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ABSTRACT

The laser Doppler anemometer (LDA) is rapidly evolving as a major
tool for fluid mechanics research. A relatively recent innovation in
the development of this instrument is the "so-called" burst-processor
or individual realization mode of operation. In this mode the instru-
ment measures the velocity of individual particles as they arrive at the
measuring volume. "It is well-known that there are problems in inter-
preting the signals from these randomly arriving particles since the
statistics of the particle arrival are correlated with the velocity.

In this work the functioning of the laser anemometer in the burst
mode is investigated, and sources of errors in the velocity determination
are analyzed and measured. The residence-time analysis of burst-type
LDA signals is developed to encompass spectral measurements as well as
moments of the velocity distribution. It is shown both analytically and
experimentally that the complete time statistics of the velocity field
can be recovered from the random burst-signal if the particle residence
time is measured along with its velocity. Formulas for mean and mean
square velocity, autocorrelation function and spectra are derived, and
the differences in the results obtained by various data processing methods
predicted from the theory are substantiated by measurements.

The experimental system is based on an LDA-counter processor coupled
to a mini-computer through a special parallel interface with a buffer
memory to absorb data arriving at random times. Results of the LDA data
processing are compared to simultaneous measurements with conventional

techniques.



1. Introduction

Although laser Doppler methods for fluid flow measurements have
now been in existence for more than 15 years, new methods and results
are continually being published and both optical and signal processing
methods can be expected to continue to develop further in the coming
years. In recent years the so-called burst-type or individual realiza-
tion LDA (laser Doppler anemometer) has received the most attention.

The properties of continuous Doppler signals are by now fairly well
understood and signal processing methods like spectral analysis and
frequency tracking are well established (although there is also here
sti11 room for improvements of both a practical and theoretical nature.)
On the contrary burst-type signal processing has been the subject of
some controversy regarding the correct methods of signal processing and
data processing and concerning the so-called bias effect on the computed
statistical flow parameters.

This report describes burst-type LDA measurements in turbulent
flows and presents a rigorous derivation of the correct, bias-free
method of processing randomly arriving, burst-type LDA signals in meas-
urements in incompressible flow. Algorithms for the computation of
moments of the velocity distribution, correlation functions and spectra
are derived.

The theoretical results are substantiated by measurements of the
properties of a free jet in air with the burst-type LDA and by compari-
sons to simultaneous measurements with a hot-wire anemometer and in some
cases to a continuous LDA using a frequency tracker. The burst-type LDA
data are likewise compared to existing theoretical and experimental in-

formation on the properties of the free jet in air. The free jet was



chosen because it represents a stable, reproducible, self-similar
flow phenomenon, and because the rather high turbulence intensity
present in the fully developed jet is needed in some cases to distin-
guish the results of the various experimental methods.

The complete optical and electronic LDA system for burst-type LDA
measurements is described. The optical system is designed for optimum
performance in single particle measurements. The signal processing
system is based on the counter processor and includes optical and
electronic frequency shift. The data processing is performed on a
dedicated DP-11 minicomputer. The minicomputer is coupled to the LDA
system via a special interface which allows both data collection and
processing as well as output for control of experimental conditions,
traversing of the measuring point, etc.

The software (in particular the higher level language FORTRAN
programs) used for the evaluation of moments, autocorrelation function
and spectrum--both by a method analogous to the Blackman-Tukey estimator
for equidistantly sampled data and by a direct transform-- is described
in the text.

The structure of the contents of the report is the following: 1In
section 2 the optical system and transducer characteristics of an LDA-
system optimized for burst processing are described. Then follows in
section 3 a description of the electronic system including counter
signal processor, frequency shift and computer system. In section 4
the correct, bias-free procedure for burst-type LDA data processing
using the so-called residence time weighting is derived. Section 5 pro-
vides the experimental evidence for the correctness of the residence

time weighting and also results of the so-called 1-dimensional weighting



as well as LDA-tracker and hot-wire measurements. Chapter 6 presents
results of burst-type LDA measurements of autocorrelation functions and
spectra computed from the autocorrelation function by the Blackman-Tukey
method. Also presented are results of spectral measurements by a direct
Fourier transform of the randomly sampled LDA data. Spectra from hot-

wire and tracker measurements are presented for comparison. Finally

in Chapter 7 the influence of drop-out in tracker data and the effect
of the staircase-type signal from counter analog outputs on the meas-
ured spectrum is evaluated theoretically and substantiated by direct
measurements of the spectrum of the frequency tracker and counter analog

output in measurements in the free jet.

The burst-type or individual realization LDA mode is a particular
mode of operation of the LDA as opposed to continuous operation or photon
counting methods. The burst-type operation is particularly useful in
situations, where the seeding particle concentration is relatively low,
such as in many measurements in gases or where reference beam or other
coherent detection schemes are not practical. Also the burst-type LDA
has some particular advantages compared to the continuous type LDA.
These advantages will be described several places in the following, but
the main points may be summarized here: 1) The single particie LDA does
not suffer from the so-called ambiguity noise present in continuous
signal LDA signal processing. 2) The randomly arriving data from burst-
type LDA's allow the formation of alias-free spectra and the elimination

in the computed spectrum of some types of noise associated with Doppler

signals. 3) In incompressible flows with statistically uniform seeding,



complete elimination of the so-called velocity bias is possible. 1In
other types of flows with non-uniform seeding as, e.g. an unseeded jet
issuing into seeded air or vice-versa or in combustion measurements,
the burst-type LDA may perform a conditional sampling of flow data,
which would be difficult to obtain by other means. Many of these
possibilities remain to be explored and present a promising field for

future research.



2. Optical System and Probe Characteristics of Burst-Type LDA

The burst-type LDA is a particular mode of operation of the LDA
optimized for the detection of the velocity of single particles. To
fully utilize the advantages of this system the various optical and
electronic subsystems must be capable of adjustment for optimum oper-
ation in the burst-mode in the given flow situation and with the chosen
or naturally occurring seeding particles. Many of the features of the
burst-mode or single particle detection are well known and documented,
but we shall take this opportunity to summarize the essential features
of the burst-type LDA and describe the optical system used in the present
measurements. As a general introduction to LDA methods two recent mono-
graphs may be recommended: Durst, Melling and Whitelaw (1976) and
Durrani and Greated (1977). A recent review of the state of the art
of turbulence measurements with the LDA is given in Buchhave, George

and Lumley (1979).

2.1 Fringe-mode Optical System

The LDA-mode used in burst-type or single particle measurements is
the so-called dual-beam mode (also called the differential- or fringe-
mode). This mode of operation was investigated in the early seventies,
see e.g. Rudd (1969), Drain (1972), Lading (1973) and Hanson (1974).

The essential element of this system, which is shown in Figure 2.1, is
the probe volume formed by the intersection of two equally intense laser
beams by focusing two parallel beams into a common focal volume with a
single lens (opt%cs). In the intersection region a system of interfer-

ence fringe planes is formed.
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Three main principles or physical effects are utilized in the LDA:

- The Doppler shift of light scattered from
particles moving through the focused laser
beams.

- The optical heterodyning of the two scat-
tered beams on a square-law photodetector.

- Frequency demodulation of the detector

currant to derive the velocity, which is
proportional to the detected frequency.

2.2 Detection and Doppler Signal

The Doppler shift of light scattered from a single (point) particle
at the time dependent position x(t) moving with velocity u(t) = (u(t),
v(t), w(t)) through the 1light field E(x,t) represented by the scalar,
plane wave components E(x,t) ei(Kfl-' wlt * ¢), where k is the wave
vector, x and t position and time, Wy the Tight frequency and ¢ a phase
term depending on the initial position of the particle, is given for
steady velocities by

- ki) (2.2.1)

where k; and kg are the wave vectors of the incident and scattered Tight
respectively.

The Doppler shift can be measured by heterodyne detection of the
Tight scattered from two different incident 1ight beams represented by
wave vectors 5491 and Eﬁ,z into a common scattered beam represented by

the wave vector 55 directed towards the detector element dA at The

X4
resulting photocurrent is then found by integration over the whole
detector surface of the square of the total light field at each point of

the detector surface:



yel (g Xy (wytup 4)t+e,)

'gd-(m]+wD 2)t+¢2) 2 dA (2.2.2)

It is the square-law characteristic of the photodetector which allows
the detection of the difference in the two 1ight freguencies.

Evaluation of the integral gives:

i(t) =1 (t) + iz(t) + ZeVilltiiz (t) (2.2.3)

1

- CoS (g;(Ei

ki )+ (6 )
where 11(t) and iz(t) are the currents, which would flow in the detector

with only one or the other beam present:

11(t) « fAlEs’l(gd,t)l2 dA (2.2.4)

12(t) « [A|ES,2(§d,t)|2 dA (2.2.5)

e is the so-called heterodyning factor or visibility factor, which in

the general theory accounts for misalignment of the two wave fronts on

the photodetector surface or phase differences between the two scattered
fields across the detector surface. When Tight is scattered from a single
particle of dimensions of the order of the 1ight wave length -the coalign-
ment criterion or antenna condition is automatically fulfilled and the
heterodyning factor is unity even for large detector apertures. For
larger particles this is not necessarily true and a better signal-to-
noise ratio may be obtained when the detector aperture is reduced (Adrian
and Orloff (1977). Generally speaking, though, much larger apertures

can be utilized in single particle detection in the dual-beam mode than

in many particle detection with the reference beam mode.



In the single particle, dual-beam system the wave vector of the
scattered light drops out in the expression for the modulation freg-
uency. The detected frequency is independent of the detector position
and only the angle between the incident beams enters the expression
for the relation between Doppler frequency and velocity.

In the coordinate system defined in Figure 2.1 the relation is:

fy = %i sin (8/2). (2.2.6)

However, the direction to the detector still enters through the
strength of the optical field in the direction towards the detector.
For optimum signal-to-noise ratio of the detector signal the two
scattered beams should have equal intensity (Lading 1973). Thus for
equal intensity incident beams the detector should be placed in the
symmetry plane between the two incident beams (the y-z plane in
Figure 2.1).

If a TEM00 mode laser of power P is used the intensity distribution

in the intersection region is given by the following expression:

1 8y2 2 . Byo

I(x,y,z) = Z%-—Bz.e - ég;z [kx cos 2) + y2+(z sin 2)
9]

f

-{cosh (5—3—513—9) + cos(2k x sin 2)} (2.2.7)

20f2 2

where of is the standard deviation of the Gaussianvintensity distribution
in the focal plane of each beam. Equation (2.2.3) expressed in the coord-

inate system of Figure 2.1 becomes:

i(t) = 11(t) + 12(t) + 2/il(t)12(t) cos (anDt+¢p) (2.2.8)



with

1
- — 8 . 6v2 L 2
i e 25.2|(xcos 5 - zsin 5ty '
051 f

il(t) (2.2.9)
and
1

5 . 9y2 , 2
i e 20f2!(x cos 5+ zsin5)" +y
0s2

i(t) (2.2.10)
2

10 1and 10 2are the detector currents resulting from a particle placed

in the focal point of beam 1 and 2 respectively, ¢p is a phase term
depending on the initial position of the particle, x(0), and x(t) is
given by:

t
x(t) = J J(t) dt + x(0) (2.2.11)

0

where u(t) is the (Langrangian)'part1c1e velocity.

2.3 Probe Volume and Measuring Volume

The optical probe volume is often defined by the 1/e2 contour of
the fringe modulation region. This is an ellipsoid with half axes a,

b and ¢ along the coordinate axes of Figure 2.1.

d
_ _ f
2a = 40x " cos(8/2)
2b = 4oy = df (2.3.1)
de
2¢ = 49, = Snre72y
where df is the 1/e%-diameter of the focused laser beam:
A
~ _4"f
df = 40'f = FE; (2.3.2)

and de is the beam waist diameter of the laser beams before the focusing
lens.

The interference fringes are parallel planes normal to the vector



k. -k

ks o7ky g (the x-axis in figure 2.1) with a constant mutual distance
9 E]

8¢ given by:
8e = A/ (2 sin (8/2)) (2.3.3)

The number of fringes within the probe volume, Nf, is given by:

D
_8 f _4 e
Nf o d tan (6/2) = -T-r--a—e; (2.34)

e
where De is the separation of the two parallel beams as they leave the
focusing optics and f is the focal length.

Before we leave the subject of the burst-mode LDA probe volume
the following comments should be made:

- The Doppler frequency can be explained as a
modulation of the intensity of light scattered
from a particle moving through the interference
fringe pattern in the probe volume (the so-called
fringe-model). This model is correct as long as
the detection is non-coherent but fails in the
case of coherent detection. Hanson (1974).

- The above description is based on the use of
Gaussian laser beams. If the laser operates in a
higher order mode or if the beams are distorted
or vignetted along their way, the probe volume
characteristics change.

- In the description of the focusing and interfer-
ence of the laser beams some assumptions and approx-
imations have been made. Specifically: Gaussian
laser beams are used and it is assumed that the
beam waist of the laser beam was placed at the
focal distance f behind the front lens so that the
fringe planes will be parallel (see e.g. Hanson
1973). It is also assumed that the scaler field
approximation is valid, i.e. that a scaler field
instead of the full E-M vector field is adequate
for the description of the field distribution in
the focal region. This approximation fails at
low f-numbers (see e.g. Born and Wolf 1959)
but is valid with sufficient accuracy for all
f-numbers of importance in LDA work except
possibly for the LDA microscope. If these con-
ditions were not fulfilled the interference



fringes in the probe volume would not be equi-
distant and the zero crossings of the high-pass
filtered Doppler burst would not be equidistant

in time. Thus an important advantage of the burst
LDA over the continuous LDA would be Tacking.

The probe volume is not necessarily equal to the measuring control
volume. Let us define the measuring volume as the region in space from
which Doppler signals are detected. The size of this volume is deter-
mined by a number of factors including velocity direction, particle
size and shape, detector optics, amount of frequency shift, laser power
and overall gain of the system.

Most straightforward to assess is the influence of the detector optics.
Figures 2.2a and 2.2b show two cases: In Figure 2.2a the field of view of
the detector is limited by the pinhole in the focal plane of the detector
lens. This reduces the measuring volume to at most the region of overlap
of the fringe system probe volume and the cylinder in the focal plane
of the detector optics defined by the pinhole. More subtle is the influ-
ence of the detector optics in the backscatter arrangement shown in
Figure 2.2b. The focal region of the receiver lens may now reduce the
measuring volume, since the pinhole is chosen to match the field of view
to the probe volume diameter. The length of the focal region for the

imaging of a pinhole attached to a probe volume by a diffraction limited

receiver lens is approximately given by:

Y
e = df D/f (2.3.5)
This is usually somewhat shorter than the length of the probe volume.
Particle size, laser power and system gain determine the measuring
volume size by their influence on the amplitude of the signal relative

to the trigger Tevel in the signal processing electronics. Increasing



Fig. 2.2a Measuring volume, forwan ¢ scatter.

