n. This could result from
the fact that the model cannot account for the effect of large eddy
structures on the turbulence and the resultant intermittency, or it

could simply reflect the errors in the measurements.



1.5 The Eddy Viscosity Closure Approximation

Few concepts in turbulence theory are more widely used than the
closure of the averaged equations of motion by an eddy viscosity. 1In
the form originally proposed by Boussinesq in 1877 (37), a simple pro-
portionality relationship between turbulent transport and mean gradient
is assumed, the constant of proportionality being the eddy viscosity,
or diffusivity if concentration or heat are being considered. The

turbulent Reynolds stress is written

—ww ey U 1.5.1
e 9r
and the turbulent heat flux is written
-VE=a X 1.5.2
e oar

The similarity between the two relationships is often referred to as
Reynolds' analogy.

Thevsimple eddy viscosity models which utilize only the mean
equations have had a variety of successes and failures in modeling
turbulent flowg. Tennekes and Lumley (38) argue that the eddy viscosity
can be expected to be successful when the turbulent flow is characterized
by single time and length scales. Thus the presence or absence of
dynamically important multiple length or time scales can provide useful
clues as to whether an eddy viscosity model might be successful.

Another way to rephrase the thesis of Tenpekes and Lumley is to
state that eddy viscosity models might be expected to work when the flow

is in local scale equilibrium. It will be shown that simple jets and

plumes represent such flows; thus an eddy viscosity formed from local



parameters, either assumed or calculated, should provide reasonable
solutions.

There have been numerous attempts to model both the turbulent
bouyant plume and forced jets involving varying amounts of bouyancy.
These attempts have ranged from the integral entrainment velocity models
of Morton (1), Morton, et al. (2) and the mixing-length model of Madni
and Pletcher (35) to the algebraic stress models of Chen and Rodi (18)‘
and Tamanini (19). It is not the purpose of this study to evaluate
these attempts. One of the goals here is to explore in detail the
application of the simple eddy viscosity to the plume and jet flows
which completely satisfy the conditions for its application. Of
particular interest will be the model's ability to accurately predict
the profiles, its sensitivity to choice of constants, and the possible
importance of the non-negligible vertical turbulent heat and momentum
flux.

It will be shown that the bouyant jet, unlike the jet or the
plume, has two length and time scales and hence does not absolutely
satisfy the criterion for success of the eddy viscosity closure scheme.
Since the effect of the second length scale is to continuously transform
an initial forced jet into a buoyant plume, an attempt will be made to
find an eddy viscosity which can be continuously modified to reflect
this evolution. Such solutions would provide a first clue into the
dynamics of these poorly understood mixed flows.

The eddy viscosity model to be used in this work can be used to
predict only the Reynolds stress and the radial heat flux, but at this
time a more complicated model cannot be justified. The experiments are

complicated, and the differences between pure forced jets and pure



buoyancy driven plumes are often subtle and within experimental error.
This simple model, however; can readily provide estimates of whether the
flow region is a buoyant jet or has developed into a pure plume.
Furthermore, hot air buoyant jets and plumes are very difficult to
isolate from room drafts which cause meandering. While these effects
can be minimized by shrouding the experimental configuration in fine
mesh screen and isolating the entire facility with solid walls, the
walls must be located far enough from the screen to allow sufficient
entrainment to sustain the flow field. This model can be used to cal-
culate bounds on the entrainment air required. Because of the model's
simplicity it also provides a useful tool for estimating experimental

design parameters and for evaluating results.

1.6 Outline of Dissertation

The techniques used in this dissertation have been available for
a number of years. These include the eddy viscosity hypothesis,
similarity scaling, perturbation and asymptotic expansion techniques.
These simply have not been applied to this problem. This work is con-
cerned with the following:

1. Eddy viscosity solutions are présented for an axisymmetric
turbulent buoyant plume in a natural environment. These
solutions are obtained using numerical techniques and provide
complementary results to the analytical results obtained by
Yih (15). Yih's solution is valid for Prandtl numbers of 1.1
and 2.0. The numerical solution is more general and provides
results for all Prandtl numbers.

2. The eddy viscosity solutions developed by Schlichting (32) for



the buoyant jet are rederived in a more general framework

which allows for the transport of momentum By the turbulence
fluctuations. These modified solutions are used to provide

a critique of the jet experimental data.

A set of dimensionless mean flow equations for the buoyant

jet are established from first principles in which the jet and
plume are recovered in the limits as the buoyancy parameter
becomes small and large respectively. This is accomplished

by recognizing that the flow field has a "forced length scale"
(L = MB/A/FOI/Z) which can be combined with the axial coordinate

(x) to form a dimensionless length & = x/L. The dimensionless

length £ controls the bouyancy term in the mean flow momentum

equation. Consequently, this parameter dictates the evolution
from a jet to a plume. The dimensionless mean flow equations
involve two-dimensionless coordinates £ = x/L and n = r/x and
represent a universally valid set of equations for arbitrary
buoyancy.

Perturbation expansions are developed for the two-length scale
model of the mean flow equations for the near-jet using an
eddy viscosity model. The lowest order solution (pure jet)

is developed in detail, and analytical and numerous solutions
are developed for higher terms in the expansion for a range of
turbulent Prandtl numbers.

Plume solutions are shown to be the asymptotic solutions to the
buoyvant jet equations for large values at £.

The theoretical developments are used to present a unified

theory for the bouyant jet. Results are compared with existing



experimental data and previous theoretical work. Finally, the
dependence of the entrainment coefficient in the integral

models on § = x/L is evaluated.



CHAPTER 2

THE TURBULENT BUGYANT PLUME

2.1 The Equations of Motion

The simple turbulent buoyant plume is shown schematically in
Figure 6. A vertical column of fluid is driven by a source of buoyancy
at the base and spreads by turbulent entrainment. The plume is assumed
to be turbulent and fully developed, stationary in the mean, and to
have a sufficiently high turbulent Reynolds number that viscous terms
can be neglected in the equations for the mean flow. Making the usual
Boussinesq approximations (c.f., Tennekes and Lumley (38)), the mean
equations of motion for an axisymmetric flow becomel
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where AT is the difference between the local temperature and the
temperature at infinity and B represents the thermal expansion
coefficient. Lower case letters have been used to represent the

fluctuation velocities and the fluctuating temperature. The mean

1Complete details on the development of the plume equations are con-
tained in Appendix A.
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Figure 6. Schematic of plume and coordinates.



pressure gradient term has been eliminated using the r-momentum
equation, and the streamwise gradient of the turbulent normal stress
gradient has been neglected. The streamwise gradient of the turbulent
heat (temperature) flux which is usually neglected has been retained.
 For later use the temperature equation is integrated across the

flow to obtain
2 [ gRIATU+B]rdr = F_ 2.1.2

where pFo can be identified as the rate at which weight deficiency Qr
buoyancy is added to the source. TFor the neutrally stable environment
assumed here, pFo is also the rate at which buoyancy crosses any hori-
zontal plane.

It is appropriate to note at this time that the turbulent contri-
bution to the integral above may not be negligible. For the axisym~
metric case, the contribution of the turbulence has been estimated as
high as 15% by George, Alpert, and Tamanini (23). This question and its
significance will be discussed later.

Assuming that the ambient fluid is of uniform demsity (or neutrally
stable), the flow is entirely characterized by the rate at which
bouyancy is added at the source and the distance from the source. A |

set of similarity solutions are sought of the form

n=r/x uv = RS ()
U = Upf m) ghvt = thl(n)
V= Upk (n glut = thz(n)

2.1.3
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Substituting into the equations of motion, demanding that the
coefficients of terms in the equations be independent of x, and applying
the integral condition for a neutral environment that FO be independent
of x, yield the following functional relationships (Zel'dovich (3),

Batchelor (7), and Rouse, Yih, and Hamphreys (6)):

- /3 -1/3
Up = Fo X
T = 2/3 -5/3
P (o]
R = 2/3 ~2/3
p o]
H =F x° . 2.1.4
p (o)

Using these, the equations of motion reduce to
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The dependence of the set of equations above on k (the cross-
stream velocity component) can easily be removed by integrating the
continuity equation and substituting for k in the momentum and

temperature equations. The results are
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2.2 The Eddy Viscosity Model for the Plume

It is clear that these equations (and therefore the flow) are
completely characterized by single length and time scales since all
lengths are proportional to x, and all time scales to x/US. From the
previous discussion, it is expected that an eddy viscosity model will
be successful in predicting the evolution of this flow.

On dimensional grounds

<
]

UPX v(n)

Q
]

UPX oln) . 2.2.1

There is no reason to expect that the eddy viscosity should be the
same for both the axial and cross-stream heat flux or momentum flux.
For reasons which shall be presented later in the discussion, it is not

necessary to include the axial gradients of the turbulent heat flux in

the calculation even though the turbulent fluctuations may contribute
a significant fraction of the total heat flux. Therefore the bracketed
term of equation 2.1.7, which repreéents the turbulence contribution to
the vertical heat transport, will be ignored. This contribution will
be accounted for in the integrated energy balance or the bouyancy
integral.

The flow being modeled is a free shear flow. Townsend (39) has
indicated that flows of this type may be assumed to be well-
mixed, since the dynamics will be dominated by a single large eddy
structure. Therefore, an eddy viscosity and eddy diffusivity which are

independent of radial position are assumed to be of the form
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where RT and PT will be referred to as the turbulent Reynolds' and
Prandtl numbefs, respectively. Thus
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Substitution into the equations of motion yields
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These are ordinary differential equations for the two fuctions f and t
that can be solved directly if RT’ PT and the boundary conditions are
specified.

The appropriate boundary conditions are

£'(0)
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t'(0) = 0, t(®) = t' (o) =

|
o

2.2.6

These simply state that the flow is symmetric about the axis and

vanishes at infinity.



The solutions to these equations must satisfy some form of the
integral constraint of equation 2.1.2. Denoting the fraction of the
"bouyancy which is carried by the mean flow as Q, the appropriate con-

straint in dimensionless form is

2n [ £+t emdn=q . 2.2.7

The factor Q can take any value between zero and unity, the latter
corresponding fo a negligible turbulent contribution to the vertical
heat transport. Note that this is the only place where the (unknown)
turbulent contribution to the bouyancy integral enters the problem,"
and the magnitude of this contribution in this formulation must be
specified.

2.3 The Dependence on the Parameters R, PT, and Q

T?

The dependence of these equations on the coupled parameters can
be illustrated by first carrying out the following transformation on

equations 2.2.4 and 2.2.5

p =R, n
: -1/2
£) » £(p), tM) » t(p), k() » R, k{p) . 2.3.1

The governing equations can easily be shown to réducg to
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and the integral constraint is now given by

f: f(p) t(p)pdp = QRT/Zﬂ . 2.3.4

In this form it is clear that the solutions to equations 2.3.2

and 2.3.3 depend only on the parameter P_ and are independent of RT and

T

Q. These latter dependencies enter only when the integral constraint

of equation 2.3.4 is applied, and then only in the combination RTQ'

Thus an entire family of possible solutions is generated for each value
of RTQ. It is not until the solution is mapped back to physical coor-
dinates by reversing the transformation of equations 2.3.2 and 2.3.3

that the actual dependence on R

T (or Q) enters. The choice of Q is

limited by the physical constraints of 0 < Q < 1.

From the above it is clear that the magnitude and basic shape of
the profiles are determined only by the product RTQ' In particular,
the centerline values are uniquely determined. From equation 2.3.1,
it is also clear that the actual physical width (or spreading rate) is
determined by RT alone. If the centerline values are assumed to be
determined by the data, then the profile width determines Q, the

fraction of the total vertical heat (or buoyancy) transport due to the

turbulent fluctuations. The reverse is also true.

2.4 The Exact Solution of Yih

2
Yih (15) found exact solutions” satisfying the equations, boundary

conditions, and integral constraints for the particular cases PT = 1.1

and 2.0. The profiles are

2Modified forms of Yih's solutions are presented to include the Q-factor

and the development of Yih's exact solutions is given in Appendix B.
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where P, = 1.1, m = 3, or P 4. As illustrated in the

T = 2,0, m

T
previous sections the parameters fo’ to, A, PT’.RT must be inter-~

related. These telationships are summarized in Table 1.

2.5 Numerical Solutioh for Arbitrary Prandtl Numbet

The coupled nonlinear second order ordinatry differential equations
given by equations 2.3.2 and 2.3.3 are solved numerically to give £(p)
and t{(p).

The numerical solution involves an iterative process in which for
each iteration step the solutions to linearized versions of equations
2.3.2 and 2.3.3 are found. The linearization of equationh 2.3.2 is
actomplished by specifying that f£(p) and fg f(p)pdp are known and given
by the previous iteration. The linearized equations are central
differenced, yielding a system of algébraic equations with a tridiagonal
matrix for which a solution is easily accomplished by an elimination
process.

The solution is initiated using simple geometric functions to
approximate t(n) and f(n) over the range of interest. The program
iterates upon the functions t(n) and f(n) until convergence is
dttained. The solution provides the functional relations t(n) and f(n)
for a given RT and PT’ and computes RTQ, the value of the mean bouyancy
integral.

Two hundred grid points were found to provide an increment in 7,

which insured accuracy with reasonably fast convergence. The boundary



Table 1. Summary of parameters in buoyant plume equations.

Prandtl No. = 1.1 PT = 2.0
Exponent m=3 m=4
2

fo /RTQ 11/167 25/36m
to/RTQ 11/187 125/2407
£ 2 9/8 3/4

o to
Af /£ R 10/64 11/64

o oT

A/R,I,3/2Ql/2 0.065 0.057




conditions at infinity are known from the physies of the problem, and
experimental data are used to bound values at f(o) and to). Infinity
is established by extending the solution to the radial directiom to a
value at which the buoyancy integral is satisfied to the fourth decimal
place. The profiles calculated by this technique are tdentical to

those obtained for a more limited range of R, and PT by Hamilton and

T
George (16) using a shooting method which required approximately twice

the computer time of the present method.

2.6 Results of the €alculations and Comparison with Experiment

It was shown earlier that the form of the solutions depended only
on the variables PT and RTQ' Figure 7 shows the interdependence of the

centerline velocity and temperature as functions of the parameters R, 0

T
and PT. The calculations cover the range of the existing data (9 < t(o)
< 13.7, 2.7 < f(0o) < 4.7). Also shown are the lines corresponding to
vih's closed form solutions for PT = 1.1 and 2, and the aforementioned
calculations of Hamilton and George (16).

The experimental values obtained by Schmidt (4), Yih (15), and
George, Alpert, and Tamanini (22) are also shown. The measurements of
Schmidt (4) have been suspect since these do not satisfy the momen tum
equation. The measurements of Yih have recently been gquestioned by Yih
himself (15) because of problems with the velocity probe, and by George,
et al. (23) who questioned whether Yih's flow development length was
long enough to allow sufficient momentum buildup from a heat source to
achieve an asymptotic state. 1In view of the fact that turbulent Prandtl
numbers are generally accepted to be near unity for free turbulent shear

flows, Figure 7 indicates that these suspicions about the earliest

measurements are well-founded, and they will not be used further here.



16.0=

14,0~

12.0-

10.0 -

t(0)

8.0 4

6.0

4.0

2.0

44

38
32

2.0

Figure 7.

3.0 4.0 5.0
£(0)

Parametric map of plume mean centerline temperature and

velocity. o - Schmidt (4). A - Rouse, et al. (6). e -
George, et al. (22). —-— Theory Yih (15). =--- Theory
Hamilton and George (16). —— Theory Baker, et al. (17).



Figures 8 and 9 show the calculated profiles of velocity and temper-
ature for PT = 1 and several values of RTQ. Also shown for comparison
are the data of George, et al. (23). The agreement between the measured
profiles and those calculated for RTQ = 50 is sfriking.

As might be expected from the results shown in Figure 7, Yih's
solution for PT = 1,1 is very close to those shown above. In fact if
the width parameter is chosen to be A = 28, the profiles given by equa-
tions 2.4.1 and 2.4.2, if normalized by the centerline values, are
indistinguishable from the RTQ = 50 contours in Figufes 8 and 9. In
view of this, Yih's profiles should be used in place of the commonly
used Gaussian profiles whenever an analytical expression is desired,
since the fit to the velocity profile is superior.

