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Abstract

The investigation consists of a detailed experimental study of the
turbulent energy balance and eddy structure in a turbulent axisymmetric
hot air plume in a stably stratified environment. Data is obtained at
various positions in the plume for exit flow conditions corresponding
to a densimetric Froude number of about unity. The measurement techniques
use hot wire anemometry methods to produce instantaneous velocity and
temperature signals which are simultaneously sampled using an analog-to-
digital converter. Data is acquired and analyzed using an on-line PDP 11
minicomputer. A computer controlled traversing apparatus is utilized to
simplify data acquisition.

Measurements are taken of the turbulent and mean quantities needed
to specify the energy budget. Also acquired are the power spectral
densities, and single and joint probability densities of velocity and
temperature. Whether or not local isotropy exists at small scales is
determined and the applicability of Taylor's hypothesis to the dissipative
scales is tested. The data is compared with current computer models to
verify their credibility. From these measurements and models the structural

characteristics of the turbulence are inferred.



Chapter 1. Introduction

This paper attempts to gain insight into the laws of nature that
govern turbulent fluid motion affected by buoyancy forces. Measurements
éf temperature and two components of velocity have been taken using a
minature x-wire for ve]ogity and a cold resistance wire for temperature
in a hot air axisymmetric turbulent plume. There is a severe shortage
of good quality data in buoyancy driven flows and the plume, one of the
simplest examples of such flows, lends itself well to laboratory study.
This paper marks the first time measurements of the turbulent kinetic
energy budget and temperature fluctuation budget have been published for
a plume. Spectral meaéurements of velocity and temperature, along with
their time derivatives are also presented.

The data presented represent a range of thermal stratification of
the ambient environment, and is compared with previous data taken under
neutral ambient conditions. For small degrees of stratification it is
shown that the data can still be scaled in similarity variables if the
local value of the buoyancy heat flux is used for scaling. However, for
severe changes in stratification such a scaling is not possible, since the
shape of the velocity profile changes with increasing thermal stratification.

A surprising discovery in this investigation is the seriousness of
the problem of drop-out*from the velocity x-wire due to the high inten-
sity of the velocity fluctuations. Often over]ooked in the past, the
magnitude of this problem in this investigation (greater than 50% at some
locations) sheds doubt on many previous investigations. The high turbulence
intensity also cfeates a serious problem in measuring the dissipation of
the turbulent velocity fluctuations. This is due, in part, to a breakdown

of Taylor's hypothesis which assumes that a velocity field is frozen in

* Drop-out is the loss of information occurring when the velocity vector is
outside the angle of acceptance of the x-wire.



space and is being swept by the probe at a constant velocity. Since this
is not the case in high intensity flows correction schemes for the dissi-
pation need to be employed. This investigation has looked at schemes
developed by Lumley (1965a) and Wyngaard and Clifford (1977), both of which
indicate that the magnitude of this correction can easily exceed 50% at
many parts of the flow. This correction must also be employed in a cal-
culating spectral density functions of velocity and temperature.

The prime goal of this investigation is to provide a reliable set of
data in a buoyancy dominated flow that can be used for comparison in future
and present models of buoyancy dominated turbulent flows. Later this data
will be compared with some models already in existence. Hopefully this

data will spur new turbulence models for these types of flows.



Chapter 2. Background

2.1 Theoretical Review

Buoyancy dominated turbulent flows are a common occurrence in the
environment, but have never been well understood. One reason for this
can be attributed to the added complexity involved in measuring both
velocity and buoyancy simultaneously. It has only been in the last
decade that significant progress has been made, particu]ariy with regard
to meteorological phenomena, but much more is still left undone. The
mechanics of even'the simplest of these flows, the plume, are still a
mystery. In fact, no simple turbulent flow, even without buoyancy, is
well understood.

Turbulence is a condition of instability in a fluid flow, character-
ized by the seemingly random motion of the fluid and high levels of fluc-
tuating vorticity. Turbulence is related to the Reynolds number; all flows
eventually become turbulent as the Reynolds number becomes large. The
non-deterministic nature of these flows necessitates a statistical method
of analysis. Modern turbulence research began 1p the late 19th century

when Osborne Reynolds (1895) developed a set of equations governing turbulent.

motion. Unfortunately, the equations are unab1e to be solved because there
are more unknowns than equations. This is commonly called the c1osure_prob1en
of turbulence. In order to relate terms such as the Reyno]ds'stress tensor,
uv, to the other known parameters and close the equations, one must resort

to intuitive reasoning and ad hoc assumptions. The simplest model is the

eddy viscosity which assumes the.Reynolds stress, uv ,or turbulent heat flux,
vt, to be proportional to the mean gradient of velocity or temperature.

This has had good success in flows that can be characterized by only one

time scale, such as most free shear flows. Other methods will be discussed

later in this chapter.’



Plumes are a specific class of buoyancy dominated turbulent flows
which are produced by a density difference between the flow and its en-
vironment. If this density difference is supplied at a constant rate to
a uniform environment, the buoyahcy flux defined by equation (2.1) will
be constant for all heights (c.f. Turner, 1973). Because of this, plumes
constantly entrain ambient fluid, and the net momentum defined by equation

(2.2) increases with height.

F o= 27 j U, é%-rdr (2.1)

=
il

2 f G rdr (2.2)

The radial velocity of the entrained air is directly proportional to the
mean centerline vertical velocity. A detailed discussion of entrainment
processes of various free shear flows can be found in Townsend (1970).

Examples of plume-Tike flows abound, but the cTassica] example is the
plume rising off the lighted cigérette in a still room. Another common
example is that of the plume 1ssuing from a smokestack. However, plumes do
not have to be rising; a denser fluid released into a lake or river results
in an upside down density driven plume. These flows can all be analyzed
in the same fashion, since they are all governed by the same process.

If the Reynolds number of the plume becomes large enough that the
viscosity and molecular diffusivity become unimportant, the only parameters
governing the flow dynamics in a neutral environment are the buoyancy flux,
Fo’ the height, z, and the radial component, r. Simple dimensional analysis
leads to

U = Fo]/3z_]/3F(r/Z) (2.3)

b f 2/3,-5/3

gOO 0

g(r/z) | (2.4)



However, a neutral environment is not a common occurrence in nature.

With the exception of an hour or two at dawn and dusk, the atmosphere over
land is usually far from neutral. For the case of a plume in a stable
environment, similarity type solutions as found above expressing plume
properties in powers of height above the.source cannot be found. In fact,
at some height the buoyant fluid will eventually come to rest. Morton,
Taylor and Turner, (1956) developed a set of non-dimensional functions
corresponding to height, radius, vertical velocity, and buoyancy parameter.
These parameters are dependent upon the ambient density gradient. They

are summarized below in equations (2.5) - (2.8).

Height @ Zzowd AN e (2.5)
Plume Width: b= o8z« FvﬁN—%é' (2.6)
Velocity Ww=175 °‘-'/L E’Z//V%/ U (2.7)
Buoyancy ﬂ%ﬁ = 0-92"“‘/15./"/\/%&! (2.8)

o 1s the entrainment coefficient and N2 is the Brunt-Vaisala frequency of
gravity waves in a stable atmosphere. For zZ, < 2 the plume spreads nearly
linearly, and the solutions are similar to those in a neutral environment.
Above this height the plume begins to spread out radially and eventually

reaches a maximum height at zZy = 2.5.

For an unstable environment, Batchelor (1954) showed that power law
similarity solutions exist when the ambient density gradient is of the form
35 d ew F

fo —O'l—.zs - C-Z | (2.9)

where C > 0



The equations governing the motions of an axisymmetric plume are
obtained by decomposing the Navier-Stokes equations into mean and fluc-
tuating quantities and averaging. The resulting Reynolds equations for

momentum, continuity and temperature are written below (See Figure 1).

Ui 3x; +a5 (didi) - - 5%, +A 5 "3 S (2.10)

ouy
— o7
Ui 5 * XJ[a t) = AJBT,ax, (2.12)

These equations assume the fluid to be incompressible and that the density
fluctuations are small. The latter assumption allows use of the Boussinesq
approximation to ignore the density fluctuations except in the buoyancy
term of the momentum equation. If the density differences arise from.

thermal expansion and the temperature differences are sufficiently small,

the buoyancy term can be written as:

=] —
To foo ~ —3°ﬁA’ (2.13)

where g is the coefficient of thermal expansion. For an ideal gas, 8 - %;
By rewriting in cylindrical coordinates, discarding all viscous and mole

cular diffusion terms and all mean gradients in the azimuthal direction,

the dominant terhs in the equations yield the following. (See Appendix Al

for a detailed derivation of alil equations governing the motion of plumes).
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5 (r Gar )= 9,807 (2.14)

(2.15)

+§3(@rt) +4 5 (cle)=o (2.16)

For the case of a uniform environment similarity forms can be developed.

2.2 Previous Experimental Investigations

During the past forty years there have been several studies of turbulant
plumes, beginning with Sbhmidt (1941). The first detailed study of the
turbulent plume was undertaken by Rouse, Yih, and Humphreys (1952)(c.f.

Yih 1953). They used a wind vane anemometer and thermocouples to measure
mean velocity and temperature profiles in a gas burner generated plume.
They found the temperature profile to be wider than that of the velocity
profile,*a result which has prompted the development of many convincing
theories explaining this behavior. The result has been refuted by several
more recent 1nvestigations (See below). The discrepancy is most likely
due to the inability of the wind vane ahemometer to respond to the low
velocities at the outer edges of the plume. Despite the uncertainty
associated with the measurements, they have been the primary data refer-
ence on plumes until very recently.

In 1974 George, Alpert and Tamanini (1977) extended the work of Rouse,

Yih and Humphreys by measuring a hot air turbulent plume with a two-wire

* A sufficient relative measure of profile width is obtained by normalizing
both profiles by their centerline (maximum) values and plotting them togethe



probe (one operated in the constant temperature mode and the other operated
as a resistance thermometer.) They measured mean and rms fluctuating quan-
tities, ve]ocity-temperature correlation and the joint probability distri-
bution. All data satisfactorily collapsed using the conventional similarity
scaling. The shape of the profile of mean temperature displayed good
agreement with the results of Rouse et al., but it was 20% lower at the

centerline. The mean velocity had a lower centerline value and a much wider
profile than did the data of Rouse et al. The authors observed that when

the profiles of temperature and velocity were compared, normalized to center-
Tine values, the ve1oc1ty profile was wider than that of the temperature
profile. This is opposite to the result found by Rouse, et al. In this
investigation, the turbulent heat flux was included in the calculation of

the total buoyancy flux. Other previous investigations ignored this
contribution which can be as large as 10-15%.

In an independent effort, Nakagone and Hirata (1977) also obtained
velocity and temperature data using a two-wire probe. Unfortunately, the
mean data is not presented in a manner conducive to quantitative comparison
with other experiments. In agreement with the results of George et al.,
Nakagone and Hirata found the velocity profile to be wider than the temper-
ature profile. Both of the experiments measured rms temperature and velo-
city intensities of roughly 33% and 26% respectively when scaled to the
centerline mean value. None of the above investigations directly measured
the buoyancy flux at the plume source, but instead relied on the integration
of the measured’ velocity and temperature profiles to obtain these values.

In addition to the above, Kotsovinos (1977) did work in a two-dimensiona
plume using a Laser Doppler Anemometer. He measured profiles of first and

second moments, and reported center-line turbulent intensities in the



neighborhood of 50-60%. These results have not been substantiated by

other techniques or investigators as yet.

2.3 Review of Turbulence Models

Turbulence models have become more numerous and have been greatly im-
proved during the past decades. As mentioned previously, the main obstacle
in turbulence modeling is the closure problem. The methods of overcoming

this are diverse and often complicated. However, even the most complete

model operates under numerous restrictions, and often requires the
accompaniment of good intuitive analysis. This section will be devoted
to reviewing several of these models as they have been applied to turbu-
lent plumes and other buoyancy dominated flows.

Eddy Viscosity: The eddy viscosity is one of the oldest models

for the Reynolds stress, evolving out of Prandtl's mixing length theories.
An eddy viscosity model assumes Reynolds stress, uv (or the cross-stream
heat flux, vt) to be proportional to the gradient of the mean axial velo-

city (or temperature). For example,

— Ju
o= Y (2.17)
RN o514 (2.18)

where A is the eddy viscosity and i is the eddy diffusivity.

Models such as these are often referred to as gradient transport models.
Although they are often justified on a mixing length type of argument, the

reason they work is that in single time scale flows the time scale of the turb

lence is the same as that of the mean flow. The success of these models
follows from a dimensional necessity; there is no other possibility. For
flows with more than one time scale (three-dimensional flows, flows with

suction, impinging flows) the gradient transport model fails. However,



most free shear flows (jets, wakes, plumes) are single time-scale flows
in which a gradient transport gives reasonable results.

By combining the two gradient transport equations above with the
three equations for momentum, temperature, and continuity, the resulting
set of equations can be solved. Yih (1977) has found an exact solution
of these equations for a turbulent plume for the case of a turbulent Prandt]
number equal to 1.1 or 2.0. The definition of the turbulent Prandtl number

is the same as the ordinary Prandt]l number except the eddy viscosity and

eddy diffusivity are substituted for the molecular values. Yih's solutions

for the velocity and temperature similarity profiles are given by:

Velocity: -F//)Z}: [—;;f';;;t?‘ (2.19)

9
Temperature: j/,,/} - [“/M’z]m (2.20)

where n = r/z and m = 3 and m = 4 for turbulent Prandtl number equal to

1.7 and 2.0 respectively.