Fig. 2.2b Measuring volume, backscatter.



fringes in the probe volume would not bg equi-
distant and the zero crossings of the h1gh—pass
filtered Doppler burst would not be equidistant
in time. Thus an important advantage of the burst
LDA over the continuous LDA would be lacking.
The probe volume is not necessarily equal to the measuring control
volume. Let us define the measuring volume as the region in space from

which Doppler signals are detected. The size of this volume is deter-

mined by a number of factors including velocity direction, particle
size and shape, detector optics, amount of frequency shift, laser power
and overall gain of the system.
Most straightforward to assess is the influence of the detector optics.

Figures 2.2a and 2.2b show two cases: In Figure 2.2a the field of view of

the detector is limited by the pinhole in the focal plane of the detector
lens. This reduces the measuring volume to at most the region of overlap
of the fringe system probe volume and the cylinder in the focal plane

of the detector optics defined by the pinhole. More subtle is the influ-
ence of the detector optics in the backscatter arrangement shown in

Figure 2.2b. The focal region of the receiver lens may now reduce the
measuring volume, since the pinhole is chosen to match the field of view
to the probe volume diameter. The length of the focal region for the
imaging of a point by a diffraction Timited receiver lens is approximately

given by:

e ¥ 8 d 22 f2 (2.3.5)
This is usually much shorter than the length of the probe volume.
Particle size, laser power and system gain determine the measuring
volume size by their influence on the amplitude of the signal relative

to the trigger level in the signal processing electronics. Increasing



signal amplitude allows particles farther away from the probe volume
center where the illumination is less intense to be detected, thereby
increasing the effective measuring volume.

In many cases in turbulence measurements, e.g. in measurements
of small scale turbulence or in strong shear layers, it is important
to know approximately the size of the measuring volume. In such cases
it may be necessary to determine the size of the measuring volume ex-
perimentally. Since control of the position of micron-size particles
is difficult, one is often forced to estimate the measuring volume size
fromthe signals from fine wires (e.g. hot-wire probes) which are moved

about in the probe volume.

2.4 Angular Characteristics and Measuring Volume Cross Section.

The angular characteristics of the LDA measuring volume are deter-
mined not only by the optical configuration, but also by the method of
signal processing employed. The main distinction is between continuous
and burst-type processing. We shall consider the tracker and the
counter as representative of these two methods.

Angular Characteristics, Tracker Processing

The tracker measures a Doppler frequency proportional to the compon-
ent of velocity along the direction of measurement (the x-axis of Figure
2.1). If the frequency decreases below the range of the tracker, the
instrument drops out and the measurement is interrupted. This leads to
a particular "dead zone" depending on the velocity magnitude |u| as shown
in Figure 2.3a. - The graph shows a polar diagram of allowed angles ¢
between the measuring direction & and velocity vectors of magnitude Up >

0.5 u_ and 0.1 Uy in the x-y-plane, where u

m is the maximum velocity

m
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and dead zones for LDA tracker signal processing.



within a given tracker range. The dead zone extends to velocities

with non-zero z-components as well. The characteristics of Figure 2.3a
are rotationally symmetric about the x-axis. The dead zones are modified
or completely removed by the addition of frequency shift. A frequency
shift f¢ corresponding to a motion of the interference fringes with
velocity Ug = Gf-fs results in the modified angular characteristics of
Figure 2.3b. Finally, a shift greater than fs = um/é‘f leads to the
complete removal of dead zones, Figure 2.3c.

Angular Characteristics, Counter Processing.

The angular characteristics of a burst counter LDA system are similar
but more complicated. The complications arise because most counters
require a certain minimum number of zero-crossings of the part of the
burst whose amplitude is above the trigger level before a measurement
can be completed.

For a given intensity of the scattered light, total system gain,
trigger level and measuring volume the angular characteristics can be
calculated or measured. In the following some examples of angular
characteristics of a counter LDA with an ellipsoidal measuring volume
of half axes a, b and c are computed and presented in the form of polar
plots of the measuring volume cross section. The computed values are
compared to measurements with the LDA in the backscatter mode.

Assuming that Ne zero-crossings are needed for a measurement and
that the maximum number of fringes within the measuring volume (without
frequency shift)_a]ong the x-axis is N¢, we present the data in terms
of the parameter Q = Ne/Nf. The amount of frequency shift fs is also an
important parameter. Data is presented for various values of the equi-

valent fringe velocity Ug = Sf/fS relative to the magnitude of the






velocity vector |u|. The measuring volume cross section is defined as
the area S normal to the instantaneous velocity within which a particle
trajectory will lead to at least one measurement (Buchhave (1976)). The
relative cross section o is the ratio of S to the geometrical cross
section of the measuring volume in the y-z-plane, wbc; that is, o = S/mbc.
The concept of a cross section requires that the flow velocity can be
assumed constant across the measuring volume. Under this condition the
following expression can be derived for the cross section including the

effect of frequency shift (see Appendix I):

lu|?
S = mabc R {1 - aZQZRz—————~——2} (2.4.1)
(u - “s)
lu|?
o =aR{l-a2QR——"—} (2.4.2)
(u - us)

with

R TIZF 2 (2.4.3)

b2 2

Figure 2.4 shows a polar diagram of the relative cross section for
a particular optical configuration (f = 300 mm, » = 0.633 nm, & = 15°)
for zero frequency shift. For Q -~ 0, i.e. when the measurement is based
on only a few of the available zero-crossings of a burst, the cross sec-
tion tends towards the geometrical cross section of the measuring volume
as seen from the flow direction. For finite values of Q (e.g. Q = 0.2
corresponding to 8 periods out of a maximum available of 40) a dead zone
occurs as in the tracker case. However, in the counter case the cross
section decreases gradually with increasing angle between the x-axis
and the flow direction. With the addition of frequency shift the dead

zone is moved forward and for a certain amount of shift (uS <u(1 -Q))



fs= 10kHz, 100kHz, 1 MHz, 2 MHz

fD= 1l MHz

Fig., 2.5 Polar diagram of measured data rate as a function

of angle between x-axis and u

Backscatter, = 150, f = 310 mm.



the dead zone disappears. However, the shift must be appreciably greater
than the maximum Doppler frequency before the cross section may be
assumed to be equal to the geometrical cross section. Figure 2.4b, ¢

and d show polar diagrams of the cross section with increasing amounts

of frequency shift added. Figure 2.5 shows measured values of data rate
for the same optical configuration. However the particle distribution
for the measured values is not monodisperse, resulting in less pronounced

dead angle effects for the measured data.
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3. Experiment and Apparatus

3.1 Experimental Set-up

The experimental arrangement with which most of the following meas-
urements were performed is shown in Figure 3.1. The flow is a free jet
in air issuing from a 3" diameter nozzle. The air flow is conditioned
by passage through a 12" diameter plenum chamber. Swirl is removed by
a honeycomb plate and turbulence is reduced by passage through a number
of metal screens. The flow is finally accelerated through a 16:1 con-
traction having an axial profile of matched cubics designed for minimum
pressure gradient in order to prevent separation (Morel (1975)).

The LDA optics is a DISA 55X modular optical system with Bragg cell
frequency shift capable of operation in both forward and backscatter
mode. The optical system is shown in Figure 3.2. In this figure is
shown the position of the laser (Spectra-Physics model 124 15 mW He-Ne
Laser or in some of the measurements Spectra-Physics model 165 0-5 W
Ar-ion Laser). Also shown are the beam splitter modules, the Bragg cell,
the backscatter module, the photodetector and the focusing optics. The
transmitter optics includes a dual quarter-wave plate, one mounted on
the laser and the other on the optical system, which allows rotation of
the unit without changing the direction of polarization within the optical
unit. The unit also contains the beam waist displacer,which allows the
position of the laser beam waist to be adjusted to be coincident with
the intersection point, the beam translator,which allows parallel dis-
placement of the outgoing beams and the beam expander,which expands the
aperture of the optical system by a factor 1.9. The focusing Tlens used in
most measurements was a 300 mm focal Tlength achromat of 95 mm diameter.

In the forward scatter mode this optical configuration with the
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Full configuration

1.
2.
3

4.
5.
6.
7

Laser
Detector (PM)

Beam translator

Bragg cell
Beam waist displacer
Beam expander

. Front lens

3.2 Modular LDA optical transducer

(DISA 55X-system).



photodetector optics placed at a 30° angle to the optical axis results
in a measuring volume approximately 0.1 mm in diameter and 0.3 mm in
Tength located approximately 300 mm from the optical components.

In the backscatter mode the measuring volume is approximately 0.1 mm
in diameter and 0.9 mm in length for an intersection angle of 15°.

The entire optical system can be traversed in two directions in the
horizontal plane. The environment around the jet and the optical system
can be sealed off to allow uniform seeding of the flow field. Droplets
of a 50:50 pct. mixture of glycerin and water were used as seeding par-
ticles. The seeding generator was a DISA type 55 L 17 aerosol generator
with cyclone separator. According to the specifications the particles
generated have a size range from 0.5 u to 5 p with a peak at 2 u.

The signal processing equipment is composed of standard DISA LDA
components and is shown in Figure 3.3. The rack contains from the top
two 55 L 90a counters, a 55 N 10 Frequency Shifter, a 57 G 20 Interface
and Buffer, a DEC LSI-11 mini-computer and a DEC DX-11 Dual Floppy Disk
System. A block diagram is shown in Figure 3.4. The digital output from
the counter is transferred to the Interface and Buffer which handles up
to eight parallel 12-bit input words and eight parallel 12-bit output
words. Two of the interface output lines are used to communicate with
the LSI-11 mini-computer. The computer is controlled through a Beehive
B-100 terminal and storage is provided by the DEC DX-11 Dual Floppy Disk
System.

The DISA 55 N 10 Dual Channel Frequency Shifter includes a Bragg cell
driver operating at 40 MHz and two mixers with variable local oscillators
phase locked to the Bragg cell. The resulting frequency shift can be

selected individually for each channel from 10 kHz to 10 MHz with



Fig. 3.3 Electronic instrumentation.



Fig. 5. Complete LDA Instrumen-
tation comprising Two-Color Ar-
gon-lon Laser, 55X Two-Color
LDA Optics, 55N10 Frequency
Shifter, two 55L90a LDA Coun-
ters, 57G20 Buffer Interface and

Computer with key board termi-
nal.
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electronic selection of the sign of the apparent fringe velocity.

The Interface and Buffer contain a backplane with a number of print
sockets and can be built up to the required complexity by inserting op-
tional prints. The main ingredient is an input logic and buffer card,
which handles incoming data, marks the data words so the source can later
be identified, and stores the data in the 512 word SILO-type memory. The
buffer can accept asynchronous data with a time spacing of only 1 us (or
by replacement 6f memory elements with somewhat more expensive, but pin-
for-pin compatible chips, a spacing of only 70 ns). A high data reception
rate is required by the interface to take advantage of the short time lags
inherent in the random sampling of the LDA, especially if more channels
are used. The function of the buffer is primarily to allow reception of
asynchronous data and subsequent transmission to the computer. The buffer
can be expanded if needed by insertion of additional memory cards with no
change in logic circuitry. The function of the interface is controlled
by the control logic card, and the output demultiplexer card allows
communication through the remaining six 12-bit channels (in addition to
the two occupied by the computer) for controlling external devices (flow
parameters, traversing mechanisms or other).

The LDA-counter mode of operation is an important factor in the data
processing and is explained with reference to Figure 3.5. The DISA
55 L 90a counter can operate in four modes of which one (the fourth) is
primarily of interest in time~of-flight measurements.

Mode-1 is the most common mode of operation of conventional LDA
counters. A measurement is initiated when the signal exceeds the fringe
counter Schmidt trigger Tevel. The first zero-crossing enables the counter,

and counting of clock oscillator pulses is initiated at the second zero-



crossing if the counter is not reset by an error condition detected by

the validation circuits (in which case the counter is immediately reset).
The immediate reset allows the highest possible data rate and ensures

that a burst is measured even if a fault should occur in the initial phase
of the burst.

In mode-1 new measurements continue based on eight zero-crossings
throughout the burst as long as Doppler periods exceeding the Schmidt
trigger level are available. The measurement is checked by a 5:8 comparator
circuit and three other validation schemes (burst amplitude exceeding pre-
set level, measured velocity below preset range minimum - and burst envelope

dip detected by two-level sequency detector).

Mode-3 bases the measurement on the total number of periods in the
burst (from 2 to 256), but outputs only one measurement per burst, and in
addition to the velocity output makes available the number of zero-crossings
measured per burst, Nz’ in binary form at the output. However, in this
mode the 5:8 comparison is not active and the counter is thus somewhat more
sensitive to noise. The "velocity" output is based on a variable number
of zero-crossings and must therefore be "normalized" relative to Nz'

Mode-2 combines .the positive features of mode-1 and mode-3. The
measurement is still based on eight zero-crossings, the 5:8 comparison is
active, but only one measurement is made per burst and the total number of
zero-crossings is available at the output. Unless the S/N is high, mode-2
works better than mode-3 which can give many data points based on only
2,3 or a low number of zero-crossings. Mode-3 may be somewhat less sensi-
tive to the angular dependence described earlier in measurements where
frequency shift is not used.

In the measurements describer here only mode-2 was employed and variable



frequency shift was always available.

In addition to the burst-type LDA equipment the following instruments
were used at one time or another during the measurements: a DISA 55 L 22
Doppler Signal Processor (frequency tracker) with a 55 L 30 Frequency
Translation Control Unit, two DISA type 55 M 01 CTA systems with standard
55 L 11 Bridge and a 55 K 10 Linearizers, a TSI type 1076 mean and RMS
voltmeter and pressure taps for monitoring of plenum pressure and for use
with a pitot tube.

The pressure drop and the measured mean velocity at the jet exit
(with LDA methods) was stable within 1% during a full day's measurements.
The turbulence level at the jet exit was not particularly Tow (of the order
of 1% RMS), but this was not considered important in view of the purpose
of the measurement, which was to study the data processing of LDA counter

data in the high intensity turbulence of the fully developed jet.



4. Data Processing of Burst-type LDA Data

4.1 Particle Arrival Distribution and the Concept of Bias

Burst type LDA data are characterized by their random sampling-times.
Data is only collected during a particle traversal of the measuring volume.
In burst processing it is usually assumed that the seeding particle con-
centration is so low that the probability of two or more particles in
the measuring volume at any one time is negligible. Thus the measured
function is a highly intermittent series of data points, most often a
direct digital output, and no real time signal is available.

As we shall see, however, even for average sampling rates far below
the Nyquist rate it is possible to reconstruct all the basic statistical
parameters of the flow such as moments, autocorrelation function and
spectrum. The sampling method inherent in the burst-type LDA is in some
ways advantageous: spectral aliasing is removed, some noise sources can
be eliminated, relatively modest amounts of data points are used, and

unique possibilities exist for conditional sampling.