Figures 10 and 11 show the calculated Reynolds stress and radial

turbulent heat flux corresponding to the RTQ = 50, P = 1.0 case presented

T

above. In order to obtain these graphs it is necessary to know RT
explicitly, thereby necessitating a choice for Q. A value Q = 0.85

is selected which corresponds to the estimate of George, et al. (23)
based on measutements of ubf. Also plotted are the Reynolds stress and
radial turbulent heat flux measurements of Beuther and George (40).
Agreement between the calculated and measured values is excellent near
the centerline and in the core region of the plume. The fact that the
calculated and measured values of the heat flux deviate at large n may:
be due to the non~negligible influence of the vertical turbulent heat
flux on the temperature equation in this region {see discussion 2.7).
The agreement between calculated and measured Reynolds stress at all
vdalues of n 1is surprising in view of_the uncertainty of the measure-

ments.
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2.7 Discussion

It is both surprising and somewhat misleading that such excellent
agreement can be obtained between measured profiles and the predictions
of a simple eddy viscosity model which accounts for the large turbulence
contribution to the vertical heat flux in only the most elementary
manner. It is interesting to speculate on the reasons for this success.
This is particularly important when considering extended applications
of this model to other problems dominated by bouyancy.

The vertical turbulent heat flux profiles (uB) measured by George,
et al. (23) are shown in Figure 12. It is obvious that the profile is
considerably broader than the temperature or velocity profiles (normalized
to the same maximum value). Over the core region of the plume it is
reasonable to approximate ;é.by a simple top hat function. This
constancy in the core region accounts for the fact that it has no
influence over the shape of the velocity and temperature profiles
except through integral parameter . As the intermittency at the outer
edge begins to play a role in the actual profile shape, this effect would
probably be seen first in the temperature equation and probably accounts
for the deviations between calculated and measured values of radial heat
flux.

An attempt was made to calculate direcfly the vertical turbulent
heat flux 456, using the same value for the eddy diffusivity as used
for the radial component. This corresponds to the commonly assumed

isotropic medium model

-u,86 = o0 — . 2.7.1
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The result for the case PT =1, RT = 60 is plotted in Figure 12. It is
clear that the actual vertical heat flux is substantially underestimated.
The reasons for this are obvious when one considers the dynamical
equation for -uf. Unlike the equation for -v@ where the dominant source
terms arise only from mean gradient terms, the —Gé'equation has, in \
addition, a direct buoyancy source term which depends only on gravity
and the temperature fluctuations. Thus it is not surprising that a
"gradient transport" model fails in accounting for its behavior. One
can infer from this that isotropic eddy viscosity models will probably
always fail in problems involving buoyancy when the directions of the
mean flow and gravity are aligned. Note that this does not exclude the
possibility that additional techniques (like the Q factor introduced

above) can be employed to account independently for the vertical

turbulent heat flux contribution to the problem.

2.8 Summary

It has been shown that a simple eddy viscosity model can accurately
predict the velocity and temperature profiles of a simple buoyant plume
in a neqtral environment if the contribution of turbulence to the
vertical heat transport is accounted for‘separately. This result was
anticipated from the fact that the flow could be characterized by a
single time and a single length scale.

The computed centerline values proved to be useful in sorting
conflicting experimental data. The best fit to the experimental data of

references (23) and (4) is given by PT = 1.0 and

v =1 L 1/3 2/3

e =60 Fo 2.8.1



This corfeaponds to RTQ = 50 for thch 85% of the vertical heat transport
is carried by the mean flow.

Since the computed profiles from turbulent Prandtl numbers near
unity are virtually indistinguishable from Yih's analytical solution
for PT = 1.1 (equations 2.4.1 and 2.4.2) it is recommended that Yih's
solution be used as empirical profiles (with constants to be determined

from the data) in place of the Gaussian forms. It is recommended that.

. |
() = —2 2.8
[1+28n°]
.1
ey = ——t— 2.8.3
[1+28n°]

be used to estimate the velocity and temperature respectively.
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CHAPTER 3

THE AXISYMMETRIC JET

3.1 Introduction

For a forced turbulent jet (with no buoyancy) issuing from a point
source of momentum, a single parameter characterizes the flow,  That
parameter is Mb, the rate at which momentum is discharged from the
source. Since there is no other parameter, the flow has no intrinsic
time or length scale. Consequently, the only parameters available to
form a length and time scale are MO and the distance from the source x.
This situation is similar to that of a plume, and a similarity analysis
can be developed.

Unlike the plume, the jet has been the subject of several investi-
gations beginning with Prandtl; however, the analytical results which
have been reported are at odds with the experimental data, particularly

if thé momentum integral constraint is imposed. This fact is not well
known and is completely ignored in the recent review by Hinze, as well
as in the original works of Wygnanski ané Fiedler (21).

In this chapter, the jet similarity equations are derived, and the
eddy viscosity solutions for the mean profiles are reviewed. The
approach used here will be similar to that originally introduced by
Zel'dovich (3), Tollmien (8), Gdrtler (9), and Schlicbting (32). Their
aﬁalysis will be extended to examine the effects of the non-negligible
axial transport of mean momentum and heat by the turbulent fluctuations.

The solutions are compared to the available experimental data, and an



assessment of the validity of the solution is made. The result of this
assessment is that the analytical solution might be a better approxi-

mation to the jet mean velocity profile than the experimental data.

3.2 The Similarity Equation
The dynamical equations in dimensional form for the jet are
identical to those of the plume except for the absence of the buoyancy

terms. To the same order of approximation used earlier, they reduce to
. ; 1€ , L1 7 eariier, they auce

au du _13 , — '
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The velocity equation clearly is dynamically independent of the
temperature field, and the temperature (or heat) is transported as a
passive scalar.

The complete jet mean momentum and energy equations can be inte-

grated to yield the following integral éonstrqints:

2n f7 W+ o - v Eyrdr = 1 3.2.3

2n [ gB(AT + vB)Urdr = 1 . 3.2.4

The first of these states that momentum is conserved. The second states

that energy is conserved. Energy conservation for the jet is analogous

1See Appendix C.



to buoyancy conservation for the plume. (The gB has been retained here
to facilitate comparison with later chapters even though buoyancy does
not play a role in the pure jer.)

By analogy with the approach used in Chapter 2 for the plume,
equations 3.2.3 and 3.2.4 can be modified to account for the turbulence

contribution to the axial transport by introducing Q-factors as follows:

2
f: U'rdr = QlMo/Zﬂ 3.2.3

f: gBATUrdr = QOF /2w . 3.2.4

As before, Q1 or Q equal unity corresponds to the case where all

transport is due to the mean flow.

. The equations can be closed by an eddy viscosity model which is

similar to that derived for the plume:

vy du
e 9r
3.2.5
— _ AT
-v0 = e 3p .

Since the jet has only a single length and time scale, the model is
expected to work at least as well as for the plume.

The following type of similarity solutions will be developed
U= U.f(n) AT = T.t(n) E=U28(n) -v6 = U.T.h(n)
j e g j ’ i3

3.2.6



The closure approximations of equation 3.2.5 are readily seen to

ipply that
s(n) = %—T £' (n)
h(n) = 54— t' (n) 3.2.7
T 7T A

where RT and PT are constants, the latter serving as the turbulence
Prandtl number.

Substitution of these into the equations of motion, and insistence
that the terms in the equation maintain the same relative balance

(similarity) yields the following forms for Uj, Tj’ Vs and o, -

U. =M 1/2 X—l
i o
F x1
T, = ——5—
j M 1/2
(o]
v, - Lo 12
€ T
1 1/2 ,
o0, =35m M
e PTRT Q . 3.2.8

It follows immediately by substitution that the similarity forms
of the equations are given by:

2, ' m o Loen
f* +— [ fndn e =0 3.2.9

n T



. E..'_ n ___1‘_,__ "n __
for+o fo fndn + 55— " = 0 3.2.10
T T
[° £2ndn = Q. /27 3.2.11
o 1 tee
f: f o fndn = /27 . 3.2.12

The only boundary condition is that the solutions vanish as n - o,
These equations can be solved either analytically or numerically if RT

and PT are specified, and Ql and Q must also be appropriately chosen.

3.3 Effect of Turbulent Transport on Solutions

Analagous to preceding Section 2.3, R, can be incorporated into

T

the radial coordinate as follows:

B > £, tm > e, km »r V) . 331

Substitution into equations 3.2.9 through 3.2.12 yields

£2 (o) +-£Lé91 IS £(0)pdp + £"(p) = 0 3.3.2
]
f(p)t(p) + E_éBl f§ f(p)pdp + %—-t"(o) =0 3.3.3
T

2
fz £(p) pdp = Q Ry/2m 3.3.4



f: t(p)E(p)odp = Q R /2T . 3.3.5

The magnitude of the velocity solution depends only on the combin-
ation RTQl and not on RT or Ql separately, The "width"™ of the profile
in the n~coordinate retains a dependence on RT as in the case of the
plume. The magnitude of the temperature solution depends on RTQ only.

Note that because the velocity enters the equations linearly there is

no dependence of the magnitude of the temperature on RTQI’

3.4 An Exact Solution2

Schlichting (32) and Hinze (20) report exact solutions to these
equations with Q = Ql = k. These solutions can be modified to include

the Q-factors with the following results.

£en) = B/ (1+an)> 3.4.1

2p
c/(14an%y T 3.4.2

t(n)

where A and C are constants dependent on RT and PT, which must be chosen

to satisfy the integral constraints. The results are

B = £(0) = 3RTQ1/8W 3.4.3
A = 3RT2Q1/64ﬂ' 3.4.4
C=1t(0) = (1+2PT)RTQ/8ﬂ . 3.4.5

2
Develoepment of Jet Exact Solutions is given in Appendix D.



3.5 Comparison with Experiment

A comparison will be made between the calculated mean velocity and
temperature pfofile and data of Hinze and van der Hegge Zignen (13)
and Wygnanski and Fiedler (21). The data of the former include profiles
of both temperature and velocity. The data of Wygnanski and Fiedler
are considered to be the best available data for an ambient jet. The
velocity data of Hinze and van der Hegge Zignen are almost identical to
that of Wygnanski and Fiedler. The data will also be used to compare
the calculated and measured Reynolds stress and to determine the inte-
grated transport due to the turbulence fluctuations. A word of caution
is in order, however, since George and Beuther (40) have recently shown
that there is substantial doubt that these profiles are correct beyond

n = 0.05-0.1.

3.5.1 The Velocity Profile

The velocity profile data normalized to unity at the axis are
shown in Figure 13. The centerline value quoted by various authors is

given by

_ 1/2
U@‘— B Mb /(x~xo)‘ 3.5.1

where X, v 7d and B v 5.6. Wygnanski and Fiedler showed that a higher
value for B could be obtained if the data were not taken at sufficient
distance from the source for the flow to have achieved a self-preserving
state. |

Figure 14 is taken from Wygnanski and Fiedler (21) and shows the
profile of the rms axial velocity fluctuation as a fraction of the mean

centerline velocity. Also indicated are the data of earlier investigations.
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Figure 13. Measured jet mean velocity profile (Wygnanski and Fiedler

(21)).
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Figure 14. Measured rms axial velocity fluctuation (Wygnanski and
Fiedler (21)).



The earlier data are believed to be unreliable because of the filtering
of low-frequency components.

Figure 15 shows Wygnanski and Fiedler's data along with the eddy
viscosity solutions generated earlier. Using the measured centerline

value in Equation 3.4.3 the value of RTQ1 can be determined as

R, = 8mB/3 % 47.2 . 3.5.2

4
The value of Ql can be computed by performing the integral

om [ w? rdr = (1-QM - 3.5.3

If the data of Figure 14 are used in equation 3.5.3 énd the integration
is performed graphically, the result is l-Q1 = (.11 or Ql = 0.89 (i.e.,
11% of the total axial momentum is carried by the turbulence).

The profile width parameter A computed from equation 3.4.4 is listed
in Table 2 for a range of values of Ql’ The need for these values will
soon be obvious. The corresponding value of R

RTQl = 47.2.
Inspection of the velocity profiles plotted in Figure 15 for various

T is also computed using

values of Q1 reveals that only the value of Q1 = 0.5 approximates the
profile. This implies that 50% of the momentum is carried by fluctuating
quantities. The mean velocity data of Wygnanski and Fiedler have been
integrated. These data do not satisfy momentum and the results are

given in Figure 16. Shown in this figure are the parameters fz(n) . n/Bz,
the intermittency Yy, and the value of fg fz(h) * ndrn. The data account
for approximately 52% of the momentum and from Figure 16 it can be seen

that the Integral is close to a horizontal asymptote at n = 0,20,



n=r/x

Comparison of measured jet mean velocity profiles with eddy
viscosity model. 1 - Wygnanski and Fiedler (21). 2 -
Hinze and van der Hegge Zignen (13). 3 - Equation 3.4.1,

Ql = 0.5. 4 - Equation 3.4.1, Ql = 0.85.

Figure 15.



Table 2. calculated values of jet velocity profile width pakameter.

0; 1.0 0.9 0.85 0.8 0.7 0.6 0.5
Ry 47.2 52 55.3 539 87.4 78.7 94,4

A 33.9 36.9 36.1 41.6 57.5 55.4 66.5
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Momentum balance for jet mean velocity profile measured
by Wygnanski and Fiecdler (21).
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An alternate approach to the data is to fit the profile first and
work backwards to determine the centerline velocity from an assumed
valqe of Ql (or the measured value). The profile (normalized to unity
at n = 0) glven by A = 66.5 provides an excellent fit out to n =~ 0.15
(or most of the data). The corresponding centerline values are listed
in Table 3 for va;ious values of Ql'

It is clear that either the solution is inadequate to describe -the
data, or that the data are seriously in error. It appears ﬁhat the
problem lies primarily in the data. This is easily shown to be true
by substituting the measured mean profile into equation 3.2.3 and inte-

grating graphically. The result is

27 j‘: vrdr ~ 0.46 M. 3.5.4

Lf the 0.11 Mo obtained by integrating the profile of the mean square

fluctuating velocity is added, this accounts for only 57% of the momentum

flux provided at the source. This problem does not appear to have been

addressed by previous investigators.

The missing momentum cannot be attributed to a neglected part of
the integral at large values of 71 or to intermittency. Intermittency
of the turbulence near the outer edge is believed to reduce the velocity
there and increase the rate of roll-off. Thus an asymptotic estimate of
the tails of the profile based on an eddy viscosity should provide an
overestimate of the neglected part of the integral. Even this over-
estimate proves negligible.

There is considerable reason to believe that the measured profiles
by all investigators may be seriously in ervor. Figure 17 shows a grapb

of the turbulence intensity versus n. Unlike most experimental graphs in



Table 3. Calculated values of jet centerline velocity.

A = 66.5
Q1 1.0 0.9 0.85 0.8 0.7 0.6 0.5
RT 67 74 79 83 95 111 134
B 8.0 7.6 7.3 7;1 6.7 6.2 5.6
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Figure 17. Measured rms axial veldeity fluctuations normalized to

loecal: mean velocity for jet from data of Wygnahski’ afid’
Fiedler (21).



which the fluctuating data have been normalized by the centerline mean
velocity, here the local mean has been used for normalization. The
turbulence intensity is nearly 30% at the centerline and increases
rapidly as radius is increased. At n = 0.15, the turbulence intensity
seen by the probe is nearly 100%. It is well~known that both hot-wire
and pitot-tubes simply cannot provide reliable results at turbulence‘
intensities approaching these values. In fact, the centerline values
are near the limit for standard linearized hot-wire anemometry techniques.
In summary, the only reliable velocity profile data are the center-
line values where the turbulence intensity is the lowest. Accofdinély
a value B = 5.6 is used to obtain RTQ1 = 47. For lack of a better
choice, Ql is selected to be approximately 0.85 (which is probably a
reasonéble guess based on the data). The velocity prdfile corresponding

to this selection of Ql and RTQ1 is:

f(n) = [1+39nz]'2 . : ' 3.5.5

In the‘final stages of this investigation, a paper by Abbiss, ef al.
(45) was fouﬁd which preseﬁts measurements in a jet by standard
hot-wire techniques, a photon correlation technique and a pulsed-wire
technique. The standard hot-wire ﬁeasurementé and the photon correlation
results are in very close agreement with the resuits of other works cited
earlier. While the pulsed-wire profiles are considerably broader, the
turbulence intensity measurements wefe the same for all three techniques.
It wagrthe conclusion of these authors that the hot—wire and photon
correlation measurements were correct. A careful integration of the

momentum flux indicates precisely the opposite to be the case. The




puléed—wife profile is in virtually perfect agreement with the profile
predicted above and integrates to 85-90% of the momentuti; the remainder
being accbunted for by the turbulent transport.

Figure 18 shows the Reynolds stress data of Wygnanski and Fiedler
and that computed from the analytical solution for RT = 55.5 which

corresponds to R = 47.2 and Ql = ,85., The analytical solution pre-

]
dicts the linear region of the Reynolds stress near the origin. This
confirms the relative accuracy of the measurements in this region since
in axisymmetric flows this slope is determined by the mean centerline
velocity. According to George and Beuther (40) the Reynolds stress
measurements outside the core region are probably in error by 20 to 30%
near the peak because of the hot-wire dfop out problem mentioned pre-
viously. Thus the predicted Reynolds stress is consistent with a-
careful analysis of the measurements. It should he noted that the
velocity and Reynolds stress profiles measured by Wygnanski and Fiedler
satisfy the differential momentum equation 3.2.1, even though the
integrated momentum is in error by approximately 50%. This could be
the result of a consistent error in all the measurements, but regardless

of the cause further experimental studies are required to resolve these

questions.