Yih's solutions were extended to other values of Prandt]l number by
Hamilton and Georée (1976) and Baker, Taulbee and George (1979). These
were both computational solutions of the same plume equations, although
they took into account the turbulent contribution of the vertical heat
flux. The results for Prandt] number equal unity are very close to Yih's
solution for Prandtl number 1.7.

A1l three of these investigations assumed a constant eddy viscosity
and eddy diffusivity across the flow. As pointed out by Baker (1980)
the solutions badly over-estimate the entrainment. This is due to the
poor fit to data at large values of radius. A better model might incorporate

an eddy viscosity which decays as a function of radius.



Two Equation Models: The next degree of complexity of modeling

involves relating the second moments to third moments and closing the
equations at this point. This is usually done by using a gradient trans-

port hypothesis for these third moments, but other simplifications are often
used to reduce the amount of computing time necessary. This class of

models gets its name because the turbulent transport is evaluated from
equations involving two turbulence properties, which are detefmined by

finding a sb]ution to the modeled form of their respective equation.The two mo
common properties chosen are the turbulent kinetic energy, K, and its

dissipation, e. For the plume and other flows with scalar quantities

such as temperature, a third parameter is needed. This is usually the
mean-square temperature fluctuation.

Tamanini (1978) and Chen and Rodi (1975) have applied these methods
to the turbulent plume in a neutral environment. The predictions of the
models agree quite well with the experimental data available. Tamanini
noted that the dissipation in the plume is approximately the same as in a
forced jet, but the production terms are 20% lower. Also of interest was

the unusually high value required for the temperature dissipation.

Normality of Fourth Moments: This method relies on a statistical argu-

ment for closure. By assuming the fourth moments are normally distributed,
they can be related to the second moments as shown in Equation (2.21). In

most flows, this appears to be a good assumption when the flow is fully

Uill; Uk Uy = Yilly Updy + Uide djly + ity Yile (5 27)

turbulent (see Monin and Yaglom 1975) However at the
outer edges of the flow the intermittent nature of the turbulence weakens

this assumption considerably. Although it eliminates the need for the gfad-

ient transport assumption at fourth order, in practice the resulting set of



equations becomes difficult to solve. The first to attempt such a closure
was Millionschikov (1941). A more recent and partially successful attempt
is due to Lumley (1975), but restrictions on computer time and storage have
V]imited the number of other attempts. However, several investigators have
successfully applied this method to smaller, more manageable problems and

have obtained excellent results (c.f. Beuther, George, Arndt 1977).

2.4 Taylor's Hypothesis

Turbulence theory deals mostly with spatial variations of the velocity
and scalar fields. However, it is the temporal fluctuations of the Eulerian
fields that are usually measured. To convert temporal variations into
spatial ones, most investigators resort to Taylor's Frozen Field Hypothesis.
(c.f. Taylor 1938). This theory states that the measured fluctuation can
be considered as a spatial one being convected by the measurement point

at some convection velocity, U As a consequence, the following relations

.
exist.
d _ 1d
- U @ : (2.22)
C
(= 2t (2.23)
(o

k is the wave number'for a given spatial fluctuation.

In a highly turbulent shear flow, many factors exist which can
cause Taylor's hypothesis to fail. Lumley (1965a) outlines several
criteria to determine the applicability of the frozen field hypothesis;

these are summarized below:

1. Non-uniform Convection Velocity. Equation (2.22) assumes that UC

is a constant value. However, there is no reason for all eddies
to be convected at the same speed. It is likely that the smaller

fluctuations are convected at a different rate than the larger



fluctuations (c.f. Wills 1964). .The effect of these different
convection velocities can be ignored if

U => 3,?}17(—('/  (2.28a)
In general, this effect is valid only for the small scales.

Spectral Aliasing Due to Non-uniform Convection Velocity. This

effect can also cause spectral broadening of the velocity spectrum

unless the following criteria is met:
S At (1) ot =2
2 qlf) 7 ledd
— 1
3u°F

where F}] is the one-dimensional velocity spectrum. This is

<y (2.24b)

equivalent to the square of equation 2.24a in the inertial

subrange where the spectrum has a power law roll-off.

Temporal Variation of the Convected Eddy. In reality, the

turbulence is not really a frozen field; it does have a time

dependence. This temporal variation can be ignored if
e— ¥

2 U
Fu <<< & o  (2.24¢)
This insures that the eddy does not evolve during the time
required for it to be swept past the measuring probe. (The
increased number of inequality signs is because the original

criteria used to develop this was squared).

Fluctuation of the Convection Velocity. Due to the nature of

turbulence, the eddies are not being convected at a constant

rate. To account for this Lumley developed a model to correcf
for thé errors associated with assuming a constant convection
velocity. By approximating the characteristic function by its

first two terms

EYP/"‘:?‘%]: /4'/7.("»’5'—‘!/1 (2.25)



Lumley developed the following equation relating the measured

one-dimensional velocity spectrum of Uy to the true spectrum:

1
f, = F, wt(k + YK F, +2F, “‘*“

"

where the primes denote differentiation with respect to k].
Lumley's analysis was extended by Wyngaard and Clifford (1977)

to the Uy component and to scalar spectra with the following

result:

1 ~ _"_‘—Z. v r” ’“Zv e
Ezmzl’zz’f'zvl(kl Fu. +/</Fzz[‘/ N 7R "-;‘.:.;“‘

_ EOn (2.27)
+ P2+ % - %!_—) -2 %(/4 k- Ar,,)}

¢

- Rt (W R + 4R +2R) (2.28)
u +lg
- zle (k’Ft +"t)

The above assume that the convected field is isotropic,
although this is not required for the convecting field.

By integrating the solutions to the above equations,
relationships relating the true space derivatives and
those inferred by Taylor's hypothesis can be found. These

are listed below:*

o mam o

< [l — (2.29)
A Ul + hud +u

2l ;;){w e

UTV /T ar s Ul + U3
@?)‘-& Y [/ + T (2.31)

where m denotes the measured value determined from equation

(2.22). These corrections will be USed on all derivative

measurements in this investigation.

* George and Beuther (1979) were able to show this equation to be

P Y



5. Isotropy of Velocity Fluctuations. Although not related to

the applicability of Taylor's hypothesis, Lumley also developed
a critérion to determine the degree of isotropy of the velocity
fluctuations. The fluctuations of a particular wavenumber will

be isotropic if

i) > 4 )° s
None of the above criteria are satisfied for the largest scales
of any turbulent flow, only for the small scales. By non-dimensionalizing
relations 2.24 a-c in terms of the Kolmogorov length scale, approximating
the mean velocity gradient With u/%, and utilizing the isotropic spectral

relationships, the following relations result.

2 = /2[%,21’7 « ’7‘, 5 Re=2 (2.33a)
InTE /247“’67”/—1/" << 7 (2.33b)
g’f{}kfi /5- b)) <4< % @yz;ﬁ, (2.33¢c)
—(/eij}/]% > g;;zdls Ry | (2.33d)

When all four of the ébogérre1a£¥6hs areﬂpé]id, the flow can be
described adequately as isotropic frozen regions convected by a spatially
uniform fluctuating convection velocity. If in addition, Lumley's model
is used to correct for the fluctuating convection velocity, accurate values
of the spectral functions and the streamwise spatial derivatives (and thus
the dissipation) can be computed. These four criteria will be compared to

the present data in section 5.2.



Chapter 3. Description of the Experiment

3.1 Introduction

The goal of this investigation was to measure the turbulent kinetic
energy budget in a turbulent plume. To accomplish this, two main design
criteria needed to be satisfied in the final development of the experi-
mental program. The first was to have a large enough Reynolds number to
assure the negligibility of various terms in the governing equations
(such as the viscous terms). It shou]d also be large enough to assure
the existence of an inertial subrange in the spectrum of the velocity
fluctuations. The second was to have a microlength at least twice as
large as the probe size. The turbulent microlength is equal to 2mn

where n is the kolmogorov microscale defined by:

,47:(’.‘3_7%’ (3.1a)

where e(z HE) is the total dissipation/mass of the flow. Thus:

DH g
7= (3.1b)

The Kolmogorov microscale is a measure of the smallest size fluctuation
that exists in a turbulent flow. F1uctuatiohs smaller than this are
quickly dissipated by viscosity.

As can easily be seen, the only way to increase both the Reynolds
number and the microscale simu]taneously is to increase the length scale
2. This generally means making a larger plume and moving farther away from
the source, which presents problems with probe sensitivity to diminishing
velocity and température signals. This is particularly troublesome with
the temperature in a plume, since it decays so rapidly with height. A1l

these constraints were considered in the design of the experiment.
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3.2 Description of the Plume Facility

The plume faci]ity is located in a large room (5000 sq. ft.) with a
ceiling height of 24 ft. The facility consists of a large, square, steel
structure (6' x 6' x 20') which is wrapped in 4 mil p]astjc to prevent
crossdrafts. The interior of this enclosure has three sections of window
screening to prevent unwanted circulation - each two or three layers in
thickness. A sketch of the entﬁre facility is presented in Figure 2.

The plume is generated by passing compressed air through an insulated
electric heater placed at the base of the steel structure. This heater is
described in detail in Figure 3. Before entering the heater the air is
filtered and the mass flow rate is measured with a calibrated rotometer. The
air enters at the base of the heater and passes through a section of sintered
bronze containing resistance heating elements. The air then passes through
two screens anda 15:1 contraction ratio to exit into the ambient air. The
exit temperature can be raised in excess of 300°C and maintained at a constant
temperature with an Electromax contré]]er connected to an SCR power supply.
The exit profiles of velocity and temperature were flat to within 2%. Since
both the mass flow rate and the heat flux are variable, it is possible to
create exit conditions with a densimetric Froude number of unity. This en-
ables the flow to become fully developed sooner than if a pﬁre heét source
were used. The heater has an output capability of 3000 watts, but normally
is operated at less than 500 watts. This provides a center-line mean velocity
of 0.75 meters per second at 1 meter above the exit.

Air for entrainment is fed to the base of the heater, rises between
the plastic and oﬁter layers of screening, and is entrained radially inward
through the screens. The distance between the plastic and the outer screen

is roughly 6 to 8 inches. This distance is too small to adequately provide
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Figure 3 - Plume Heater
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recirculation of air. Along with some baffles to hold the plastic away
from the screens, this is the prime cause of stratification in the plume.
This outer screen is two to three lTayers thick and rises the full height
of 20 ft. The middle layer of screening is octagonally shapéd (and thus
more closely tailored to the shape of the plume), has a diameter of
~roughly 5 ft., and extends only 8 ft. in height. Most of the measurements
are taken in this section. The'innermost layer of screening is circular

in shape, 1-1/2 ft in height, has a 2 ft. diameter.

The screening is also important for the plume to keep it from swirling.
Without screening the enfrginmenf air would be acted upon by Coriolos
acce]eratfons and just 1ike a bathtub drain, the plume would begin to swirl
in a circular motion after severé] hours of running. This is because the
time scale for the total experiment in an infinite environment is the length
of time the plume is running. When this time scale approaches the time
scale of the Coriolos acceleration (104 seconds) the induced vorticity will
be amplified into a large vortex. The screens prevent this from happening,

and no evidence of swirl has been noticed in this plume.

The plume was found to be extremely sensitive to the conditions of
the room environment. The most sensitive area was at the exit from the
heater - any slight draft wou]d push the entire plume to one side and it
would tend to stay there instead of returning to the center. The small
circular screen was found to be very helpful in correcting this situation
by stabilizing the plume. Howéver, due to the sensitivity to drafts, the
measurements were always carried out during the night when ho one was in
the room. The maximum deviation of the measured plume centerline
was never greater than 1 degree from vertical at a height of 2 meters

after these procedures were implemented.



3.3 Measurement Technique

The measurements of velocity and temperature are taken with a specially
designed three wire probe (figure 4 ) having two velocity sensors in an
’x-array and one temperature sensor. All three wires are spaced within a
sphere of radius 1.25 mm, which assured resolution of scales as small as the

Komogorov microscale. The two velocity sensors are gold plated wires of
2.5 um. in diameter and have a length to diameter ratio of 250. They
are operated in a constant temperature mode with an overheat of 0.3 to 0.4.
This Tow overheat is necessary to minimize the contamination of the tempera-
ture sensor by the wakes of the hot-wires when measuring the outer, high
intensity regions of the plume. The temperature sensor is a um.
tungsten wire operated in a constant current mode with a current of 150 micro-
amps to minimize velocity contamination. This wire has a length to diameter
ratio of 400.

The velocity anemometers used in this investigation were commercial
units manufactured by DISA Electronics (Models 55M01 and 55D01). These
units are also capable of operating a temperature wire in a low overheat,
constant current mode suitable for temperature measurements, but an amplifier
drift of about 1° per day made them inadequate for this particular investi-
gation. Instead, homemade temperature anemometers, similar to those de-
scribed by Wlezien and Way (1977) were built. These anemometers, like their
DISA counterparts, provide adequate frequency response and a linear response
to temperature over a wide range. The difference is that the internal amp-
lifier is operated in a closed loop feedback system, which reduced our drift
from over 1° per“day down to less than 1/10° per day. AppendixA2 contains

a detailed description of these anemometers.
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The anemometer outputs were amplified, differentiated, and filtered v'-
before being digitized by a DEC AR11 A/D Converter. This signal processing
can be seen graphically in Figure 5 . The A/D converter had 16 channels
‘with 10 bit resolution over a range of -2.5 to +2.5 volts (effective reso-
Tution approximately 5 mv.). To adequately sample the velocity anemometer
output, two "buck and gain" amplifiers were built to subtract off a DC
voltage and amplify the resultant signal. The temperature anemometers were

built with internal adjustable gain and DC offset controls.
Analog differentiators are needed to measure the dissipation of

the velocity and temperature fluctuations, since the time derivatives

can not conveniently be calculated digitally with only 10 bits reso]utionf
The two amplifiers and all three differentiators were low-pass

filtered at 500 hz. to eliminate any unwanted high frequency noise.