With statistically uniform particle distribution in space and for
constant flow velocity the distribution of particle arrival times is
Poisson (equivalent to a shot noise process). However, fluctuations in
particle velocity and direction of motion modify this basic distribution

and the resuiting distribution is not Poisson, but a weighted integral

(the Mandel distribution):

Py(n.T) = Jf z—r,] e Y P(u)du (4.1.1)

where PM(n,T) is the probability of arrival of n particles in time
T, P(n,T) = (un/n!)e_u is the regular Poisson distribution, and P(u) is
the probability distribution for the process modulating the particle arrival

rate. The Mandel distribution is known from photon counting spectroscopy



(see e.g. Mehta (1970)),but no generally applicable method exists for
finding P(u) from PM(n,T).

The variations in particle arrival rate result in errors if direct
arithmetic averaging is applied to the sampled data. This in turn has
led to the concept of biasing as a measure of the error in the computed
statistical parameters. Various sources of bias exist. The correlation
between flow velocity and sampling rate leads to the so-called velocity
bias. Correlations between sampling rate and direction of flow may be
termed directional bias. Bias may also result from density fluctuations,
variations in particle concentration because of non-uniform seeding,
mixing processes, combustion, etc. Bias may also be introduced due to
electronic imperfections such as non-uniform filter characteristics,
poor signal-to-noise ratio, etc. However, it must be emphasized that
bias is not an inherent property of burst-type LDA's, but only a result
of improper data processing. As we shall see, bias free processing of
burst-type LDA data from uniformly seeded, incompressible flow is straight-
forward when directional bias is removed and when the so-called residence
time --the time spent in the volume-- is measured and used as a weighting

function.

4.2 Representation of the Burst-Type Signal

The representation of the signal and the following derivation is
similar to the one used by George (1976) for LDA signals with the exception
of the representation of the measuring volume and the form of the function
g, which represeﬁts the statistics of the particle distribution.

The measured velocity uo(t) is written:

uy(t) = [ ulast) (x(a,t))ola)d’a (4.2.1)



W(x) is a weighting function, which in essence defines the measuring
volume, u(a,t) is the (Lagrangian) velocity of the particle with initial
position a, g(g) is a function describing the initial distribution of
particles (e.g. a distribution of Dirac functions).

A measurement with the burst processor is initiated when the signal
exceeds the trigger level (i.e. when the particle enters the measuring
volume as defined above) and the measurement is concluded when the signal

again drops below the level. Thus a reasonable form of W is

W(x) = 1 when the particle is in the volume
= 0 when the particle is outside (4.2.2)

uo(t) then reproduces the velocity of individual particles, but only
when they are in the volume. A typical uo(t) is shown in figure 4.1.
The dotted 1ine represents the velocity at the center of the volume.

Mapping from the Lagrangian to the Eulerian frame we can write:

Uy(8) = [ ulxt) W00 9, (xot)a% (4.2.3)
where
t
x=at J u(a,t)dt (4.2.4)
0
and
g(a) ~ g_(x,t) (4.2.5)

The statistics of gl(zﬁt) are important for the properties of Ug- If
we assume incompressibility and that the particles completely follow the
flow (i.e. do not agglomorate, migrate sideways in gradients etc.) we
may assume that the statistics of gI are the same as that of g, i.e. that
the particle distribution does not change with time.

In Appendix II the first and second moments of g1 are shown to be
given by:

g (x,t) = (4.2.6)
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Fig. 4.1 The signal uo(t) measured by a burst-type LDA.



91(1(_91:)91 (_)_(_|’t') = Up(z(_stl_)gstl) + Uz (4-2-7)

where P(x,t|x',t') is the probability that the particle at x at time t

has moved to x' at time t', and u is the expected number of particles
per unit volume. For small times, a good approximation to P(x,t |x',t')
is: |

P(x,tlx',t') = 6(x'-x - ur) (4.2.8)

where

4.3 Mean Values

The average of uo(t) is given by:

3T = [ WEE) M) T 5D d% (4.3.1)
1
- | TE ) dx (4.3.2)

The measured velocity is thus a weighted average of the mean velocity
within the measuring volume.

If we separate the velocity into mean and fluctuating parts and
furthermore decompose the mean value into the value at Xy the center of

the measuring volume, and a deviation from that value, Au, we may write:

u(x,t) = u(x,t) + u' (x,t)

= U(go) + au(x) + u' (x,t) (4.3.3)
Thus
W (8 = lx,) Jwg)&y y J pu(x) W(x)d%x (4.3.4)
If furthermore we assume a weighting function of the form eq. (4.2.2)
we get:
TTET = W ulx) + J su(x)d3x (4.3.5)

M.V,



where the integral is over the measuring volume. Only if the au(x)is
symmetric is the measured velocity equal to the velocity at the center
of the measuring volume. In the simple case where we may assume uniform

velocity within the measuring volume we find:

U;(’t') =V u(lo,t) (4.3.6)

We may also define the point of measurement 50 from the condition
J Au(x)d3x = 0. The measuring point is then no longer at the center
og.xﬁe volume, but (4.3.6) holds exactly and the expresion for the extra
mean square value due to mean gradients within the measuring volume
(eq. 4.4.5) is simpiified.

Thus the measured mean value is directly proportional to the desired
Eulerian mean. However it must be emphasized that U;(ff is arrived at by
measuring uo(t) during all the time a particle is in the measuring volume.
This is not the same as a simple average of all realizations.

To see this let us assume we form the averages by integration over

a time T. There is then a simple relationship between the time average of

uo(t) and that of u(éo,t). Using eq. (4.3.6) we find:
T
uoitS = %—[ uo(t)dt = yV u 50,t
0
or T
ulx,.t) = m]ﬁj ug (t)dt (4.3.7)

0

But uVT is (with the previous assumptions on particle density) exactly
the fraction of time a particle is in the volume, and in which uo(t) is
non-zero. Thus the correct mean is given by averaging only during those
periods where there is a signal.

Most burst-processors measure the average velocity during a particle



traversal. This implies that the velocity must be approximately constant
during a burst. If there is only a single output during each burst, the
time integral (4.3.6) can be approximated by:
: T ? uo(ti)Ati
W38 = fouo(t)dt SR (4.3.8)

. 1
i

where uo(ti)is the ith realization of the velocity (at time ti) and At

is the time the ith

particle spends in the volume, the residence time.
Thus the correct time average can be formed by measuring both the velocity
and the residence time and forming the weighted sum (eq. 4.3.8) - the

so-called residence time weighting.

4.4 Mean Square Value

Squaring and averaging the expression for the measured velocity

(eq. 4.2.3) we obtain:

u () u (E7) = ” u(x,thulx",t") Wix) W(x")

g (6] g (xTET) d¥x d¥ (4.4.1)

We first consider the case t = t' for which P(x,t|x',t') = 8(x - x')
(eq. 4.2.8). This corresponds to the measured mean square velocity.

Inserting we find:

[0, (6)17 = | [u(x,t)1” Wo()d

+ (terms of order (uV)Z2) (4.4.2)
Due to our assumptions on Tow particle concentration the second term
is negligible compared to the first. (Note that the reverse was true for

the continuous LDA, where the first term was negligible compared to the

second, cf. George and Lumley, 1973.)



Separating again into mean and fluctuating components, and con-
sidering again the mean velocity as composed of the mean velocity at

the center u(x_) and a deviation away from the center pu(x) we find:

%o

[0, (0" = u [ [t W' + o | L0 T (e

"2 lx,) [ ATOW (8K + ()T [ Wod’s (4.4.3)

Assuming again W(x) to be given by eq. (4.2.2) we find:

[0y (07 = u | [wuxn%l+uJ [4a(x) 1’
M.V. 1.V.

2uie) [ 0+ Wil (4.4.4)
M.V.

The measured mean square is thus a spatial average over the measuring
volume of the actual mean square plus two noise terms caused by gradients
within the volume. The last term is due to the intermittent nature of
the Uy signal.

With the definition of the measuring point given in Section 4.3.6 the
third term disappears and the fourth term is just the square of the mean

measured when a particle is in the volume. Thus

]72

1]

ug” = Lug(t)

; - Wlu(x,) 1’

u[ [u' (x,t)2d’x + “J )%’ (4.4.5)
M.V. M.V.

We see that the measured mean square velocity is always increased when
mean gradients of velocity are present within the measuring volume.
As in the case of mean values we can show the equivalence between

the mean square time average and the residence time weighted mean square



when the velocity can be considered uniform across the measuring volume:

tlu (t.) - U J% at,

Y jo00 i
Yo dt = I At
0 i 1

~

[u'(x,)] = WT

L JT (4.4.6)

4.5 Correlation Function

We now investigate the covariance function eq. (4.4.1) for t # t'.

Applying eqgs. (4.2.6), (4.2.7) and (4.2.8) we find

u,(thu (t+r) = uHU(&t)U(é‘,t') W(x)W(x")

- 8(x'-x-ur)d3xd3x' [I(+)] (4.5.7)

+ UZ[J u(x,thu(x5t") W(x)W(x')d3xd3x' [1I(7)]

In the following, the first term is denoted I(t) and the second II{<).
It will now be shown that the first term is a noise term generated by
the intermittent nature of the signal uo(t), whereas the second term
represents the desired information.

Consider the term I(t). Integrating once we get:

I(r) = » [u(é,t)u(g(fgr,th) W(OW(x+T)dx (4.5.2)

We have a spatial average over the overlap of the measuring volume
with itself at a (averaged) position time t earlier.
If we can assume uniform velocity within the volume the expression

simplifies to:

I(r) = wlulx,»t))" o (c) (4.5.3)

where

Vpl(T) = J W(x)W(x+u-1)d3x (4.5.4)
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or using eq. (4.2.4) for W(x):

Vo (v) =J d3x (4.5.5)
M.V. overlap

which is just the overlap-volume between the measuring volume at times
t and t +t. Thus the function pl(T) is a function of unity height at
T = 0 which falls off to zero within a time corresponding to the mean
transit time of a particle through the measuring volume. (Fig. 4.2)

Since LDA burst processors normally require a time of the order of
a transit time to process the measured signal, it is normally assumed
that the minimum scales of interest in a measurement are greater than
the measuring volume dimensions and that no significant change occurs
in the flow velocity within a time of the order of the transit time.
Thus the first term in eq. (4.5.1) does not contain any information of
interest, but only adds noise if kept in the correlation function. The
effect on the corresponding spectrum would be the addition of a wide
band, constant noise level of high intensity. Fortunately, as we shall
see later it is simple to avoid this noise by not including self-product
terms in the algorithms for correlation function and spectra.

We now consider the second term in eq. (4.5.1) Decomposing the

velocity into mean and fluctuating parts yields:

I1(1) = u2 ” u(x)u(x') W(x)W(x"')d3xd3x"
(4.5.6)

+ p? H u'(xsthu'(x,t") W(x)W(x"')d3xd3x'

The first term is precisely the square of the volume-averaged mean
velocity given in eq. (4.3.2) and the second represents the volume-

averaged space-time correlation. If we assume uniform velocity within




the measuring volume we can write:

—_ 2 2
II(1) = u, *+ (w) Bv(r) (4.5.7)

where

V2B () = ” TR WOON(x' )d3xd (4.5.8)

is the volume-averaged correlation.

Assuming as before the form eq. (4.2.2) for W(x) we find:

V28 (c) = H 0t (x' ') d3xd3x (4.5.9)
M.V.

where the integrals are over the measuring volume.

In summary, I (t) represents the autocovariance function for the
signal while one particle traverses the measuring volume; II(t) is the
covariance between two different particles, not simultaneously present
within the volume. In view of our usual presumption that u(x,t) does
not change appreciably within the transit time it is clear that I(t)
represents a noise term primarily caused by the intermittency of the uo(t)
signal. This noise can be eliminated by considering only correlations
between the signal from two different particles, i.e. the term II (x).

Now let us consider the influence of velocity gradients within the
measuring volume on the covariance II (t).

Again we consider the mean velocity G(éo) at a fixed point Xy within
the volume and the deviation of the mean velocity Aﬁ(ﬁ). If we use the

previous definition of the measuring point, we have the condition:

[ Au(x) W(x)d3 = 0 (4.5.10)



The first term of II (1) now becomes:
n2 ” u (x)u(x" W{x)W(x')d3xd3x"

= 2 j[ [ax§0)+Aa(5)][G(éé)+Aﬁ(5})]W(K)w(éf)d3§g35} (4.5.11)

But this is equal to:

2 | Dixg 000 W) | Ty ol (Y

WV (xg)1? (4.5.12)

Thus, if we define the measuring volume as done above, mean velocity
gradients within the volume do not contribute any noise to the autoco-
variance function. We can subtract the square of the mean velocity at X,
from both sides of eq. (4.5.7) and obtain the (volume averaged) autocor-
relation function of u'(x,t) without gradient noise.

To find the autocovariance function expressed by the measured velocity
samples u(ti) and residence times Ati we proceed as before. We replace

the ensemble averages by time averages and obtain:

1

u'(x sthu'(x »t") = —— ul(t)ul(t")
(uv)
(4.5.13)
T
'l .
= ()t (t')dt
(uv)QTiu °
or
' ' S B LT + 4.5.14
TG B g B71) = L [ uyeug (et (4.5.14)

From the intermittent nature of the signal uo(t) we know that uo(t)
is only non-zero, when a particle is within the measuring volume as
defined previously. Thus the integral eq. (4.5.14) is only non-zero

when there is a particle in the volume at t and one at t+r. If we consider



"overlap-times"

Fig. 4.3 "Overlap-times" for realizations of uo(t) and uo(t+T).



figure 4.3, which shows the signal uo(t) and a signal Uo(t+T) displaced
in time by the lag v,we see that the integral should only be computed
during the time of overlap of realizations of uo(t) and Uo(t+T).

Thus we may write:

_ ] [ ] .I ] 1
C(r) = u'(x,,t)u (go,t ) 2:(uV)2T i;juo(ti)uo(tj) Atij(T)
(4.5.15)

where Atij(T) are the "overlap-times", i.e. the times where uo(t) and
uo(t+r) are both non-zero, and t = tj_ti' The factor (uV)?T is the total

fraction of the time T one particle is in the measuring volume

and another is in the volume at t+rt:

CIAt,
2 2
(W) T= (=471 (4.5.16)
T
However, since we have excluded the possibility of two particles in
the measuring volume simultaneously, a more correct expression for the

total overlap-time is:

|-

At 2 At.2
5 At, . (1) = [J—} - (=) | T = T At At, (4.5.17)
ifj 1 T i T igjg I

The expression (4.5.15), which is still a function of T albeit a
discontinuous one, is impractical because its implementation would not
only require storage of velocity, residence time and time of occurrence
for each realization, but also computation of the overlap-time Atij(T)
for each value of t.