3.5.2 The Temperature Profile

The mean temperature profile due to van der Hegge Zignen (13) is
shown in Figure 19. These data are cited in Hinze (20) and shown to
agree with the results of other authors. The concentration profiles of
Becker, et al. (43) are in excellent agreement with those of reference

(13) which are also shown. The centerline temperature is reported as
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Figure 18. Comparison of measured and calculated jet Reynolds stress
data (Wygnanski and Fiedler (21)). 1 - Calculated using
mean velocity profile to fit data. 2 - Calculated using
mean velocity profile to satisfy momentum integral con-
straint.
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Figure 19.
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Comparison of measured jet mean temperature profiles and
eddy viscosity model. 1 - Data fit Hinze and van der
Hegge Zignen (13). 2 - Data fit Becker, et al. (43).

3 - Equation 3.4.2, PT = 1,18, 4 - Equation 3.4.2, PT =

1.05. 5 - Equation 3.4.2,'PT = 1.0.



gRAT . = 5.95 FO//be . 3.5.6

g

Using this in equation 3.4.5 along with the previously determined
value of RT = 55.5 the turbulent Prandtl number is calculated as a
function of Q (Table 4).

These profiles are plotted in Figure 19 with PT as a parameter,
The PT = 1.2 case is seen to provide an excellent fit to the measured
profile; however, the axial transport of heat by the turbulence is

expected to be less than in the plume since the velocity and temperature

ut .
are not as strongly correlated (i.e.,~;7€ ~ 0.2 - 0.3 for jet versus

0.6 - 0.7 for the plume). This appears to indicate that a turbulent
Prandtl number closer to unity might be desirable.

In summary, the calculated temperature profiles show good agreement
with the measured profiles. Since temperature measurements involve
linear instruments and are not subject to the types of problems
encountered for the velocity, these profiles should be reliable. That
" the theory disagrees with the measured velocity but gives a reasonable
prediction of the temperature profile provides additional evidence for
the validity of the conclusions that the measured mean velocity profiles
are in error. The following equation will be used to describe the jet

mean temperature profile:

tj = 6.0/(l+39n2)2 . 3.5.7



Table 4. Calculated vdlues of jet turbulent Prandtl numbers.

RT = 55,5

Q 1.0 0.9 0.85 0.8

T 0.85 1.0 1.08 1.18




CHAPTER 4

THE BUOYANT JET

4.1 Introduction

The buoyant jet is defined in Chapter 1 as a flow driven by both
momentum and buoyancy addition at the source. In this chapter a set
of dimensionless equations are derived which describe the mean velocity
and temperature (buoyancy) profiles for a buoyant jet as it evolves from
a jet to a plume.. For a turbulent buoyant jet the only parameters which
can govefn the evolution of the flow are either those occurring in the
equations of motion or those imposed at the source of the flow. The
only parameter in the equations of motion is gB and, at the source, the

rate at which momentum and buoyancy are added:l

=
it

2 [ v’rdr 4.1.1

]
1l

CO
2w [ gBATUTrdr . 4.1.2

The dimensions of the above parameters are MO = [24/T2] and FO_=
[24/f3]. At any given cross-section the radial distribution of the
quantities which describe the mean flow must be considered a function
of the distance from the source and the three parameters gB, Fo’ and

M L4
o

For simplicity in presentation, the Q-factors are not included in the
following chapters but will be included in the solution. Note that
they do not enter the perturbation solution above order zero.



From this basic set of parameters only two independent dimension-

less ratips can be formed. A convenient choice for these ratios is:

n = r/x 4.1.3

£ = x/L 4.1.4
where L is defined by:

L= MOBMIFOUZ . 4.1.5

The coordinate n is that used in the jet and plume analyses in
which case no length scale was imposed on the flow, and the natural
length scale is the distance from the source, x.

The coordinate £ is new and is a consequence of the new character-—
istic length L, which is imposed on the flow by the simultaneous addition
of momentum and buoyancy at the source. The length, L, is used to non-
dimensionalize the distance from the source, x, since it is known that
a byoyant jet will evolve into a plume, and L is the only parameter
depending on buoyancy. The parameter & reflects the evolution of a jet
into a plume since L - » gs FO + 0, and § + 0 in which case the jet
source is approached. As the buoyancy. increases, so does & and plume
behavior is approached. Thus, the dimensionless coordinate £ reflecés
the effect of buoyancy on the flow in a manner consistent with the
physical evolution of the flow.

Merton (1), List and Imberger (33), and Kotsovines and List (28)
recognized the importance of a coordinate proportional to & = x/L in
presenting the results of their experimental data and theoretical

calculations. The recognition of L, the "forced length scale" as a



natural length scale arising from the physics of the problem does not
appear to have been made before now. Moreover, the scaling laws arising
from this recognition are new.

The equations derived and presented here show explicitly how the
parameter £ "controls" the buoyancy term in the mean flow équations
thereby modifying the solutions.

The details of the derivation are

included as Appendix E.

4.2 The Dynamical Equations for the Buoyant Jet2

Consider a fully developed, axisymmetric hot turbulent jet dis-
charging vertically into a constant temperature (neutral) environment
of infinite extent as in Figure 20.

The mean equations for momentum,

temperature and mass conservation can readily be reduced to

B , o du_13 , —
U % + VE‘- r or (-ruv) + gRAT 4.2.1
BAT BAT 13, —
U —5;-+ v 5~ F or (-rvB) 4.2.2
UL 13Gy _ 4.2.3
ox r dr

In these equations the Boussinesq approximations are employed,

and the molecular diffusion of momentum and heat is

2Throughout the analysis the buoyant jet is assumed
of momentum and buoyancy. 1In practice, the source
discharge. This can be combined with the momentum
obtain another length scale which manifests itself
- needed to collapse the data in jet coordinates,

assumed negligible

to be a point source
also has finite mass
discharge rate to

in the virtual origin



Source

Figure 20. Schematic of buoyant jet and coordinates.
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relative to the transport of these quantities by the turbulence. More-

over, the streamwise gradient of the turbulent normal stress difference

(UZ—VZ) has been neglected in the momentum equation as has the stream-
wise gradient of the streamwise turbulent heat flux ., The neglect
of both has been seen to be acceptable for both jet and plume (Chapters
2 and 3), at least as far as the shape of the profiles is concerned.

Both the momentum and temperature equations can be integrated across

the flow to yield the integral equations used by previous investigators.

These are
Momentum: g—-fw vrdr = [7 gBAT rdr 4.2.4
" dx Yo o
F
Temperature: [ gBATUrdr = =2 . 4.2.5
o 2m
(Buoyancy)

The initial condition for the momentum integral equation is,

M

[0 Fdr = 52 4.2.6
o 27

which is the rate at which momentum is discharged at the source.

4.3 -The Transformed Equations

A hot jet is expected to behave initially as a forced jet, and the
buoyancy is expected to affect the flow gradually. A model to repre-
sent the velocity and temperature profiles for this flow must reduce
to the equations for a forced jet presented in Chapter 2 as either:
1) the buoyancy is reduced; or 2) the momentum and buoyancy sourceis

approached.
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The appropriate transformations which accomplish these goals are

n = r/x
£ =x/L
U=

Uj (%) "fj (n, &)

<l
1

Uj.(x) kj (1,8)

wv = %(X)Sjﬁhi)

gRAT Tj(x) t (n, &)

ghve

1]

Hj x) hj(n,i)- 4.2.7

The subscript j denotes the previously derived (Chapter 2) similarity

forms for the jet given by:

el
L}

=

X

H, = F x . 4.2.8

It should be recalled that for the jet, the solution to the momentum
equation depends on only X and Mo. Moreover, the presence ofFo in T.J
does not feed back (in the jet) into the momentum equation since
temperature is a passive scalar. Thus, in the representation presented
above, the buoyancy manifests its presence only through the new dependence
on £ and the coupling of the temperature and velocity equations through

the buoyancy term.
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Substituting equations 4.2.7 and 4.2.8 into the dynamical

equations 4.2.1 and 4.2.2, differentiating and collecting terms, and

using the continuity equation 4.2.3 to eliminate the radial velocity

yields

2,5 (ns )" 2 o H oy

£.° + £ - - + - d

; - /s 4ndn 7t + EIE, 57 - /s 3¢~ ndnl
4.2.9

_;1; n (o)’ _H om

tyfs + o fo fgndn - —— = glf, =3 - == [ 5ol nan

4.2.10

The terms on the left hand side are independent of £ and are
readily identified as the only terms required to represent the forced
jet (equation 3.2.9 -~ 3.2.10 in Chapter 3). The terms on the right
hand side are seen to vanish identically in the limit as & - 0. In
particular the buoyancy term in the momentum equation gztj vanishes in
this limit.

FEquations 4.2.9 and 4.2.10 are seen to exhibit precisely the
characteristics which are sought. The pure jet equations are recovered
as £ + 0 and thus the jet solutions are recognized as limiting solutions
for vanishing buoyancy. (Note that prior to this there was no formal
assurance that the jet solutions were approached smoothly.) It is
clear from the equations that the buoyancy terms are controlled by ¢
and begin to modify the profiles as the flow moves away from the source

or as the rate at which buoyancy (or heat) is added increases.
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The transformed integral equations can similarly be shown to be

given by

d o .2 . _ . o
§E~f: fj ndn = § fo tjndn 4,2.11

= 1
[‘: £, 0t pdn = g 4.2.12

It is clear from the first of these equations that in the limit
as £+ 0, the initial momentum iIs conserved as i1t should be for a jet.
The second equation expresses the now familiar conservation of energy

(or buoyancy).

4.4 Scaling Laws for the Buoyant Jet

The system of equations and integral constraints together with
the prescribed initial conditions and boundary conditions contains all
the information present in the original set (equations 4.2.1 and 4.2.3).
These equations could be solved directly if closure approximations
were made; however, there is little to suggest at this point which
modifications to the previously used closure approximations might account
for the modifying influence of the buoyancy correctly. More can be
gained at this point by seeking limiting solutions for small and large
values of £ for which perturbation and asymptotic expansion techniques
provide both insight into the nature of the problem and guidance in
closing the equations.

A perturbation solution for small values off is developed in
Chapter 5, and both analytical and numerical solutions are presented.,

In Chapter 6, the plume solutions developed in Chapter 2 are shown to

be asymptotic solutions to equations 4.2.9 and 4.2.10 for large values
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Before developing these solutions, however, it is important to
recognize the fact that since equations 4.2.9 and 4.2.10 result from
the solution forms given In equations 4,2.7 and 4.2.8, these latter
equations can be used as scaling relations to collapse data for all
forced plumes or buoyant jets.

As pointed out earlier, the data in the mixed regime of buoyant

jets is limited to measurements of centerline temperature (Or buoyancy).

If the scaling proposed is correct, all of these data should collapse
it plotted as

gBAT

-yersus &
3

where TS is the jet-like gimilarity variable given hy equation 4.2.8,

1.6.,

Figure 21, adapted from data given byKotsovinos (34), summarizes
most of the available data on buoyant jets. The data are seen to
collapse around a single curve to within the experimental error. This
curve is the function E(n,E) for n = 0. The jet asymptote (£ + 0)
is seen to he horizontal as it should be since the temperature is
normalized by jet-like parameters. The plume asymptote (£ + =) is
seen to roll off as 5-2/3. This is what is to be expected from the

analysis of Chapter 6.
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CHAPTER 5

PERTURBATION EXPANSION EQUATIONS AND SOLUTIONS FOR THE NEAR-JET

5.1 The Perturbation Equations1

In Chapter 4 it was shown that as £ approaches zero, the buoyant
jet equations reduce to those for the pure jet in Chapter 2. This
glves reason to hope that it might be possible to obtain solutions for
the near-jet region (small &) by expanding about the jet solution. To

this end solutions of the following form will be tried:

- 2 .
fj(n,E) = fj(n) + Efjl(n) + £ sz(n) +e

2
tj(n,é) tj(n) + Etjl(n) + £ tjz(”) e 5.1.1

Before substituting these into the equations of motion the closure
problem for the Reynolds stress and turbulent heat flux must be

addressed. TFor the pure jet it is assumed

— du

-uv = ve o
=0 X 5.1.2

e ar

where
1 1
v = U, x » =, o = U,x ==~ . 5.1.3
e i RT e i RTPT

1 :
Development given in Appendix F.



The similarity versions of

sj ()

t
hj (ﬁ)

M
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equations 5.1.2 are

%* £.'(n)
T 7
1
. 5.1.4
PR,

It would be tempting to try a closure scheme which preserves this

basic form with RT a constant.

that RT for the plume is nearly the same as that for the jet.)

closure approximation would
Sj(n,i)
hj(n.E)
and
hj(n,E)

It follows immediately that

expansions would assume the

Sj (n:g) =

and

ol

hj (‘mE)

where Sj and hj are the jet

profiles, respectively.

Sjl

hjl

(This could be justified from the fact

Such a
be
= f-"(nsg)
RT j
1 '
= 5= t,'"(n, &) 5.1.5
PTRT 3 .
1 '
= t.'"(n, &) . 5.1.6
PTRT h| .

the Reynolds stress and turbulent heat flux

form

(n) + &S, (n) + Ezsiz(n) Heee 5.1.7

() + Bhyy () + E%h o, (n) +eee 5.1.8

Reynolds stress and tuxbulent heat flux



77

Although this scheme is attractive, a more general closure approxi-
mation can be suggested which allows the eddy viscosity to be directly
modified by the increasing effect of buoyancy as the distance from the
source increases. It can be argued that this makes sense since the
dynamical equations for the turbulence fluctuations indicate clearly
that buoyanéy can directly affect the turbulence and its transport.

Expanding about & = 0, such a closure mode takes the form:

=1 2 ...
ve =3 (1 + vlg + vzg + ) 5.1.9
T
and
o = L (1 + a8 + 0 52 Feee) 5.1.10
e PTRT 1 2 T

where PT and RT are taken as the jet values. Note also that choosing
different coefficients for the Vi and aﬁ allows the turbulent Prandtl
number to vary with £. FEquations 5.1.5 - 5.1.6 can be recovered by
setting the vn and o equal to zero.

Substituting equations 5.1.1 into equations 4.2.9 - 4.2.10, using
the closure approximation suggested by equations 5.1.9 - 5.1.10, and

equating like powers of & yields, to second order, the following set of

. 2
equations:

Order 1:
f v (nf l)'
2 n 1 3 _
£ +—J——fof.ndn+R L— =0
] T
t.! (nt,")’'
j n 1 j
t, + —— f, + oo ——— o
fj ] n fo Jndn PTRT n 0

2The equations are developed in Appendix D.



fm tifjndn = o7
Order &:
" 2f "
fjfjl+—j~——f £yndn + —L [* £ ndn
(nf,. ")’ (nf M)
+~;—-—-———J—-————l = ...__]_'
- n Ry n
t,l' n 2t ! n
£t + —dt n + —-
gty * o Jo £yndn # e fg £y nan
\j t ] ]
(ntjl ) _ 0y (ntj )
PRy M PRz M
f:rfjfjlndn = 0
(f,t,. + £,.t.)ndn = 0
f:(J jl jl J)nn
Order 52:
3f,! n ]' . 1 (ﬂf-z')'
—J 2y L h|
- fo f 2ndn N fjndn + RT o
' v (enf ')' v, (nf.")"
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5.1.11

5.1.12



3tj' N t.?_' n (ntjz')'
-f.t.. + + — + e +
thjZ szt] = fo szndn = fo fjndn PR, =

L \] L] L L
_ .th1 fn £ ran - oy (m:j1 ) _ o, (nt.")

n o il PoRo n PR N
2
+
2[: (2:3,;'12 £,, )mdn f:tjndn
f.t,,+f,..t, +f _t. dndn =0 . 5.1.13

f:(JJZ j27j JlJl)ln

It is interesting to note that the buoyancy does not begin to
modify the momentum equation until the Ez equation. This could have
been anticipated from equation 4.2.9 where EZ multiplies the buoyancy
term. The appropriate boundary condition is that all solutions vanish
as n = o,

These equations can be solved directly if the unknown coefficients
RT’ PT, vl,..., and Oysec.. are specified. 1If the equations are carried
to fourth order, this requires that 10 coefficients be specified which
is hopeless considering the buoyant jet data that are available. An

analytical solution is developed for which vl, v3,..., u1, O_s+ee are

3
equal to zero.