These are described in detail in Appendix A2.

Because of the higher levels of broadband noise in the temperature
signals the temperature derivative had to be filtered again with a four pole
Kronhite filter. This is the only filter that acted as an anti-aliasing
filter (low-pass filters with a cut-off frequency of one half the sample

frequency to prevent spectral aliasing). Therc are several reasons for

the lack of additional filters, the pri-

mary one being that they were not necessary. For the velocity and temperature
the signal strength at the cutoff frequency was already down to the bit reso-
lution of the A/D. The electronic noise levels were down to that Timit, and
additional filters would have had little effect. This is due to the Timiting
nature of the djgitizer quantization noise. Since the digitizer can only re-
solve down to 5 mv, signals of Tower fluctuation levels cannot be resolved.

Thus, low-level electronic noise is actually filtered out. In its place, the

* The high data rate required would result in a sample size much larger
than that needed for statistical convergence with a corresponding
increase in processing time.



Figure 5 - Block Diagram of Data Acquisition
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measured signal has the digitizer error imposed on it, which has a mean
square value.of: kN

C
T (3.2)

where c is the bit resolution. This corresponds to an rms fluctuation of

2 mv. In terms of velocity and tempera@ﬁrg, the 2 mv fluctuation is roughly
0.75 cm/s and 0.05°C vrespectively. The measured velocity and temperature
spectra will also be affected, having a constant noise level given by

equation 3.3 added to the true spectra

S [f) =,z‘f’§\ (3.3)

¥u is the sampling frequency.

The derivative signal did have some measureable electronic noise,
but it was felt that the noise Tevel (2-3 mv. rms) would
add far less error to the derivative measurementé than the pass band
attentuation and phase shift of the filters that were available. The
exception to this was in the case of the temperature derivatives, but the
tremendous phase lag introduced by the filter ruined the chance to
calculate the cross moments of the temperature-velocity derivatives. Un-
fortunately, this was not realized until after most of the measurements
were taken.

The AR11 also has two D/A outputs and several logic outputs to control
relays. These are used to automate the control of a two dimensional traverser
which moves a probe. This traverser has a vertical range
of 1 meter and a horizontal range of 35 cm, but the traverser mount can
be manually positioned on any one of the six supports 75 cm apart, thus ex-
tending the vertical range from floor to ceiling. The radial range can be
manipulated in a similar fashion by adding or subtracting extension segments

from the horizontal traversing rod.



The traverser is controlled by the analog control circuit described
in Appendix A2. This controller compares an input voltage with the
position voltage as determined by a potentiometer, and supplies + 20
volts to the DC motor until the two voltages coincide. Noise on the long
input lines from the potentiometer can cause a slight oscillation and
vibration of the probe after the proper position is reached. To prevent
this a relay is included so that the motor can be turned off completely
by the computer. The input voltage can be supplied internally by turning
a position knob on the controller box (Manual operation) or by the D/A
of the AR11 (computer operation). Software exists in the form of a stand-
alone program that accepts input from a terminal, subroutines which move
the traverser to the next location in an array, and a calibration routine
that allows a computer to reference the actual physical location of the
probe. Although the traverser has proved quite reliable, programmers have
not, and many safety shut off switches have been added to prevent the
traverser from moving past its 1imit or striking one of the support beams.
Since the computer gets no return signal from the controller telling it when
the probe is in position, the subroutine calculates the time needed for
the probe movement and waits an adequate period of time before releasing
control back to the calling program.
3.4 Calibration

The velocity and temperature wires are calibrated at the exit of the
plume source at several velocities and temperatures. The.temperature
reference is obtained from a copper-constantin thermocouple placed near
the sensor and fhe velocity reference is determined by applying mass conser-
vation to tﬁe reading of the upstream rotometer. Since the air temperature
changes as it passes through the heater, its upstream properties must be

measured. This is accomplished with a manometer and a thermometer placed



at the exit of the rotometer as was illustrated in figure 2. The roto-
meter was calibrated by measuring the output velocity of the plume source
with a laser Doppler anemometer.

u The velocity sensor calibration is accomplished by converting the
anemometer voltage and flow velocity to Nusselt number- and Reynolds number

as defined by equations (3.4a) and (3.4b).

. O d :
kiJ 3 (3.4a)
—_
AN
N "ﬂ’Ll((Tw—@) (3.4b)

where Tw is the wire temperature, T_ is the gas temperature, d is the

g
wire diameter, L is the wire length, Rw is the wirg resistance, and « is
the thermal conductivity of the gas. A polynominal of the form of equation

(3.5) is then fitted to this data.

lzc{ =A, + A, /Vu’/L—# Ay M +Az N © +/)9/V‘j- (3.5)

This is illustrated in figure 6. The calibration for the two wires does not
coincide because of slight differences in the length and diameter of the

wires. These parameters were not measured and there was undoubtedly
some slight variation between the actual values and the manufacturers
standard values. Since both wires were ca]ibrated‘individua11y, this was
not important. One parameter that was difficult to measure was the sensor
resistance. Because there was no way of shorting the probe across the
sensor without fear of breakage, this parameter was adjusted after the
calibration to give the best collapse of the data for all temperatures.
Evaluating Reynolds number at the local gas temperature and Nusselt

T T .
number at the film temperature (Tﬁl]m - das Z Wire) gives good collapse

of the data for a Reynolds number range of .02-.25. This differs from the
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methods of Collis and Williams (1959)who evaluated both these parameters
at the film temperature and used a temperature loading factor of the form

shown in the equation (3.6).

Ra = + (Nu‘ (%—)o'n (3.6)

McAdams(1954) suggested a similar method. except he evaluated the viscosity at

the film temperature and only the density at the gas temperature. Over
the range of temperatures this investigation covered, the present method

seemed to give a slightly better collapse. The polynominal-type equation used

to fit this data was chosen for ease of calculation by a computer. It
should be noted that the standard method of writing this type of equation
(Nu = f(Re)) is incorrect when fitting a curve by a method of least squared
error. Although the fitted curve will be nearly identical if the scatter
in the data is small, the problems involved with inverting the equation
make it unsuitable for use in this type of data processing system.

Since the heater Has such a long thermal time constant (estimated at
1 hour because of its high heat capacity and the Tow cooling velocities),
calibration at many different temperatures is impossible to complete in
the course of one day. This is particularly a problem for low velocity/

high temperature calibration, as the heater time constant is inversely

proportional to the mass flux. A typical procedure is to obtain a set of

velocities at several different ranges of temperature during the day, take

measurements durjng the night, and obtain two more temperature ranges of

calibration the following day. This provides more than adequate data for

a good calibration and serves as a check against deift, iq the acenametexe .
The temperature sensors are calibrated at the same time as the velocity

sensors. The current through the temperature wire is Tow enough (150 uA)



that the velocity sensitivity of the wire is negligible*, and the cali-

bration reduces to a linear expression as shown in equation (3.7).
7 =¢C +¢-E (3.7)

The entire calibration procedure is carried out using the on-line mini-
computer and a calibration program named "WIRECAL". A1l anemometer signals
are sampled directly through the A/D channel they are eventually measured
on, thus eliminating the possibility of a calibration error arising from a
different gain between various voltmeters and the A/D.

The reference temperature and flow rate are entered manually at a remote
terminal and written out to a data file on the disk along with the mean of
the sampled voltage. The data files for each wire contain a preamble of
the physical properties of the wire (length, diameter, resistance, etc.)
and can have calibration data added or deleted to them any number of times.
The calibration program can handle many different wires at once, but to
facilitate calibrating both of the x-wires simultaneously the program will
pause momentarily and then take a second pass on any specified wire. A
bell is rung during this slight pause (2 sec.) to allow the operator to
rotate the probe 90° so that the second wire is held perpendicular to the
flow. A specially designed mount for the x-wire probe makes this a simple
task and assures that all wires are calibrated under identical conditions.
The coefficients of the least squares fit and a plot of the data along
with the fitted curve can be obtained at anytime during the calibration

procedure.

The wires aiso'have to be calibrated for angle dependence. This also
is a computer controlled operation, and is performed in a similar fashion
as described above. The mount which holds the x-wire is marked with one

degree graduations. A special program is run which instructs the operator

*The effect of a 0-1.0 m/s velocity change 1is of the order of 0.1 C°.



to position the x-probe at an angle of 50° from the vertical and rotate

it 5 degrees each time the bell on the terminal is rung by the computer.

By sampling both wires at once, both calibrations can be obtained at the
/same time. It should be noted that ideally one would want to rotate the
flow and keep the probe in a vertical posit{on, as this is the position it
would be in when actually measuring the plume. However, angle calibrations
at velocities as low as 25 cm/s were performed with the entire unit inclined
45° and no significant difference could be noticed.

Fitting an analytical expression to the angle calibration was a much
more difficult task than originally thought. This was particularly true for
the Tow Reynolds number range of calibrations. Previous investigations have
used empirical curves such as the cosine law, Champagne law and even more
sophisticated models as those put forth by Drubka, Nagib & Tan-Atichat (1977)

These are given below along with a schematic diagram in figure 7.

Ueer = U, cosp (3.8)
2 2 /e

Uerr = U.(cos’d + ksim 79} (3.9)

Uere = U, (/—b(/—c»s"quj (3.10)

where UO is the total velocity and ¢ is the angle between UO and the wire
normal. Due to the Tow Reynolds number, the angle calibration in this
investigation turned out to be extremely sensitive to the velocity. This

is due, in part, to a wake effect from the prongs and in part to the natural
convection 1im1£vof the wires as the wire approaches 90° to the horizontal.

The final form of the angle calibration used is given in equation (3.11)



Figure 7 - Angle Calibration Geometry
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User - Uo[C051/¢_¢O(DO)) f K(o) Sw?’qé-é{a)j] (3.11)

‘This must be solved by an iterative technique because of the velocity
dependence of the coefficients. The technique is discussed in more
detail in Appendix A3. Figure 8 shows an example of the angle dependence at
at three different mean velocities. As the velocity approaches zero, the
wire response is nearly constant regardless of the orientation. This
Creates a serious problem in interpreting Tow velocity signals.

Figure 9 shows graphically the mapping of the measured effective
velocities of each wire onto the cone-shaped region of actual velocity
vectors. Assuming an ideal x-wire (no prong support interference, symmetric

sensitivifY), no data can fall outside this cone. The dashed and dotted

Tines correspond to a cosine law and the Champagne law. At high velo-
cities, all three will perform adequately as long as the relative cross-
stream velocity is not large. At low velocities they deviate considerably -
the Champagne Law only working over a narrow range of velocities and the
cosine law failing entirely.

In practice, the x-wire is not ideal, and data will occur that falls
outside the cone shown previously in Figure 9. This affects all cali-
bration relations except the cosine Taw, and must be minimized if useful
information is to be obtained. It is usually caused by a high
turbulence intensity in the v or w components, and is especially trouble-
some when the mean velocity is Tow. This is because the wires are fairly
insensitive to direction at low velocities, and any small measurement
error (electronic noise, velocity component perpendicular to plane of

X-wire, wake of one wire on the other, or a velocity or temperature gradient
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between the wires) can create a large error in the output and even to cause
the data point to lie outside the calibration region. This problem, called
drop-out, can be considerable in flows such as a plume. Further discussion

of how to analyze this data is found in Chapter 5.



Chapter 4. Description of Signal Processing/Data Analysis

4.1 Data Acquisition

The main variables of interest in this investigation are the vertical
“and radial components of velocity, the temperature difference and the
derivatives of all three of these. As described in the previous section,
these six signals are electronically conditioned to have a mean value near
zero volts and an rms voltage fluctuation of 1/2 volt. This provided for
an adequate resolution by the 10 bit digitizer (-2.5 to +2.5 volts range)

and insures against clipping which would bias the higher moments.

The electronic noise Tevel is held to 2-3 mv rms on all signals except

the temperature derivative, where it is nearly twice this value. Since
the digitizer resolution is 5 mv, this noise has Tittle effect on the |
higher moments and actually improves the accuracy of the mean values by
“"whitening" the signal. This is particﬁ]ar]y important in the calibration
where the input signal is steady. The effective resolution in calibration

is estimated to be 1 mv.

Two main types of data acquisition need to be used in this investi-
gation: low-speed sampling of data for moments, and high speed sampling for
spectral data. These are both handled by the same program which will be des-
criped later in this section. The sampling rates are determined by the integ
scale and the Kolmogorov microscale respectively. The integral scale is
approximately .25 second which means that to obtain independent samples,
the data should be sampled no faster than twice every second (two time scales
For 2048 independent samples, which results in a + 0.6% relative spread of
the measured mean value, the time required is nearly 20 minutes. The error

bounds increase considerably for the higher moments (see Section 5.1).



The fast sampling rate is determined by the Kolmogorov microscale
which for this flow is approximately 0.5 mm. To prevent spectral aliasing,
a sample frequency at least twice as large as the highest frequency in
the flow must be chosen (c.f. Jenkins & Watts (1968)). 1In the experiments

the sample frequency was set at 250 Hz since:

U
- -~ 4.]
F 2 5g, =200 (4.1)
By taking 1024 points in each block, and block averaging several spectra,
a relatively smooth spectrum can be measured having a frequency span from
0.25 Hz to 125 Hz. Typically only 16 blocks of spectral data were averaged
together due to the long processing time required for the Fast Fourier

Transform. The resulting average was then filtered over 1/10 or 1/3

octaves for smoothing.