It is more practical to form discrete estimates of C(t) corresponding
to the actually occurring pairs of samples u! = ué(ti) and u! = ué(tj)

1 J

and assign those to the lag value Tij = tj'ti' Each sample must be assigned

a weight factor according to its "integrated overlap-time" when used in
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ensemble averages.
For computational purposes it is practical to collect realizations

of the autocovariance function with lags within a given time-slot:

(n+1/2) AT
C(nat) = Z% C(r)dr
(n-1/2)aT
(n+1/2) At
-1 T
T AT T At.At, j z uiujAtij(T)dT (4.5.18)

i# 9 (n=1/2)ac 1P

The overlap-time is a simple function of t as shown in figure 4.4,

and the integral is easily evaluated:

J bt 5(e)de = atgat, (4.5.19)
Thus
r u.u.At.At.
R T R
C(nat) e SR NS (4.5.20)
i#
for

1 1
(n-ﬁﬁAr < tj-ti jﬂn+§-)AT

AtiAtj can be considered weighting factors which must be assigned to the
cross product uiuj in the formation of the autocovariance estimate just
as Ati can be considered a weighting factor in the formation of ensemble
averages of functions of a single variable, i.e.:
T fu,)at,

i T 4.5.21)
f(u) = 7t (4.5.

i




4.6 Spectral Estimators

The spectrum of the function uo(t) is defined by S, (w) = |ﬁo(w)|
where ﬁo(m) is the Fourier transform of uo(t): °
ylo) = 3= [ up(t)eotat (4.6.1)
Thus -
_ fw(t-t"')

1 i '
Su‘(w) (zﬂ)z fl u,(thu (t")e dt dt' (4.6.2)

It is well known that by changing variables and carrying out partial

integration this can be shown to be equivalent to the Fourier transform

of the autocovariance function (the Wiener-Khinchine theorem):

oo

S () = —LJ c(r) el®tyt (4.6.3)

Yo (2u)?

-~ 00

As shown in the previous section, use of the representation (4.2.3)
for the measured velocity leads to the expression uzszv(r) for the auto-
covariance function of the velocity (eg.(4.5.9)). Thus we can form a
spectral estimator from the autocovariance samples (4.5.15) by inserting

into eq. (4.6.3):

(2]

~ _ T _
S (w) - §;EZE;ZE3-f ujugaty s (0)cos (ult t,)dr (4.6.4)
i 1

Integrating the overlap times as in (4.5.20) we get

N _ T i
Sl(w) = m ”Zé\] uiAtiujAtj COS(w(tj t'i)) (4.6.5)
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This spectral estimator is analogous to the usual Blackman-Tukey
estimator in usual equidistant sampling power spectrum computations.
However, it is important to note that no self-products occur in eqgs.

(4.6.4) and (4.6.5)



By simply rewriting the exponential form of the cosine and rearranging
terms this can be shown to be equivalent to an expression analogous to the

classical periodogram minus the d.c. spike at the origin:

N T iwti 2 . 2 :
So(w) = |z ujatie ] - z(ugaty) |
i i

(4.6.6)
As suggested by George (1979), we see that we could have arrived

at (4.6.5) by using a special form of the periodogram estimator:
N 2
A uOT(w)I
S (w) = l—-——————- (4.6.7)

2 ()T
where GOT(m) is a finite time estimate of the direct Fourier transform
of uo(t) given by
T .
o, (6 - 3 | vty e gt = o sptge (4.6.8)
0
Substituting into eq. (4.6.7) and ignoring self-products for the same reason
The direct estimate of the Fourier transform of the velocity can be of in-
terest in its own right. Estimator (4.6.6) requires only a single summa-
tion compared to the double sum in (4.5.20) or (4.6.5), but requires eval-
uation of both sin- and cos-functions. Which method is best still needs
to be evaluated.
The properties of purely Poisson sampled time series have been

investigated by several authors (see e.g. Gaster and Roberts (1975) and
(1977) and Masry and Lui (1976) and Masry (1978)). These investigations

show that the estimators gl(w) and §2(w) are asymptotically unbiased and

that the variance is given by:

var[S(w)] = [S(w) + gT((v’lJz (4.6.9)



where v is the average data rate. From (4.6.5) we see that the average
sample rate v must of of the order of the Nyquist rate to avoid excessive
increase of the variability of a spectral estimate. Since the residence
time weighting reestablishes the properties of the purely Poisson sampled
series, it can be expected that the residence time weighted estimators
have properties closely related to them. This equivanence was proven by
George (1979) who showed that for both residence time weighted autocor-
re]at%on and spectral estimators the variance is given exactly by (4.6.5)
with v replaced by the equivalent sampling ratebof the burst LDA, which
is easily shown to be related to the average residence time by

=uV
iy (4.6.10)

However, the measured residence time is in itself a stochastic vari-
able and it can be expected to add to the variability of the estimates.
The influence of the stochastic nature of the measured residence time has
not yet been investigated.

In the actual computation of spectra based on the estimators §1(w)
and §2(w), suitable window functions must be introduced to smooth the
spectrum thereby reducing the resolution. Block averaging of the spectra
of short blocks of the record can be used for the same purpose. The
reader is referred to standard texts on spectral estimation and to recent
reviews on standard and randomly sampled signal processing by George

(1979) and Mayo (1979). Specific examples will be discussed in Chapter 6.



4.7 Bias Correction

It is clear that the method of residence-time weighted data pro-
cessing developed above provides the correct statistical results, since
it was shown to be equivalent to conventional time averages. Thus the
concept of bias does not enter at all. However, the method is only
correct for uniformly seeded flows of constant, uniform density. It
was also assumed that no other sources of bias existed, e.g. directional‘
bias due to the finite fringe number effect or electronic biasing.

The concept of bias in burst-type LDA measurement and methods of
bias correction were introduced in 1974, when it became clear that the
results of direct arithmetic averaging contained errors, so-called bias
errors, especially for measurements in high intensity turbu]ence.‘ One
of the first treatments on the problem was given by McLaughlin and
Tiederman (1974), who defined the problem and proposed a method of
correction based on the weighting of the measured data, uo(ti),with the
inverse of the numerical value of the measured velocity component, i:e.
with the factors uo(ti) '1. The algorithms for the computation of mean
and mean-square values by this method, from here on termed the one-dimen-

sional or 1-D correction, are:

-1
2 Ug (8 [ug ()]

(x) = 4.7.1)
’ 50 1-D ZIuo(t1)|_1 (
— 2 -1
and L )] Tyl
[ul(l(o)]? i - )|'1 (4.7.2)

;[uo(t

1
i

McLaughlin and Tiederman investigated the accuracy of the 1-D

correction by numerical simulation of certain 2-dimensional flow cases.
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Figure 4.5 Errors in computed mean and mean-square velocity as
function of turbulence intensity.



However, they did not consider three dimensional cases and did not
consider the directional bias due to the finite fringe number effect.
Buchhave (1976) investigated the accuracy of 1-D correction data by
simulating data from isotropic turbulence, and included the directional
bias. It was shown that the 1-D correction over-compensates for the
velocity bias and leads to large errors for turbulence intensities above
15-20%. However, the angular bias, which occurs for many types of LDA
counters used up to this time, pulls in the other direction, and for
some Q-values (c¢.f. eq. 2.4.2) quite good results may be obtained in
certain situations even for turbulence intensities in the order of 50%.
Figure 4.5 from Buchhave (1976) shows the errors in computed mean and
mean-square values as a function turbulence intensity of an jsotropic,
Gaussian turbulence superimposed on a constant mean velocity.

The concept of residence-time weighting was discussed for the first
time at the 1974 Purdue meeting (see e.g. Durst (1974)). The theory was
further developed by George (1976) along the Tines presented earlier in
this chapter. H55e1 and Rodi (1977) also developed the theory from con-
siderations on the average data sampling rate for varying velocities and
provided some experimental resu]ts to support the theory. Later Erdman
and Gellert (1976) studied the correlation between velocity and particle
arrival rate and showed results which substantiate the ideas about propor-
tionality between data rate and velocity in one-dimensional flows.

Some investigators, however, report a weaker correlation between
velocity and data-rate than expected from the preceeding theory (see e.g.
Smith and Meadows (1974)). In these cases electronic noise may have
caused secondary effects, since these measurements were made at rather

high velocities.



More recent measurements by Karpuk and Tiederman (1976) and Quigley
and Tiederman (1977) in the viscous sublayer in pipe flow show good
agreement between mean and rms values computed by the 1-D correct%on
method and hot-wire data. The measurements were made with an optical
system especially designed to give a probe volume with small spatial di-
mensions in the direction of the mean velocity gradient. The authors
note that the data rate did not seem to be correlated with direction,
but unfortunately no details are given on the ratio of the number of
fringes needed for operation of the signal processor to the total number
available in a burst.

Finally, concerning velocity bias it may be mentioned (as already
pointed out by McLaughlin and Tiederman) that in simultaneous measurement
of all three velocity components (or in the case of two-dimensional meas-
urements in flows in which the fluctuations in the third direction are
negligible) it is of course possible to compute the magnitude of the velo-
city Y and assign a weighting factor proportional to Igﬁl'l to each sample

.), and even to correct for directional bias based on the know-

set (u1.,v1.,w1

ledge of the direction of u. Such corrections might be carried out on
stored data-points after the measurement, but it appears that this method
has not yet been tried in actual measurements.

The question of whether other factors influence the data-rate is still
largely unresolved. Tiederman (1977) raised the question of whether differ-
ences in signal-to-noise ratio of fast and slow bursts might influence the
data rate. Other physical effects that cause correlation between data
rate and flow velocity include density variations caused by pressure or
temperature fluctuations, mixing of fluids with different particle concen-

tration, and chemical reactions. Asalor and Whitelaw (1976) derived



expressions for the correlation between combustion induced temperature,
pressure and concentration fluctuations, and computed the data rate based
on assumptions about the velocity-temperature and velocity-pressure
correlations in a diffusion flame. From this analysis and subsequent
measurements the authors concluded that in this particular flow the bias
effects due to velocity fluctuations confirmed the velocity-data rate cor-
relations expected from the residence time analysis and e.g. MacLaughlin
and Tiederman's assumptions. Velocity-pressure and velocity-temperature

correlation effects were found to be negligible.

George (1976) discusses briefly the extension of the arguments leading
to the residence-time weighting to flows with density fluctuations. No
previous attempts seem to have been made on weighting or bias-correction
in LDA measurements of correlation functions or spectra.

The slotted-time-lag autocovariance method developed by Gaster and
Roberts (1975) was simultaneously being developed by Mayo and others (see
e.g. Mayo (1974), Smith and Meadows (1974), and Scott (1974). Measurements
on the turbulence of a free jet were reported by Smith and Meadows. The
basic feasibility of measurements of turbulence power spectra with burst-
type LDAs was proven. Later also other measurements were reported (Mayo
et al (1974) and Bouis et al. (1977)). However none of these revort any

attempt to consider weighting of the data along the lines discussed above
or to correct for biasing. Wang (1976) and Asher, Scott and Wang (1974)
discuss various sources of error and noise in LDA-counter measurements of
power spectra anq conclude that the quantizing of the output from the LDA-
counter due to the finite resolution of the counter itself is the greatest
source of error. However, these reports did not consider the "apparent

turbulence" caused by the finite dimensions of the measuring volume in the



presence of gradients within the volume as described in Chapter 4.5, nor
did it consider the biasing effects introduced by using uncorrected data.
It should be apparent that bias effects will modify the computed spectra
as well as mean and mean square values, and that bias correction methods
should be applied to spectral measurements as well.

The theoretical considerations presented earlier indicate that the
phenomenon of bias need not exist in the sense that it had been considered
here and results only from incorrect signal processing. In the next two
chapters we shall consider experimental evidence for the correctness of
this theory from the measurements of mean and rms values in the free jet
as well as from measurements of autocorrelation functions. We shall also
consider those bias correction theories which have been developed for

situations where the residence time information is not available.



5.  Mean and RMS Velocity Measurements in a Free Jet with Burst-type LDA.

5.1 Purpose and Method

The purpose of this part of the investigation is to test the theory
of residence-time weighted burst-type LDA data processing as outlined in
the preceeding sections. A fully developed free jet in air was used as
a test flow because it provides a stable, self-similar flow phenomenon
with easy access for LDA measurements and with easily controlled seeding
characteristics. The free jet also provides the high turbulence intensity
needed to test the theory. The turbulence intensity relative to the local
mean along the jet axis reaches approximately 23 pct. in the fully deve-
loped part of the jet beyond x/D = 20 and can exceed 100 pct. off axis.

It is a problem with this experiment that no absolute reference for judging
the accuracy of the various experimental methods is available. Both con-
ventional experimental methods such as hot-wires or pitot tubes as well

as available theoretical models can be expected to contain appreciable
errors at the locations in the jet where the varjous LDA correction
methods begin to display significant differences. Thus the results are
displayed as comparisons between different experimental methods, and be-
tween the LDA data and previously established experimental and theoretical

results.

5.2 LDA Measurements

The continuous LDA measurement with a frequency shifted Doppler signal
appears to be the method most suited as an experimental standard of refer-
ence, at Teast fbr mean value measurements. With Doppler signals of good
signal-to-noise ratio and low drop-out percentage, and in cases where no

significant velocity gradient is present within the measuring volume, the



tracker based LDA should provide an unbiased measurement of the velocity
component in the measuring direction of the LDA (see e.g. Edwards et al.
(1971), George and Lumley (1973) and Lading and Edwards (1976)). However,
because of the large fluctuations relative to the mean and because

of the possibility of flow reversals it is necessary to add an amount

of frequency shift to the Doppler freauencv of about the same magni-

tude as the Doppler frequency corresponding to the mean velocity at the
jet axis.

The LDA tracker is less suited for high frequency, small signal meas-
urements because of the well known ambiguity noise problem (see e.g. George
and Lumley (1973) and Berman and Dunning (1974)), and the measured rms and
high frequency spectra must be expected to show too high values especially
in parts of the flow where the turbulence intensity is relatively low.

It is difficult to provide enough seeding to obtain a sufficiently
continuous signal of good signal-to-noise ratio in order to keep the
tracker operating well with Tow drop-out percentage in the highly turbulent
flow in the outer part of the jet. At the same time it is desirable to be
able to make simultaneous burst-type measurements for comparison. However,
it turned out to be possible to use a sufficiently dilute seeding of 2-5 um
size particles from the DISA 55 L 17 aerosol seeding generator to ensure
proper burst-type operation and at the same time provide a quasi-continuous
signal of sufficient signal-to-noise ratio for continuous tracker operation.
This was made possible by the use of two sources of seeding particles: The
seeding generator mentioned above to provide relatively large particles for
the counter, and another generator which provided a denser smoke of much
smaller particles of glycerin vapor from a smoke generator. The high con-

centration of very small particles allowed the detection of a Tow level,



continuous signal for the tracker. Only one photodetector was used and
the same signal was divided between the two processors, but the tracker
was operated with a relatively high gain, whereas the counter was operated
with a relatively low gain to ensure that only the larger particles were
able to exceed the trigger level of the counter.

