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ABSTRACT

This work presents the results of a study of the
turbulent axisymmetric jet which was initiated to resolve
the unanswered questions first introduced by Baker (1980).
Data taken with a laser Doppler anemometer wusing the
burst-processor technique is reported and has been found to
be in excellent agreement with the theoretical predictions
of Seif (1981). Based upon a simple model for the back flow
of a jet in a finite environment, it is concluded that the
major source of error in previous experiments has been the
flow facility itself and not primarily the measurement
technique utilized.

The jet data is used to gain further insight into the
appropriate methods for correctly utilizing the
burst-frocessor. Following a brief description of hardware
design and construction, the major difficulties imn the
implementation of counter measurements are reviewed. The
concept of software vefification is then introduced. The
probability distribution function of the particle path
length through the measuring volume is derived and its
impact on verification techniques are explored. Procedures
are described to give a rough guide for judging signal
quality and particle seeding characteristics. Finally, a
methodology is suggested for the programming of data

acquistion routines.
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Chapter 1: Introduction

This dissertation addresses two different areas of
interest in the subject of experimental fluid mechanics.
Its primary objective originated from the Ph.D.
dissertation of C. Bruce Baker (1980). Baker’'s study of a
numerical model for the heated axisymmetric turbulent jet
revealed a serious error in previously accepted experimental
data describing the mean velocity field. In Seif'’s (1981)
numerical computations, the coefficients of the models for
the turbulent stresses were selected from only grid
turbulence and hom&geneous strain experiments. His
application of these models to the axisymmetrié jet also
showed significant deviation from current availaﬁle
measurements. In a collaborative effort, George, Seif and
Baker (1982) explofed the possible <causes for the
measurement errors. At the time this experimental project
began, it was believed that the problems could be attributed
to inherent difficulties in constant temperature anemometry
(CTA or hot-wire) techniques in highly turbulent flows.
Since laser Doppler anemometry (LDA) methods are not subject
to the same limitations, they were selected to measure the
jet.

The second subject of interest involves the <correct
application of the burst-processor as a measuring device in

turbulent flows. The use of LDA equipment is increasing



steadily since this is the only hardware capable of taking
measurements in many critical areas of research.
Combustion, rotating machinery, turbine and intermnal
combustion engine studies are major areas of interest where
only the LDA <can be of wuse for velocity measurements.
Although LDA hardware is a very powerful and versatile tool,
it is also a tool which can be difficult to successfully
implement. The purpose of the second part of this
dissertation is to present possible indicators by which an
experimenter may simply demonstrate that his measurement
program has been correctly executed. It must be noted that
the difficulties in feconstructing the sources of error in
the original jet experiments stimulated the motivation for
this second half of the dissertation,

The first part of the dissertation deals with the
problem of the axisymmetric turbulent jet. The second
chapter introduces the mathematics and physics of the jet
problem. It essentially provides the framework on which the
data will be analyzed. Although the reader is undoubtedly
familiar with this development, it is suggested that he pay
close attention to this chapter. After a brief review of
the literature, the basic equations for the jet are then
reviewed in section 2.2. Next, implications of mass and
momentum tra;sport across a profile are discussed. In order
to more accurately determine the momentum constraint, second

order terms have been retained as shown in section 2.4.



These terms are normally mneglected in most works addressing
the subject, but have been shown by George et al. (1982) to
be significant. The concept of an enclosed jet is also
introduced here and the effect of a finite environment is
explored. It is the finite environment which is believed to
be the leading cause for the failure of the experimental
measurements of other authors to satisfy the momentum
constraint.

The third chapter documents the details of the jet
facility. In addition, it contains specifications on the
LDA equipment. Details on the computer system used for data
collection and processing are also given here.

The fourth and last chapter of part I presents and
analyzes implications of the LDA measurements. First and
second moments are used to examine the momentum constraint
and the difference between jets in finite or in infinite
environments. Leading error sources in the measurement
program are then identified. The study of the turbulent jet
is concluded with a summary of what has been learmed and
what remains to be learned. A future experimental program

is also suggested.