A1l this data is taken automatically by a PDP11-34 computer as described
in Section 3.3.The program "PLUME" runs the data acquisition and stores the
‘data on disk and tape. The program itself is run automatically by the
RSX-11M operating system at a prescribed time. A fiow chart of this opera-
tion is given in Figure 10a. When the program is started automatically late
in the evening (usually after 11 PM to ensure an undisturbed environment)
it reads three data files to obtain all the necessary information needed
to run the experiment. This includes such things as the output file names,
sample rates, number of samples, measuring locations (usually about 24,
which will take 8 hours) and traverser ca]ibrafion data. It then writes
much of this out to the mag tape to create a preamble file. The traverser
is then moved to the first position, the data sampled and stored in
sequentially numbered files on the tape, and the average ambient temperature
(averaged over the 20 min. sampling period) is written out to a separate
disk file. If spectral data is to be taken also, the above steps are
repeated using the faster sampling rate and different number of points.

The program then moves the probe to the néxtn1ocat10n and repeats the
sampling until all positions have been sampled.

The sign of the z-coordinate is used as a code to determine whether

or not to take spectral data. If the current position read in from the

data file is negative, spectral data is taken; if positive, it is not.
In either case the traverser is sent to the absolute value of the z-Tlocation.
This provides an easy way of taking spectral data at only a selected number

of 1ocat10ns.
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Since the computer system is dedicated to this project, the sampling
program used is a rather crude one which continually checks the done bit
of the A/D clock to time the samples. Originally it was hoped to convert
the voltages to velocity and temperature before dumping them on tape, but
the time required to do this was longer than the time between samples.

Had this been possible, the sampling program would -have used program
interrupts t6 enable the computer to do something other than check the

done bit between samp]eS(which it did an estimated one billion times during
each experiment!).

The data pertaining to the plume source conditions is recorded manually
both before and after the running of the "PLUME" program. This data consists
of the mass flow rate fead from a rotometer and the exit temperature monitored
by a thermocoupie. The rotometer has a thermometer inside of it to record
the inlet temperature. Since the inlet air line has a pressure regulator
and the plume exit temperature is controlled by an electronic controller,
these two conditions do not vary significantly during the course of the
experiment. Of the two the air flow is the least stable, changing by 3-4%.
This is believed due to an 0il build-up in the rotometer from the air line
since the reading is consistently lower at the end of thé experiment. This
0il coming from the air compressor mandates regular cleaning of the roto-

meter after 12 hours of continuous running at 100 SCFM.

4.2 Data Conversion

The data stored on mag tape consists of only the raw voltages measured
by the A/D converter. This data needs to be converted back to physical vari-
ables using the calibration results discussed earlier. Since the conversio
is such a lengthy and time consuming process  for a small lab computer, it

is desirable to do it only once. Unfortunately the computer used in this
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investigation had only one tape drive, which meant that the.raw data had

to be overwritten as the process went on. This was accomplished by adding
.one extra block of blank data to each data file when the data was taken

with the program "PLUME". This formed a buffer region on the tape between
each data file so that a second program "CONVERT" could read a file, convert
the voltages to physical variab]es, rewind the tape one file, and rewrite
the data on top of the old. This buffer zone is necessary because the

tape is not a formatted device and the physical location of a file on the
tape can vary somewhat.

The convert program reads in all the necessary calibration data for the
velocity and temperature sensors plus the transfer characteristics of the
amplifiers and differentiators. The temperature is the easiest signal to
unravel, since it is entirely linear. The temperature derivative is also
fairly simple since the transfer characteristic of the differentiators is

simply:
' de,
€. = G +Cu g (4.2)

where C, is small (ideally zero).

The amplifiers are also Tinear, making it simple to determine the actual
anemometer output voltages and their time derivatives. The final conversion
from this point to the actual velocity components is done in subroutine
"DERIV", whose flow chart is outlined in Figure 10b, Detailed analysis of
this can also be found in Appendix A3. The first section of this subprogram
uses the calibration relations found in Equations 3.4 and 3.8 to calculate the
effective cooling velocity of each wire. The time derivative of these expres-
sions is also obtained. Then using an iterative procedure, the angle cali-
bration (Equation (3.11))is solved for the u and v velocity components. Once

these have been determined, it is straightforward (although rather involved) 1
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differentiate the angle calibration expression to obtain %%—and av

dt*

Unfortunately, the data points are not ail well behaved, and some of
the pairs of input voltages do not correspond to real velocity components.
When this occurs the data point is generally discarded. The possible
causes for this drop-out were discussed in Section 3.4. If the drop-out
is caused by noise, the point can sometimes be saved by widening the error
bounds of the jterative solution method. However this can only be increased
slightly because the derivative values are strongly linked to the velocity.
By increasing the error acceptance until a non-imaginary solution is found,
reasonabie values for the u and v components of velocity can be obtained

d

but the values of gﬂ-and a%—can become extremely large. In fact, this is

dt
such a problem that the measured velocity vector had to be limited to
within 35° of vertical. If not, the error due to the flatness of the angle
dependence at these angles will be too large to permit accurate determination
of the derivatives. In effect, there is a singularity in the derivative
solution when the flow is parallel to either of the wires that makes the
error become infinite.

.The consequences of this are large at the outer regions of the plume
(n>0.1), where the drop-out rate can exceed 50%. Since much of it is caused
by large excursions of the v velocity component, the effects on the higher
moments can be significant. Figure 11 shows a 2-D probability plot of the u
and v velocity components at n = .05 with a drop-out rate of 9%. The two
slanted Tines represent a cutoff of all velocity vectors exceeding + 35°. The
vertical lines represents the lower 1imit of the hot-wire calibration (15 cm/s
As can be seen, £he lower left corner of the probability contour is dramat-
ically compressed. The lower velocity limit'is Jjust beginning to be of

importance, although it will be much more significant at larger radial
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distances where the mean velocity is lower. (There is no actual cutoff
in the program for velocities which are too‘low, but the accuracy of the
calibration worsens to the point that the velocity pairs are often incom-
“patable with the angle calibration and give imaginary solutions.) The prob-
lems associated with correcting for drop-out will be discussed in Chapter 5.
One further problem remains to be solved - that of the value of the
buoyancy flux, Fo’ This is measured directly at the plume source, and in
a uniform environmenf it is constant at all heights. However, in a stably
stratified environment the buoyancy flux is a decreasing function of height.
Its z-dependence can be determined one of two ways. First, the measured
velocity and temperature profiles can be integrated radially at each
vertical position. Second, and the primary method used in this investiga-
tion, the z-dependence can be determined from the ambient temperature

gradient. Since the ambient temperature is measured at various heights,

as shown in Figure 12 , the temperaturé gradient can be calculated (Fig.13 ).
For this calculation, it is assumed that the temperature gradient does not

change over the course of the experiment. The curve fit to the temperature

gradient is of power law form and given by

i-.]?f— - €5 2-3 (4.3)

a2

Since the vertical gradient of FO is proportional to the momentum flux and

the ambient temperature gradient, as shown by Morton, Taylor and Turner (1956

the differential equation shown below.

aFo _ A Teo
dF0
can be solved for “qz Using the above fit to the ambient temperature grad-
dF
ient, one finds that —a% a-;%. The value of the buoyant flux as a function
z

of height is shown in Figure 14. This will be important later for normalizin

the profiles of the moments at various heights.
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Chapter 5. Presentation and Discussion of Results

5.1 Moments of Velocity and Temperature

One of the main results of thtsinvestigation is the evaluation of
vthe first, second and third moments of the velocity and temperature
distributions. These include not only the means and standard deviation,
but also cross terms such as the Reynolds stress (Uv) and third order
terms that play an important role in the turbulent energy balance. These

are defined by the following general relations.

N
o = i P2 (wery-@)” (5.1)

N S —_—m
a'\V,M=A._/‘:-, Z_- (a(I/_u) (V(I)"V) (5‘2)
T=1

A computer program appropriately named "MOMENT" is used to read all the
velocities and temperatures from the mag tape and calculate all first,
second and third moments, plus the fourth moments of u and v, and
all second moments of derivatives. These are then stored on the disk
for future analysis.

Just as the variable u(t) is a random variable, so is its nth moment.
If N is the number of independent samples taken, it is easy to show that

th

the variance of the n moment can be written as

—

VAR [a™[ = ﬁ:

n "
Since in turbulence u“" tends to be greater than u~ and this ratio

(5.3)

increases with n, many more samples are needed to obtain reasonable statis-
tics for the fourth moments than for the mean. As mentioned earlier, N for
this 1nvestigatibn is 2048. For a Gaussian distribution, the relative
errors of the second, third and fourth moments are 4%, 9% and 23% respect-
fully. For turbulence that is not Gaussian; these values might be con-

siderably higher (Tennekes and Wyngaard (1972)).



In addition to these problems with the statistical variance of
the higher moments, there is still the bias due to the drop-out affecting
them. Several attempts have been made to correct the deficiencies in the

‘higher moments by fitting curves to the unaffected parts of the probab-
ility density functions, but not nearly enough data points were taken at
each location to accomplish this since the statistical fluctuation in the
tails of the probability distributions is considerably higher than the
fluctuation of the integrated distributions and their moments

(VAR [P(u)] = Nﬁ%ﬁjo‘ The only correction possible was for the Reynolds
stress, which was determined from a joint Gaussian distribution (see
Figure 11). The first moments of u and v are used as measured and the
correlation was adjusted to give the minimum mean square error over three
quadrants (ignoring the bottom left). These corrections are generally
about 20%, but are sometimes almost 100% when the uv correlation is high.
Figure 11 is such an example. Although the dropout is only 9%, nearly
all of it is in the extreme portion of the uv distribution. The measured
correlation is 0.28, whereas the fitted curve is 0.55.

Originally the Sécond moments of u and v were also calculated by
fitting a Gaussian curve to the probability function, but the results were
often heavily biased. This bias is due to a somewhat arbitrary cutoff
point for low velocities. By rejecting points in the lower left quadrant

(high negative v, low u) the distribution of v is biased in the lower
half. By rejecting‘a11 values with v less than the mean, a slight error
in estimating the mean leads to a large bias in the variance. Since the

corrections are’usua11y small, the measured values of ;?.and ;E-are

presented without correction.

This problem also extends to higher moments of u and v when they are



highly correlated. Several schemes were tried to correct these moments.,
such as fitting the probability density with a Gram-Charlier Expansion.
However, due to the statistical uncertainty of the measured probability

density, these methods failed to provide dependable results. Thus, the

measurements of UZJ; ;;E-and u2v2 will have significant error around
n=0.05-0.1.

One way to minimize this problem in future measurements is to
misalign the x-wire so that it sees more of the large u-v excursions.
This 1is contrary to the present philosophy of most investigators of
aligning the probe with the flow. In regions of high uv correlations,

a misalignment shift of 5° can reduce the uv error by as much as 50%.

Since the data taken in this investigation were taken at different
heights with different values of Fo’ the moments are normalized by the
dimensional similarity discussed in Equations (2.3) and (2.4). Although

this normalization is only valid for a uniform environment (F_. is constant),

0
it can be extended to slightly stratified environments as long as the local
value of the buoyancy flux is used. The higher moments can be expressed

in terms of correlation coefficients. For example, (4;‘1r//Ta§(ai)€]

equals P112s the correlation coefficient.



In the past, most investigators of turbulent plumes used a Gaussian
profile to fit the mean temperature and velocity data. However, there
is no physical argument to justify this profile. A more appropriate
choice is to use as empirical fits the forms obtained by Yih with an eddy
viscosity solution for turbulent Prandtl number equal to 1.1. As mentioned
earlier in Section 2.2, “these forms are not expected to fit well at the
outer region of the plume due to the use of a constant eddy viscosity
across the flow. However, in. the central core region, they should work -

well. These expressions are

f
f(n) = —-—]~2~—5 (5.4)
(1+An°)
and
g(n) = ——3]—27 (5.5)
(1+An°)

where in our case f], 9 and A are determined from the data by using a
method of least squares. By substituting f(n) into the continuity equation

one can obtain an expression for the radial velocity,

k(n) = (1/6n - 5/6An%) - £(n) (5.6)

For a uniform environment, for which these forms were derived, the
constant A is the same for all profiles. However, for a stratified environ-
ment there is a definite trend which narrows the width of the velocity
profile. Figures 15 and 16 present the mean profiles of velocity and
temperature for a moderately stratified plume in similarity variables.

The data was taken at heights of 22-38 diameters above the plume source,

and the exit Froude number of the plume source was near unity. The values
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of fT’ 9 and the plume width are summarized in Table 1, along with
previous data from more uniform environments.

The velocity profile is much narrower than that measured previously
under less stratified conditions (A=46 vs. 33, Beuther, Capp and George
(1979)), and peaks at a higher level (F=3.8 vs. 3.6).. The temperature
profile peaks higher(91= 10.4 vs. 9.5), but retains approximately the same
shape. The value of 33 for the width of the temperature profile from
the second set of data was chosen as a compromise to agree with the width
of the velocity profile. If these two coefficients had been chosen separ-
ately, they would have been closer to 30 and 35 for the temperature and
velocity respectively. This fits the trend of the narrowing velocity
profile with increased stratification. In fact, for the present set of

data, the velocity and temperature profiles have nearly the same shape.