The resulting tracker signal enabled the tracker to operate with a
drop-out percentage of between 10 and 50 pct., while the counter operated
with a data rate between 50 and 200 measurements per second.

The experimental set-up was described in Section 3. The following
more specific parameters apply to the mean and rms measurements: The
optical configuration was a dual-beam, off-axis forward scatter arrangement.
The focusing optics consisted of a 300 mm focal length achromatic front
lens preceeded by a 2:1 achromatic expander optics. The laser was a
Spectra-Physics model 124 15 mi He-Ne laser. The resulting measuring
volume was about 0.710 x 0.30 mm. The intersection angle used for most

measurements was 15°. This gives a conversion factor of:

u/fy =(x/2 sin %)= 2.42 (ms™'/MHz) (5.2.1)

The signal from the photodetector was connected to the mixer input
of the DISA 55 N 10 Frequency Shifter and from there passed to both the
DISA 55 L 95 Counter and the DISA 55 L 22 Tracker. The tracker output
voltage was measured with the TSI voltmeter, while the Counter digital

output was connected to the DISA 57 G 20 Interface.

5.3 Hot-wire Measurements

Simultaneously with the LDA-measurements a DISA 55 M 01 CTA (Constant

Temperature Anemometer) with a 55 M 10 Standard Bridge was used. Both a



Fig. 5.1 Hot-wire probe and LDA probe volume,



DISA P-11 5u x 1mm tungsten wire and a P-51 X-wire probe were used.

The CTA output was measured with the TSI voltmeter. In some measurements
the CTA output was linearized with a DISA 55 D 10 Linearizer. The wire
was mounted parallel to the optical axis of the LDA about 1 mm downstream
from the LDA measuring volume (see Figure 5.1).

The hot-wire calibration curve was measured before and after each
experiment. The laser anemometer was used as a calibration standard close
to the jet exit, where the flow was approximately laminar and bias
negligible.

0f particular interest was the influence of glycerin seeding on the
wire characteristics. The impact of individual seeding particles on the
wire was clearly visible on a scope display of the CTA output as short
spikes. However, no effect was measured on the calibration curve, neither
at the moments following the initial start of the seeding generator nor
from a full day's exposure to a seeded air flow.

For the non-linearized hot-wire measurements a calibration curve of
the form: :

2 _
E A)n

E2=A+Bu" oru-=( 5

(5.3.1)

was assumed. Here E is the output from the CTA and A, B and n are con-
stants. With n = 0.45 a good approximation to the calibration curve was

obtained. In the rms measurement the sensitivity of the CTA at each

value of u (or E) was computed from:

L
du 2F (E2 - A)n

E - s (5.3.2)

and the rms velocity found from:



/:u_—'Z Sdu /e (5.3.3)

where e' is the fluctuating part of E.

Most of the hot-wire measurements were made with a single wire and
the results are displayed without correction for cross flow sensitivity.
The errors in hot-wire measurements of mean and rms velocity in turbulent
flow are analyzed in e.g. Hinze (1974). These errors are complicated
functions of the turbulent velocity field and no general correction pro-
cedure can be applied. For a perfectly linearized CTA the effective

cooling velocity for small turbulence intensity can be approximated by:

Ugpf = //(G4u')2 + y'2 (5.3.4)

Expanding the square root and averaging results in:

)

—_— — i
Ugpr = u(1+ —;’-_—Z + o(¥9) % (5.3.5)
u u

A similar analysis for the non-linearized CTA assuming a static

calibration law of the form (Generalized King's law):

E2 = (A + Bueffn) (T, - T,) (5.3.6)

9

where E is the output voltage, A, B and n are constants and Tw and Tg

are the temperatures of the wire and the gas respectively, results in

the following expression:

- 2

—_— — 12 t 1 3

Uger = U(1+ (n - 1) 2=+ L=+ o(L)") (5.3.7)
2u?  2u? u

However, for a finite length wire it is necessary to carry out a
more refined analysis taking into account the temperature distribution
along the wire. The resulting expression is very complicated (Hinze p.109).

The correction terms may be substantially different from egs. (5.3.5) or

(5.3.7).



depending on the structure of the turbulence. In isotropic turbulence
and a wire under normal operating conditions the correction terms for a

linearized, a non-linearized and a non-linearized finite length wire are,

respectively:
— o — 1 u'? '3
Ugpp = U1+ 5 = + o(*2)") (5.3.8)
u u
T X
ueff = U(1 + T + O(EZ) (539)
u u
and
T e Lty (5.3.10)
eff 16 — 2 = 3.

Because of the difficulties in estimating the error terms in non-isotropic
turbulence, in particular in the outer region of the jet, the CTA data are

displayed uncorrected.

5.4 LDA-Counter Data Processing

The data processing software is organized in data collection and
transfer subprograms (COLLEC, TRANSFER and SORT) written in the RT-11
operative system assembly language (MACRO) for the PDP-11 computer family
(Digital Electronics Corp.). This ensures maximum speed and efficiency
in the data collection process. These programs are contained in the
standard DISA LDA software package for operation through the 57 G 20 inter-
face. The program COLLEC organizes the collection of a batch of NDATA
data points and stores the data in memory. A total of NBATCH batches may
be collected in the total measurement. The programs TRANSFER and SORT
transfer data from a particular counter output to the user FORTRAN pro-

gram. The data words transferred to the main program are organized as an



array D(I,d), where D(1,J), J = 1,2,---, NDATA are the measured velo-

cities, derived from the measured frequencies:

D(1,d) = CALIB*(FMEAS(J)-FREQSH) (5.4.1)
D(2,d), J = 1,2,---, NDATA are the measured time increments since the
preceeding data ready pulse:

D(2,d) = tj-t. (5.4.2)

J=1
and D(3,d), J = 1,2,--+, NDATA are the measured number of zero-crossings
in a burst:

D(3,d) = N,(J) (5.4.3)

FMEAS 1is the measured frequency transferred directly from the counter:
FMEAS = 14.96 - D (5.4.4)
where D is the data word at the connector.

FREQSH 1is the chosen frequency shift (positive if the shift adds to
the Doppler frequency of a particle moving in the X-direction).

CALIB is the calibration factor:

CALIB = WAVELE/(2*SIN(BEAMAN/2)) (5.4.5)
(equivalent to eq. (5.2.1)) where WAVELE is the laser wavelength A and
BEAMAN the intersection angle between the laser beams 6.

As described in Section 2 the DISA 55 L 95 LDA-counter operates in
four different modes of which three are of interest in LDA measurements.
In mode 3, FMEAS is computed on the basis of a variable number of zero-
crossings. The measured velocity in mode 3 must therefore be computed
from the formula:

D(],J)MODE 3" CALIB*(FMEAS(J)*D(3,J)/8-FREQSH) (5.4.6)

D(2,J) and D(3,J) in mode 3 are the same as in mode 1 and 2.



With the data array D(I,J), I = 1,2,3 and J = 1,2,---, NDATA
corresponding to one batch from the counter, the quantities entering

formulas (4.3.8),(4.4.6) and(4.5.20) in Chapter 4 are given by:

Velocity uo(tj)z uj = D(1,J) (5.4.7)

Time increment: tj'tj-l = D(2,9) (5.4.8)

Number of zero crossings: NZ j = D(3,J) (5.4.9)
Further we have:

Residence time:

Atj = D(3,3)/[D(1,d)/CALIB + FREQSH] (5.4.10)

Weighting factors:

Arithmetic averaging:

(Widpg = 1 (5.4.11)

1-D weighting:

(wj)]_D = 1/ABS(D(1,J)) (5.4.12)

Residence time weighting:

(wj)RT = D(3,J)/[D(1,J)/CALIB + FREQUSH) (5.4.13)

With these quantities we can immediately use the general formulas for
mean and mean square velocity valid for all modes and for any correction

method:

TR il B (5.4.14)

and



NDATA
z (uj-u) wj

NDATA (5.4.15)

In the actual batch processing it may be more convenient to compute

the quantity:

T e (5.4.16)

u'“=u -wu (5.4.17)

5.5 Batch Processing of Burst-type LDA Data

In the development of the theory of residence time weighting in
Chapter 4 it was assumed that all the data measured were processed and
that the record length was sufficiently long to give a good estimate of

the time average, i.e. much Tonger than the integral scale of the flow
(c.f. e.g. Tennekes and Lumley (1972)). The integral scale is defined

. as:

T = J p (T)dT (5.5.1)

where pu(m) is the autocorrelation function. In a random process the
integral scale is a measure of the large scale correlation or "memory"

of the flow. The record length, TREC, should be at least two times the
integral scale for two reasons. Firstly, it is a condition for the use

of the residence’time weighting that the data is sampled at the rate at
which it occurs naturally from particles swept through the volume, i.e.
that the data is not resampled by the computer at more or less equidistant

intervals (see section 5.5). Secondly, with a batch length Tonger than



twice the integral scale'we are sure that each batch can be considered an
independent sample of the flow. From the theory of the measurement of
random variables we know that the variance on a statistical estimate is
related to the number of integral scales contained within a record (see
e.g. Jenkins and Watts (1968) or Tennekes and Lumley (1972). In a recent
survey by George (1979) the forms applicable to randomly sampled data

were presented. The variance of the measured mean and mean-square are

respectively:
variance of mean values:
— 12T
1Y 0?2y
var [uT] = u I (5.5.2)
variance of mean square values:
—_— —x o (2T
29 (a2 w1
var[uT 1= (u') { Tt vT] (5.5.3)

We see that the contribution to the variance from the first term reduces
in proportion to the number of times we can have a record length of 2Tu
within the total record length T, i.e. to the toté1 number of independent

samples of the flow, T/2Tu. The second term in the bracket shows that a

certain average data rate is needed to prevent an unacceptable increase
in variance due to the random sampling. From the form of eqs. (5.5.2)
and (5.5.3) it is easy to see what happens in the Timiting cases of very
high and very low data rate. When the data rate is high the variance is
essentially that of the continuous time function, i.e. dominated by the
factor 2Tu/T. In the Timit of very low data rate all data points are
independent and the variance is determined by 1/vT = 1/N, the total number
of data points measured.

In practice very Tong records would require a large buffer memory or

other type of fast, digital mass storage device, or a fast real-time computer.



Often it is possible to use a much smaller buffer memory which contains

a smaller amount of data--one batch of data. We do the required computa-
tions on one batch, then sample a new batch, and continually form an up-
dated average of all batches.

This method was used in the processing of data in the present system.
However, in the processing of randomly sampled LDA data precautions must
be taken not to violate the basic assumptions behind the residence time
weighting., The basic effect of the residence time weighting is to
restore the'ensemble averaging to a time integral. Thus one must bé
sure not to introduce another preferential sampling by the batch processing.

There are two basically different ways of handling batch processing:
One can sample for a fixed sampling time at regular intervals, or one
can sample a fixed number of data points again at regular intervals.

1. Batch length fixed.

This method is exactly the process described in Chapter 4. Within
each batch, residence time weighting must be applied to restore the
correct time integral over the batch sampling time. Each batch represents
an independent realization of the flow process and thus batches must be
averaged arithmetically. The interval between batches (which will often
be the computing time) must be constant in order not to introduce a pre-
ferential sampling of the flow. If determined by computing time, the
intervals are unlikely to be equal. Then the intervals must be at least
two integral scales to prevent correlation between individual batches;
such intervals a[so assure optimal convergence. Sampling in a fixed time
is used in the direct spectral estimator described in section 4.6 and 6.4,
where the window determines the batch record length.

2. Batch size fixed.

This method is most easily implemented, since no real-time clock is



needed. Howéver, cbnceptua]]y the method is more difficult to handle.
Within each batch residence time weighting must be épp]ied to prevent
biasing. However, even if batches are spaced by equal size intervals or
intervals greater than the integral scale, batch averaging can not just

be performed by an arithmetic mean. Each batch must be longer than the
integral scale to represent an independently unbiased realization of the
flow. The batch may be composed of a small number of samples (NDATA small)

but the sampling rate must be so low that more than an integral scale is

covered by one batch length.

If records are very short compared to the integral scale and com-
puting time long compared to the record length the situation is one
approaching equidistant sampling and the theory of burst-type LDA data
processing does not apply. These considerations are even more important
in the formation of autocorrelation and spectrum (see sections 6.3 and 6.4).

The measurements described in this report were all performed with
fixed batch sizes, but in the spectral measurements described in section
4.6 and 6.4, the window imposed on the record effectively converts the
sampling method to the first case - fixed sampling time. Thus high fre-

quency estimates can be made with short batches of high data rate.

5.6 Results and Conclusions

In general the experimental results confirm the theory given in the
preceeding sections. The mean and rms data support the theory of resi-
dence-time weighted burst-type LDA measurements. Within experimental
errors caused by.the randomness of the flow variables measured, the

residence-time weighted mean velocity and the mean values measured by

the LDA tracker are identical. The mean values computed by arithmetic

averaging and by the 1-D weighting deviate from the residence-time weighted

mean value in the expected manner, i.e. the arithmetic averaging results in
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mean values that are too high and the 1-D weighting results in mean values
that are too Tow and become meaningless when measured data points close
to.u = 0 begin to occur. The mean values from hot-wire measurements are
also too high as expected - about as much as the arithmetic averages. The
X-wire data show the same trend in accordance with the fact that an X-wire
only measures the correct u-component in a flow with 2-dimensional fluc-
tuations in the plane of the two wires. In the 3-dimensional jet flow no
particular advantage is gained by using an X-wire for u-measurements.

The rms results are surprisingly similar regardless of the type of
instrument used. In fact, with the averaging times used in this experi-
ment (100 sec. time averages) it was not possible to observe any differ-
ences in the rms values from counter, tracker or hot-wire measurements,
except quite close to the jet exit. At the jet exit the LDA instruments,
in particular the tracker, measured a higher rms value than the hot-wire,
as would be expected.

The effect of different amounts of frequency shift relative to the
measured Doppler frequency is also apparent in the data. It can be seen
that the 1-D correction is best when the frequency shift is not too high,
i.e. when the over-compensation introduced by the 1-D correction in a
3-dimensional flow measurement is counter-balanced by some directional
bias.

Of course these effects are difficult to estimate in an arbitrary
flow situation, but the data shows that the 1-D correction may work quite
well up to turbulence intensities of 10-20 pct. At higher turbulence
intensities as are encountered in swirling flows or flows behind steps,
expansions etc., or in the free jet, residence-time weighting or tracker
measurements would be the only reliable LDA data processing methods.

Figures 5.2 and 5.3 show measured mean values along the jet axis and

at a transverse scan through the jet at x/D = 11. Figures 5.4 and 5.7
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show the relative difference between the mean values obtained with differ-
ent methods. The differences are shown relative to the residence-time
weighted data. The jet Re-number was Re=10,000. Figures 5.6 and 5.7

show the rms velocity at the positions of Figures 5.2 and 5.3. The diff-

erences between the various methods in rms measurements were insignificant.