PART I: THE JET INVESTIGATION



Chapter 2: Implications of the Equations of Motion
for the Turbulent Axisymmetric Jet

Section 2.1: Review of Field and Deficiencies of Current
Data

Introductory background for anyone interested in the
turbulent jet can be found in the fluid dynamic texts of
Hinze (1975), Tennekes and Lumley (1972), and Schlichting
(1968) . Early investigations in the axisymmetric jet using
pitot and total head tubes include the work of BReichart
(1951), Corrsin (1943), Corrsin and Uberoi (1949, 1951),
Hinze and van der Hegge Zijnem (1949), and Corrsin and
Kistler (1954). The most comprehensive investigation
published to date is the 1969 work of Wygnanski and Fiedler.
The measurements taken using a linearized constant
temperature hot-wire anemometer consisted of the following
data: mean velocities, Reynold’'s stresses, third and fourth
moments of the velocity field, correlations, time and length
scales, frequency spectra and convection velocities.
Following publication of this work, subsequent literature
has accepted these results., Within the past decade, reports
concerning the jet have focused in different areas,
Concerned with either higher—order numerical modeling or
large~scale structures, few investigators have bothered to
seriously question the basic flow field measurements.

Fortun‘&ely. researchers perfecting new measurement
techniques have turn&& . to the jet to ’contrast the

performances of CTA and or LDA methods. From these sources,



more information can be obtained concerning the flow field.
Rodi (1975) investigated a new calibration technique for hot
wires in the jet. Abbiss et al. (1976) used a photon
correlator in combination with a Doppler difference optical
layout. Reed's work (1977) also involved the use of LDA
instrumentation in the jet. Rodi’s work is the only printed
material of experimental data which has challenged the
results of Wygnanski and Fiedler. The 1lack of criticism
present in the 1literature indicates the data of Wygnanski
and Fiedler has been accepted by the scientific community.
Curiously enough, the most serious deficiency imn the
current experimental data was highlighted in a theoretical
work. Baker's thesis (1980) studied the evolution of a hot
axisymmetric jet into a turbulent plume. Using the eddy
viscosity hypothesis, similarity scaling, and perturbation
and asymptotic techniques, he presented a unified theory for
the buoyant jet. During the course of his investigation, it
was discovered that the data of Wygnanski and Fiedler failed
to account for approximately 40% of the momentum, The data
of Rodi was missing 16% of the source momentum. The work of
Seif (1981) in two-equation modeling and Reynolds stress
modeling produced numerical results that throws further
doubts on existing measurements, In an unpublished paper
critically examining available data, George, Seif, and Baker
(1982) sought to identify possible sources of error. Hot

wire <ocalibration errors and non-uniform exit profiles are




facility dependent, therefore these two problems were not
considered the ©primary cause of error since most of the
existing data from different sites is in close agreement.
The authors also examined the development of the flow as it
leaves the jet exit. Analysis of measurements of Tutu and
Chevray (1977), Khwaja (1980), and Nee (1983) reveal that in
this region at least 97% of the equivalent top—hat momentum
was conserved. The error was finally attributed to
calibration difficulties and to nonlinear <contamination by
the high turbulent intensities of the flow. |

To summarize, the data which has been accepted to date
is seriously in error. In any record of experimental jet
data, it should be clearly demonstrated that the equations
of motion are satisfied and that momentum is comnserved. The
failure to verify the measurements in this manner has been a
key factor in the failure to detect the inconsistency of the
data. In section 2.5 of this chapter, a development is
presented which <clearly indicates the problem can in large

part be attributed to flow facility related difficulties.