The neglect of the odd coefficients in the eddy viscosity and
diffusivity expansion has an interesting consequence which implies that
the solutions to the equations for odd powers of & are identically =zero.
This follows from the fact that the perturbation equations for order

higher than unity are linear. The equations of odd order in £ are

homogeneous, and both the equations and the integral constraints are
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satisfied by trivial solutions. The linearity insg?es uniqueness. The
equations corresponding to even powers of & have a buoyancy forcing
term which depends on the solution of two orders less. Therefore, these
are not homogeneous and must be solved.

In summary, in the following sections an analytjcal solution will
be developed in which the even coefficients vg, Vgreees and qz;‘qé,.,.
are non zero. Attempts to derive other types of analytical solutions
were unsuccessful and the results of numerical computations are pre-
sented.

5.2 Analytical Solutions for the Perturbation Equations3

A close inspection of the eddy viscosity solution for the jet given
by Schlichting (32), and the eddy viscosity solution for the plume given
by Yih (15), provided a strong motivation to seek an analytical solution
for the buoyant jet. The eddy viscosity solutions for the jet and plume

gave the following relations for the mean profileé

2.-2
£ = 2A.B,\, (1+A,
J(n) %5 J( Jn )
2 2.-2
t, = C,A, (144,
J(n) 52 ( Jn)
£ (n) = 2A B A (14A 1 2)72
p ppPpP PP
2 2.4
t = C A 1+A 5.2.1
p(n) Cohp ( pn ) _ :

3Develppment given in Appendix G.
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where the plume solution ié that obtained by Yih for a Prandtl number
of 2.0. The jet solution is applicable for all Prandtl numbers. TFor
a Prandtl number of 2.0 the jet and plume velocity profiles have the
same dependence on 7, (1+Ar12)-2 and (1+Ar]2)_4 respectively. However,
there is no reason to believe that the A's are the same in both cases
although the values are close enough to make this idea appealing. The
best fit for the jet data is obtained at a turbulent Reynolds number
(RT=1/X) of 56, and of 60 in the plume case (with Q factor ignored).
Again these values are the same to within experimental error.

Based on the analytical solutions it was determined that the form
of the plume and jet solutions for PT=2 does not identically satisfy
the buoyant jet equations for all ¢ as had been hoped. It was found to
be possible, however, to derive an analytical solution to the perturbation
equations for the case where al, d3,... and Vl’ v3,... are zero and the
éven values simply related to RT.

For this case the dimensionless momentum and temperature equations

4.2,10 - 4.2.11 are rewritten as

1" n _-f_'_ 2 _f_' T]E _ __B_f_ 2 -
Af +[A+[ofndn]n+f + &l foagndn fggl +Et=0
5.2.2
Ao A N t' t' ¢ 3f _ g ot. _
o 1 Ig+ g fndn] 1+ e+ Bl f0 4 ndn - £ 55 = 0
5.2.3

where



A= 1/RT
o =P,
f = £f(n,8)
t = t(n,&)
£ (n,£)

o= 2 LULS)

an2

) .

gr o= 2EME) 5.2.4

an2 *

A solution of the following form is assumed

£(n, &) = ¢(n) F(&)

€(n,E) = ¢°(M 6(E) 5.2.5
where

o(n) = (1+AnH) "2

F(E) = B_ + g232 + g434 fone

6() = ¢ + E°c, + 5404 oo

AE) = A+ A8 A4g4 ben

Ay = 1/RT

Ay = \)Z/RT

A, = \)[‘/RT . 5.2:6
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Substitution of ¢, F, and G into the previous momentum and temperature

relations yields

AF" + [AF + F [7 ordn ¢ + Foo?

+ 2P [ gnan = 677 + £260% = 0 5.2.7

A n ¢2
—~G¢ L [— G + FG f éndn] + FGH

52
gt &0 f” ondn - FG'93] = 0 5.2.8
where
2
d)n = a__% o' = %Q
n
on
2
¢2n 3" (9D ¢2. _ 9(¢T)
an an
F' = gg G' = g% . 5.2.9

The integral constraints 4.2.12 - 4.2.13 assume the form

d 2 (o 2 2
a8 [F" [, ¢"ndn] = £6 [ ¢"ndn 5.2.10

=
o

2TF G f: ¢Zndn = 5.2.11

Substitution of the assumed forms for F(£) and G(E) into the integral

constraints provide the following relationships for the coefficients of E:



B0 = 3A/T
B, = C0/4B0

C
4 2
B (T*BZ)

L
2B
[¢]
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5A
Co )
c. = B2Co
2 B
o
B,C.+B,C
272 470
C4 B ‘ 5.2.12

If the functional relations for ¢, F, and G are substituted into

equations 5.2.7 - 5.2.8, two equations are obtained which contain zeroth,

second, and fourth order terms in £.

Requiring that the sum of all terms

to the same order in §& equal‘zero results in six equations which can'be

solved.

A= 3 5
64T
(o
_ 3
Bo T 8mA
5
By = 13
257\
B o —e—
4 2.33
2
1257 A
By = + =g

These equations have been solved with the following result:

_ 5
Co T 8T

- .25
€=~ 36

125mA

C T ee—e————
4 34
o o 10,2577
6 7

3

5.2.13
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The coefficients are substituted into the functional relations
5.2.5 - 5.2.6 to obtain the final form of the solutions to sixth order

as

2.2
2.-2 2 4 25 6 12512\
£M,E) = (1+anD) ™" (2w g% 3 g4 2omh 6 125727

8T\ 12 3 6

2.3 3
2-4 5 225 | 4 125m% 6 1025272)2

t(n,8) = (1+An") ° (25 - g7 2 4 gt 1224 g ——=) .

gma 36 X’ S

5.2.14

No attempt was made to extend the solution beyond sixth order, and the
sixth order terms are evaluated from the integral constraint only.

Recall that these solutions are valid only for a Prandtl number of 2.0.

5.3 Sélutions for the Perturbation and Analytical Equations

The perturbation equations presented in Section 5.1 require that a
total of 10 coefficients be specified if the solution is carried to
fourth order in £. 1In Section 5.2 it was shown that an analytical solution

exists for the odd coefficient vl, v3,..., and al, o equal zero.

3reee
The analytical solution is applicable for'PT = 2.0; the case for arbitrary
PT must be solved numerically, Unfortunately, a solution requires that
six coefficients be specified if the calculations are to be carried to
sixth order in & since, unlike the analytical solution, the coefficients
are not determined by the solution. The experimental data simply do not
justify the choice of this'many constants. Consequently, the numerical
solution.for the perturbation equations is restricted to the original

eddy viscosity closure model given by equations 5.1.2 and 5.1.3. In this

case all coefficients vl’ VZ""’ and Oy Qyse.. are set equal to zero,
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which results in a set of equations which are manageable to sixth order

in £, As an example equations 5.1.11 - 5.,1.13 reduce to
£, (nf, ")’
2 .71 m 1 3
£.7 + { T fdn 4 =~ ——-—— =0
i o Jo £ymdn R, n
t,! (nt,")'
f.t, + 4 fn f,ndn + 1 . =0
i3 n ‘o 7j PTRT m
1

f: fj ndn = o7

I sE14ndn = 5o 5.3.1
n " (nf,,"'
f 5ondn + —J——-f £ ndn + ——-——-AL———-

3t'n
- Eity, tEot 4+ ——l— /s
Ty ?
, 1 (ntjz ) -,
PRy M

0
4fo fjszndn = f: tjndn

f,et,,+f..tdndn=10 .
f: ( 57E52 2 J)n n

t.
iz
zndn + N fz fjndn

The solutions to these equations to sixth order in £ are obtained

using the scheme presented in Section 2.5.

The procedure is simplified
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since the temperature equations are homogeneous and can be solved with-

out iteration.

5.4 Results of the Perturbation Solutions

The centerline temperature and velocity have been calculated from

the numerical and analytical solutions as a function of £ and are shown

in Figures 22 and 23. Figure 22 also shows a line which represents the
temperature data presented in Figure 21. Figure 23 shows only the
velocity asymptotes for large and small £,

Both analytical and numerical solutions show the expected trends to
higher values of & (for a small perturbation expansion) than anticinated.
The validity at high values of £ can be explained by the form of the
exact solution in equations 5.2.14 which suggests that the appropriate
expansion parameter is £/v/R_, rather than €. Since £ = 1 corresponds
to E/¢E; ~ 0.13, the stability of the expansion to high values of £ is
not surprising.

There are differences in the two solutions which are shown in
Figures 22 and 23. These differences apparently result from the difference
in the turbulent Prandtl number (PT = 1 for the numerical solution and
PT = 2 for the analytical solution) and the E-dependent eddy viscosity
used in the analytical solution. The differences in the solutions are
most evident in Figure 22 where the increased lateral diffusion for the
aﬁalytical solution causes the centerline temperature to drop more rapidly.

Figufes 24 and 25 show the temperature and velocity profiles com-
puted from the analytical solution for £ =0, 1.0, and 1.5. The temper-
ature profile has narrowed slightly with increasing &, while the velocity
profile haé broadened. Both these trends are in accord with the expected

jet and plume limits.
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t(n, &)/t (0,8)

Figure 24.

1.0
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n=r/x

Buoyant jet mean temperature profiles computed from
analytical solutdion, RT'= 55, PT,= 2,0, 1 -E=20.
£ =1.0, 1.5.
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£(n,&)/£(0,8)

n=r/x

Figure 25. Buoyant jet mean velocity profiles computed from analytical
solution, RT = 55, PT =2.0. 1 -&=0. 2-=¢=1.0.

3-¢ =1.5.
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Figures 26 and 27 present the temperature and velocity profiles
calculated from the numerical solutions. While the velocity profile is
modified slightly in a direction opposite to that of the'anaiytical
solution, the differences are within the integration errors, and the
velocity profile may be assumed unchanged. The temperature profile, on
the other hand, shows a marked width decrease. While some narrowing is
expected, the amount indicated is larger than expected.

In summary, the perturbation analvses show treﬁds that might be
expected if the jet and plume data are considered; an increase in
velocity with slight broadening of the profile; and a decrease in
temperature with a narrowing of the profile. Also, the £-dependence of
the e€ddy viscosity on physical grounds is important, even in the initial

stages of the buoyant jet's development.



t(n,&£)/t(0,&)

Figure 26.
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Buoyant jet mean temperature profiles from numerical solu—

tion of perturbation equations, R

1-¢=0.

2 -£=1.0,

T = 55, P
3-§%=1.5.

T

= 1.0, Q = 0.9.



£(n,E)/£(0,E)

n=r/x

Figure 27. Buoyant jet mean velocity profiles from, numerical solution,
: of perturbation equations, RT =. 55, P;f-= 1.0y Ql( =.0.85,

1-£=0. 2-£&=1.0. 3-£&=1.5
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CHAPTER 6

ASYMPTOTIC EQUATIONS AND SOLUTIONS FOR THE NEAR-PLUME

6.1 The Dynamical Equations & - «

The equations 4.2.9 and 4.2.10 derived in Chapter 4 continue to

describe the flow, even though £ appears explicitly on the right hand
side. (This must be so since these equations Qere derived directly
from the momentum and temperature equations.) These equations, however,
are not easily analyzed at large values of £; it is not obvious from
these equations whether or not the plume equations derived in Chapter 3
‘are in fact the asymptotic equations of a buoyant jet. A transformation
will be developed which can be applied to the equations of motion and
results in equations which are easily manageable at large & and which
make clear the role of the plume equations and solutions -derived earlier.
Transformed variables which become plume-like as the buoyancy is
increased and/or the distance from the source is increased can be

developed using a new dimensionless coordinate

e=1L/x=¢t . 6.1.1

It is clear that both the limits desired are achieved in the limit as
€ >0 (§ > ).

Since it is desired that the equations of motion reduce to the
plume equations as € + o, equations 4.2.1 through 4.1.3 are transformed

using plume-like variables:



n=zrlx gBAT = Tpt(n,&)

€ 7 L/x -y = RPS(n,E)

] = f h ——v_. = g ’

U .UP,(n,i) vb ‘th(n,é)

V= gpk4n,£) » - 6.1.2

where

_ = 1/3 -1/3
P = F X

_ 5 2/3 ~5/3
p =¥, T

H =F x . 6.1.3

It is appropriate to recall that the plume solutions derived in
Chapter 2 do not involve the M momentum discharge at the source
(assumed zero). This fact is reflected in the above transformation
since M epters only through € which approaches zero with M.

‘After sybstitutions and elimigatiqﬁ of v using contipuity, the

momentum and tempgrature equations become

v
3f_+

Wi

(o)

£f''m (ns')' _ o B m of _ ¢ of
- [ fnan + =+t = e( 7 /, 3e M0 - £ 50

6.1.4

96
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wiw
h
+
+

Wl

6.1.5

The left-hand sides of tﬁese equations are seen to be identical to
those equations derived in Chapter 2 for the pﬁre buoyant plume. The
right hand side consists solelv of terms which vanish identically in the
limit as € » o or £ » », Thus the plume solutions derived earlier do,
in fact, represent asymptotic solutions to the buoyant jet. Moreover,
these solutions are approached smoothly as the limit is approached.

The integral equations 4.2.11 0 4.2.12 can be similarly transformed

to yield
4 2 S . of
3 [ £ndn - [ tndn = 267 £ £ ndn 6.1.4
{eo]
fo.ftndn = -, 6.1.5

The second of these integral equations is the familiar statement
that energy (or buoyancy) is conserved. The first integral equation
shows that the difference between the total momentum flux at any cross-—
section and that produced by buoyancy vanishes as £ %+ 0 0or as § - o,

In other words the initial momentum is dominated by that momentum con-

tinuously produced by buoyancy, and plume-like flow is approached.

6.2 The Plume Solution as an Asymptotic Solution

In Chapter 2, an eddy viscosity model was used to calculate solu-
tions to the turbulent buoyant plume. In the preceding section it was

shown that these solutions represent an asymptotic solution to the buoyant



jet equations. Here it is shown how this asymptotic solution cam be
expressed in the jet-like coordinates of Chapter 4.
Following the representation of Chapters 4 and 5 (equations 4.2.7

-~ 4.,2.8) it is noted that

i) L (r

= UJ j(n,E)
AT = T,t,.(n,& ~6.2.1
v 4 j(n £)

and that
1im U = 0T 6.2.2
g'm b p(n) .
lim AT = T t 6.2.
.Elm P p(n) 3

where fp and tp are the plume profiles.

It follows immediately that

U
lim £, (n,&) = <& ¢ 6.2.4
g+2 J(n &) Uj p(n)
T
i _-—_._P.' . oL
éiz tj(n,é) Tj tp(n) . 6.2.5

From the defining equation for Uj, T Up, Tp, and L (equations

j!
4.2.8, 6.1.3 - 4.1.5, respectively) it is easy to show that

. . 1/3 X—1/3

P __o T _ X.2/3_.2/3

U, 1/2 ~1 ( L ) £ 6.2.6
] Mo X

and
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T p 213 -5/3
Boo T (Ey23_ 203 6.2.7
T. -1/2 -1 L ' T
] FM x
0o
Thus the asymptotic solutions to the buoyant jet equations
(equations 4.2.9 - 4.2.10) are given by
lim £.(n,&) = 52/3f m 6.2.8
E00 J P
and
lim t, (n,8) = £ /3¢ () 6.2.9
E-s00 J P

where fp and tp are the plume solutions of Chapter 2.

6.3 Perturbation Equations for the Near-—Plumel

In Chapter 5, an expansion of the buoyant jet equations about the
jet solution yielded equations which describe the near-jet. It is clear
from the preceding sections that similar techniques can be applied to
the near-plume by expanding around the plume solution. Expanded solu-~

tions to equations 6.1.4 - 6.1.5 of the following form will be developed

5
fp(n,E) fzp(n) + efpl(n) + € fpz(n) +- .-

2
tp(n,i) tzp(”) + etpl(n) + € tpz(”) e 6.3.1

where the plume solutions fp and tp are known from Chapter 2,
Before developing these solutions the closure problem is addressed.

By analogy with the development of Chapter 5

lDevelopment technique same as Appendix F.
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_—.—,::\) *B—L—l'
uv e or

N =o X - 6.3.2
e or

Since there is no a priori reason that Vs @ are not dependent on €,

these terms are expected in powers of ¢ to obtain

o]

X

I . 2 ...
ve RT (1 + vle + vze + )
\)e Up X 2
a =5 =t (1l % o€ +a,e +cr) 6.3.3
e ?T PTRT 1 2

where vl, v2 and ul, az are unknown coefficients, as are RT and PT,
which we have previously encountered. Allowing vn and an to be different
allows the turbulent Prandtl number to vary witﬁ €.