Figures 5.8 and 5.9 show mean velocity data at a higher Re-number
(Re=20,000). In these measurements the frequency shift was higher rela-
tive to the Doppler frequency than in the previous data. The influence
of the frequency shift is displayed in Fiqures 5.10a and b. The figure
shows the difference between arithmetic, 1-D weighted and residence-time
weighted counter data for the transverse scan for two different values of
the ratio of frequency shift to Doppler frequency.

Considering the errors introduced by the arithmetic averaging and
the 1-D correction method it must be noted that the differences only be-
come appreciable for high turbulence intensities, e.g. in regions of the
free jet, where measurements are known to be difficult and subject to
large errors. In the measurement of turbulence of a more moderate tur-
bulence intensity (below10-20 pct.) the errors are smaller and some cor-
rections may be successfully applied to bring the errors down to the
order of 1 pct., even when residence-time weighting is not available.

Depending on the particular design of the electronic circuits various
other bias effects caused by electronic noise in the signal can be expected
to occur, especially in high velocity measurements, where the signal-to-
noise ratio can be expected to be low. Also an increase in the variance
of the measured statistical variables might occur in residence-time weighted
data because of the additional randomness introduced by the measured value
of the number of zero-crossings. These effects were not considered in

the present investigation.
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6. Measurement of Autocorrelation Function and Spectrum with the
Counter LDA

6.1 Introduction

LDA measurements are generally considered more subject to noise
than hot-wire measurements. That this is true at least for the analog,
real-time output is obvious from a comparison of the output signals from
a CTA and a continuous LDA processor on an oscilloscope. The noise in
hot-wire measurements is primarily thermal noise in the input amplifier
circuit. The noise in the output of a continuous LDA processor (e.g. a
tracker) is dominated by the "ambiguity noise", the noise caused by the
random phase fluctuations in the multi-particle LDA signal (see the
tracker spectra displayed in Chapter 7). An effective way of removing
or compensating for this noise has not yet been devised, and for this
reason the tracker based LDA is generally more suited for the measurement
of large fluctuations relative to the mean and in cases where flow re-
versals occur. In such cases the hot-wire instrument is handicapped by
its limited flow acceptance angle. Observation of the counter analog
output may lead one to believe that counter measurements are even more
noisy than tracker measurements, and spectra formed from the counter
analog output are indeed superimposed with a high frequency noise due
to the sample-and-hold type output (see again Chapter 7). The interesting
fact is, however, that the inherent noise level in burst type LDA data
may be far Tower than that of the continuous LDA signal. The reason is
that the basic information in the signal, the time of flight across a
certain number of interference fringes in the measuring volume, is undis-
torted in the single particle LDA. The fringe pattern in a well adjusted

dual-beam LDA is well defined with equidistant fringe spacing throughout



the measuring volume, When the particle concentration is so low that the
probability of more than one particle at a time in the measuring volume

is negligible and/or facilities are avdilable for the removal of data
caused by two or more particles present simultaneously, no ambiguity noise
can be generated.

The noise in the digital LDA counter data is primarily caused by
shot noise in the signal and possibly a white shot noise level from
background 1ight or thermal noise in the detector and preamplifier.

Other noise sources are truncation or round-off errors in the frequency
(velocity), time interval and residence time data.

By using the autocorrelation estimator derived in Chapter 4
(eq. 4.5.21), which does not contain "self-products" or "zero-lag prod-
ucts" (i.e. the square of individual realizations), directly on the
digital counter data, an autocorrelation function estimate is formed,
which does not contain ambiguity noise and noise due to the sample-and-
hold character of the analog output. Similar estimators were introduced
by Mayo (1974) and Gaster and Roberts (1975) for purely Poisson distri-
buted data (no velocity bias correction). As emphasized by these authors
and shown already by Shapiro and Silverman (1960) Poisson sampling
eliminates aliasing in the computed spectrum and allows the formation of
spectral estimates for frequencies above the usual Nyquist frequency
1imit, which exists for equidistantly sampled data. More recently the
properties of Poisson sampled spectra have been treated by Masry and
Lui (1976) and Masry (1978a) and (1978b).

Concerning noise it was further shown by Gaster and Roberts (1975)
on simulated data that the type of estimator, which does not contain

"self-products", is insensitive to white noise added to the signal



(i.e. for our purpose noise witﬁ a correlation shorter than a particle
transit time). In section 4.5 it was furthermore shown that even velo-
city gradients within the measuring volume do not cause additional noise
(gradient noise) in the autocorrelation function and hence in the spectrum
formed from the autocorrelation. Thus burst-type LDA data processing
would appear to have many advantages compared to continuous (tracker

data processing.

The primary source of noise in the following measurements is probably
the quantization error caused by the 8-bit mantissa of the velocity data
(in floating point format). This noise source has an rms value of about
0.25% of full scale and spectral roll off of w-z‘ Thus the high frequency
end of the log-log spectrum will be obscured by this error. Unlike white
noise added to the signal, the quantization noise does not cancel in the
formation of the autocovariance and spectrum. In principle the quantiza-
tion can be reduced by increasing the word length, but at high velocities
the quantization will be determined by the finite clock frequency.

As shown in Chapters 3, 4, and 5 velocity bias can be eliminated by
the residence time weighting and direction effects may be reduced by
the addition of frequency shift. This gives the LDA an advantage over
hot-wire measurements in high intensity turbulence, where the correction
of hot-wire data for the effects of transverse cooling is questionable
or impossible. Moreover, the small measuring volume readily obtained
with the LDA seems to point to the possibility of obtaining better spatial
and temporal resolution in the measurement of fine scale turbulence with
the LDA than with the hot-wire.

The results of the present investigation show that it is indeed

possible to obtain turbulence spectra with the LDA counter over a



considerable dynamic range. However, more work is needed to explore the
noise sources and ultimate limitations to the resolution and dynamic
range of burst-type LDA turbulence spectra and to exploit the unique

potentials of the LDA in turbulence measurements.

6.2 Data Processing

As in Chapter 5, which dealt with mean and rms measurements, the data
is sampled and processed in batches of a certain number NDATA data points,
which together form one batch record of length TREC.

Each batch of data is sampled via the buffer interface (DISA 57 G 20)
and transferred to memory directly in the format they are output from the
counter by the program COLLEC. When the batch is complete the data is
transferred to a data array in standard floating point format by the pro-
gram TRANS and is then available for further data processing by high level
(FORTRAN) data processing programs.

The data array contains the three words per data point, D(I,d), I = 1,
2,3and J =1, 2 ..., NDATA, described in section 5.4.

Several versions of autocorrelation and spectrum programs have been
tested. Common to them all is the batch structure described in section 5.4.
Each data point contains information of the Doppler frequency (or the in-
verse, the measured time of flight), the time interval from the previous
sample from which the absglute time within the batch can be computed, and
the nu, ~er of periods in a burst from which the residence time can be
computed.

During a run the mean value of each batch is computed and the updated
mean value of all previous batches within a given run is also computed.

The Tatter is used to form the fluctuating component. Thus the computations

require strict stationarity throughout the measurement to prevent low



frequency errors. (If the process is not strictly stationary it may
be advantageous to use the individual batch mean values instead).

As always in turbulence measurements the best results are obtained
if some information on the expected values is available and can be used
to select the instrumental parameters. The integral scale of the flow
should be known roughly either from guessing or from previous explora-
tory measurements. Continuing the discussion on the variance of the
measured statistical quantities from section 5.5, we have for the auto-
covariance function and spectrum:

variance of autocovariance function:

— 22T
var[Co(1)] = (u'?) [—T-“-+ l—T} (6.2.1)
variance of spectrum:
. — 12
var[ST(m)] 2 [S(w)]2 [1 + §;%§(57] (6.2.2)

Again we see that for a high average data rate, v, the variance re-
duces to the form known for a continuous time series. The data rate at
which a significant increase in spectral variance due to the random
sampling is noticed depends on the value of the spectrum relative to the
spectrum at zero frequency. The optimum sample rate for a fixed number

of samples and a fixed batch length is

)2
Vopt = ’2‘%@7 (6.2.3)
Both the measured autocovariance and the measured spectrum must be
smoothed by suitable means. The time slot technique (eq. 4.5.20) reduces
the variance of the autocovariance estimate by the factor 1/vAt, where
At is the slot width. The application of a window function and/or batch
averaging result in a reduction of the variance of the spectrum. Batch

averaging simply reduces the variance by one over the number of batches.



Convolution of fhe Speétrum with a window function of efffecti?e width
At = 2n/Aw where Aw is the bandwidth of the final estimate reduces the
variance by a factor (2n/AwT), where T is the length of the record used
to compute the spectrum.

The expression for the variance of the direct transform applicable
to the present measurements is then:

2
12

S(w) + Y— (6.2.4)

21[\)

e

var[§ (w)] =
2

where TB is the Tength of the batch and T is the total 1engfh of record.
This is the expression derived by Gaster and Roberts (1975) except for a
constant factor resulting from a different choice of window shape. Masry
(1978) showed that this result is essentially unchanged in the case of
fixed batch size (NDATA data points), which results in a random batch
record length. The variance of the spectral estimtor based on the cosine

transform of the autocovariance function is then

NDATA

N (6.2.5)

Blw

var[gl(w)] =

where the factor %~arises because of the Hannihg window applied in the
correlation plane.

In accordance with the discussion in section 5.5 we still want the
sampling period TREC to cover at least an integral scale. It then follows

that the batch size should be approximately:
NDATA = v-TREC = v-2Tu (6.2.6)

Thus measurements covering a large dynamic range require a large buffer

memory and/or a large computer memory.



6.3 Measurement of Autocorrelation Function and Spectrum by the Slotted
Time Lag Technique

The autocorrelation function is constructed by accumulating cross
products of pairs of measurements in array elements according to the value
of the time Tag. Each array element corresponds to lag values within a
given slot on the time lag axis. Similar methods were used or suggested
by Smith and Meadows(1974), Mayo (1974), Scott (1974) and Gaster and
Roberts (1975). The present method deviates from these earlier ones by
processing the data in batches of a record length of about two integral
scales of the flow and by assigning weights to each cross product accord-
ing to the method described in section 4.5. The autocovariance estimate

is then given by:

N
T ou'lW. utlW.
NP B B B
_ i#j ) _ (6.3.1)
C(K) N R tj t1. < T
T W. W,
itg ' d

where ¢ is the upper 1imit for lag values in the K'th slot. As in
5.4.14-16 we have used the general expression wi for the weighting factor
to be able to compare the residence time weighting to the arithmetic and
the 1-D averaging.

The most stréightfofwérd methbd to imp]ément this estimator is to
divide the time lag axis into N = NSLOT equally spaced slots of width
At = TAU = TLAG/NSLOT. The procedure in the autocorrelation program is
then the following (See Figure 6.1 for a flow diagram of the FORTRAN pro-
cedure): First,-the maximum time Tag TLAG is chosen in accordance with
the expected integral scale. Then, for each data point cross products are
formed with all subsequent data points within the batch. The program keeps
track of the time lag between data points by summing the time intervals

~ between data points.
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Bartlett window:

D(L) = 1 - K/SLOT
K=1,2,---, NSLOT (6.3.8)
Hanning window:
D(K) = 0.5 + 0.5 cos (wK/NSLOT) (6.3.9)

Results of measurements of autocorrelation and spectrum with the
method of equidistantly slotted time lags are shown in Figure 6.2 to 6.5.
Figure 6.2 shows the autocorrelation function of the axial velocity of
the free jet described in Chapter 3 at an axial position of X/D = 10 and
a Reynolds number of Re = 22000. The three curves show the results of
arithmetic, 1-D and residence time weighting respectively. The three
curves are based on the exact same data points. Figure 6.3 shows the
results of a measurement made under the same conditions but at a position
off-axis (x = 10 D, y = 0.25 X). The results show that the weighting is
important for the measurement of the autocorrelation function, in particular
for measurements in high intensity turbulence.

Figure 6.4 and 6.5 show the autocovariance function and spectrum
obtained by the residence time weighted LDA counter data and by CTA at the
axial position x = 10 D for Re = 22000. The LDA spectrum is based on an
autocovariance function with 100 slots. The hot-wire spectrum is obtained
from the Nicolet "Mini Ubiquitous", FET spectrum analyzer based on 256
records of 1024 points. The LDA and hot-wire spectra are in agreement at
the Tow frequency end of the spectrum, but the LDA spectrum based on a
100 point transform does not have a dynamic range comparable to the hot-
wire spectrum. To obtain better resolution and dynamic range by increasing
the number of slots requires so many data points that the computing time
becomes prohibitive. However, it may be possible to apply some form of
averaging of adjacent estimators to obtain better dynamic range at the cost

of decreased resolution.
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To speed up the computations the data array is restructured into
the three words:

D(1,1) = (u; - u) - W

D(2,I)

1]
r’-

i, (6.3.2)

D(3,I) =

1
=

The cross products D(1,I1)*D(1,d) are accumulated in an array C1(K)
and the cross products D(3,I)*D(3,J) are accumulated in an array W1(K).
The value of K is determined from the definition of the slots:

J

K=1+ INT( £ D(2,N)/TAU) (6.3.3)
N=I

The autocovariance estimate C(K) is determined after the completion

of NBATCH batches as

C(K) = CI(K)/WI(K) (6.3.4)
and assigned to the lag value

T(K) = (K-0.5)*TAU (6.3.5)
The autocorrelation function is found by fhormalization with C(1).

The spectrum is computed by a conventional cosine transform of the
autocorrelation. Since no "zero-lag" value is present in the autocor-
relation the spectrum is simply:

NSLOT
S(L) = Kzl C(K)D(K)cos(2nF(L)T(K)) (6.3.6)
where the frequencies F(L) are:
F(L) = L/(2*T(L)) (6.3.7)

and D(K) is a spectral smoothing window, e.g. a Bartlett or Hanning window:



A 1afger dynamic range can be obtained by the method of logarith-
mically distributed slots described by Gaster and Roberts (1975). By
using logarithmically decreasing slot widths as the time lag is decreased
and correspondingly spectral estimates of bandwidth increasing with freg-
uency, a more efficient method is obtained for computing spectra covering
a large dynamic range. The method used here is outlined with reference to
the flow chart in Figure 6.6. The time lag range is defined by the selec-
tion of the number of slots per decade, NDE, and the number of decades,
NDEC, resulting in the total number of points, NSLOT = NDE*NDEC. The slots
are defined by the logarithmically decreasing slots:

((I-1)/NDE-NDEC)

T(I) = TLAG*10 (6.3.10)
and the autocovariance estimates

C(K) = C2(K)/W2(K) (6.3.11)
are assigned to the time lag value

T(K) = TLAG*10¢ (1-1-5)/NDE-NDEC) (6.3.12)

- The spectral estimates are obtained as before as a cosine transform of
the autocovariance function. Folllowing Gaster and Roberts (1975) we may
introduce an adjustable 1/Q'th octave bandwidth and a spectral window

accordingly. The spectral estimate is

NSLOT-R
S(L) = 21 C(K)D(K-R) cos (2mQF(L)T(K)) (6.3.13)
K:
with
F(L) = L/2*T(L)) (6.3.14)

and windows defined as before (eq. 6.3.8 and 6.3.9).
The logarithmic slot width procedure is able to provide smooth spectra

with a good resolution at low frequencies and a large dynamic range. The
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computation time is still excessive, however, compared to the regularly
sampled, FFT- based method.