Section 2.2: Governing Equations for the Turbulent Jet
in an Infinite Environment

The axisymmetric turbulent jet is a classic flow
problem, displaying all the basic physical behavior patterns
of turbulent flow. It is distinquished by the simple form

to which the equations of motion reduce and the ease with



which it may be created in the laboratory. Figure 2.1.1
defines the coordinate system and nomenclature adopted in
this paper. Far downstream of the jet exit, the flow can be
treated as a point source of momentum. The location of the
jdeal source is defined as the virtual origin and the axial
coordinate with respect to this point is defined as x. In
general, the virtual origin and the physical location of the
jet exit are mnot the same, the distance from the jet exit
being denoted by x'. The distance between the two origins
is x . This quantity is positive if the virtual origin is
downstream of the jet exit., The radial coordinate is r.
Assuming that there is mno swirl, the derivatives of mean
quantities with respect to the azimuithal coordinate and the
mean aximuthal velocity are zero. For convenience the jet
is placed in a quiescent medium so that the pressure
gradient and velocity approach zero as r approaches
infinity. We consider only isothermal Newtonian fluids in
velocity ranges low enough so that the fluid may Dbe
considered inmcompressible.

The derivation of the equations governing this flow is
reviewed below. First, the Reynolds decomposition is
performed on the Navier—Stokes equations. The result for

the continuity equation is

= 0 (2.2.1)

For high Reynolds number, the viscous terms in the
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remaining equations of motiom <can be ignored. The axial

component of the momentum equation is
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The viscous terms in the radial equation are also
ignored. This equation is further simplified by an order of

magnitude analysis., Lower order terms are neglected to give

_ 2 2
0o ="18P _ 1 3(zv7) _ wZ (2.2.3)
p Or r dr r

This equation is now integrated to obtain an expression
for the pressure term, Substituting this relation into the

mean momentum equation for the axial component produces

W@, 30 _ 130 L 8. 2 _ 2, L0 T P vh)
x or r dr ax dx r r'!
(2.2.4)

This equation is normally further reduced by dropping
the axial gradients of the turbulent stresses which can be
shown to be of second order. This simpler form is the

equation most commonly found in literature.

Ugg + vgy = ~1 3(zuy) (2.2.5)
ax ér r dr

The equations of motion have been reduced to a simple
form and only the ©boundary conditions remain to be

specified. They are as follows



U(x,r) =0 as r approaches =
uv(x,r) = 0 at r=0 and as r approaches « (2.2.6)
Vix,r) =0 at r=0 and as r approaches «

The equation set requires one additional boundary

condition. The <continuity equation and the axial momentum
equation may be combined into an integral comstraint: this
constraint requires the momentum swept past any
cross—section to be constant for all axial positions. The

final boundary «condition 4is evaluated at the jet exit to

yield®
_ 2
Mo = 2x Z U°r dr (2.2.,7)

The constant term M is called the kinematic
momentum, Since momentum is conserved, this boundary
condition provides an important quantitative <check for
measured velocity values. The importance of this boundary
condition has been ignored by most experimenters - its
impact will be discussed in detail in the following section
and the next chapter. Recalling that we have taken boundary
layer effects and turbulent intensities to be negligible, we
use a top hat profile for the mean velocity profile. The
subscript 'o’ denotes a boundary condition at the jet exit.
M, = (x02/4)v% = 5 v? (2.2.8)

(] o o0

The turbulent jet is easily scaled wusing dimensional

D —— . ——

* A derivation of the momentum integral is presented in
section 2.4, The form shown here is valid only if the
contributions of the fluctuating quantities are mnegligible,
as is the case at the exit,



analysis. The only two length scales present are x and r.
The only mnon-zero boundary condition (equation 2.2.7)
provides the remaining scale, the kinematic momentum, M |

Thus, on dimensional grounds alone, we may expect the

following functional form for the velocity distribution.

M1/z
U= -i £(n) for n = r/x
(2.2.9)
— M
uv = -= s(n)
%2
The rate of decay of the centerline velocity, Um’ is

determined by setting n equal to zero. This relationship is
more commonly found expressed in terms of the exit velocity.