TABLE 1

F A 91 A

]

Uniform (George et al. 1977) 3.4 | 28 | 9.1 28

Ambient Environment

Slightly Stratified (Beuther et al. 1979) 3.6 33 9.5 33

Moderately Stratified (Present data) 3.8 46 10.4 31

Original data of Rouse, et al (1952) 4.7 55* | 11.0 30*

The discrepancies of the data of Rouse, et al. with other investigations
have often been explained as due to poor measurement equipment (wind vane
anemometers), but as can bé seen from Table I, part of this effect could be
due to a stratification in the ambient environment. Although this is not

evident in their raw data, little of their data appears to be taken at

*These values are approximate fits of this form of the equation to the
data of Rouse, et al. The original data was given with a Gaussian
curve fit.




different heights with a constant buoyancy flux, which makes it difficult
to spot this trend.

Figures 17 and 18 show the velocity and temperature fluctuation
data (again normalized to similarity variables). In agreement with
George et al. (1977), Nakagome and Hirata (1977) and Beuther, Capp and
George (1979), the centerline vertical velocity fluctuations were 26% of
the mean centerline value, and showed little change under differing
amounts of stratification. The radial velocity fluctuations also remained
the same as before at 16% of the mean centerline vertical velocity. The
temperature fluctuations were only 30% of the centerline temperature
difference, avya1ue”§pn§jderab1y Tower thanrﬁhégwgf George et al. and
Nakagome and Hirata who obtained values of 38% and 35% respectively. The
earlier work in this investigation obtained a value of 30-33% for the tem-
perature fluctuation intensity. (This last result is not found in reference
of Beuther, Capp & George, which presents temperature fluctuations that are

a factor of 25% too high.) The off-axis peak in the uzwgfgfile was not

observed by other investigators, but this discrepancy is perhaps due to
their single wire probes, which mix the u and v fluctuations. together.
The peak was noted in all profiles measured_as part of this investigation,

and is also predicted by the computational model of Tamanini (1977).

The Reynolds stress,’uzur, is presented in Figure 19. The shape of
this profile follows very closely the derivative of the mean velocity
profile in the core region of the plume, explaining why an eddy viscosity
model seems to work so well in this flow (v. Baker et al.(1979)). The
U U correlation coefficient has a maximum value of 0.5 near n = 0.1

The turbulent Reynolds number, defined from the eddy viscosity model by
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F l/322/5

Rpo= 2% (5.7)
T vy

can be determined from the curvature of the velocity profile at the
“origin and the siope of the Reynolds stress. In dimensionless form

_ fY(o
Rr = 77(0) (5.8)

where F and h are the non-dimensional vertical velocity and Reynolds stress

terms, respectively, and the primes denote differentiation with respect to n.

From this data it appears that RT = 93. This is considerably larger
than the value of 60 cited by George, et al. and the value of 68 presented
earlier by this author. The difference is due to the narrowing of the
velocity profile by the stratification. |

The vertical and radial turbulent heat flux are presented in Figure 20.
The vertical component has a slight off-axis peak at n = 0.05 (also not
observed by other investigations, but predicted by Tamanini's computer
model), and remains relatively constant out to n = 0.1. Because the mean
vertical heat flux (UQKT) drops off much faster, the turbulent vertical
heat flux can be quite gignificant in fhe outer regions of the plume.
George, et al. estimated the overall contribution of G;E‘can be as high
as 15%, although the data presented here indicates a contribution closer
to 10%. This lower value is also associated with a lower correlation
coefficient of .59 - .60 vs. .67 for George et al. No explanation for
this difference is known. Nakagome and Hirata measured a very low value
of 0.45 for the correlation. This uousually low value could be due to a
velocity contamination of the temperature sensor, caused by too high of
a current thrOQQh the wire. The velocity dependence of the temperature
wire used in this investigation was practically unmeasurable due to the
lTow current through the wire (150 pA). |

Shown with the radial turbulent heat flux, E;E} is a curve propor-

tioned to the radial aradient of the mean temperatiive Rv analonav with
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the velocity, one can define a turbulent Prandt1 number by

1/3.2/3
PR =0 2T guig) (5.9)
T YT w' (o

where g and w are the non-dimensional buoyancy and radial heat flux,
. respectively PT is approximately unity (1.2), which is in agreement with
other investigations (c.f. Baker 1980).

' By using the fitted curves in Figures 15 through 20, it is possib]
to plot all the significant terms of the mean momentum and temperature

balance equations (equations(2.14) and (2.16). The analytical expressions

These curves are still in similarity variables. The reconstructed mean

momentum balance is shown in Figure 27, The' temperatuyre balance is in

Figure 22.

from Figure 14. 1t is obvious that alj the terms do not balance perfectl:
especially in the temperature balance. This is because of the choice of
curve fitting. The profiles are not really similar - it's just that the
deviation from similarity is small enough that the fitted curves agree

well with the data. However, when combined to form the balances, these

2 of the temperature balance is an example of this Problem. The term

U% —HE) is due entirely to the stratification of the ambient air. In a
uniform envirdnment it is absent. Thig term decays 1like the U% velocity
component across the flow, since gg§~is a constant. Howéver, every other

term in the balance decays at a much faster rate (at least like Uéz).
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TABLE II
Fitted Curves for 1st & 2nd Moments

Variable Similarity Function Fitted Curve
— 3.£
v, ) [t+ %qﬂz
U, k(n) As defined by Equation (2.1
984T | g(n) dot — o, 10
[14314] (1+4e]
2 2 z
uz h]](n) 1+ 304,‘f
[1+4cat]
2 2 G
u (=u%) h,o(n) —
r ) 22 [I+57’727?-
)2 2 hys(n) .7S‘+as>’¢>:71
[1+¢s7]
wu. o hyp(n) 24507 _
Z'r ‘ 12 ﬂ**‘ﬁﬂj
T : 1.77+4¢502%
t h
68Ut hys(n) '_7_?5::2__3
[IJ—'féqz]
TABLE II1I
Fitted Curves for 3rd Moments
Variable Fitted Curve to Correlation Coefficient
u p177(n) = .23 + 13.5¢% + 2575,% - 350000°
w p9pp(n) = =.49n + 10.90% + 1200n° - 7400n* + 116300°
2 6
ut 0123(n) = .3 + 35n° - 5000n
=
ut 0233(n) = 60n° - 200n°
= 2 _ ' 2 6
u,u,, (-uzu¢) p1pp(n) = -.05 + 650" - 7000n

u,“u p190(n) = (-3.1n + 15400°) EXP [-15n]




an error term as shown is unavoidable. Unfortunately, the amount of

data in these outer regions is small, and its accuracy is poor because

of the high turbulence intensities and the resulting directional ambiguities
of the wires and the drop-out problems mentioned earlier. Thus, no attempt
was made to choose profiles which minimize this error since a complicated
non-linear regression was already used to minimize the error in each
profile. To minimize the‘error in the momentum and temperature balance

is not impossible, but it would not be worth the effort required. The

5-10% error that is typical of these balances is not deemed extremely
significant.

Very few investigators compare all the terms in the momentum balance
to validate their data. The few that do generally publish only the inte-
grated results (across the flow). Such an analysis is always a worthwhile
exercise, and would undoubtably shed 1ight on differences between different
sets of data. Even‘1ong standing experimental references have been found
to contain serious errors when analyzed in this manner (Baker (1980)).

Table IIT contains fitted polynomial curves for 6 of the 9 third
moment correlation coefficients. These 6 all play an important part in
the turbulent energy bUdgets, which will be discussed at the end of this
chpater. These 6 moments, along with the remaining three third moments

and three fourth moments are plotted in Figures 23 through 34. Al

these coliapsed quite well at various heights except the urzt correlation
The reason this one moment is out of line with the rest is not understood.

This moment is not important to the flow dynamics of ‘interest.



Figure 23

UUU CORRELATION

SYmeoLu

oX+pbO

-
¥ 1 L ] J

] 1 ) L 1
-0.02 0.00 0.02 0.0¢ 0.06 0.08 0.10 0.12 0,14 0.16 0.18
R/7Z



Figure 24
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Figure 25
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Figure 27
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Figure 29
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Figure 34
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The fourth moments follow the Gaussian shape quite well in the interior

of the plume, but deviate substantially at large values of r/z. For the

correlation coefficient of u4 and v4, a Gaussian behavior would have a

constant value of three. For the u2v2 coefficient, the value depends upon -

the shape of the Reynolds stress, uv. Considering the drop-out problems

associated with uv, the values for u2v2 cannot be stated with much

confidence. Figure 35 illustrates the comparison between u2v2 and the
corresponding correlation derived from the Reynolds stress by assuming a
Gaussian distribution. The agreement is quite good, especially in the

center portion of the plume. It is worst at the outer edge of the plume

and in the center of the shear laver where the uv correlation is largest.

5.2 Moments of Velocity and Temperature Derivatives

Using the techniques described in Sectjon 5.1, the moments of the
velocity and temperature derivatives can be calculated. Derivative moments
are important for studying the dynamics of turbulent flows, especially
the dissipation of turbulent kinetic energy. By measuring second derivatives
(the derivative of the derivative signal) one can study the dynamics of
the turbulent vorticity. Since this investigation was concerned with the
turbulent energy balances of kinetic energy and temperature fluctuations,
only first derivatives were measured.

By applying Taylor's hypothesis (section 2.3) the measured time

derivatives can be converted to spatial derivatives.

4

A (5.10)
dz °~ ©

wl-
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Because of the problems of applying Taylor's hypothesis 1n flows with
large velocity fluctuations, the derivatives must be corrected by using
vthe correction scheme of Lumley presented in equations (2.29) through
(2.31). A1l data presented will have already been corrected in this
manher. It should be noted how large the correction terms can get. At r/z
of 0.13, the measured value of (gg)z is nearly a factor of two too large
for this flow. This correction is often ignored in many investigations,
even in strong shear flows. Since the calculated dissipation is propor-
tional to this term, it also will be too large.

Derivative signals present special problems in data analysis because
they do not have Gaussian probability density functions, but are distributed
in a mean log-normal distribution. This fact was predicted by Oboukhov
(1962) and Gurvich and Yaglom (1967) and is known as Kolmogorov's third
hypothesis. Other investigators, such as Tennekes and Wyngaard (1972)
suggest an exponential form for the probability density function, but the
main effect is still that the derivative signal has a broad distribution
with considerable weight in the tails of the distribution. This leads to
much larger statistical fluctuation in the calculated moments than for
simple velocity moments (assdming the same averaging time). For the
second moment of the derivatives this relative error is estimated to
be 2-3 times larger than the error in the second moment of velocity or
temperature (assuming a kurtosis of the derivative signal of about 5-6).
Thus the rms fluctuation for the derivative estimators is 8-10%.

Assuming the derivatives to be locally isotropic, the following

relationships can be deduced (c.f. Hinze (1975), Tennekes and Lumley (1972)):
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The Taylor microscales for velocity and temperature can be defined by:

—
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or) = % (5.13)
St 2t
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For isotropic turbulence, Corrsin (1951) showed that

_2“ - 7y7— (5.15)
N Fr

With the assumption of local isotropy, several relations between the
derivatives can be formulated. The ones of interest to the measured

values of this investigation are listed below.

AUz OUr = o (5.16)
52  J%

Mr ob =g

3t 32 (5.17)
ue ok _ (5.18)
o O%

c)U}l_ | G_&'—’L

a%) AT (5.19)

1 PEYRY]
e = (%)
0t/ T T P <0 (5.20)

As mentioned in Section 3.3, the filter on the temperature derivative

made it Tmpossible to verify relations (5.17) and (5.18). However, earlier



preliminary measurements taken without the filter gave correlations
around 0.05 for these two expressions. The present data is highly cor-
related (v.25-.5), but this is due to the phase lag of the filter.
‘Norma11y this correlation would imply a velocity dep-

endence of the temperature sensor, a situation known to be extremely
small in this experiment. _

As shown in Equation (5.16), the gggég;crosszterm should also be zero,
and the experimental values indicate that this is true. The correlation
coefficient ranges from 0.01 to 0.1 on the center11ne, but as high as 0.2
at large values of the radial coordinate. These high correlations might
be due to a breakdown of the local isotropy aésumption or a breakdown of
Taylor's hypothesis (c.f. Section 2.4).

For the remaining isotropic relations, the agreement is not as good.
Equation(5.20)is satisfied fairly we11; but the ratio of the u velocity
derivative variance to that of the v velocity (Equation(5.19))is far from
0.5. As seen in Table IV, both ratios vary considerably but average
around one. At first, one might suspect an error in calculation for the

u-v ratio since the trend is almost exactly a factor of two off. However,

these numbers are consistent with the spectral measurements to be discussed

in Section 5.3.

Since the u and v derivatives do not obey local isotropy, it is
doubtful that accurate measurements of the dissipation can be obtained
without direct measurement of all the derivative terms. However, for
scaling purposes, the isotropic relations for the dissipation (equation
5.11) will be aésumed valid. This question will be raised again in

Chapter 6 in the discussion of the turbu]ent energy balance.



There are other serious problems surrounding these derivative meas-
urements. Most noticable is their failure to collapse when scaled in
similarity variables. Just as the regular velocity.and temperature moments

scaled with FO and z, so should the derivatives. This scaling is:

MEE = diln) BT (5.21)
2 -t
NI (5.22)
A Te S/z_-ttfs
YRE(E) = dsln) B2 (5.23)

However, as can be seen in Table V, the z-dependence is quite different
from that given in Equations (5.21) - (5.23).

Part of this discrepancy lies in the stratification of the ambient
environment. This is particularly true for the temperature derivatives,

since the governing equations contain a term proportional to the local
ambient temperature gradient. The variations of the velocity derivatives

cannot be accounted for in this manner. Either the measurements are wrong,
or else Tocal isotropy is not valid in this region. Since there is no reason
to suspect the data, especially in such a strongly biased manner (top to
bottom), and since the u and v derivatives approach the isotropic relations -
as the height is increased, this probably indicates that the turbulent
Reynolds number is not large enough at the lower positions to ensure local
isotropy. However, to achieve larger Reynolds numbers the measuring height
(or heat flux Fd) would have to be increased considerably.