The main reason for the long computing time is the large number of
cross products formed in each batch at the Tong lags. To reduce computing
time a modification of the logarithmic slot procedure was used which in-
creases the speed by an order of magnitude, but at the expense of having
to adjust the data rate during the measurement.

The modification is essentially to sample only lag values within one
decade and to adjust the data rate in such a way that only NDE data points
are contained in a record of length 10-T(K), where T(K) is the minimum lag
in the decade processed. The program continually displays the optimum
data rate. The first batches of the total of NBATCH batches are used to
sample the short lags. The Tags are increased in such a way that all
lags are covered equally during the NBATCH batches. The computing time for
forming the cross products is reduced because the data rate may be adjusted
so that only a few points occur within each tag. It must be noted that
the computer memory should still be large enough to hold a batch record of
NDATA = veT, data points (eq. 6.2.5)

Figure 6.7 and 6.8 show LDA counter and hot-wire autocovariance
functigns and spectra obtained under the same conditions as in Figure 6.4
and 6.5. The dynamic range is increased without loss of resolution at the
low frequency end and without increase in computing time. The LDA spectra
are in good agreement with the hot-wire spectra measured at the same point
and of comparab]g quality until the minus 20-30 dB point. At higher fre-
quencies the LDA spectrum is still contaminated by noise. Figure 6.9 and
6.10 show corresponding autocorrelation function and spectrum at a higher

velocity (Re = 44000).
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Figure 6.8 Spectrum from the autocorrelation function in Figure 6.7.
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Figure 6.9 Autocorrelation function with logarithmically decreasing
slots measured at x = 10D, y = o - Re = 44000.
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Figure 6.10a Spectrum from the autocorrelation function in Figure 6.9.
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It is conceivable that the sampling method described above (sampling
only lag-values within one decade at a time) can be advantageously ex-
tended to sampling only one lag value at a time, if the experimental
conditions allow a suitable adjustment of the data rate. This procedure
in the time domain would be equivalent to the direct spectral estimate in

the frequency domain described. in the next section.

6.4 Measurement of Spectrum by Direct Fourier Transform.

The direct power spectral estimator S, (eq.b(4-5-7), analogous to
the classical periodogram, has been implemented in the batch processing
technique used in the present system. The direct transform of the ran-
domly sampled data has the advantage of allowing the formation of spectral
estimates at any frequency independently. In this technique Togarithmically
spaced estimates (or any other system for frequency selection) are easily
implemented. The disadvantage of the method is the requirement for re-
peated evaluation of cosine and sine functions. To reduce the time needed
for computations the cosine and sine functions were discretized and stored

in a "Took-up" array.

There is a distinct difference between the sampling methods that are
most straightforwardly used to form the spectral estimators (51(w) and
Sz(w), a difference, which was already discussed in section 6.2. The auto-
covariance function which forms the basis for estimator 51(w) is formed
from batches of a certain number of data points (NDATA). Thus the summation
in eq. (6.2.1) is over a fixed number of samples. In the estimator Sz(w)
it is most practical to form the estimate by the method of block averaging
(analogous to the method described in Welsh (1967)). Each block or batch
estimate is formed from an expresion like eq. (4.6.2), but including a
spectral window, which defines the bandwidth of the estimate and determines

the end of the summation. Because of the random sampling Sz(w) is formed



from a random number of samples. The expression for the complete estimator

used here is:

- 1 NBATCH .
So(w) = NeRTCR LR (6.4.1)
where
I
A B
S (w) =
2,B NB 2 NB 2
2m by t_i - % A‘t_i
i=1 i=1
NB 'imt_l 2 NB 2
X l : uiAtiD(ti)e ’ - (uiAti) (6.4.2)

i=1 i=1
where D(ti) is the window function (see eq. (6. 3.8) and (6.3.9)), and

NB is the (random) number of samples obtained within the window D(ti).

Samp]ing over a fixed time instead of a fixed number of data points
has the further advantage that the residence time weighting is correct also
for batch record lengths shorter than the integral scale. It is only
necessary that all samples occurring diuring the sampling period are accepted (n
memory overflow), and that periods between sampling are of equal Tengths
Sampling during a fixed period (resulting in a random number of samples
in a batch) with the residence time weighting applied is completely equi-
valent to the conventional equispaced sampling with fixed batch length.

" The method is illustrated in Figure 6.11 which shows a flow diagram
of a FORTRAN program, which provides Togarithmically spaced spectral
estimates according to egs. (6.4.1) and (6.4.2). Figure 6.12 shows a
spectrum measured under the same experimental conditions as those of
Figure 6.4 and 6.7. The same total number of data points was used and

the spectra have the same bandwidth (1/3-octave bandwidth).
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The variability of the direct transform was appreciably greater than
that of the slotted autocovariance method even though the bandwidths were
equal and the measuring time was appreciably longer. However, this may
partly be due to a less efficient way of handling the data, and may be ‘
improved with further development of the data processing. At any rate,
the direct method is more convenient to work with, since it can provide
spectral estimates at a few, widely separated points relatively quickly,
whereas the estimator S](w) can only be formed after the measurement of

the full covariance function.

1 octave LDA

%0330 o 1/3 octave LDA
e hot-wire
6‘0_\6\& . —
] ° i
[} »
o [

A i

Figure 6.12 Spectrum from estimator §2 (direct transform). Flow conditions
as in previous figures.



7. Characteristics of Tracker OQutput with Drop-Out Detection and
Sample-and-hold Type Counter Analog Output

7.1 Drop-out Detection and Counter Analog Qutput

It is well known that the "continuous Doppler signal", even in cases
where many particles are present simultaneously in the measuring volume,
is characterized by random amplitude and phase fluctuations. No real
tracker can track these phase fluctuations exactly, and no real tracker
can stay locked to the signal during the amplitude minima occurring in
the signal. Momentarily or permanently the lock between the tracker oscill-
ator (VCO) and the signal can be broken and the tracker encounters a so-
called drop-out. In modern trackers the tracking performance is monitored
by a drop-out detector, which indicates the presence of a drop-out:when
the correlation between the signal and the tracker oscillator falls below
a preset level. Under normal operating conditions drop-out is associated
with signal amplitude fluctuations caused by phase cancellations between
many particles in the measuring volume, and the duration of a drop-out
is of the order of a few times the transit time for a particle through
the measuring volume. In other cases drop-out may of course take place
because of an absence of particles in the volume. Since tracking is nor-
mally reestablished after a drop-out lasting only a few particle transit
times, drop-out periods are normally short compared to the time scales of
the flow. A typical drop-out case is illustrated in Figure 7.1 which
shows at the bottom the Doppler signal, next the control voltage to the
tracker oscillator (the VCO control voltage) and at the top the tracker
output including drop-out periods where the signal during drop-out has
been replaced by the Tast measured value. It may be noted from the figure
that the VCO control voltage during an amplitude minimum (where the maxi-

mum phase fluctuations occur) shows a characteristic spike resulting from



Fig. 7.1 Oscilloscope traces showing (from bottom):

The Doppler signal, the tracker VCO signal and the tracker

output with drop-out protection (the threshold set to eli-

minate the large phase fluctuations).



the attempt to stay locked during a phase jump.

With this particular tracker (DISA 55N20) a reduction in the rms
ambiguity noise to 1/3 the value without drop-out detection can be ob-
tained by adjusting the signal amplitude relative to the drop-out level
in such a way that the tracker only is locked to the large amplitude
bursts of the signal (drop-out percentage about 50).

The way the tracker output is processed during a drop-out has an
important influence on the results of the measu}ed statistical flow
parameters such as mean and mean square velocity, higher moments, pro-
bability density, correlations and spectra. To examine this influence,
we must make some assumptions about the occurrence of drop-out.

We assume that both the drop-out occurrence and the fraction of
time "out" are independent of the instantaneous velocity. These assump-
tions are in concordance with the known properties of the many-particle
Doppler signal presuming no correlation between velocity and spatial
distribution of particles exists and presuming no effects (electronic
or otherwise) cause the tracker to loose lock preferentially at any
particular frequencies within its tracking range.

The case of the counter analog-out is more straightforward; most
LDA-counter analog outputs are simply a digital-to-analog conversion of
the measured Doppler frequency of a Doppler burst. The analog voltage
is switched instantaneously to a new value at the occurrence of a data-
ready pulse, and this value is held until the next data-ready pulse comes
along. The outgut is thus a sample-and-hold type signal, but the sample
times are random and obey the same statistics as described under LDA-burst
processing (Section 4). In this analog mode, bias problems will occur if
the mean sampling rate is lower than the Nyquist sampling rate for the

velocity signal.



7.2 Effect of Tracker Drop-out

The statistics of the many-particle Doppler signal is described
in detail in George and Lumley (1973) and George (1976). The probability
that the Doppler signal amplitude R is below a given value, R1 say, is
given by
2
Ry
P[R<R]] =1 -exp [- —] (7.2.1)
2
. 21i
where i% is the mean square Doppler current. If the dropout threshold
is given, the drop-out percentage (the fraction of time the tracker is

in drop-out condition) can be computed.
With the assumptions about the occurrence of drop-out given in

Section 7.1 and further assuming (Lumley 1978) that the drop-out process
can be assumed a Markov chain with a transition probability from "in" to
"out" in any interval dt of udt and a transition probability from “"out"

to "in" in the interval dt of vdt, we find that the probability of being

"in" at any instant is (1 + u/v)—l, while the probability of being "out"
. -1 ‘

is (1 + v/u) . The latter corresponds to the result computed from the
amplitude probability distribution above. For all cases of interest

v/u << 1, which is to say that the tracker is "in" most of the time.

To analyze the tracker output an indicator function I(t) is defined
as suggested by Lumley (1978), i.e. a function which has the value +1

when the tracker is "in" and 0 when the tracker is "out". The expected
value of T is clearly T = (1 + u/v)_z. The tracker output signal can
thus be represented as:

f(t) = £(t) - I(t)
where f(t) is the output without drop-out (the tracker response to the

instantaneous velocity).



We now consider three ways of handling the signal during drop-out:
1. Setting the output equal to zero during drop-out.
2. Setting the output equal to the mean during drop-out.

3. Holding the signal at its Tast measured value during
drop-out.

Case 1: OQutput equal to zero during drop-out:

The signal with drop-out is represented by:
f=f1 (7.2.2)

The mean value for the output is:

S FT . N F
f=fT=0F (7.2.3)

Thus the correct mean is not preserved.

The fluctuating component of f is given by:

~

Fro=f - f=f1-F=TF+I'F+F1 = £'4F1' (7.2.4)
and thus '

-2 27— 2 5
fr o= f' 24+ F I'z (7.2.5)

I(t) has a mean square value given by:

2 _ = )

I =1-= Y (7.2.6)
since I =1, and thus a variance given by:
| T2 2,

I' =1 -1 =1(01-T) (7.2.7)
Thus . .

~ 2 _ 2 — ——2

ft o=1If" + I(1-1I)f
or . L

2 v e, 2 v =2
f = (;Ia)f + T;:ETZ f (7.2.8)

~ — 2
The autocovariance of f, R% = f(t)f(t+t) = f - Pe where p is the auto-
correlation function, is easily shown to be given by:

R = (TFH(L)+I' () F' (£)+I' () F) - (TF' (tra)+1" (t+o) F' (the)+1" (t+1)F)

= T2, + TR, +R.R (7.2.9)
f I $e-



where Rf and RI are the autocorrelations of f and I respectively.

Consider two limiting cases: (la) The integral scale of the flow
is much less than the average drop-out period, and (1b), the average
drop-out period is much less than the flow integral scale.

Case {1a): Flow integral scale << average drop-out period.

Since the flow will become uncorrelated more rapidly than the drop-out
signal we will have

PEPT = Pg

or using equation (7.2.7) and equation (7.2.9)

— —_ e, 2
Re o TR+ T(1-T) ¥ (7.2.10)

Thus the autocovariance is reduced and goes to a non-zero value at

large times.

By Fourier transforming equation (7.2.10) it follows immediately that
— - — 2
S% = I Sf + 1 (1-1) T s(w) (7.2.11)

Thus aside from the scale factor T and the spike at the origin, long
drop-out periods have no effect on the spectrum. The fact that these drop-
out occurrences must be independent of the flow field rules out the case
of drop-out due to a scarcity of particles.

Case (1b): Average drop-out period << flow integral scale.

In this case the rate of decay of the drop-out correlation dominates
the product and

PePp ~ P

from which it follows that
~ VT2 =2 12
Rf = 1 Rf + (f +f )RI (7.2.12)

Since the drop-out occurrence is assumed to be Markovian, the auto-

correlation is given by



RI = I.2e'(U+V)|Tl ~ %.e-vlT‘ (7.2.]3)

since the signal is mostly "in". It follows immediately by Fourier

transforming that

Splu) = 2y ]

(7.2.14)
ﬂvz ]+(w/v)2

Thus the high frequency end of the noise spectrum rolls off as frequency
squared.
It follows by Fourier transforming equation (7.2.12) and using

equations (7.2.6) that

T
Sz= Mg pon, (FHf'7) (7.2.15)
f wy f NVZ ]+(w/v)2

For the usual case where f > f', the flow spectrum, Sf, is seen to
be completely obscured by the drop-out noise spectrum SI.

Case 2: Output set equal to mean during drop-out.

We can now represent the output by:
f(t) = £f(t) I(t) + FO1-1(t)) (7.2.16)

The mean value is now preserved:

F=FT+Ff(1-1) =7 (7.2.17)
but the variance (and higher moments) is not:

£1 o= £'1 = £ (T+I") (7.2.18)

The mean square fluctuation and the autocovariance are given by

equations (7.2.8) and (7.2.9) respectively with T set equal to zero. Thus
the noise level ‘introduced by the drop-out on these measurements is con-
siderably reduced since the spectral height of the noise is now determined
only by the drop-out and the mean square fluctuation. The results for the

two cases considered above are listed below.



Case (2a): Flow integral scale << average drop-out period

From equations (7.2.10) and (7.2.11) it follows that

R% =1 Rf (7.2.19)
and
S2=TS (7.2.20)
f f - e
Thus both the autocovariance and spectrum shapes are accurately
reproduced
Case (2b):
From equations (7.2.12) and(7.2.15) it follows immediately that
- 2
Rf v T Rf + f RI (7.2.21)
and
U u ;:72
Sy =~ —— S, + (7.2.22)
fouty Of _— 1+(m/v)2
The spectrum is sTightly reduced and a noise spectrum of the order
2
F' dis added.