The centerline decay rate has the following functional forms

B, u/2
Up = ==~ for By = £(n=0)
or
U ’
o _1 [ _Ze1 _ 1 (x/D)
m BplD pl By (2.2.10)
where BU = (1(/4)1/2 BM for top hat exit profile

The equations of motion are further simplified when
mapping the system of equations into similarity variables.
The continuity equation can be used to determine the radial

velocity as a function of the axial velocity.

yl/2 yl/2
o 0 1
V= - k(q) = -—= (nf - = ?nf dyn) (2.2.11)
x x no

The result is an ordinary differential equation



relating the mean axial velocity to the Reynold’s stress:

’
£2 4 ﬁ an dn = (ns)’ (2.2.12)

It can be easily shown that the ©boundary conditions

reduce to
f(q) =0 as 1 approaches «

£'(n)=0 at n = 0 (2.2.13)

-]
2n £f2(n) ndn =1

Following the first theoretical treatment by Tollmien,
investigators have applied a wide variety of closure schemes
to the jet. The success of =zero—equation models may be
attributed to the fact that the jet is not a multiple scale
flow problem, The relation between the local stress and the
local rate of strain can be shown to be a dimensional
necessity.* For such cases, a simple proportionality
relationship between turbulent 'stress’ and mean velocity
gradient can be assumed. The constant of proportiomality is

the eddy viscosity, Bo and is defined as follows

== 3y
—p uv = ue .5; (2.2.14)

The substitution of an eddy viscosity model into the

e et oy et . e i s e e

* Hinze's text pro#ides an excellent summary of these

models. That of Tennekes and Lumley gives physical
interpretation of when we may expect them to be applicable.
Schlichting provides a short, <concise account of the

derivation of the polynomial profile.



similarity equation provides a guide in choosing the
functional form fitted to the measured velocity profiles.

An exact solution produces a polynomial profile.*

(2.2.15)

On a purely empirical basis, a Gaussian profile may be
selected as a solution for the mean axial velocity. The
mean velocity profile might thus be approximated using

-AGnZ
f(n)

"
o
®

(2.2.16)

k(n)

0

1

|
~~

=

[
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Section 2.3: Volume Entrainment and Momentum Flux
A full understanding of the physics of the turbulent

jet is possible only if all the implications of the volume
and momentum flux are understood. The equations of motion
require the momentum flux at any cross—section to be
constant. For a similarity solution to exist, it is easily
shown that the volume flux must grow limearly with x, that
is

©

m = M%/Zx J £(n) 2nn dn
o
m = K Milzx _ (2.3.1)

where



©
K =1/ £(n) 2nq dn
o

As a result of the above expression for the volume
flux, it is clear that the volume flux at the origin must be
zero! The mathematical model for the source of the
turbulent jet is therefore a point source of momentum.

In reality, there is always a finite volume flux at the
source. It is reasonable to expect that a turbulent jet
agssumes the properties of its theoretical idealization when
the volume of entrained air is much greater than the initial

volume flux at the origin. For the circular jet with a top

hat velocity exit profile, the volume flux at the origin is

= 2 =
mO = UoﬂD /4 MO/UO (2-302)

From equation 2,.,3.,1, the ratio of the volume flux at x

to the source volume flux can be determined.

m K x
_— = .. 2= = (2.3.3)
m Milz n D

Seif’s values of Bm = 6.5 and n1/2=0.095 are used
with a Gaussian fit to evaluate K. The above relation

becomes

B . 0.17 %
m

o

(2.3.4)

Viewed in this manner, it 4is not suprising that

Wygnanski and Fiedler reported that the turbulent



intensities did not attain similarity until an x/D value of
seventy. At this axial 1location, the entrained flu;d is
only twelve times greater than the volume flux at the
source.

What non-dimensional parameter should be used to scale
the downstream coordinate, x, in those cases where the jet
does not have either a uniform velocity profile or a
noncircular exit area? The answer again lies with the exit
volume and momentum flux. Using these ©parameters, an

effective length scale D, can be defined as

= 1/2
Dy = m, /M,
(2.3.5)
xr . .0
D, m,

The correct downstream scaling can be viewed as the
ratio of the entrained volume flux to the original volume
flux at the jet source. For the <c¢lassical <case of the
circular jet with a uniform velocity profile, the scaling
value is proportional to the exit diameter of the jet.

D, = (x/8)/2 D = 1.57D (2.3.6)

Unfortunately, existing measurements have not been
scaled wusing this argument. To avoid confusion with other
authors, fhis work will continue to represent the
nondimensional axial coordinate as x/D.