Substituting equations 6.3.2 - 6.3.3 into equations 6.1.4 - 6.1.7

and grouping terms of similar order in € yields the following sets of

equations to second order in €:

Order 1:
f ] (T]f 'l)'
12 5 m 1 ' p° =
3, t 38 [ £ ndn + T +t, =0
t ! (nt !)1
5 5 p n P
faliy +-___... B -
3 fptp 3 & fo fndn + 5 > 0
CTT
2
3 f: fp ndn = f: tpndn

[y £t ndn = 5= 6.3.4
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Order ¢:
f' ]
E) 2. M 2. pt m
3 fpfpl + 3 fo fplndrl + 3 n fo fpndn
(nf ")’ v, (nf. "'
1
Al i 6.3.5
T P T
8 5 ty 5 th1
5 n 1 M
8 ¢ ¢ 3 3 5 pl
3 'ppl 3 fpltp 3 n fo fplndn + 3 n fo fpndn
Ty ? T\ Y
! (ntpl) ) oy (nt_")
P
e PRy 00
2 oo _ _
§'fo fpfplndn - f: tplndn
ft + f _t dn =0 6.3.5
f:(ppl plp)nn 3
Order 82:
A 2 f' 1
2 1l pm 2 P2 m
3 Epfp =3 Jo fpondn + 35— [ fondn ey
Tyt U ! 1yt
+_(nf2) C e o2t M ndn+l)l(nf1)
Ry n pl 3 n o pl Rp n
v, (nf "'
+ 2
n
1le ¢ 2 +3~pr' Mf nd +-EE:-2-'-f”f d
3 5pp2 T3 T, p214N T T I Fpnen
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ty? ' 1y
N 1 .(m:P2 ) . t 1 fn ¢ nan + % ,(n.t‘;)1 )
PTRT n pl pl n o "pl PTRT n
1y
a, (n‘tp. )
*IR n
T
4 3. 02
3 f: f(fp’tpz + 2 fp1 yndn f: t}pzndn
ft + t +f .t Indn=0 . 6.3.6
f:(PPZ fPZP ‘plpl)nn

Equations 6.3.4, the order zero equations, are, of course, the plume

£quations treated in Chapter 3 which have already been shown to be the
asymptotic forms of the buoyant jet equations. Egquations 6.3.5 and
6.3.6 are seen to be sets of coupled linear differential equationms with
homogeneous integral constraints.

In the analysis of the near-jet, the values of Vl, Vosses and ul,
aB,..., were arbitrarily assigned the value gzero. This was done since
the data was felt to be inadequate to determine them and since the
equafions remained coupled to £ through the temperature field. The data
for the near-plume are even more inadqua;e than for the near-jet, and
the same assumption must be made here.

These assumptions result in an eddy viscosity which is made up of

two limiting forms

small &

large ¢
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or in dimensionless jet-like variables

%* small &
T

v(E) =

£2/3°1/RT large &

While these assumptions work well for the near-jet, it has inter-
esting consequences for the near-plume. FExamination of the order ¢
equations with o, = vl = o indicates these equations are linear,

homogeneous equations in f . and tj

vl Moreover, f

pl = 0, tpl = is a

solution satisfying the boundary conditions. Since the equations are

rl

linear, this solution is unique.

The conclusion above is similar to that arrived at for the near-jet
equationé. However, unlike the near-jet, a similar inspection of the
82 and higher order equations reveals that all are solved by trivial
solutions. Hence by neglecting the additional perturbation of the eddy

viscosity and diffusivity, the possibility of a perturbation solution

involving powers of € has been negated. Dr. Philip Morris, a member of
this thesis committee, has indicated that it may be possible to develop
alternate expansions if the boundary conditions of the higher order
functions are investigated more closely. Explanations for this failure
may be either, that the correct asvmptotic expansion is not dependent
only on powers of €, or that the bhigher order expansion terms depend on

outer expansions which modify the boundary conditions at infinitv.

Since the data remain inadequate to determine additional coefficients

beyond PT and R there appears to be little point in continuing this

T’

type of analysis. Thus the results are limited to the asymptotic
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or in dimensionless jet-like variables

1
— small &
RT
v(g) =
52/3°1/RT large £

While these assumptions work well for the near-jet, it has inter-
esting consequences for the near-plume. FExamination of the order ¢
equations with Oy =V =0 indicates these equations are linear,

homogeneous equations in fp and td

p1® Moreover, f = 0, t = (0 is a

pl pl

solution satisfying the boundary conditions. Since the equations are

1

linear, this solution is unique.

The conclusion above is similar to that arrived at for the near-jet
equations. However, unlike the near-jet, a similar inspection of the
82 and higher order equations reveals that all are solved by trivial
solutions. Hence by neglecting the additional perturbation of the eddy

viscosity and diffusivity, the possibility of a perturbation solution

involving powers of £ has been negated. Dr. Philip Morris, a member of
this thesis committee, has indicated that it may be possible to develop
‘alternate expansions if the boundary conditions of the higher order
functions are investigated more closely. Explanations for this failure
may be either, that the correct asvmptotic expansion is not dependent
only on powers of €, or that the higher order expansion terms depend on
outer expansions which modify the boundary conditions at infinityv,

Since the data remain inadequate to determine additional coefficients
beyond PT and RT’ there appears to be little point in continuing this

type of analysis. Thus the results are limited to the asymptotic
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to the residual momentum effects. The cold jet results give the small-§
asymptote U x/M(}IlZ ~ 5.6.

In summary, there is abundant evidence that the plume represents
the asymptotic state of the buoyant jet, and that the approach to that
state is completely dependent on the values of §. Moreover, the intro-

duction of the length scale I, and its use in graphing data has proven to

be invaluable in evaluating the state of plume-like data.
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CHAPTER 7

A COMPOSITE CLOSURE MODEL AND SOLUTION FOR THE BUOYANT JET

7.1 Asymptotic Considerations

In the preceding chapters the dynamical equations for the buoyant
jet have been examined in the limits of the near-jet (£ - o) and the
plume (£ > «), The appropriate eddy viscosity for the jet was shown

from dimensional and physical considerations to be

v, = l—'IM 1/2 x

T RT o

Similar considerations for the plume led to an eddy viscosity formulation

} o x. 7.1.1

for the plume as

_1 . 1/3 -1/3; .
vT =3 [FO x ] X 7.1.2
T
or
_1 . 1/2 -1, .2/3
VT =R [Mo x 1§ 7.1.3
T
using £ = x/L and L defined by
L=M3/4/F 1/2 . 7.1.4
o o

In dimensionless jet-like coordinates these results are summarized

by the following:
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( l—- as E ->» 0
Vo ) {
172
g
° L
(- T as E » o . 7.1.5
T

While the data, strictly interpreted, indicate that RT is not constant
(56 for the jet, 60 for the plume), it certainly is comsistent within
experimental error (particularly in view of the results of Chapter 3)

to. assume R, to be constant throughout the flow.

T

An. immediately obvious choice for a composite’vT which” has: the

correct asymptotic behavior is:

A%

T _1 2
—m s r A +Eg
w /2 R,

o

/3) . Z‘)‘-l‘-é

Inspection. of the centerline velocity and: temperature plots of
Figures 20 and. 21 reveals two things: First, the centerline valuues
vary: little from their jet values until & > 1j, Secbnd;;bhe-constaﬂt
eddy viscosity perturbation. solution: of Section 5.3 dififers little from
the measurements over this same range. Thus it would: seem that although
equation 7.1.,6 has the right asymptotic»behavior, it developes: toeo
rapidly as £ increases. This suspicion has. been confirmed: by numerical
calculation: using equation 7.1.6.
What is. needed then is affunction.which(permits~Uhe-&z/Siterm:inz
the: eddy. viscosity. to dominate for & > 1 while minimizing its efflect
for & < 1. Since the considerations of Chapters 4:and:5 have indi~

2 .
cated: that £ 1is the appropriate expansion parameter for the near-jet,.

the control funetion should: preserve this- dependence.
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An empirical formulation which controls the 52/3 term in an
appropriate manner is:
Vp o 2/3 4/3
V(E) = 1}2 —~ (] + & (I-exp (=& " 7))) . 7.1.7
w27

It is easy to show by expanding the exponential for small values of
that the desired near-jet dependence on £ is obtained; i.e.,

Y

L1 1 2.4
1/2 ~ Ry

[1+ aE +-§ o g Heee] 7.1.8

M
o

This is recognized as the form of the eddy viscosity obtained from the
exact solution of Section 5.2, The success of that solution and the

direct correspondence of the terms in the expansion indicates that the
appropriate choice for o in equation 7.1.7 might be the value of Vv

2
from equation 5.1.9; that is,

@ = v, =T o 7.1.9

Using RT = 55.5, results in o = 0,19.

The closure model given by equation 7.1.8 and 7.1.9 is thus seen
to result naturally from the perturbation and asymptotie solution and
thus provides a natural "bridge" for the ﬁixed region of the buoyant
jet where neither the plume nor jet solution technique is applicable.

In the following section a numerical integration of equations

4.2.9 and 4.2.10 is described in which the equations are closed by

S(n,E) = v(E) % £(n,E) 7.1.10

it

h(n,&) ~—Av(€) t(n,E) 7.1.11

T
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where V{&) is determined by equation 7.1.7. PT equal to unity has been
established as being a satisfactory choice at both jet and plume limits
and therefore will be used here. A value of o = 0.2 was used in the

computation and was found to provide satisfactory results.

7.2 The Numerical Integration

The governing partial differential equations 4.2.9 and 4.2.10 are
parabolic, being initial valued in the Z-direction and boundary valied
in the n~direction. This chardacterization suggésts that a marching
scheme be used in §-direction starting with the jet profiles, solving a
Eoundary value problem at each value of & for the profiles of f and t.

A simple implicit method, using first-order accurate backward—difference
formuli for 3f/3%f and 3t/df, was employed to resolve the £-dépendence.
This method is unconditionally stable (see Roache (45)) for the linear
convection-diffusion equation and, hence, superior in stdbility character-
istics to the equivalent explicit procedure using a forward difference

in the &-direction.

Equations 4.2.9 and 4.2.10 are written

2

—E—-———a g (2 +F) lTg§+ £2 + %t

T 9n RT n dan

_ rre ESE(E-AE, MY 3f F-F(E-AE,n)

Elf AE 5 At )| 7.2.1

v 821: Vv 1 3t '
— S+ ( +F) > — + ft

RTPT anz RTPT n an

- _t-t (‘S'—A sn) E'E F—F(E—Aéy I)
glf AT = AE ] . 7.2.2
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For given upstream profiles f(&£-AE,n) and t(&-A%,n), determined via
solution at the previous stétion or from the jet solution at the initial
station, equations 7.2.1 and 7.2.2 are in effect ordinary differential
equations to be solved for f and t as functions of n. Since 7.2.1 and
7.2.2 are coupled and nonlinear, an iterative method is used to solve
them. Each step in the iterative procedure involves solving a linearized
set of equations obtained by considering the coefficients in equations

7.2.1 and 7.2.2 to be known.

2
v 9°f Vv ~ 1 of 2 ~
— ==+ (=—+F) =+t f+Et
RT anz RT n on
f-£(E-AE,n) ﬁg F(E—Ag,n
= g[f AT ~ o 7.2.3
Vv 32t Vv ~. 1 3t ~
+ ( + F) = — + ft
RePr an? Ry n an
t-t (5~ 9t F-F
- £t t(EEAE,n) _ 82 (EEAEEn) 7.2.4

where the tilde denotes the function determined from the previous iter-
ation or the function extrapolated from the previous two upstream
stations in the case of the first iteration. Rearranging these equations:

)2
l)__ l__ = F_F(F AE,T])
Ry an + R, tF+ AE 13

NLﬁ

- &
n+(1 Ag)f

= - % FoE(e-AL,m) - £ 7.2.5
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2
; 9—-—'25+(PR +F+—————§—L—F(£A 1 )3n+(1-—§z)ft
R'1"1.’81'1 TT
-
AE f t(E-AE,n) . 7.2.6
Both of these equations are of the form
PY" + QY' + RY = 8 . 7.2.7

As discussed in Section 2.5 the finite differencing of such an equation
leads to a set of linear algebraic equations whose coefficient matrix is
tridiagonal. The solution to the algebraic equations is accomplished by
an elimination procedure.

The solution for the f and t profiies at a given g-station consists
of first extrapolating from two previous stations to determine initial
guesses of f and t which are set equal to £ and E. F is determined by
integrating n%. Equations 7.2.5 and 7.2.6, in the form of algebraic
equations, are solved for new values of the profiles f and t. These
profiles are then set equal to £ and E and the procedure is repeated

until convergence is achieved, i.e.,

(-H)/F < ¢ (t-t)/t < ¢
-5

for every n. The quantity € is a prescribed tolerance taken to be 10

in the calculations.

7.3 The Results of the Composite Model

The calculated values of centerline velocity and temperature are
plotted in the now familiar jet coordinates in Figures 29 and 30. The

eddy viscosity used is given by equation 7.1.7 with‘RT = 55.5, o= 0.2
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and PT = 1.0. The results are seen to be in excellent agreement with the
experimental results, even at large values of £. The fact that such a
simple model can begin at the jet and so accurately predict the plume
results with only one additional parameter o is indeed surprising.

The calculated profiles of tempgrature and velocity, normalized to
unity, are shown in Figures 31 and 32 for £ = o, 2.5, 5, and 10, The
value £ = o is, of course, the jet; £ = 10 is in the fully developed
plume region while £ = 2.5 and 5.0 are in the mixed region. Also shown
in Figure 31 are the plume data of George, et al. (23) and the jet data
of Becker, et al. (43). The recommended velocity profiles from Chapters
2 and 3 afe included in Figure 32.

Immediately apparent is the fact that the shape of the temperature

profile is nearly independent of £. Thus to within experimental error,

the shape of the temperature profile appears to be constant and indepen-

dent of buoyancy.

The calculated velocity profiles do show a definite increase in
width with increasing £. While the predicted increase is greater than
that suggested by the data, the errors present in the measurements and
the integration errors in the calculations make a quantitative evaluation
difficult. It is believed that a substantial improvement in velocity
measuring techniques is needed before a more sophisticated analysis is
warranted.

In summary, the proposed composite eddy viscosity model appears to
be remarkably successful, both in predicting the profile shapes and the
centerline values. Moreover, the solutions indicate that the profile
shapes are only weakly dependent on bouyancy, a fact which would have

been very difficult to determine from the scattered experimental data



Figure 31.

1.0~

0.6

0.4

0.2

n=r/x

Comparison of buoyant jet mean temperature profile and
theory. 1 - Measured George, et al. (23). 2 - Measured
Becker, et al. (41). 3 - Theory § = Q. 4 - Theory & =
2.5. 5 - Theory £ = 5.0. 6 - Theory £ = 10.0.
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Figure 32. Comparison of buoyant jet mean velocity profiles. 1 -
Plume equation 2.8.2. 2 - Jet equation 3.5.5. 3 = Theory

£ =0. 4 - Theory, £ = 2.5. 5 - Theory, £ = 5.0. 6 -
Theory, & = 10.
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alone. It should be noted that the selution retains the effects of the
choices of QI = 0.85 and Q = 0.9 which were used to determine the

starting profiles.
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CHAPTER 8

ENTRAINMENT

8.1 Dependence of Mass Entraimment on Bouyancy

Entraimment is of interest in jet and plume flows because of the
dilution introduced by this process and the integral models used by
other authors. The mass per unit length entrained by the flow, PE, is
given by

- -4
E = lim (27rV) = T (27 f: Urdr) 8.1.1
Y- .
which is the rate of change in the mass flux in the axial direction.

In the E-~coordinate system the normalized entrainment is given by

E d 00
—s = o= (5 [~ f(n,&)ndn) . 8.1.2
ZTrMo1/2 d& o

For the case of a buoyant jet the entrainment coefficient is
bounded by the jet and plume values. These can be estimated using the
profiles given by equations 2.8.2 and 3.5.5. Using equation 3.5.5, the

proposed jet mean velocity profile, yields

E. £, (o)

h| i
= = 0.07 8.1.3
™ 1/2 2A1

(e}

2

and using equation 2.8.2, the proposed plume mean velocity profile,
yields

2/3 2/3

EP 5 fp(o)
1/2 = 3« 2A E = O.log . . 8.1.4

ZWMO P
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Althoggh these values are functionally correct, the m@gnitude is
probably too large because the function nf(n) extends over a large range
in n outside the core region where, because of the intermittency, the
proposed profiles might not be valid. This is shown in Figure 33, which
depicts the intermittency Y from Wygnanski and Fiedler (21), nf(n) and
nfz(n) as a function of N as calculated fIQE eguation 3.5.5. Note that
the integrand of the entraimment function extends ggtsigé the range of
Y whereas the major part of the momentum flug is contained within the
range of Y. Since intermittency could haye a major inflggﬁqg on the
' eddy viscosity, and hence the velocity profile qgtside the range for~
which Y ~ 1, it can be expected to have an important influence on the
entrainment coefficient.

In symmary, it appears that intermittency may be required in the
model to accurately calculate the mass flux iptegral and the entrain-

ment.