Case 3: Output holds last value.

This method is common practice in commerical LDA- trackers. The

output signal can be represented by:

F(t) = £(t) I(t) + F(O)[1-1(1)], (7.2.23)
where
f(t) = f(t,) for t, <t< t,,, (7.2.28)
and ty (k =1, 2, ...) are the drop-out times.
The mean anq all higher moments are now preserved:
FeFT+F0D) - F (7.2.25)

F. Thus also ' = f".

— 2
]

since



The autocovariance of the output is:

R

il

¢ = TEI(trr) F{OT(trr) + (-1 (I-1(tF0))- £ (£)F' (t+c)

F I(t)(1-1(t+1)) F'(£)F (t+r)

2 — 2 _— =
I Rf + (1-1) R} + RI(R +R —2Rff)+2I(1-I

f i Reg

where

Rep = FUE)F' (t+c). (7.2.26)

Consider again the two limiting cases,

Case (3a): Integral scale of flow << the drop-out period.

. T(1.T R, = f12p 2 A
ReRp = T(1-T)R¢, RERp = f'°R;2 and Rc:.

~ ~ |2 2 4 AN I2
We also have RfRI = f RI' since Rf = f RI'

Finally we must have R%f = 0 for large times since f(t) will most
1ike1y be uncorrelated with its value at the previous drop-out.

Thus the autocovariance reduces to:

N 4 _ —T;- 2
Rf = I Rf + (1-1)f RI (7.2.27)
We thus get the correct spectrum slightly reduced plus some low

frequency noise due to the drop-out periods.

Case (3b): Average drop-out period << than flow integral scale.

Here we have:

Ao ~ ~ |2
Rf = Rf = Re2 and R.R, =~ f'"R.,

R

ff 11 I
Thus

RE ="Re + (RetR2 - 2R2)R, (7.2.28)
or

Si(0) = Selw) + 2+ () (——) (7.2.29)

V2 1+(w/\))2



The spectrum is increased with a noise term, which is the Fourier
transform of a spike at the origin of duration TI = 1/u, and a magnitude
determined by the difference Af2 = Rf+R%-2Rf%, which for 1/ 4 <<Tf is
small compared to ?731 Thus the noise term in the spectrum is reduced
relative to case 2b.

In summary, drop-out can affect all statistical properties of the
tracker output. The magnitude of the disturbing effect depends on the
manner in which the tracker compensates for the drop-out. In the usual
mode of operation of the tracker, where drop-outs are short compared
to the integral scale of the flow, drop-out is best handled by holding
the last measured output until the tracker has again acquired lock. This
method preserves all moments of the velocity distribution and adds the
least amount of noise to the spectrum. Higher order approximations during
drop-out can be envisioned, e.g. linear extrapolation from the last meas-
ured value. Such methods might further reduce noise in tracker output,
but these methods have not been tested as far as the author is aware.

If drop-out periods long compared to the integral scale occur, it might
be best to set the output equal to a running average of previously meas-
ured values.

It should be noted that the analyses of this section are valid only
as long as the occurrence of drop-out and the velocity field are statis-
tically independent. While this can be shown to be approximately the
case when the drop-out is due to the random phase fluctuations, this will
seldom be the case when drop-out results from an absence of scattering
particles. Thus care should be exercised in applying the cases (la),
(2a), and (3a) above to cases of extended drop-out which very often re-

sult from an absence of particles.



7.3 Measured Spectra of Tracker and Counter Analog Out

The power spectrum of the tracker and counter analog outputs were
measured with a Nicolet "Mini-Ubiquitous" digital spectrum analyzer. The
LDA-instruments measured the velocity at the center-line of the free jet
at x/D = 10 under different conditions of drop-out percentage and data
rate. The spectrum analyzer computed the average of 256 fast Fourier
transforms of digitally sampled records of the signal. Figure 7.2a and b
show the output of the DISA 55 L 22 tracker in the time domain and in the
frequency domain respectively (tracker bandwidth 4% of i.f. frequency, drop-

out percentage zero). The spectral Tevel beyond 1 kHz is ambiguity noise.
Figure 7.3 shows a corresponding hot-wire spectrum (1mm x 5u tungsten wire).
The spectra below 1 kHz are identical, but the dynamic range of the hot-
‘wire is much better than that of the tracker.

Figures 7.4a and b, 7.5a and b and 7.6a and b show the effect of in-
creasing amount of drop-out on the time trace and spectrum respectively.
Figure 7.4a shows the characteristic spikes associated with the ambiguity
noise.

Increasing amount of drop-out results eventually in a w- roll-off
at high frequencies as predicted in the previous section (Figure 7.7),
but at intermediate drop-out percentages two effects are present: The
ambiguity noise decreases as mentioned in the introduction, but is re-
placed by the drop-out noise.

Figure 7.8 shows a spectrum of the counter analog output at a high
data rate (20 kHz). The measurement is performed under the same circum-
stances as the previous ones. The counter acts here nearly as a continuous

FM demodulator, and the spectrum shows the characteristic ambiguity noise

level associated with continuous LDA signal processors. Figures 7.9a and b



and 7.10a and b show time trace and spectrum at lower data rate. The
spectrum below 500 Hz is still accurate, but the high frequency part is
swamped by the drop-out or sample-and-hold noise. Figure 7.11 measured
with a counter data rate of 100 Hz is practically identical to Figure 7.7
measured with the tracker at a drop-out percentage of 80%.

Obviously the analog outputs from neither tracker nor counter can
compete with the hot-wire signal as far as noise level and dynamic
range are concerned. The advantage of the continuous LDA lies in its
ability (with frequency shift included) to measure large fluctuations,
even reversing flows without bias. The burst-type LDA does not suffer
from ambiguity and can also be corrected for bias. As explained in
Chapters 4, 6 and 7 the burst-type LDA may eventually be able to compete

with the hot-wire also as concerns spectral resolution and dynamic range.
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8.  Summary and Conclusions

The dual-beam, fringe mode LDA has been investigated with particular
emphasis on turbulence measurements. The theory of residence-time weighted
burst-type LDA signal and data processing has been presented and formulas
for mean and mean-square velocity, correlation function and spectrum have been
derived. It has been shown that a weighting factor equal to the measured
residence-time applied to each measured velocity data point completely
removes the so-called velocity bias not only in mean and mean-square meas-
urements, but also in measurements of autocorrelation function and spectrum.
Furthermore it has been shown that the particular methods used to form the
spectrum result in the cancellation or the elimination of various noise
sources such as ambiguity noise, gradient noise and added white noise,
which can otherwise be a problem in LDA turbulence measurements.

The residence-time weighting and two other methods of forming statis-
tical averages, the one-dimensional correction and the straight arithmetic
averaging, were compared to LDA-tracker and to hot-wire measurements.

The measurements were carried out on a free, axisymmetric jet in air, and
the LDA-counter measurements were made with a burst counter directly inter-
faced to a mini-computer. Measurements were made of mean and mean-square
velocity for axial and transverse scans of the jet, and the relative diff-
erences were displayed in the figures. The results showed that residence-
time weighting is necessary for turbulence measurements beyond 10-20 pct.
intensity. The effect of frequency shift and angular effects are such

that the one dimensional correction is best when no frequency shift is
used. In this case the one-dimensional correction gives only minor

(< 2 pct.) errors up to 15 pct. turbulence.

Two methods of implementing the spectral measurements from the randomly



sampled LDA data were carried out. The first is analogous to the Blackman-
Tukey method, in which the spectrum is formed as a cosine transform of the
autocovariance function. The other is based on a direct transform analogous
to the classical periodogram. Measurements of the velocity spectrum of the
jet were performed by both methods. The effect on the autocorrelation
function of the various weighting methods was illustrated, and the LDA
spectra were compared to hot-wire spectra measured simultaneously or taken
from previous publications.

The spectrum measurements showed that the burst-type counter LDA is
able to measure spectra with a relatively Tow noise level and dynamic range
approaching that of hot-wire spectra. However, the LDA spectrum is still
disturbed by noise sources at the high frequency end. This noise may be
reduced by a finer resolution of the velocity data, and by more efficient
computing and data processing methods. The residence time weighted LDA
spectra have the advantage of measuring a single velocity component and
allowing measurements in highly turbulent flow.

In a separate chapfer, the effect of LDA-tracker drop-out and the
sample-and-hold character of the counter analog output was investigated.

An analysis of the drop-out effect was presented and compared to results
of both LDA and hot-wire spectral measurements in the jet.

The results of the present work confirm the importance of the burst-
type LDA in turbulence measurements. It would appear that the burst-type
LDA has the potential of providing interesting results from measurements
in highly turbu]gnt flows to complement previous hot-wire measurements as
well as provide results in cases where measurements have so far been im-
practical or impossible. Although more turbulence data from counter-LDA

measurements are beginning to appear, some of the unique properties of the



burst-type LDA still remain largely unexploited: the ability to apply the
residence time correction in highly turbulent flow, the interpretation of
the uncorrected (arithmetic) averaging as a mass flow weighted average,

and the unique capability of measuring only the seeded component of a mixing
or reacting flow. These topics present challenging opportunities for

further research with the burst-type LDA.



Appendix A
Measurning Volume Cross Section

Consider the ellipsoidal volume figure Al with half axes a,b and c:
SN SR | (A.1)
a> b? ¢?

The distance between fringes is & and the number of fringes within
2a 1is Nf = 2a/6. We allow a frequency difference fs between the laser
beams, which corresponds to a motion of the fringe planes along with
Q-axis with velocity Ug = -fs-s.

We define:

Ne/Nf (A.2)

o)
11

and

R uf/ |ul (A.3)

where Ne is the number of zero-crossings needed by the electronics and
R is the ratio of the fringe velocity to the magnitude of the instant-
aneous velocity vector.

Assuming a constant flow velocity u = (u,v,w) across the measuring

volume, the particle trajectory may be described by:

e=(x,Y ,z) = (x0+ut,y0+vt,zo+wt) (A.4)

P’ p’p

The arithmetic is simplified by a change of coordinates:

= U =V =W
a = a' B b' Y C (A-S)

and X y z

=_0 =9 =0
EO a’ no b’ CO C (A~6)

whereby the ellipse is transformed to a sphere.



Figure A1 The measuring volume projected onto the three coordinate
planes o = 20°.



The intersection points between the particle trajectory and the

sphere 1is given by:

(at+g )2 + (Btin )2 + (yt+g )2 = 1 (A.7)
or

At +Bt+C=0 (A.8)
with

A= a2+ g2 + 42 "~ (A.9)

B = 2(a£o+BnO+YEO) (A.10)

_ 2,2 2
C = go+n*z -1 (A.11)

The instants in time at which the particle enters and leaves the

volume is given by:

2
-B B-4AC
t = —_'i./ (A.]Z)
2A 4A2
and the time spent in the volume (the residence time) by:
B2-4AC
at = /222 (A.13)
A

The number of times a particle crosses a fringe in the volume, the
number of zero-crossings of the Doppler burst, is then:

i (u-uf)At

;S T3 (A.14)

The condition for a measurement is:
u_u_r

NZ = T_At > Ne (A.15)

or

U-Uf
sobt > Q (A.16)




or

2 2n2
B-ac-p2 3L g (A.17)

4 (u-ug)

Inserting A, B and C we get an inequality expressing the initial

positions Eg> T and 2o which would lead to a measurement. The inter-

)
section of the trajectories forming the boundary (expressed by the

equality in A.17) with the (n,z)-plane is an ellipse:

2 2 ir -
Clno + czgo +C3nogo + CL+ 0 (A.18)
with \
c - 0L2 Y2
1
C =02+ g2 (A,19)
2
S
C = -2py
3
and
a2Q2
C = (a2 + g2 + y2)2 -(a? + 82 + y2)
L (u_uf)z |

A rotation removes the product term:

) ] .
0 - in
n n. COS ¢0 o S ¢Q

o o
(A.20)

1 > ]
in +
o = Mg Sin ¢, + z  cos ¢

1]

z

Inserting into (A.18), dividing by cos? ¢, and rearranging terms

leads to the following condition for the removal of the product term:

tan ?0 = {_;;s (A.21)

and the following expression for the ellipse in the new coordinates:

' 2 |2 2 = )
ng/b2 + £2°/c2 =1 (A.22)



with

b2 = C /a2 and ¢2 = C /(a2 + B2 + y2)
0 I 0 L

The area A' of this ellipse is:

C
N

Al = 1 ———r (A
a/d2+82+y2

or in the original coordinates:

2 2 2 202 2 2 2
hewabe L/ w2 W w)
U a2 p2

c? (u-u.)? a2 b2 2

The cross section S is just the projection of this area normal

u o,
S==-xA=2lA (A
|uf |u
or
2
|yl
S=mab c R(1-a2Q2R%( Y ) (A
u-u,
with
1 u? , v2 | w?
R = V= +X + 2 A.
W et (

The cross section relative to the geometrical cross section in

(y,z)-plane is:

2 22 ‘EJ

o= a R(]-a Q R (U—:—U—;)z) (A

.23)

to u:

.25)

.26)

27)

the

.28)



Appendix B
Moments of the Particle Distrnibution Function (g,(x,%)

George and Lumley (1973) compute the moments of the particle
distribution function 91(5), which expresses the static particle dis-
tribution at time t. The present problem differs from that of George
and Lumley only by: 1) The probability of two or more particles in the
measuring volume at any one time is negligible, and 2) 94 is a function
of time as well as of spatial coordinate X. In the general case, i.e.
for any particle concentration and volume size, we may use the derivation
of George and Lumiey, if we note that the time dependence of 9 enters
only through x, since the variations of 9y with time reflects the motion

of the particle. Thus

9 (x,t) = g (x(t)), (B.1)
where
t
x(t) =a+ f_li(t)dt (B.2)
0

a is the initial position of the particle, and capital letters denote
Lagrangian quantities, i.e. the coordinates of individual particles.
Expressing 9 in this form, we may directly take over the results

of George and Lumley (1973):

g](ﬁtt)) =y (B.3)

and
91 (x(t)) gy (x' (")) = w2 + u s(x(t) - x'(t")) (B.4)

Introducing £

(6) + |yt (8.5)

>
—_
-+
—

I

[



we get:
tl

GG T = w2 + wox(6)x'(6)- | u(t)at] (8.6)
t

If we can make Taylor's hypothesis ("frozen turbulence"), the
second moment can be simplified. We can replace U(t) by the Eulerian
velocity at location x, u(x,t), and since Taylor's hypothesis entails
U << u, we may write for short times:

t' t'
Jg(t)dt ¥ J u(x',t)dt ¥ T(x): (t'-t) (8.7)

Thus

ST G T0LET = w2+ u[x(t) - x'(0) - T+ (+'-1)]  (8:8)
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