Accurate determination of both volume entrainment and

momentum flux are critical for the study of the axisymmetric



jet., The volume flux is important for two reasons. First,
it 1is very sensitive to the profile width and shape.
Because of this, it is sensitive to how the Reynolds stress
is modeled. The second reason involves practical purposes
where it is a key parameter in determining the rate at which
the jet is mixing with the ambiemt environment. The
importance of the momentum flux has been discussed in the
preceding chapter - it is a crucial boundary condition by
which the accuracy of experimental data may be judged.

Recall the two functional forms fitted to the mean
axial velocity profile (equations 2.2.14 and 2.2.15). 1In
both the polynomial and Gaussian forms, the height of the
profile is set by the constant Bm while the width of the
profile is determined by A, The jet half-width (nllz) is
defined as that point where the mean axial velocity is half
the centerline value, i.e.

fln=n,,,) = 1/2 (2.3.7)

Because this quantity is easy to measure and provides a
convenient reference, it can be used to quickly establish

the value of the constants AP and AG’ given the measured

half width. Thus

2
Ag = (91533) (2.3.84)
N1/2
while
0.643 2
Ap = (===== ) (2.3.8B)
N1/2

For convenience in switching from one functional form



to another, the above two equations are are used to find
AP as a function of AG' Eliminating the half-width
gives

AP = (0.598) AG or AG = (1.67) Ap (2.3.9)

A comparison of the fit of these functions to the mean
profile is depicted im Figure 2.3.1. The experimental data
points are a product of this investigation and have an axial
positon corresponding to an x/D equal to 67 (mqre will be
said about these results in chapter three). The polynomial
and exponential fits are evaluated using Seif’s predicted
value for the half-width of 0.095. Of the two forms, the
polynomial fits best near the center, but does not roll off
quickly enough with increasing radius. The Gaussian curve
is slightly high near the <center, but gives much better
agreement at the edges of the velocity profile.

The selection of a function to fit the profile becomes
crucial if that function is used to evaluate the momentum
flux or entrainment. There are two basic difficulties with
such a procedure. First, both quantities are integrated, so
any nonrandom error is summed. Second and more importantly,
when evaluating the transport of any quantity across a
profile, errors at the outer edge <c¢arry am increased
significance because of the 2nr associated with the
integral.

Consider first the momentum flux (equation 2.2.13).

Assume the constant Bm is determined from the centerline



FIGURE 2.3.1

COMPARISON OF POLYNOMIAL AND GAUSSIAN FIT
MEAN AXIAL VELOCITY PROFILE
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velocity decay rate. As before, the half-width is wused to
determine Ap and Ag. The integral may be expressed in
terms of B and A or B, and the jet half-width. The
polynomial and Gaussian functions are substituted into this

equation to obtain

[+
2n [ fz(n) n‘dn = 1 momentum conservation
o
1.05 Bi )
= ——z;——— = 2,53 (anllz) poly.
1.57 B2
= ——---% = 2,26 (B )2 Gauss
Ag ) m"1/2 .
(2.3.10)
The polynomial prediction for the momentum flux

exceedes the Gaussian value by 12%. The predominate source
of this disparity lies in the differing behavior of the
functions at the outer edge. This is clearly illustrated in
Figure 2.3.2 where the integrand of equation (2.3.10) is
plotted. The values of the integrand due to the Gaussian
and polynomial fits begin to diverge at an n of 0.15. For
both functions, the integrand is effectively zero for any
values of n greater than 0.25. It is also interesting to
note that even if the profile could be fitted exactly by
either of these functions, any error in the determination of
the constants Bm or my,4 would double when evaluating

the momentum flux. For example, if these two constants were

determined to an accuracy of 2%, the uncertainty in the

momentum integral would be 4%.