8.2 Evaluation of Entrainment Hypotheses

In spite of the reservations of the previous sectiop, an evaluation
of existing entrainment hypotheses can be made. Of particular interest
becayse of its widespread use is the entrainment hypothesis of Morton,
et al. (2). Also examined is the more recent suggestion of List and
Imberger (33).

Morton, et al. (2) define an entrainment functjon frqmvthe equiv-

alent top hat profiles as follows:

by = 2 f: Urdr 8.2.1
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2% = 2 [ vrdr 8.2.2
E' = 2 f° vrar) 8.2.3
dx o )

where b is the radius of the top hat velocity W. It is assumed that

the entraimment coefficient o is given by

0 = —— = constant . 8.2.4

Applying this hypothesis to the jet and plume veloeity profiles 2.8.2
and 3.5.5 gives the data shown in Table 5.

These results give aj = 0.14 and ap = 0.27. Morton (1) assumed
that an & = 0.12 would satisfy both a jet and plume flow. It appears
that Morton's assumption is incorrect. Ricou and Spalding (46) found
aj = (.08 by direct measurements, and George, et al. (23) found ap =
0.15 by direct integration of Gaussian curve fitted to plume velocity
data. Although data and theory are not in agreement, from the magnitude
of the difference it seems unlikely that the entrainment coefficient is
constant.

List and Imberger (33) suggest that o is dependent on £ which is
consistent with the approach of this study. Based on the asymptotic
behavior of the velocity function it is easy to postulate a model from
the theory presented in this study as:

E £(0) 5 £,(004 /3

= [1+= E 7} . 8.2.5
ZTTMO1/2 2A1 3 fj(O)AO

A more correct model which ineorporates the proper behavior of the

velocity for small £ is given by:
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Table 5. Calculated values¢ of entrainment parameters.

Jet Plume
W. f(O)j/S f(O)p/B
E f(o)j/Aj 5fp(0)/3A.p

o /372 /A, 5-J3/2-3-JA_p
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£, (o) f (o)A
2mM_ k| h| o 8.2.6

which is similar to the composite eddy viscosity model of Chapter 7,
Equations 8.5.6 and 8.5,7, the agsymptotes from the suggested

profiles, and the entrainment calculated from the composite eddy vis-
cosity model of Chapter 7 are shown in Figure 34 along with the data of
George, et al. (23), Ricou and Spalding (46) and the assumed value of
Morton (1). As previously noted, the theoretical values are higher
than the data. While equation 8.5.6 1s unacceptable, equation 8.5.7 is
in excellent agreement with the calculated results and should be given

careful consideration for incorporation into entrainment calculations.
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CHAPTER 9

SUMMARY AND CONCLUSIONS

9.1 Eddy Viscosity Models

The application of the eddy viséosity model to a jet, plume, and
buoyant jet have been explored in detail. It has been shown that
accounting for the axial transport of momentum and heat is crucial to
the modeling of the jet and plume flow. Although the eddy viscosity
model cannot address this problem directly, it was shown that both axial
momentum and heat flux could be adjusted using the integral comstraints

imposed on the flow. These constraints assumed the form

2
27 f: f"(mndn = QIRT 9.1.1
2m f: t(Mfn)ndn = QRT . 9.1.2

Since nelther the jet nor plume velocity data are well defined at
this time, it is questionable if calculations using intermittency or

higher order models are justified.

9.2 Application of Eddy Viscosity Model to Jet and Plume Data

It has been shown that existing jet velocity data do not satisfy
the momentum constraint for this flow field. The mean velocity profiles
integrate to yield a momentum deficit of approximately 50 to 60 percent.
There are indications that the temperature data may be more reliable

based on the results of Hinze and van der Hegge Zignen (13) and Becker,
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et al. (43). Using these temperature data, the velocity centerline
data, and reasonable choices for Q and Ql’ the following mean profiles

are recommended for the jet

fj(n) 5.6/(1+39n2)2 9.2.1

it

tj(n) 6.0/(1+39n2)2 9,2.2

If the discrepancies in the jet data are resolved, some of the problems
encountered in predicting this flow with models based on universal
constants may ge eliminated.

The plume data show more consistency than the jet since the energy
and momentum balance for these data are reasonable. Using the measured

‘Q of 0.85, the recommended mean profiles for these data are

3.4/ (1+28n%) 2 9.2.3

It

fp(n)

tp(n) 9.1/(l+28n2)2 . 9.2.4

9.3 Computations. of the Buoyant Jet

Using the results of the perturbation and asymptotic analyses, a
composite eddy viscosity model for the buoyant jet equations was
hypothesized which would satisfy both the jet and plume asymptotes.

The chosen form was:

\)T=

L /
1/2 Ry

1+ 2 /3

3(1 - exp[-a2*317 . 9.3.1
M
(o]

The buoyant jet equations were solved using P_ = 1.0, R, = 55, and

T T

o = 0.2 in equation 8.3.1. The calculated centerline values provided
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good fits to the available data, and the profiles provided a reasonable
match to the plume profiles for large values of £. The calculations
showed that the mean profiles have only a weak dependence on £. Even
this week & dependence, however, can be important in evaluating the mass,

momentum, and buoyancy integrals.

9.4 A Framework for Experiment and Analysis

Disregarding the particulars of the equations and solutions, this
dissertation has built upon the foundations laid by Morton, Yih, List,
and others to establish a framework within which further studies of the
buoyant jet can be carried out. Criteria can be set forth to establish
the relative importance‘of buoyancy on the flow at a.particular location.
For example, flows at £ < 1 will clearly be dominated by the moﬁentum at
the source and will be jet-like, while flows for & > 10 will be dominatea
by buoyancy and will Be plume-like. These coﬁsiderations shouid prove
invaluable to designers of the next generation of experiments.

The importance of using all the available tools in carrying out a
turbulence experiment has been reestablished. Since all turbulence
measurements of interest press the limits of both equipment and under-
standing, no single measurement can stand on its own. It must be sub-
jected to every possible validation from independent measurements to the
constraints of the equations of motion.

Finally, this dissertation and the problems encountered make it
clear that the turbulence theoretician cannot be content with simply
trying to predict experimental results, but must also provide a careful
critique of these results if he is to influence directly the course of

subsequent work.
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PLUME SIMILARITY EQUATIONS
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The similarity equations for an axisymmetric turbulent buoyant
plume are developed in this section. Closure is obtained using an eddy
yiseosity model, and the mean flow equations are reduced to two ordinary
second order differential equations.

The momentum, energy, and continuity equations describing the mean

flow are
BU, yAU_13 3 bo
U ™ +V T i (~ruv) + ( ) g o Al
AT AT _ 13 , —= 3 ==
U-B-}-{“+V—5;— T or (-rvB) + . (-ub) A2
QU 13V g A3
9x r or

If the Boussinesq approximation

(p-p)
= - g = gB(T-T ) = gBAT A4

(o} pO

1s substituted into equation Al, the mean momentum equation becomes

U du
U$+V—§;

HIH

-g— (-ruv) + gBAT. - A5

The vertical heat flux term -ub in equation A2 cannot be modeled using
a simple eddy viscosity assumption. This term is accounted for in the
energy integral constraint. The integral constraint 1s obtained by

integrating equation A2 which yields

21 [7 gB(UAT + uB)rdr = F_ A6



where pFo is identified as the rate at which weight deficiency or
buoyancy is added at the source. In a neutrally stable enviromment,
pF0 is the rate at which buoyancy crosses any given plane.

A similarity solution of the following form is sought

n=r/x gBAT = T_ t(n)
U=U, f(n) gBvO = H by (m)
V=0 kn) gRub = H, hy(n)
uv = R_ S(n) . A7

The constant FO has units of [L4/T3] and is used to form the similar
coefficients along with the axial coordinate x. The following results

are obtained for these dimensioned coefficients:

v =F Y3 x—1/3
S (o]
T = 213 ~5/3
S O
R = 2/3 X ~2/3
S (o]
H o=F x°%. A8
S (o]

Using relations A7 and A8 in the terms of the mean flow equations

the following results are obtained.

?_E.-f()_a_uﬁ EE £'(n) A9
ox n x X n n

2
w s k(M E* () A10
or X L n
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R . oR R
109 — _ . 88 _ s .8 e All
=5 (-ruv) = T A S(r) - " s'(m)
3T T
OAT _ oy S Sy
gB e =t 5= o nt' () Al2
T
AT _ s
gB g = t'(m Al13
: ]
gR 2 (-xvB) = - H ( P (W + Py ) Al4
or s XN X
5 L OH_ N
— = = - — g '
gB = (-vB) = - ( hz(n) T Ho o+ h, m ) . (Al5

Substitution of these relations into equations A2, A3, and A5 along with

the relations for U, V, and gBAT from A7 gives the following:

momentum:

- 3 2 - nE(ET () = %g-ﬁ (MS(n)) + t(n) AL6
energy:

= 3 £MEM - nEME M + k(me' (n)

= - l_ﬂ_.( h,(n)) - (2h,(n) + nh.'( Al7
continuity:

-3 EM - net) 4t + 5 oo ALS

The continuity equation is integrated to define the radial velocity
parameter, k(n), in terms of the axial velocity parameter, f(n). This

relation is substituted into equations Al6 and Al7 to obtain
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1.2 5£'(Mm) m __1d
-3 £ - 3= [ fmndn = - =5 (SM) + £(n)
Al9
5 5¢' ld
-2 emem - 250 N fnan = - & (b ) - (@ny(m)
+ nh, " (M). A20

These equations are completely characterized by a single length
and time scale since all lengths are proportional to x and all time to
X/US. Consequently, an eddy viscosity model should predict the mean
properties of this flow.

On dimensional grounds the eddy viscosity and diffusivity are

written as

<
it

Ug x v(n) A21

Q
i

US x o(n) . A22

Since the flow being modeled is a free shear flow which is assumed to

be well mixed, it is assumed that

It
li

constant

v(n) 1/RT ' A23

1]
i

constant A24

a(n) l/PTR

T
Introducing the eddy viscosity relation proposed by Boussinesq

18
-uv = ﬂe %}} A25

JAT

- o, 2 A26
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the viscosity terms in equation All may be written as

2/3 -5/3
139 — FO * 1 ' "
.;-5-; ('I‘U ) = -—-—-‘ﬁ—T*-“—*—‘—-‘ Fl‘ [f (rl) + nf (Tl)]
or
5/3 —
ST R S g 0 e, 427
[0}

This eddy viscosity model is substituted into equation Al6 in place of

the viscosity term since

1d _ X 193  —
—»E-Eﬁ‘[ns(n)] = . 573 ° T 5% [-ruv]. A28

The radial heat flux term in equation Al7 may be written as

-3

F x
gh 3 —rv0] = -2 ._]_-_ ' "
——-—;~[ rvO] PTRT - [t'(M) + nt"(M)]

or

3
F r
o)

]

_3___ w01 = ._1_ ' "

r [TvOl =g ¢ 5 [£T () + ne"(m1]. A29
TT

This eddy diffusivity model is substituted into equation Al7 in place

of the radial heat flux term since

3

[h; (M] = = g8
[o}

4

10
dn r

1 ——
- n 37 [-rvB]. A30

Performing these substitutions the similarity velocity and temperature

equations Al9 and A20 assume the form
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erem + 1+ 3 RT [0 eenan 0 Loy 4 rp e = 0
A3l
n 5 n 2,
() + 1+ 3 PR [ £(0) ndn] PRy £(ME() =
N
A32

This system of coupled ordinary differential equations can be solved

for £f(n) and t(n) if RT and P, are determined from experimental data,

T

and the boundary conditions are specified. The boundary conditions are

£'(0) =0 f(o) = f'(®) =0
t'(0) =0 t(o) = t' () = 0. A33
The integral constraint, A6, assumes the form
2m f: f(mt{nndn = Q. A34

No attempt has been made to model the vertical heat flux term in
equation A32, but the 0 factor included in equation A34 does account

for this term. The Q factor is defined by
2T f: f(Mem)ndn = 1 - 27 f: hl(n)ndn . A35

The experimentally determined constant RT can be eliminated from

equations A31 and A32 by the following transformation:

o = JE; n

£(n) > £(p), t(m) = t(p), k(N *k‘(p)/thT_ . A36
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For this case equations A31 and A32 become

5 ¢p £'(p)
" st - 7 AN
£(P) + [1 + 3 fo £(0)pde] —
£2(0)
Fig2 e =0 A37
" 3 P : t' (P
t'"(0) + [1 + Py 3 fo £(p)pdo] =
5 —
+ 35 Py £(0)t(0) =0 . A38
The integral constraint A34 assumes the form
o 2m f: £(P)t(p)pdp = RQ. A39
In this form equations A37 and A38 depend on the parameters R,, and Q

T

only through the integral constraint A39.
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APPENDIX B

ANALYTICAL SOLUTION FOR AXISYMMETRIC TURBULENT PLUME



An exact solution for the similarity equations which describe a

turbulent buoyant plume was presented by Yih (15).

This solution

assumes a buoyancy source located at the origin of the flow, and the

buoyancy forces are much greater than the inertial forces.

is assumed to be incompressible fully developed turbulent flow,

stationary in the mean and p << VT'

tinuity equations describing the mean flow are

U 13
U P

il a0
+V -

ax ar (-r?‘;) - gAY/Yo

94y 8y _ 13 =5
U % + v St r o1 (-rvB)

3

oxX +

1 93(xv) _ 0
- .

ar

Stokes stream function given by

U:il-illi V=_£_3_12
r 3r r 9%

satisfies the continuity equation. The boundary conditions are

@E =.§él =V=20 r=20
or or

Y is finite; Ay = 0 r - o,

A constant density flux for this flow is defined by the relation

G = =27 f: ulAyrdr

The plume

The momentum, energy, and con-

Bl

B2

B3

B4

B5

where Ay is the difference in the plume specific weight vy and specific

weight at ambient conditions Yor

For modest temperature differences the Boussinesq approximation can be

used to relate Ay to AT as follows:

143
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gBAT = %X
o
The constant flux G has units of | E%E ] which are used to form the
T

similarity parameters in this flow. A similarity solution can be

developed for equations Bl, B2, and B3 using the transformation

5
=3 (O s B6
ay = 92 (%O e B7
X
n=r/x . B8

Applying transformation B6 to equation B4 provides the relations

U= 3\ ( E_ )1/3 fiiﬂl B9
px n
_ G \1/3,. .4 _5f(m)
V= ( ox ) 3ft'() = ) . B10O

Relations B9 and B10 are used to find the derivatives required to
reduce Bl to a similarity form. Using These U and V velocity relations

provides the following results:

LU G \1/3, 2£'(n) _ .u
i/ Sy DA G el LD B11
pxX
- " '
ar pX4 n M

If the flux G is used to define an eddy viscosity
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Vo= A — ) B13

and the Boussinesq relation given by A25 is used to define the turbulent

transport

U

-uv = \)T —B‘T B25
the Reynolds stress term in equation Bl becomes
ta . — 3%, 6 \1/3,,., £1(n) _ £"()
—_— - - 2 — 1] - 'l
= 57 (Cruv) n (—=%) (f (n) +—; )
P x n n
Bl4

If relations B7, B9, B10, B1ll, B1l2, and Bl4 are substituted into
equation Bl, the following similarity equation is obtained for the

momentum.equation:

@+ sy (2 e e B1S
The boundary conditions for the momentum equation become

£(0) = £'(0) = 0 f(v) is finite t(») = 0 . BL6
The transformation B7 1s used to obtain the relations:

2

shy % 6% .1/3

% - 473 (g ) T (Gt(m) + 3nt'(m) BL7-
X X
2 2
ng =- 3;/3 ( GGO )l/3 t'(n) . B18
X X

If Reynolds" analogy A35 is used to define the radial heat flux term

it can be shown that
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3 2
139 — 3 G /3 1, ,
T (-rve) = - o (;59 ) 73 (oD .