The trends shown in Table V indicagg_g height of 3.5 - 4 meters would
be sufficient (based on the ratio of é%gixgggi . This height was orig-
inally planned for in fhe experimental design, but the resolution of the

temperature difference was not large enough at these heights. The highest



TABLE IV

Derivative Measurements (Corrected for Taylor's Hypothesis)

Correction Term from
____Lumley (1965) Corrected Variances Ratios
Flu)  F(v)  F(t) (%&z)" aw (T (;_ﬂ_z;‘/(c)___\:gj‘ uz (é__{)"/@
, _ 2 ot/ (0¥/ |3 Pr 82/ [ \SF
1.21 1.12 1.14 250 222 18680 1.1 0.9
1.24 1.13 1.15 240 214 15735 1.1 0.8
1.26 1.15 1.17 252 245 16210 1.0 0.8
1.32 1.19 1.22 207 242 13610 0.9 1.1
1.50 1.32 1.36 143 180 5755 0.8 1.2
1.88 1.62 1.67 130 307 . 2160 0.4 0.9
TABLE V
g B 25 (S dag et @) Re.
1.9 2.3 39.2 830
2.0 1.8 35.4 610
2.8 2.0 36.7 465
4.0 1.6 27.6 325
4.3 1.3 18.9 275
3
R2 = %&-where 2 is defined by € %—



measuring position used was 2.5 meters, and the resolution of AT at this

height was adequate only for centerline values.

5.3 Spectra

The velocity and temperature fields,T(x,t) and u(x,t), can be de-
composed from space-time domains (x,t) to wavenumber - frequency domains
(k,w) by means of Fourier transformations. However,. the complexities
involved in such transformations and the amount of data needed, make
them difficult to perform. Fortunately, in many
turbulent flows the velocity (and temperature) field is convected past
the measuring probe at a high rate. If this rate is high enough‘the
time required for a turbulent structure to be convected past the meas-
uring volume is much shorter than the characteristic time of the tur-
bulence itself. Thus, the measured function, um(t), can be viewed as a
response to a spatial variation being swept past the probe, and the
time domain variations of the small spatial scales can be ignored.

This is the frozen-field hypothesis of Taylor (1938). It's applicability
and restrictions have been examined in detail in Section 2.4.. The applic-
ation of the criteria presented there will be discussed further later in
this section.

Although Taylor's hypothesis is only valid for the small scales of
turbu]en&e, it is extremely useful. It provides a simple and fairly
accurate method of relating the measured time fluctuations to the spatial
variation of the flow. With this in hand, one can begin to write simple
expressions relating the three-dimensional velocity spectrum (Equation (5.25))

to the measured time domain one-dimensional velocity spectrum (Equation(5.28))



Rij(c) = wilx,e)uj(k+r,¢) (5.24)

Fi (k)= (;,L,P }7]/?“{:)5)(/»[-;5-; olr (5.25)
were  Kijfo) = Tra, = f/[r,,(z)dk  s.29)
similarly,  prr)e & (e) G, (eeT) (5.27)

Su(w)= fR('t) ExpPf-AwT]dt (5.28)
Re) - (,7:’[05.4(«1)0*“' (5.29)

By using Taylor's hypothesis, equation (5.28) can be transformed

into wavenumber space and related to the one-dimensional velocity spectrum

defined by: R |
El(k)= [/ﬁ, (k) i, ks | (5.30)
o Zﬁf("'/"“" (5.31)
F (k)= T, Sulw) (5.32)

w
where K, =

Similar expressions exist for scalar spectra, such as the temperature field.

S (w)= —,i,//?; (1) ExP[-iwt]dT (5.33)
f k) dn = fft (w)elw (5.34)

E;l[k.)= /[Ft(g,)ol/qolkj (5.35)



Spectral functions can also be defined for the derivatives»of the
velocity and temperature fluctuations. These are outlined for both the

frequency domain and wavenumber domain in equations (5.36)through(5.37).

éu tA oo F X

;;_éj) :_LS“'“ (w) dw ;-iw Su (w)dw (5.36)
arp [ fio ()elis [ 17 Fr ()l (5.37)
i -

“"J’{l_ _\—:L a———u“jl (5.38)
C%i: - Te \ot

Another form of the three-dimensional velocity spectrum often
referred to is the spectrum function, E(k). E(k) is the integration of

E&!g) over spherical shells of radius|k|

~ o (5.39)
E(K) = f £ Fig(k) do
where do s the surface element of a shell of radius |[k|. The factor

1/2 is due to the normalization of E(k):

—_— o
2 T k3
— _ Ui+uy, +u
/o i T 2 7_"’_51’_-_ (E(,e/alk (5.40)
°c

The interdependence of all these forms is greatly simplified if the
flow can be considered locally isotropic, i.e. the orientation of the
small scales is independent of the Targe scale structure of the flow.

These inter-relations reduce to:

§ 4

Lex)= /<3;',L< (7:‘67,7 :"..(F:)) | (5.41)
4,

;{% Fix (i) = - B Tex Fi () (5.42)

[:. /l(l: —-k'?l: ﬁl(x.)



In the inertial subrange, where F}I( 1) falls off as k]'5/3, 1t is easy

to show from equation (5.42) that E(k) and F] (k]) also fall otf as
k,~>/3 1
1 , and that F22( ) = 4/3 F ( ).- This is a useful relationship

for verification of the local isotropy assumption.

The existence of a universal equilibrium range in the energy spectrum
was first proposed by Kolmogorov (1941). 1In it, Kolmogorov proposed that
the motion associated with the small scales is statisticaily determined by
only the dissipation, e, and the kinematic viscosity v. A transformation
involving only these two parameters should reduce the spectra of small
scale turbulence to universally similar forms. For the temperature field,
the dissipation of temperature fluctuations, €4 is also important. For

the one-dimensional spectra of velocity and temperature, the following

universal functions can be defined:

EX (k)

P, (1) = E)% | 549

I’} (KI
j (ki) = & € M o7t (5.45)

Also included in this hypothesis is the idea of a spectral region
within the equilibrium range where the effects of viscosity are negligible.
This region, called the inertial subrange, is the well known -5/3 region.
The spectral forms for the inertial subrange of the velocity and temperature

fluctuations are:

E(K)= teBp¥s 49

Fo(k): /Q €¢ ¢h K3

(5.47)

a and g are universal constants. Although the value of o is fairly well



agreed upon, the variance in measured values for g is large.

The corresponding one-dimensional spectral forms are:

El) = o €5 " (5.48)
- Yy
F{i("') B ﬁt € € & K /s (5.49)

A summary of the experimental values for g8 and B, from a number of

investigators is presented in Table VI.

TABLE VI

Comparison of Universal Constant of Temperature Spectra
Investigation B 81
Grant, Hughes, Vogel, Moilliet (1968) .52 .31
Gurvich and Zubkovskii (1966) .56 .34
Gibson and Schwarz (1963) .58 .35
Paquin and Pond (1971) .63 .38
Champagne (1977) .68 A
Williams and Paulson (1977) .83 .50
Lin and Lin (1973) 1.00 .60
Gibson, Stegen, Williams (1970) - 1.93  1.76
Present Investigation 0.75 0.45 - 0.55

with calc. dissipation (c.f. Sect. 5-4) 0.5-0.65 0.3 - 0.4

-1/3, - 1 -
Et(k) = Bete / k 5/3;Ft(k]) = B]ete 1/3 k-5/3

As stated previously, the assumption of local isotropy and the frozen
field hypothesis.are deeply intertwined in the entire spectral theory.
The results, however, are not totally dependent upon strict adherence to
these assumptions. Indeed, any high-intensity sheaf flow fails to meet

the criteria that the use of these assumptions demand at the large scales.



By app]yihg the criteria of Lumley (c.f. section 2.4, equations 2.33 a-d) .
to a measured spectrum, one can see the scope of the problem. Figure 36 is
such a plot, with three of the four criteria superimposed (the 1st and 2nd
ucriteria reduce to nearly the same result, so the less stringent of the two
is not plotted). The solid lines represent equalities, and the dashed 11ines
and crosshatched areas represent the inequalities. The first two criteria
(non-uniform convection velocities) eliminate the Tow frequency end and
much of the central portion of the spectrum. The severity of these criteria
is proportional to the turbulence intensity and inversely proportional to
the three-fourths power of Reynolds number. lhus, for high Reynolds number
flows with small turbulence intensities, these criteria become much less
severe.

The third criterion (c) is for temporal variation of the eddy, and
is not a major factor in this flow (or most other turbulent flows). This
also becomes less severe with increasing Reynolds number of decreasing
turbulent intensity.

The last criterion (d) is for isotropy of the small scales. As can
be seen, the data fails to satisfy this inequality at any wavenumber. How-
ever, this is a dynamical relation and it is not certain how strong this
inequality relation should be enforced (Lumley (1965a)). Unfortunately,
in this flow most of the dissipation range is significantly below the in-
equality. This is in agreement with the derivative data presented in the

last section where the data showed large deviations from isotropy.
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Another potential error in the spectra] measurements is due to the
drop-out discussed in Section 4.2. With sections of data points missing,
the usual method of Fourier transforming the data must be modified. For

‘data sets with just a few drop-out points the missing data can be set equal
to the mean. However, this will bias the level of the spectrum to a lower
value (since the overall mean-square is lower with the zero-points included).
A more correct way to calculate the spectrum is to evaluate time-lag products
and then Fourier transform the resulting covariance function. This method
is much more time consuming to use, but it is necessary. As the drop-out
rate increases, not only is the spectral level affected, but also the shape.
Attempts to predict the filtering effect of drop-out on the straight FFT
were unsuccessful. (Note: Since the drop-out did not affect the temperature
signals, the temperature spectra were evaluated by using a fast Fourier
transform routine to transform the data directly.)

The spectral results are presented in Figures 37 through 46. Figure 37
shows the vertical velocity spectrum at several positions normalized as in
Equation (5.44). The curves are theoretical models; the upper one is cor-
rected by Lumley's correction scheme for fluctuating convection velocities.
The curve is an integrated form of the von-Karman spectrum coupied with a
Pao-Saffman type spectrum at the small scales.

"/s~/

[ (k)= o€ /}/ )]"/3 ZZSFJE*PZ:"‘“"&‘?%*"’II)] (5.50)

k0 is chosen so that E(k) integrates to 3/2 u2. By integrating this and
utilizing the isotropic relations in Equations (5.41), the theoretical
curves for the 1-D spectra can be obtained.

Due to the limited inertial subrange in this flow, it is difficult to



Figure 37

VERTICAL VELOCITY SPECTRA

O
(=)
]
SYMBOL _ R/z

[} 0] .01
i - i
0] -+ &+ ot °

U]
O
v
N-
o Lumley's correction to
w
- theoretical Spectrum
o von-Karman type
[*2]
o ‘8pectral mode]

-0.80 0.00

60

"’10
1

~2.40

-3.00 -2.50 -2.00 -1.50 -1.00 -0.50




4.00 4.20 4.40 4.60 4.80 5.00 5.20

3.80

3.60

e 30

VERTICAL VEL. DERIVATIVE SPECTRA

SYMBOL

O
A

R/Z

3.00

-2.50 -2.00 -1.50 -1.00 -0.50 0.00



b LW}

-5.60

-4.00 -3.20 ~2.40 -1.60 -0.80

-4 ~80

—6040

F1gure 39 - Comparison of Vertical Velocity and Vertical

Velocity Derivative Spectra
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COMPARISON OF U & V SPECTRA
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Figure 42 - Comparison of Radial Velocity and Radial
Velocity Derivative Spectra.
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compare the measurements and theory (the theory assumes the data to be
valid everywhere, and not just in the high wavenumber region as pointed
out above.) The differences between the corrected and uncorrected theory

are not that great because of the normalization of ¢ At km = 0.1, the

11"
difference is roughly 20%. However,’at kg = 0.25, the error is near 100%.
This is very important for the dissipation, since it peaks in this region.

The measured spectrum is consistently too low throughout the inertial
subrange. This is due to an overestimate of the dissipation because of the
non-isotropy of the small scale motion. In addition, the theory is only
valid where the flow can be considered isotropic. Since this flow is non-
isotropic at almost all scales, no definite conclusions can be drawn from
this comparison. The large deviation at the very high wavenumbers is due
to noise (both electronic and quanitization noise).

The spectrum of the spatial derivative of ugis shown in Figure 38.

The peak occurs around kn = 0.2. To verify that the derivative signal was
calculated properly, the frequency spectrum is divided by w2 and compared
to the ugzspectrum. The agreement 1is nearly perfect, as is shown in
Figure 39. The only deviation is at the high frequency end, where the
u,spectrum contains more noise.

The u, spectra, along with a corrected theoretical spectrum, are shown
in Figure 40. The measured u,spectra are considerably lower than expected.
When compared with a uzspectrum, as-in Figure 41, it can be seen that the
isotropic relation F;Z(k]) = 4/3'F1](k]) is not valid anywhere. Instead.
of being larger, the u, spectrum is smaller than the U, spectrum. Again,.
this is due to éhe anisotropy of the flow. When the derivative spectrum
is compared to the ve]ocity_égggﬁrum, a difference is noticed (Figure 42).

2 dunt o
Either‘xf is too small or (a;ﬂ is too large. The reason for this dis-
crepency is not known, but the difference is not large enough to explain

the differences between the u. and 11 <pectra decrrihed ahnua



Finally, the temperature spectra are plotted in a similar fashion.

No theoretical curve is plotted due to the unknown value of the spectral
constant@i. The temperature spectra are plotted in Figure 43. Figure‘44
vshows a linear plot of 51("")""/3/&6—” rs los ky . This shows the Jimited
extent of the inertial subrange in this flow, and also provides a value
of 0.5 forﬂ, . (Note: As mentioned, the dissipation is probably over-
estimated by as much as 100% due to the anisotropy. If this were taken
into account the actual value ofﬁ; might be closer to 0.4.)

The temperature derivative spectra and the comparison of the derivative
spectrum to the temperature fluctuation spectrum are shown in Figures 45
and 46. The agreement in Figure 46 between the two spectra is nearly
perfect. This is because the temperature signal is not subject to the
problems of cross-flow and drop-out like the velocity signals.

It was hoped that cross-spectra could also be measured, but the prob-
lems with drop-out caused this plan to fail. The ca]cu]ation of the cross-
spectra by calculating the cross-correlation matrix involved too much time
and memory for our small computer to handle.. This was unfortunate.

The small inertial subrange in this flow made it impossible to compare
this data to spectral theories in any detail. This is particularly true
of the velocity spectrum. Many theories exist relating the effects of
buoyancy on the velocity spectrum, but the theoretical curves presented
earlier did not include any of these effects; they treated the temperature
as a passive scalar contaminant. Lumley (1956b) outlines two spectraf
theories taking buoyapcy into account. These theories, by Bolgiano and
Shur, suggest éﬁéctra] regions at the lower end of the inertial subrange
in which the dissipation of temperature fluctuations is a parameter. Shur's
model also takes into account the potential temperature gradient. However,

it is not likely that either of these two models would be applicable to the



Figure 43 - Temperature Spectra
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Figure 45

TEMPERATURE DERIVATIVE SPECTRA
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Figure 46 - Comparison of Temperature and Temperature
Derivative Spectra
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laboratory model presented in this paper because of the strong shear
production term that is always present.. Since the shear is always dominate
the -5/3 Taw should still hold, and at most, the coefficient might cHénge
’slightly due to buoyancy effects. To measure this change, the inertial

subrange would have to be considerably Tlarger than it is.

5.4 Turbulent energy and fluctuating temperature balance

As discussed in Section 2.3, the balance of turbulent kinetic
energy plays an important role in many turbulence models. The equation
governing the turbulent kinetic energy is obtained by multiplying the
Navier-Stokes Equations by the ve]oc{ty, uss taking the time average
of all terms, and subtracting the equation for the mean kinetic energy.
Similarly, an equation can be obtained for the mean square temperature

fluctuations. These derivations are outlined in Appendix AI, and the

results are shown in Equations ( .

- —_— T 3T\ _
B@) - -k[BFT A e) - (R TR - e
rate of turbulent transport gradient dissipation
change of production (5.52)
t2/2
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rate of pressure gradient work and turbulent transport (5.51)
change of A
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deformation work buoyancy dissipation
(gradient production) production
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The rate of change of q2 is due pressure gradient work, transport by
turbulent velocity fluctuations, deformation work, work due to buoyancy,
and viscous dissipation. The transport terms are divergences of turbulent
energy flux, which must be zero for a closed rigid volume. Thus these
terms merely redistribute energy from one point in the flow to another.
The pressure terms play an important role in redistributing the

energy between the various velocity components. If one writes an equation

governing the kinetic energy of each component, it can be shown that

the pressure terms transfer energy from the streamwise component to the
radiai and azimuthal compdnents. As described above, the overall effect
of this term must integrate to zero.

The deformation work terms exchange kinetic energy between the mean
flow and the turbulence. The same terms occur in the equation for the
mean kinetic energy but with the opposite sign. In the plume, as in
most flows, this means a loss to the mean flow and a'gain to the turbul-
ence. Thus this term is a production term.

The work done by buoyancy 1is also a prdduction term, since u, and t
are well correlated everywhere in the plume. Although it accounts for
a significant portion of the total production of turbulent kinetic energy,
it is still smaller than the deformation work term nearly everywhere
in the plume.

The viscous dissipation term is the rate at which viscous stresses
perform deformation work, and is always an energy drain. This term is
also the most difficult to measure due to the number of components of
spatial gradiengé. As discussed in Section 5.2, it is customary to assume
1sotrbp1c relations between these components and thus measure only a few.

This relationship is given by:

JM})I

¢ = 150 (5.54)



However, as shown in Section 5.2, the turbulence in this flow does
not obey these isotropic relations. Since all nine components were not
measured, it is not possible to directly compute the value of the dissi-
pation. It can be shown (from the measured ratio of g;z-to :gr that the
dissipation as calculated from equation(5.54)will overestimate the actual
value.

The equation for the temperature fluctuations (Equation 5.52 )} can be
described in a similar manner. The rate of change of *:72; is due to
transport by turbulent velocity fluctuations, gradient production, and

molecular dissipation. Again, as in the kinetic energy balance, the mole-

cular diffusion term is usually computed with the isotropic relations using

the measured vaiue of (%%)2:
elt |?
Q’Sx(dl (5.55)
Since only one component of SE, %5- was measured, no estimate of the degree
J

of anisotropy can be ascerta1ned. However, unlike the kinetic energy balance
all other terms in the temperature fluctuation balance have been measured.
Thus the error in this balance gives an indication of the anisotropy. By
this method the temperature derivatives show less anisotropy than the energy
dissipation, but the isotropic relation still overestimates the dissipation
term. This will be illustrated shortly.

For a neutral environment, the terms of the energy balance should obey
similarity, but as shown in Section5.2 , the ambient stratification causes
the derivatives to deviate from this scaling considerably. Nevertheless,

for convenience the kinetic energy balance 1is normalized with F -1 +2

and
the temperature fluctuation balance w1tth) 'ﬂhi'ﬁg where F0 is the
Tocal heat fiux. Since the balances are not similar, the profites will be

calculated at the highest position. This corresponds to z = 2.1 m, or z/D =



The ambient temperature gradient at this height is roughly 1°C/meter.
Because the actual values of dissipation cannot be measured the energy
balances are computed using the measured data to calculate the convection,
“turbulent diffusion, and production terms (c.f. Section 5.1). The remainder
of the balance will be defined to be the dissipation. Although the kinetic
energy balance also has an unknown pressure transport term included in this
remainder, it is believed to be small compared to the dissipation term over
much of the flow. However, this hypothesis can not be substantiated. It
was originally hoped that the directly measureable terms (all but pressure)
could be measured accurately enough to estimate the magnitude of the pressure
transport from the energy balance, but this is impossible due to the Tow
Reynolds number of the flow and the resulting anisotropy.at small scales.
The kinetic energy and temperature fluctuation balances are shown in
Figures 47 and 48 respectively. In both balances, the turbulent diffusion
terms integrate to zero as they should, and at the outer region of the
plume, production is balanced by dissipation and the turbulent diffusion
by mean convection. As can be seen from Table VII, the actual dissipation
of turbulent kinetic energy is much less than that predicted by equation 5.54
However, the differences in the measured and calculated temperature deriva-
tives are less severe than that of the velocity derivatives. The pressure
transport terms might account for some of the discrepancy in the kinetic
energy dissipation but it is not believed to be a significant portion. It
is disturbing that these measured and calculated values differ so greatly,
especially at the centerline. At larger values of r/z it is expected that
the‘higher moments are in serious error due to the drop-out, but their
accuracy at the centerline should be to within 10-15%. T hus, the only

explianation for the large values of dfssfpatfon is the anisotropy of the

flow.



Figure 47

TURBULENT KINETIC ENERGY BALANCE
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Figure 48

TEMPERATURE FLUCTUATION BALANCE




TABLE VII
Comparison of Calculated and Measured Dissipation

Energy Dissipation Temperature Dissipation
Measured Calculated* r/z Measured Calculated
32 _ 10.5 -.005 126 101
30 10 .01 106 100
32 10 .03 109 100
26 9.5 .05 92 94
18 6 .09 39 51
16 3 .13 14.5 18

* Ca]cu1ated dissipation term also includes the pressure transport term.

It can be seen that earlier spectral scaling using the measured value of
dissipation is in error. This‘is primarily of interest in regard to the
spectral measurements. The one-dimensional velocity spectrum is more than
50% too low because of this scaling. By returning to Figure 37,_it can
be seen that in the inertial subrange the normalized spectrum is roughly
30% too Tow, which is partly accounted for by the high value of tHe meas-
ured dissipation. Similarly, the normalized temperature spectrum will be
roughly 44% too high. This affects the value of @n discussed in Section
5.2. The corrected values of ﬁ and P, based on the computed dissipation
are listed in Table III beneath the ones based on the measured dissipation.
Although now slightly smaller (ﬁ,= 0.3 - 0.4), this value is still within
the bounds of previous data.

The previoys values for the length scale f, and thus the turbulent
Reynolds number, Rx are also incorrect, both being too small by a factor
of 2.5-3. This explains why our original estimates for these parameters
were so different from the measured values. From the computed dissipation,

Rﬂ is approximately 1500 at a height of two meters (the height for which



the spectra are presented) while 2 is approximately 0.15 m. This gives
a ratio for &/z of about 0.075. Since the plume spreads faster than a

Jet, this value is consistent with the value of 2/z for a jet of 0.05.



Chapter 6 - Summary and Conclusions

The goal of this investigation was to provide a reliable set of
measurements of the mean and fluctuating éomponents of velocity and
temperature in an axisymmetric turbulent plume. Also to be measured
were the values of the dissipations of turbulent kinetic énergy and mean
square temperature fluctuation. However, during the course of the project,
problems arose. Due to their wide reaching consequences, the discovery of
these problems should probably be considered more significant than the
measurements themselves. These problems and the results of this investi-
gation are summarized below.

The main unexpected problem encountered in this investigation was the
hot-wire's weak sensitivity to angular variations at low flow velocities.
This, coupled with the high intensity of the velocity fluctuations, created
a problem of drop-out of the velocity signal far in excess of what was
expected. (Drop-out occurs when the measured velocities from each wire
do not correspond to valid velocities because the instantaneous velocity
vector moves outside the cone of acceptance of the probe.) At the outer
edges of the plume this drop-out exceeded 50%. Although most of these
dropped-out points were probably of low (near zero) velocity, many were
strong fluctuations at large angles to the probe axis. This was verifiéd
indirectly with earlier temperature measurements using a high overheat for
the velocity sensors and a side-by-side arrangement for the temperature
wire sensor.* The resulting profiles of the mean temperature displayed
considerable contamination from the hot wakes of the velocity sensors,
and the measured mean temperature increased from the centerline to r/z = 0.2

instead of decreasing. This can only be explained by the presence of strong

* The probe shown in Figure 4 which was used in the measurements
reported earlier has the temperature sensor slightly upstream of
the velocity sensor.



cross-stream ve]oéity fluctuations; in fact, it is quite probable that
the probe was ekperiencing considerable flow reversal at times.

This drop-out strongly biases the measured radial velocity, and
especially the higher cross-moments of the fluctuations. When taking
measurements in regions where u and v are highly correlated, it was
recommended in Chapter 4 that the hot-wire be deliberately misaligned
with the mean flow to reduce the bias in the second and third moments.
This is contraryAto standard methods, which call for aligning the hot-
wire axis with the mean flow.

Associated with the low sensitivity of hot-wire output with angle is
a strong dependence of angle calibration velocity. It is standard pracfice
to calibrate an x-wire at a particular velocity (near the mean velocity of
interest) and apply this calibration to all meaéured values. While this
is often acceptable for high ve]ocities,.the angle calibration of the
hot-wire at low velocities is a strong function of the instantaneous
velocity making it necessary to calibrate at several velocities. Because
of this, it should also be clear that analog methods of measuring the u
and v components are unacceptable.

It should be re-emphasized that these problems are due primarily to
the low velocities and high turbulence intensities encountered in this
investigation. The effects for higher velocity flows need to be examined
further, since these problems and their consequences have been overlooked
in the past.

Another unrelated problem which was encountered was the non-isotropy
of the small scales of the turbulence. As was discussed in Chapter 5,
this was much greater than originally expected. The Tack of isotropy at
the highest measurement position indicates a longer development region

than expected. For comparison, the mean profiles are similar within



10 diameters downstream and the turbulence quantities appear similar
within 20 diameters, but the derivative quantities showed no indication
of similarity even at 40 diameters.

Originally it was planned to estimate the dissipation from the
isotropic relations by applying Taylor's hypothesis to the measured time
derivatives of the velocity. The derivative measurements were corrected
for the deficiencies of Taylor's hypothesis in high intensity shear flows
by using the correction scheme of Lumley (1965a). The anisotropy of the
ve]oéity derivatives negated this attempt and therefore a direct estimate
of the dissipation was not obtained. The measured values of the temperature
derivatives showed far less deviation from similarity and isotropy than
the velocity derivatives and a direct estimate of the dissipation of the
temperature fluctuations was possible.

Part of the non-isotropy may havé been increased by the stratification
present in the plume. At first the stratification was viewed as a problem,
but it was later viewed as an extension of the investigation, since meas-
urements were taken with several degrees of stratification over the course
of the investigation. Unfortunately, the cause of the stratification was
not determined until after the investigation was over, which prevented
measurements of a plume in a neutral environment to be taken.