Relations B9, B10, B17, B18, and B1l9 are used in equation B2 to obtain

the following similarity equation:

=5t « fM)' = (t'M)' . B20

The boundary conditions are given by

£(0) = £'(0) = t'(0) = 0O

f() is finite and t(») =0 . B21
The integral constraint B5 in similarity form becomes:

18> 2 €' (mt(nydn = 1 . B22

Equations Bl5 and B20 along with the respective boundary conditions can

be satisfied with solutions of the form

£(n) = B(1 - (14+an5)™ D) B23

£ = ¢+ anH)™ . B24

Substitution of the above solutions into the similarity momentum

equation B15 provides the following

(1 + AnD) 3 (16a%Bn + 40a%8%0) + 1 + ant) "2

2 m

. (-44A2B n - 48A%BNS) = nc(l + AnY) ™ . B25
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Relation B25 has a solution for m = 3,4. Equating the coefficients for

like powers of n provides:

m=3 m= 4
B = 12/11 B = 4/5
2 A 2
C = 1536A°/121 C = 256A°/25

The constant A is related to the free constant A through the integral
constraint B22 which provides upon substitution of B23 and B24 and

integration the relation

b
1l
1}

w

1331/829427 XOB for m

625/18432T A> for m = 4 .

b4
]

Substitution of the solutions B23 and B24 into the similarity denmsity

equation B20 results in

-100ABCN(1 + Anz)-(m+l) + 100ABCmn(l + Anz)_(m+2) - 100ABCmn(1
+anty T L acana + an?)T ™D 4 paen@mryn’ @+ an®)T @)
B26

Equating coefficients for same powers in n provides the result

5 B

M=

therefore for



Summary:

Similarity Equations:

<1+ﬁmn<ifﬁr=fmm)+mm>

-50(t(M)-£(M)' = (nt' (M)’

Boundary Conditions:

£(0) = £'(0) = t'(0) =

f(») is finite, t(x)

Integral Constraint:

Solution:

for

18ﬂk3 f: £' () t(n)dn

|
o

I
o

it
=

B(1 - (1+an5)™H

f(n) =
2. -m
t(n) = C(1 + An")
m= 3
12
B=17
o - 15364°
121
A2 - 1331 5
82942mA
_ J0B
2

m=4
-4

B=3

o - 25647
25

.
18432mA

g = 2.0

B15

B20

B23

B24
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It is important to note that this solution is applicable only for
Prandtl numbers of 1.1 and 2.0. The general similarity solution for all

Prandtl numbers is developed in Appendix D.
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APPENDIX C

JET INTEGRAL CONSTRAINTS
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Although the jet similarity equations are well known, a brief
summary of the jet equations is required to introduce the integral
technique used to account for the turbulence contribution to the axial
transport. The mean momentum equations for an axisymmetric turbulent

jet are given by:

r-direction:

2 — 2
v _w __13p _ 19 .2y_13 2T+
Dt T p dr T 3r (rv™) r 3¢ (vw) 90X (wv) + r
Ccl
¢~direction:
DV W _ _128 13 2, 3 . — ,w c2
Dt + r pod r 3 () ax (=w) 2 T
x-direction:
DU_ _13 _3 2 _13 ,— 13 —
DE - T p or aw (W) T ¥ o (rw) - T (W) . c3
The r-direction momentum equation can be integrated to obtain:
P"P 75 3 — W’
——p—=v—f:—;u dr+f:—r—dr. C4
Equation C4 is differentiated with respect to x to obtain:
_ 13 _ 2_.;5 _ 9 fm‘g_ (av) dr + G fm ;z dr c5
p 9x ox 3 Jr ax ¢ x ‘rr '

Substituting this result into the x-direction momentum equation and

using the continuity relation equation, C3 assumes the form
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1 8 2 13
ox +‘; or (rov) = - 3x r or (ruv)
5 7 3 D ,— 5 o wl
+ S;-v - 3% Ir 5;-(uv) dr + = f: = dr . C6

Equation C6 is integrated over the limits of 0 to « to obtain:

d 2 1 oruv _ 9 > _ 2
X fz U rdr + f: = —§;~ rdr = N fo u rdr

13 == ) 2 9 duv .
+ f: P (-ruv)rdr + - f: Vo ordr - 5= f:f:'sg— rdr

2
d W
+ . f: (f: = dr)rdr. c7
3 (uv) .
The term - — is of lower order than all other terms in equation C7.

Consequently it is ignored. Performing the integration yields

o« (o]
d 2 _9 2 T
= f: U rdr + rUV . = 0 f: u rdr - ruv .
_ 2 — g
+ = fm virdr - - ( I;-fm w 2
d x - 2 Jr T ar P w
r 0" o7 rdr ).

The above relation reduces to the following:
. . 3
2 2 2 w

fm (U" +u - v 4+ 5 )rdr = 0. C8

o 2
This integral constraint is used to account for the turbulence contri-
bution to the axial transport of momentum. The technique used to
account for the turbulence contribution to the axial transport of energy

is developed in Appendix A.
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APPENDIX D

ANALYTICAL SOLUTION FOR AXISYMMETRIC TURBULENT JET
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In this section the exact similarity solution for a hot axisymmetric
jet is summarized. This solution assumes a bouyancy and momentum source
located at the origin of the flow, and the inertial forces are much
greater than the bouyancy forces. The jet is assumed to be incompressible
fully developed turbulent flow, stationary in the mean and p << ve.

The momentum, energy, and continuity equations describing the mean flow

are

W,y _13 (-ruv)
Uax Vs "t ar b1
AT AT _ 13 (-t vO)
v X v 3r r or D2
W, 130V _
X + : Tor 0. D3
The momentum equation is written in the form
30> 3U 3U _ 13 (~r uv)
w U tVarTroar D4
and integrated over the limits shown
2m fm-égi r dr + 2m f” U 2y r dr + 27 fw v 3y r dr
o 9x o X o or
=2m 7 3C-r wv) . D5

This integration is accomplished using the continuity relation D3

in D5 to obtain

2

N A E I R
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Integration yields

2
Mo-zwj‘:Urdr. D7

This equation indicates that the momentum of a pure jet flow is
constant and imposes an integral constraint on the flow field. Relation
L4
D7 has dimensions of | -3 ] and will be used to define the similarity
T
- parameters of this flow.

The temperature diffusion equation can be integrated in a similar

manner to provide the energy integral constraint.

F0=21Tf:gBUATrdr. D8

This is a statement of energy conservation and also will be used
to define siﬁilarity parameters for the mean temperature field. The
: - 4, 3
quantity Fo has units of [L'/17].
The continuity equation D3 satisfies Stokes stream function Y of

the form

'.1__12
T r 3r v=

HIH

_ﬂ o
= D9

The boundary conditions for equations D1, D2, and D9 are

X _BT vy -patr=o0 D10
or or
and
dU _ AV _ -
AT = U=V = 03 r = 5r 0, as r »

Y is finite as r > ® . D11
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A similarity solution is sought for the system of equations D1, DZ,

and D3 which satisfy the integral constraint D7 and D8 and the boundary

conditions D9 and D10. A similarity solution is implemented using the

following transformations

NOTE:

e HY? e | D12
AZFO
gBAT = - 175 t(n) D13
M p:4
[o]
n=r/x D14
(Moxz)l/z _ [L3/T]
F /M l/zx = [L/Tz]
O [o]

A - free constant which must be determined from experimental data.

Substitution of relation D12 into D9 the definition of Y provides

the following relations:

M 1/2
=) 0 £'(n)
U= A X = D15
w 12
V=-—— [f(m - nf' (W] . D16

Furthermore these relations are used to determine

1/2
M '
ou _ o _ [£"(n) - fuéﬂl _ D17

or X?_n
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. AMol/Z
._8._. = e ——t— f"(‘n) . D18
X X2

The simple proportionality correlation proposed by Boussinesq --
between the turbulent transport and mean gradient -— is used to define

eddy viscosity as follows

_we=v 28, D19
e or

Using this relation to define the Reynolds stress term in equation D1

provides the following results

2
Vv A™™ " '
A SN TR L P 20
T 2 n

rX n

Substitution of relations D15, D16, D17, D18, and D19 into D1

reduces the momentum equation D1 to the form

2

] ]
(-1 0y S EOL ey p21
n n
This equation is satisfied by the solution
£y = B[1 - Q+anH ™ . D22

If relation D28 is substituted into D27, the following results:

- (m+2) 2)—(m+2)

4A2B m(m+l)n (1+An2) + 4A2B2m (m+1)n(14An

2 2. -2(m+1)

2,-2(mt+l) _ mzn(l+An )

4A2B2m(m+l)n(l+An ) 4A2B

2)—(m+2) 2)—(m+2)

+ 4AzBm (m+1)n(1+An + 8A2Bm (m+1)n(1+An

-(m+3) _

+ 8a3Bm(m+1) (m+2)n> (14An2) 0o . D22
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The above is satisfied for M-1 for which case it is reduced to

2

_gaZen(1+an) "3 + 8aZeZn(1+an®)”3 - 12a%8%n(1+an®H 74

3

+ 2682820 1+an®) "3 - ssadsnaan®H = 0 .

If this equation is multiplied by (1+Ar12)4 and like powers of n

equated, the equation is satisfied for

B=14.0 . D23

The integral constraint D7 is used to evaluate the constant A. In

similarity form this constraint assumes the form

I A2 Hnd 2 gy = 1/2n D24
In terms of the assumed solution this integral is

f: 16428232 (1+anH ™4 dan = 1/27
and the evaluation of the integral provides the following:

A = __ii_ji D25
64T A
It is also noted that the assumed solution p results in a dimensionless

velocity obtained from D15 of the form

X
M 1/2
o

U= 2ABA(1+An2)"2 . D26

This development provides a similarity solution for the mean flow

momentum equation with one free parameter to be determined from the



159

experimental data. Next the conditions required for the temperature

equation to satisfy the assumed velocity solution will be developed.
The similarity relation D13 is used to determine the temperature

derivatives required for the energy equation D2. Using D13 it can be

shown that

A2 ¥
o A
2D - o [g(m) + nt’ ()] D27
M X
[o]
2
A2 F
5 (g BAT
(ggr L - - 735t . - D28
‘ Mo X '

Reynolds" analogy is used to express the turbulent radial heat flux

as a function of the temperature gradient. This analogy states

-0 = o T D29
e or o

‘where o, - thermal diffusivity.

- Relation D35 is used in equation D2 to model the turbulent radial heat

flux term. This substitution provides the following results:

R

5, — 2 o R

TS (-r vB) = -E——z— ne'm1' . D30

- Equation D2 is reduced to the following similarity form using D30, D28,
D15, and D16,

-o[fE(mem]1’ = [ne(m]’ . D31

Equation D31 is satisfied by a solution of the form

£(n) = c(1+anH)™ . A32



Using equations D32 and D22 in D31 provides the following

_2a800m (14an2y " ™2 L 5 ancomn (14an?)” (D)
—2a8Comn (14an2)” ™2 4 4acmn(1+anZ)” D)
—aaZen3n(mtl) (1+an2) "™ - o

Equating the coefficients for like powers of n in the above relation

yields
m= = . ' D33

Since B = 4 from the solution for the momentum equation, equation D32

becomes
t(n) = C(1+Ar12)_2 . D34

Substitution of D34 into the similarity form for the enmergy integral

constraint

]
f: A3 £ é”) t ndn = 1/2m D35

results in the following integral relation

—(2o+2)d

f: 233ABen (1+4n°) n=1/2m . : D36

Evaluation of this integral relates C to the known constants and the
free parameter A which is determined from experimental results. The
value of C is given by

-+
o o 20%1

. D37
8Wk3
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Summary:

Similarity Form of Momentum Equation:

' . ' 2
[1-£(m] I f——f]l‘l 1’ - 3{]1‘-)—— - £"(n)

Solution:
£(n) = BIL - (1+an") ™
Boundary Conditions:
f(0) = £'(0) = 0 f(x) is finite

Integral Constraint:

fw 02[.£L%Hl ]2 ndn = 1/27w

(o]

Constants:

3
64ﬂA2

B=4.0 A=

Similarity Form of Temperature Equation:
1 1
-o[f(Mt(m]1 = [nt(n)]

Solution:

t(n) = c(1+an’) %0

Boundary Conditions:

t(0) =0 t(o) = 0

D21

D22

D24

D31

D34
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Integral Constraint:

L}
A3 B an = 1/2n D35
o n
Constants:
_ 2041
C=-—3

8mA
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APPENDIX E

BUOYANT JET EQUATIONS
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A set of dimensionless equations is derived.which describe a fully
developed hot jet evolving into a fully developed plume. It is assumed
that the momentum forces are much greater than the buoyancy forces.

The buoyancy term is included in the momentum equation, and it is shown
that a characteristic length scale can be defined from the initial
momentum and buovancy flux which controls the buoyancy. As this length
scale becomes large relative to the distance from the source the méan
equations are reduced to the jet case; Eddy viscosity and diffusivity
models are introduced which are functions of the characteristic length
scale and axial distance from the flow source.

Consider the fully developed turbulent hot jet shown in Figure 20.
In the fully developed jet region both the momentum flux and energy
flux and constant. As the jet evolves beyond the fully developed
region, the momentum decreases as a result of entrained air from the

ambient, but the energy remains essentially constant. The momentum flux

is defined by

2 gt
Mo = 27 f: U'rdr = [-§ ] El
T
and the energy flux is defined by
Rﬁ
F=2m f‘: gBATUrdr = [ ] ] E2
where: | ] are the dimensions of the fespective quantities

% - designates length dimension
T - designates time dimension.

The mean flow equations of momentum, energy, and continuity are

" "~ = 5% (-ruv) + gBAT E3
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AT AT o 1.‘ _B__ o)
U x tv 9r r or (-xv9) E4

ox

r

or

For a turbulent buaeyant jet the only parameters which can govern

the evolution of the flow are either those occurring in the equations

of motion or those imposed at the source of the flow.

The only

parameter in the equations of motion is gB and at the source Mo and Fo'

At any given cross-section the radial distribution of the mean flow must

be considered a function of the distance from the source.

From this

basic set of parameters two independent dimensionless ratios can be

formed.

These ratios

assume the form

X Foll2 <
= =2 E6
v 3/4 L
o
=r/x . E7

The equations describing this flow must include the two dimensionless

length scales & and n.

This solution is of the form

n=r/x
£ = x/L
U= U (N, E)
V= U GOk, E)

w = R (0)5(n,E)

gRAT

g8vh

T (€N, E)

H (DR, 5 E8
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Using the momentum flux M_o and energy flux Fo the coefficients in

E8 are defined as follows:

. 1/2 -1
US(X) = M0 x
) -2
Rs(x) Mox
T (x) = F M ",1/2{1
s oo
. ) E9
Hs(x) = F0 X

Initially consider the results obtained if relations E8 and E9
are used in the momentum and continuity equations E3 and ES5. For

these relations

53U
2)i| s df (n, &) 8& of (n,&) 9on
% - 5x L(ME) F U TE R F U T

W ey sy Ysarmn U 200,80
% e 5% T LT 8E x ' on
or
U U U
W _ s, 83 s ¢
3x £ ox + L 3 x nf E10
where: f' = BfM,8)
an
and it is understood that f = f(n,§).
U
3V _y M) dn _ s oy | E1l

or s an dr x

The continuity equation E5 is used to obtain a relation for V in

terms of U. Equation E5 may be written as
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_ n au - 2 mau
-7 fo x T4 T T X fo 3% N
3 U |
= - ¥ [) 5= fnan +-—— f” of n-=/0 nfran] . EL2

The extreme term on the r.h. side of the above equation may be inte-

grated by parts to provide
n 2.,, _ 2 n
[o nE'dn = n"f - 2 [ fndn

which is substituted into E12 to obtain

X 2Us aUs n Us 2 Uq n of
Ve IC5 +g ) fo fndn - 5 n"E 4 = [ 5 ndnl.
E13
An eddy viscosity for this flow is defined by the relation
v U
v = A _es o
uv = v il £r. El4

Substitution of relation El4 into the Reynolds stress term of equation

E3 ylelds
U 2
—— LA |
19 (-ruv) = s (fH" . E1l5
r dr Rx M

If the various derivative relations in the n,& coordinate system are sub-

stituted into equation E3, the momentum equation becomes

_l. n 1 (mfH' 2
£2 + [, fndn + R T £t

f'
+ E[f %é -— 1 gé ndn]. E16
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Equation E16 is a dimensionless momentum equation in two length scales
n and E.

The relations E8 and E9 are used with the energy equation E4 to
develop the following:

aor _ 2 Bt(n,E) In , , Bt(n,E) IE

9x 9% t(n, &) + Ts an ax s 9& 9%

letting
ot(n,8) _ ,» ot(n,&) _ ot
on og 1
then
AT _ t-EEﬁ - Eé t! + Eé~§5 El7
ox 9% x L 93
T
T _ o 3t dn_ s,
r Ts an ar X . E18

Defining an eddy diffusivity of the form

T

B =0 AL _, = ¢
e dr e x
it follows that
U T
10 — _ 1 s's (nt")’
v (-rvb) = PTRT - - . : ‘E19

Substituting the above derivative relations into equation E4 yields

t' m 1 (ne")! ot
—_ o o—— e —_—
tf + m fo fndn pTRT = Eff 3E

t'om 3t |
— [y 55 nanl. E20

If the momentum equation E3 is integrated over the limits of 0 to o,

the resulting integral constraint is given by
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f: Uzrdr = f: gBATrdr

%la.

and in dimensionless parameters the above becomes
d = 2
S [0 £°m,Bndn = £ [T t(n,Endn . E21
dg ‘o o

The energy integral constraint for this flow assumes the form

2m [ €, E)E(,E)ndn = 1. £22

In addition to the integral constraints the boundary conditions for

equations E16 and E20 are

BE(0,E) _ 3t(0,8) _

an on 0
BE(2,E) _ BL(=8) _ 4
an an
£(®,£) = t(x,£) = O. ‘ E23
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APPENDIX F

BUOYANT JET PERTURBATION EQUATIONS
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The bucoyant jet equations will be expanded in powers of the dimen-
sionless length & to obtain a set of perturbation equations. Unfqr—
tunately, this expansion results in two additional unknown coefficients
for each order in £. The number of equations are reduced by assuming
a trivial solution for the equations for odd order in £ and a set of
equations are presented for an eddy viscosity independent of £.

The buoyant jet equations developed in Appendix E are

2

1 Tyt
£ +.§_ fg fndn +.l_.£ﬂ£_l¢ - g2

-g% + g15 2 - £ 7 2 nan)

El6

t' l LAY 4 )
tf + ;—-IQ frdn + i (MEDT _ ppe 38 EL yn BF g

PpRp 1 8 " n o 3E

E20

%E fe £hnan = € [y tndn E21

2r [T fetndn = 1 22
where: f = f(n,£); ' = 3f§2,§)
t =t(n&; t' =.§E§gL§l

= 1/RT .

Assuming PT is constant and the velocity, temperature, and eddy viscosity

functions are expanded in terms of n and £ as follows:
£(n,E) = £,(n) + EE,. (n) + E2E, () + EOF . (m) += -
' i R j2~ j3

t(n,&) = t (n) + &t, 1(n) + E t. z(n) + E t (n) +e F1
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n(E)——(l+§v +§v +£\)3+ <)

Ry

a (§) = L (1 + Ea + E o, + E a Foas ) .
€ Pr

The momentum integral comstraint, equation E21, is written in terms of

the expansions Fl to obtain the following
f¥ [f +O2EEE.. 4+ ES(2F.F, . HE, 0) + 2E(E.E, HE, £.)
dE i i1 j iz i1 - 73733 3132

4 2
+E (2 £, + £, +2f, f.) +++ Ind
E Q2+ fy j1f59 Indn

- 2 3 4 .o
Ef:[tj+£tj1+£tj2+£tj3+gtj4+ Indn . F2

For the above relation to be valid terms of the same order in & must

satisfy the equality. This requirement gives the folloﬁing relations

order 5—1:
or (2 £ %nan = 1 F3
o j
order 1:
f: fjfjlndn =0 F4
order &:
2
2[2 (2£ £, + £5,7)ndn = f: £4ndn F5
order EZ:
6f (£, sEy3+Ey fypondn = I t5yndn F6
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order 53:

4f7 (2f, $E34%E5, +2fjlfj3)ndn = tondn F7

‘order E4:

10f (£, 3555t g1 EtEy ot dndn = N £y4ndn F8

Expanding the energy integral constraint E22 in a similar manner the

following relaticns are obtained:

order 1:
2m £.t,ndn = 1 F9
fz 4E5Mdn
bqrdéf 51:
jz (f i1t 31 J)ndn 0 F10
" order 523
f” (f,¢ 2+letJl+f t Jndn = 0 F11
order 53:
j: (£t 5+ £y1ty0%E 50817 55t Yndn = 0 - F12
order 54:
f: (f AL 2+f . Jl+fj4tj)ndn =0 . F13

Equations'FB thrbugh F13 are the momentum and energy integral constraints

. for velocity and temperature equations to be developed in this pertur-

bation analysis..
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1f the various terms of equation E16 are expanded in terms of the

relations given by F1l, the following expansions are obtained:

2 2

2 2 3
£ =f°+Ef £, + 2f £, 4f, + 2¢ £, +2f _f oo
' h| gJ jl & jl ) + B j’33 il

352 32)

? 1 ]
]
= [7 fnan = —l—-f” £,ndn + &( —1—-f” Jndn +-l—— 2 £ 4nan)
2 £ £,.' ,
i m i1 m 2 m
+ e, £;ondn + = Iy £5qndn + L= [ £ ndn)
£, £, ,
+ 3¢ ——%— fg £55ndn +—=r1]—1—— fg £,,ndn + A2 fg £,
£,
L33 e
n [o £5ndm)

1 (mf")' _

1
Ry N Ryl

(e, + EDV (£, + (13D ']

2
& ' '
+ R, [y (EN)" + vy (nf )T+ (MEg, D]

2
E Tyt [ A ' c e
+-——-[v3(nfj')' + \)z(nfjl y' + vl(nfj2 ' + (nfj3 Y' o]

Rp

2 2 3 4
- = .+ .+ +ooe
gt € tJ g tJl £ tjz

2 2 3
f = £, + 2f £+, + 3f £, 43F, F,,) +eo-0
& 3 EJ jl & ( j iz i1 ) + & j 33 3132)

£' m of £
i m d.m n ¢
- [, 5% 52 ndn = [, £ jpndn + g2 (2 f 520dn

'

£,
+ e nan + £ (3 -+ L [0 £, 4nan
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]

£..°! f,
i m Jz2_m ..o
+ 2 == fo £,pndn + - fo £yndn) +
The various terms of equation E20 are expanded also to obtain

2
t f=¢t.f, + &E(t.f +t ,) + t . f..+t, . £ .+t .f,
R & j i1 i1 &« j iz 31 it j2 J)

+ Y
+ g3 (by £y bty Ep¥typf 4E o f ) +

'

)
ff'fg fndn = fn £yndn + E( f” £5,ndn

t,. ! t,"' t,."'
il n 2 ] N il n
+ =l £, + - f..ndn + f.nd
- /q sndm) + E5( — /s 52n4n -—1ﬁ~ /s 5ndn

1

t T
J 1
4--4L—- fn £indn) + g3 - f” £44ndn +-—1ﬁ~ fg £5,ndn

'

t,.! t
j2 i1} i3 n
+__;]__ f, dn <+ f.nd 400
n fo Jln n n fo Jn n

1 (tH' _ 1
P R n P_R n

ty ? ’, Ty ? T\ ?
e R [(ntj ) +€[v1\ntj ) +(ntjl ) ']

+ 2 (e vy (B D T 1) '] e

ot _ 2
Ef 3¢ = Bty + ; (2£ b, o+t ) £3 (3£t 42Et ot ot ) e
' | ]

gt mof = - Fodm _ 23

& Jo 5 ndn g = [, £5yndn - £7(2 = [ £, ndn

t..' t !

dr om - n _;L_‘
+ == [ £5qndn) g3z L - /4 £5ndn + 2 f £,ndn

‘32 m
+ =2 [T £ ndn) +e.- .



If these expansions are substituted into equations E16, E20, E21, and

E22, equating like powers of £ yield the following sets of equations:

ordet‘l:
£, (nf,")!'
f 2 4 fn f.ndn + LU R 0
h | n ‘o "jJ R, n
t, ' (nt,")"
J | <1 N
f.t, +— f.ndn + =
i3 m I N T PR n 0
TT
2 f: £.ndn =1
27 f: tyfndn = 1, §13
order &:
£..° £, (f.. ") v £
£ 4 Al fn £ ndn + 2 _J_.fn £,.ndn + i 31 ° __ _l.fﬁ;i___
j il n o] n ‘o "jl R n R
T
order El:
t,.' t,' (nt,, "'
31 m J_m 1 17
fjltj +— fo fjndn + 2 - fo fjlndn + R -
] ]
= - 2 .fiil_l Fl14
PTRT n v

f: fjfjlndn =0

(o0}
fo (fjt +fj1tj)ndn 0,
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order £7:
f ] (nf |)|
i M j2 m I 327
3= [y £5pndn + /o £yndn + T
£, v, (nf.,"" v, (nf. N
= - t - 2 _A—]—Z-.‘ fr] f r]dn — _...].Z __..__...Jl..__‘. - .._2..
J n o "jl R n Ry n

t, 1 1 ) o t, ty?
+ -1 (ng) p AL M £, ndn - (nJl)
PTRT n n o jl PTRT n
1 1]
_ a2 (nt, ")
- PgRp oM

2
zf: (ijfj2+fjl yndn = f: tyndn

£f.t, +f, t, +f, . t.)ndn = 0 .
f: ( j 32 731731 32 J)n n

The boundary conditions for equations F13 through F15 are

h
]
h
it
lag]
1l
T
I}
T
Il
nd
it

£, =f,.  =f, =¢t,=¢t,, =t,, =0 for n >

0 for n

0

0 for n = o,

F15
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If the odd coefficients of the eddy viscosity and eddy diffusivity

expansion are set equal to zero the solutions to the equations for odd

powers of £ are identically zero and homogeneous. Consequently, both



the odd order equations and the integral constraints are satisfied by‘

the trivial solutions. For this case the perturbation equations to

fourth order in & are:

order 1:
f.' (T]f ')l
2 i m 1 i
e . ==
fJ n fo fJndn + RT n 0
t,' n (ntj')' .
f.t, + ) + = ‘
5t ——J——n fo findn + 57 = 0 F16
TT .
order 1:
= 2
27 fo fj ndn = 1
2m f t.ndn =1
N 5t4ndn
order & :
i fi2' P
3 o ° szndn + fo fJndn + = -
v, (nf,")'
e 2 R
t,! t, "
i m , _jz_m
- f.t 4+ f..t., + 3 f dn + f.nd
j 32 j273 nfo 32090 n / 31N
1 (nt.z')' a, (nt "'
PR : -7 PR F16
T T n

loo]
£.t,, 4+, . t.)ndn = 0 .
fo ( 5852752 J)n Ti
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order &
4! f 1
n .. i Mm

-2fF £, + dn + 5 - d

22 %2, / £,ndn + 5 - [, £.,ndn

(e, ")’ £,

1 j4 - 2 _ 2 n

+———RT = tip* fio 3 —-l——n fo £, ,ndn
] 1 4 1 ] L

_ Vv, (nf.2 ) _ Y (nf.")

n n Ry n

] (T]t l)l

_ j4 n 4

3.ty + [o £;ndn + 3 R

L t 2'
n j n

= t, -5d. [T¢ - £, .nd

fiotyn = Fi4ty = 55 !y PACURSE R [, £ ndn

\ ] Ty ?

) (nth ) % (ntj )

P_R n P_R n

2
4fy (QF ¥ ,5nan = [ e, ondn
o

e £, +t .f. +t., £.)ndn = 0.
fw (J jé 32732 "j4 J)n

The boundary conditions for equations F16 through Fl17 are

f'=f "=f '"=s¢t'=¢. "'"=¢t,,'=0 for
j j2 ja 3 j2 jé n
f.,.=f, =f,, =¢t, =¢t,,=¢t,, =0 for
j j2 jé j j2 ja n
f£'=f, "=¢f, "=¢"=¢,,'=¢t.,'"=0 for n

1]

F17
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APPENDIX G

ANALYTICAL SOLUTION FOR BUOYANT JET
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The analytical eddy viscosity solutions for the jet and plume give

the following relations for the mean profiles.

£i(m = ZAijAj(1+Ajn2)_2
() - §2(1+Ajn2)_20
fp(n) = 2ApoAp(1+Aph2)-2
e, = ¢ 2 Z(rean®)™ 61

where the plume solution is that obtained by Yih for a Prandtl number
of 2.0, and the jet solution is applicable for all Prandtl numbers. For
a Prandtl number of 2.0, the jet and plume velocity and temperature
profiles have the same dependence on n, (1+AT12)_2 and (1+An2)—
respectively. Although the A's are not the same for the jet and plume,
analytical solutions éan be developed for the perturbation equations.
For this development it is assumed that Ops Ggreee and vl, v3,...
are zero and the even values are simply related to RT' The dimension-
less momentum and temperature equations, E16 and E20 respectively may

be written in the form:

£! 2 £ 9 of
)\f"+[)\+f2fndn]—ﬁ-+f +E[T—{-f23§ ndn - f*a—g]

2

+Et =0 G2
A n n t n of _ g3t
S+ 1 + f fndn ] + ft + a[ fo 58 N4 F 1]=0
G3

where:



A= 1/RT g =P,

£ = £(n,8&) t =t(n,8)

g1 = 2E(,8) et = 2t 8)
an an

gn - 9 f(,8) £ = 3 t(n, &)
2 2
o n m

and the integral constraints are given by

‘%g f: fzndn g f: tndn

it
—

2m f: ftndn

Assuming a separation of variables solution of the form

£(N,E) = O(F(E) o(n) = (1+An>)~2
2 2 2.-4

t(n, &) = ¢"(N)T(E) " (n) = (1+An")

F(E) = BO+B2£2+B4£4+--

T(E) = co+02£2+c4£4+---

AE) = A_+h E%HA, Ehee e

the integral constraints become

dg fw F? (£)¢ (mMndn = £ f: T(g)¢2(n)ndn

| 2n [T TEFE® (yndn = 1 .

Substituting the assumed expansions for F(&), T(§), and ¢(n) into the

integral constraints and equating the various orders of & yields

E21

E22

G5

G6

182
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A= TTBOZ/B c, = 5A/m30

B, = 00/4130 Cy = —COBZ/BO

B, = (C2—4B22)/8B0 c, = -(c BA+C2B2)/B

Bg ='(Ca'123234)/1230 . G7

If the assumed functional relations for f(n,£) and t(n,£) are sub-
stituted in equations G2 and G3, the dimensionless momentum and temper-

ature are respectively

Momentum:

1
AF" + [AF+FZ fg ¢ndn] % + Fy°

+ E[FF' %b— [D ¢ndn - FF'4°] + 2142 = 0 c8

Temperature:
¢2
ch "+ [—T+FTI éndn] +FT¢>

¢2
+ E[F'T I ondn - FT'¢°] = 0 . G9

Using the definition of ¢ it is easily shown that

o = —4no 32 4 24a2n242

= —sag 22

o
i

O1 M gnan = + 2007 - §7%)
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92 = - sa¢™>'% + goa’nZ¢ >
2
o3 -5/2
s 8Ad
31 m 3_,~5/2
S fg ondn = + 40679700

.and substituting these results into equations G8 and G9 yields:

Momentum:
arc2ean-sast’?y + 272 1-61?y + ¥
+ gFF'—ngFl¢1/2+£2T =0 G10
Temperature:
2 1(80a%n%-16a622) + 4rr(1-0"7%) + FT
+ 4ER T-4EF TN 2EFT' = 0 . 611

If the assumed expansions for F(§), T(£), and A(E) are substituted into
equation G10 and terms to the same order in £ are equated, the following

results are obtained:

order 1:

16A2A n2—2AB nz—SAA +B =0 : G12
e ) (e} (o] (o] .

order 82:

(AOBZ+AZBO)(16A2n2—8A) - 8ABoan2+C0 =0 13
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order 54:

22 2 2 2 ~
(A034+>\232+9\430)(16A n -84) - 6An (2B034+B2 ) - (2B0B4+B2 ) + 02 = 0

Gl4

The above equations are solved by equating terms of the same order 1in
N. Using these results and the results imposed by the integral con-
straints, relations G7, the following values are obtained for the

various constants:

A = 3/64m) 2
)
BO = 3/8ﬂk0 Co = 5/8ﬂk0
B2 = 5/12 C2 = -25/36
B, = 257\ /54 C, = 125m\ /34
4 o 4 o
A, = 10m\ 2/3 A, = -500m2x 3/3%
2 o 4 o}

Solving the temperature equation, Gll, in the same manner as the
momentum equation, G100, provides a check on the solutions presented
above. Substituting the assumed expansions for F(§), T(E), and A(E)
into equation Gll and equating terms of the same order in & provides

the following relations:

order 1:

A (324%n%-8A) - 4AB n24B = 0 15
o] (o) (o]
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order €2:

2.2 2 2
- - - C - + =
(AOC2+X2CO)(32A n -84) 4ABOC2n 12ABZCon BOC2 BZCO 0

G16

order 54:

2 2

2 2
(AOC4+AZCZ+A4CO)(32A n~~84a) - 4(B004+BZCZ+B4C0)An - 8(B2C2+2BACO)An

+B,C -B,C, -3BC, =0 . G17
(o} (o}

4 272 4

The above set of equations is satisfied by the previously derived

constants.

Substituting the coefficients into the functional relations for

f(n,&) and t(n,&) provides the following results:

25T
2,-2
f(n,&) = (1+an") “ ( 813‘\ + £ % - g“ .___32 —eee )
o 2.3 '
125mA
t(n,E) = (1+an>)™% ¢ 8“; - g2 ‘3—2—+ £ ___z__o._... ) .
° 3

The above series can be extended by using only the integral constraints
to evaluate the coefficients for higher order terms in &. The values

of B, and C, were obtained using the integral constraints. These values

6 6
are given by
125m 2 6250m%A 2
B, = 0 c, = - 2 .
6 36 6 37

Recall that the solutions presented here are valid only for a Prandtl

nunber of 2.0.
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