A major observation associated with the stratification was that the
width of the velocity profile narrowed with increasing stratification. This
observation was unexpected, and is still not well explained. One possible
explanation involves the entrainment, and how it might be affected by the
stratification. ~The sfratification was due partly to a restriction of
circulation of ambient air in the upper parts of the plume facility. This

could have caused air to recirculate inside the screening instead of outside



as it should, and thus make the plume behave as if it were in a confined
region instead bf an infinite environment. The calculations of Baines :
and Turner (1969) show that for a plume in a confined box, the plume wfdth
is 6-7% narrower than for a similar stratification in an infinite environ-
ment, as calculated by Morton, Taylor and Turner (1956). This is in the
region where the effects of stratification are small, and the plume width
increases linearly. |

Why this behavior would exist in this expefiment is not clear, espec-
jally since only a portion of the air is recirculated. Much of the en-
trainment air, especially in the lower sectfon of the plume, comes from
outside the plume facility via openings at the bottom. If is surprising
that the recirculation at the top of the facility can impose such a large
effect on the Tower region. However, the fact that the entire facility
becomes stratified might be an indication that it can.

The balances of turbulent kinetic energy and temperature fluctuations
were calculated for a specific vertical height due to the stratification
of the ambient air. The anisotropy of the small scale structure required
that the dissipation be calculated from the balances instead of using the
measured values. For the temperature fluctuations, the differences between
the measured and calculated values of dissipation was small, but the
differences in the velocity dissipation was considerable. Part of this
larger discrepancy was due to the unmeasured pressure-velocity correlation
term in the kinetic energy balance.

This experiment provided large amounts of turbulence data of a buoyancy
dominated flow. ‘However, to adequately test many of the turbulence models
now being developed, more datavneeds to be taken, As determined by this
experiment, much of this data cannot be taken with present state-of-the-art

techniques. New methods need to be developed that will enable experimenters



to accurately measure the dissipation and higher moments of the turbulent
velocity field. This might include such methods as a shooting probe or

a LDA. However many problems must be overcome before either of these
would be suitable for general use. The high value of turbulence intensity
measured in a 2-D plume with an LDA (Kotsovinos 1977) might indicate
greater problems with that method than with hot-wires. Similarly, the
engineering and flow disturbance problems associated with large moving
probe systems might also significantly bias the results. These problems

need to be addressed soon so that more data can be taken.



Appendix A1 Governing Equations for an Axisymmetric Turbulent Plume

Reynolds equations for flow with buoyancy:
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Axial momentum equation in cylindrical coordinates:
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Continuity equation in cylindrical coordinates:
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Temperature equation in cylindrical coordinates:
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Neglect viscous terms, azimuthal derivatives, and mean quantities in
the azimuthal direction, Integration of the radial momentum equation

yields:
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Substituting into the axial momentum equation and neglecting the

turbulent normal stresses yields:
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Derivation of the equation for the temperature fluctuations for an

axisymmetric plume.

Heat equation:

A1.15
Let T=T+t,U0=U+u, U =U_+u
Z Z V4 r xr r
oT & T 2t ok o 2T ot
?E*a’t**ve 52 tUi ey tTa S5 + Uy +T5r +0r5r A1.,16

+ u’_%,: *“r%ﬁf— = (omMduCTION TERMS
Subtract Reynolds equation for temperature (a1, 12)a.nd maltiply by t
T oT ot
t Sy a3t +tu, §F 140 v dus %+ tu5r +40-5¢

-l--(:u, -&_ —-t:_,ea':{ - fsa; i7i = ComdLLtTioM TERNS A1.97

Average

— YA ot ot _ Dyssiparion
.__D T~ e ~Urt ¢ R r
D¢ ( /z) e o2 r A1.18

Rearranging:

— or oT oF
t - S Ut 3 ) - ot uts |- €
D-t /) Ust 33 turt 57 }’z(zu;eHH rt5n t 4119

But:
————i ———
J
B% Upt? = ua’% +Enu = Zué')g'; +-("£—u
A1.20
Substitute A1.20 and add continuity equation.
e L4 2
Kt ( EF +'r-'¢)r(""u'))’° At.21

_oT L= 9T\ sy — . |
(/) u’t s et r) '/z(f% 4+ rs "“'*2) —€¢ a2



The turbulent kinetic energy equation can be derived in a similar manner.
The kinetic energy is defined by:

Gt H[GF +a} +-'4—;§) A1.23
The kinetic energy equation reduces to:
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The above equation neglects the viscous transport terms and all mean
quantities in the azimuthal direction. Rewriting in cylindrical

coordinates yields:
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APPENDIX A2

Description of Homemade Electronic Hardware

Four pieces of electronic equipment will be deseribed in this
Appendix. All were built specifically for this investigation, and were
designed to give high performance at a very low cost. Each unit cost
less than fifty dollars and performs on a level equal to commercially
available models. The four components are: Resistance Temperature
Bridge, Amplifier with Variable D.C. offset, Differentiator, and Analog
D.C. Motor Control for Probe Positioning. Each will be described in
detail below.

1. Resistance Temperature Bridge: This is designed similar to the
units by Wlezien and Way (1977) except only one sensor is ineluded. The
second, or ambient sensor, 1is replaced by a fixed resistor. By
employing two of these (one for the flow and another for the ambient)
both T and NT can be measured. Since the velocity wire calibration
depends on the actual flow temperature, a single unit using two sensors

to measure only AT' is not adequate,

The schematic for the flow measuring unit is shown in Figure A2.1. The
ambient unit is of identieal design but with different values of some
resistors due éb the differences of resistance between the two wire
sensors (1 um @ 60 vs., 5 um @ 3.5Q). ?o provide a steady, stable
probe current, batteries are used in conjunction with a voltage follower

circuit and a large ballast resistor.
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The unique feature about this design is the feedback bridge
arrangement. Most commercial units connect the two sides of the bridge
'into an amplifier and operate it in an open-loop situation. This causes
considerable amounts of temperature drift. By employing a feedback
system, many of the characteristics of the amplifier no longer affect
the output. The resulting system can be operated with inexpensive

components and still maintain high quality performance.

2. Amplifier: To obtain optimum performance from the A/D, the
anemometer signals need to be amplified. First, the large D.C. mean
voltage has to be removed. Since the magnitude of this D.C. voltage is
needed to calculate the velocity, a -subtraction ecircuit is employed to
remove a fixed, known voltage. To eliminate problems with drift or
noise in this offset, batteries are used in conjunction with a follower
circuit to provide a stable, low impedence voltage reference. The

schematic for this circuit is shown in Figure A2.2,

3. Differentiator: In the same box that houses the amplifiers are
three differentiators. They provide linear response through the
dissipation range frequencies. They have a double pole roll-off with
break points at 600 hz, and 3400 hz. The schematic is shown in the lower

half of Figure A2.2, and the frequeney response curve is plotted in

Figure A2.3.

4. Position Control: This simple circuit provides a means of
analog control of the traverser, An input voltage of 0-5 volts can be

supplied through one of the D/A channels of the computer or by an
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optional manual control knob on the front face of the unit. Due to the.
T41 amplifier, the supply voltage is limited to +/- 22 yolts. Ideally
vthe supply should be 25-30 volts for the given motors, but by adding
counterweights to the traverser, 22 volts is adequate. The D.C. motors
are a large source of electronic noise, and since the wires from the
comtroller to the\traverser were 50 feet long, the traverser would often
oscillate somewhat after reaching its final position. To prevent this,
a shut-off relay was added. The schematic for one channel (both

identical) is shown in Figure A2.U4,
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APPENDIX A3

The angle calibration techniques used in this investigation are
complicated and are not suited for practical use. They were developed
to serve a specific problem - that of angle dependence of an X-wire
probe in turbulent flows at low velocities (< 1 m/s) where the velocity
derivatives are also of interest. In this flow region the X-wires
behaved very non-ideally, and no other calibration scheme was found to

be adequate. The form of the relation is given in equation A3.1.

n
Uerr = U] cost(b-4) + k s %—4%)_7
Both A and ¢L are functions of velocity of the form
. A %
A+ B U™+,

This appendix is divided into two sections. The first deals with
solving for the calilbration expression, and the second examines how to

undo this expression to solve for the velocity components.,

Part 1. To determine the values of k, n, and gé the response of
the X-wire has to be measured at several different angles. This is done
with the aid of -an automated program called ANGLECAL. To determine the
velocity sensitivity of the parameters, this calibration data must be
taken at several different velocities (8 were used in this

investigation, ranging from 0.25 m/s to 1.0 m/s). A non-linear



regression program called "ANGLE" is used to fit equation A3.1 to the
data at each velocity. The value of =n 1is a variable, but is kept

cohstant for all velocities,

To simplify things somewhat, the values of fé are normalized so that
a single curve can fit both. Later this will be shown to be equivalent
to assuming 4£ is zero but the angle between the wires,é? , 1is changing
with velocity. Physically this is impossible but mathematically it is

equivalent, and it is much easier to solve this way.

Another regression program, "CURFIT", is used to fit equation A2.2 to
the values of k for each wire, and also to the values of 9% . This

entire process is outlined step-by-step in Part 3 of this appendix.

Part 2. Just as difficult is the problem of calculating the values
of u and v and their derivatives from the measured anemometer
voltages. After the effective velocity of each wire has been calculated
from the measured voltage, the effective velocity derivative 1is
calculated from the measured voltage and voltage derivative by
differentiating the velocity calibration curve. Howe#er, the veloeity
dependence of k and © make it impossible to invert the angle calibration
Instead, an estimate of the total velocity, Uo, is made, the values of k
and © are are calculated, the angle calibration is inverted, and the
calculated value of U, is compared to the estimate. This process is
repeated until the error is less than 1-2 em/s. This is shown
graphically in a flow chart in Figure 10b. Once the error is reduced to
an acceptable level (usually only one iteration is required),

calculation of the u and v components and their derivatives is



straightforward. The mathematics for this follows. Use Figure A3.1 for

reference.
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For velocities within the acceptance angle of the x-wire, the sign of

the square root is always positive. Knowing , it is easy to find U and V.

U= Uo Cosg

A 3,/2 Y
V= U SIAJ/@

wisee B= ¢ -9~ SB . A3.13



The solution of the velocity derivatives is found in a similar fashion.

/I’SSuna. Uo/ o(,, ’(z, j/@ ARE  Kpowwn Fresrm pRove .

Awd Ki=fo, (T.)

@*‘7[@(7”) A3 )Y a-e
i Fim) G

%:dﬂ. / e

U= U cosp

Uo *
od %‘ Cosf - U, Sinf /dt - 4 ,7;9' A3s

i‘:\

57/‘= T/C"Sﬁ US//“/’ ] + 9}’7’%'—[—5(05/,4/&] A3.16
Strnaely foe v,

ol 44
21: du SImg - /L%COS/@;] + ,j‘;[&(ﬂn:ﬁ] A3.17

dio o &

—

Al[cl\ A’ 3 Y 2.1 0 -71 AND Yy



n

Uo,= Us (COS* K, + K SINK;) 2 U X, A3.18
Ao, . U ’
_2._/?0 — %—L—i N -—5_24 + uo[h XA' - ZC@SD( S’/Uda jtd
A3.19
s . 9//(A' g
-+ /(,, 2 SINVA,; CosA, el S/Nzo(,,' .,C& c:/.—%]
V/Uo al(( U | n-i! “
Lo gy s 4]
A3.20
EQL/L(, n )(, Z(k,—/j 5/~u,co5;<,]
5lr1u.AzLy/-
OIUOz a'lu oz n Uo 1 s - ]
- Ao Ao A - SINO"&CD.SA’?.
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TarL 2. fletnod Tor Finding an Analytical Anglecalibration

1. Measure angle dependence of hot wires using program "ANGLECAL".
Measure at several different velocities.

‘Note: It is helpful to amplify the hot wire signals for angle
calibration. The regression program "ANGLE" that follows
allows for a linear response amplifier (E0 t " C]+C2 Ein)
to be compensated for. u

2. Find the optimum values of K and ¢ _with the program "ANGLE"
for each wire at each velocity (va?ue of n should be fixed for
all situations at a value around 0.5 - 1.0)

3. The values given for the maximum velocity at each given flowrate
should be nearly the same for both wires. Average the two values
to eliminate any small differences.

4. Average all the ¢_ values for each wire (denoted ¢, and ¢,) and
sgbtract these nufbers from all of the ¢0 values o} the cg

wire.

5. Create a data file (with edit) containing the values of U_ and the
adjusted values of ¢_ (with means subtracted). Put all v3lues (both
wires) in the data f91e. The format is F 10.5 format written as
follows:

1)

1)

$1(1)5 Uy (
(1), U
(2), U (2)
(2), T

7]

<

1

¢y 2)

6. Run "CURFIT" to fit an appropriate curve to the % and Ub data.
Ex: ¢, = A¢ + B¢ Ual/z + C¢ U63/2. Then add back the values
of 5} or $é for each velocity (do both wires).

7. Again run the program "ANGLE" to find the optimum values of k for
each wire, but use the value of ¢0 as determined in step 6 for each
velocity.

8. Create two data files (with edit) containing the k and U_. for each

rresponding

wire. (Use the individual values of U_ for each wire, n8t the average).

The format for each data file is simi13r to that in step 5.
Ex: File 1: k](1), UQ(]) File 2: k2(1), Uﬁ(])

<k (2), Ty(2) y(2), T, (2)

9. Run "CURFIT" to fit an appropriate curve to each data file.

. = g 1/2 g 3/2 - T 1/2 7 3/2
Ex: ky = A +B Uo + G, Kk, = Av+BzU0 +C

1 1 2 = Ay 2 Uo

10. Calculate the angle between the wires
© = 180 - 41 - ¢, -20,(U,)

N P o - R . Y 27 ) B I Y X5 )
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