FIGURE 2.3.2

COMPARISON OF POLYNOMIAL AND GAUSSIAN FIT
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The volume flux and entrainment prove to be more
sensitive to the profile shape than the momentum flux.
Again, the polynomial and Gaussian functions are fitted into

the integral

nB
m 2 s
m = (_K;) Mi/ x = (7.60 an%/z) Milzx polynomial
nB
= (_Ki) ul/2; = (4.53 BynZ,,) ul/2x Gaussian

(2.3.11)
The volume flux computed using a polynomial profile is
68% greater than that due to a Gaussian form! As in the
case for the momentum flux, this behavior is a result of the
rate of decay of the profiles at large n. Figure 2.3.3
clearly shows a significant divergence in the values of the
integrand for n greater thanm 0.10. More importantly, note
that a substantial portion of the integral using a
polynomial fit is obtained from values of n beyond 0.25.
Examination of the intermittency factor for the turbulent
jet (see Figure 2.3.4) and the mean velocity profile (Figure
2.3.1) indicates that the region of activity for the jet is
within a value of n less than 0.25 and any contribution past
this radius to the net momentum or volume flux is
necessarily small. Clearly, the polynomial curve cannot be
used to estimate the volume flux,
It is possible to make the following conclusions.
First, either function satisfactorily traces the mean

profile. Up to an n of 0.15, there is little noticeable
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difference in the two forms. Past this point, the Gaussian
underestimates the profile while the polynomial overshoots
the mean velocity. Secondly, both the polynomial and
Gaussian functions prove of equal utility in evaluating the
momentum constraint since they may be viewed as upper and
lower limits, respectively. Finally, only the Gaussian
function is useful for estimating the volume flux, even then
it probably should be viewed as a lower 1limit. The
polynomial fit badly overestimates the volume flux and under
no circumstances should be considered as a reliable estimate
for the entrainment.

To make a reliable estimation of the entrainment, the
profile shape at the outer edges must be accurately
determined. Unfortunately, this is extremely difficult to
do when relying on CTA techniques. Figure 2.3.4 shows the
relative turbulent intensities according to the data of
Vygnanski and Fiedler. Levels above 50% are reached at the
half-width of the jet. Because of cross—~flow or
reverse—flow errors, rectification, prong effects, etc., the
profile measurements taken by CTA systems are highly suspect
near the outer edges.* LDA measurements are not subject to
such error and may be relied upon to provide greater

accuracy at the outer edges of the flow. However, both

* For & more detailed discussion of the problems due to CTA
measurements, see Beuther (1980).



methods are handicapped by the long averaging times needed
to accurately compute averages at the outer edges of the
flow field (see section 8.1).

At this point it is convenient to pause and review the
definition of the entrainment <coefficient,a. Integral
methods used by a number of authors rely on an accurate
determination of this value. Their approach ©begins by
multiplying the equations of motion by 2xr and integrating
from zero to infinity. The result for the momentum equation

is the familiar requirement of momentum conservation,*®*

d -]
iz / U2 2xr dr = © (2.3.12)
[o]

The final form for the continuity equation after the
integration has been carried out has a simple physical
interpretation, It equates the volume of fluid entrained
per unit length of the jet as a result of the inward
directed radial velocity, V, to the rate of change of the
volume flux in the axial direction, thus

E = lim (-2ncV) = 8- 22 /U ¢ dr (2.3.13)
r—gﬂ dx )

Since the volume flux scales linearly with x (see
equation 2.3.11) the entrainment is constant. A local
length, b, and velocity scale, U‘, can be defined using an

equivalent {op hat profile and by requiring this profile to

% See footnote in section 2.2



have the same volume and kinematic momentum flux as the jet.

Thus

b2y 2 [T rar

*

(2.3.14)
b2u2

@
2£U2rdr

The equation set is closed by assuming the entrainment
is determined exclusively by these local parmeters. The
constant relating the entrainment to these flow scales is
the entrainment coefficient,a, defined from

E = 2abU, (2.3.15)

Using the polynomial and Gaussian functions, values for
b, U,, a and E can be computed as a function of M, By
and A. The results are listed in Table 2.3.1. Although the
actual magnitudes of b and U, differ according to the
selected functiom, this feature is not of‘ critical
importance since the exact shape of the top hat profile has
little physical meaning. It should be noted that the length
scale b is directly proportional to x and the velocity scale
U, is inversely proportional to x. This ‘behavior is in
agreement with the linear spreading of the jet and the 1/x
dependence of the centerline velocity. It is the value of
the entrainment and entrainment <coefficient that is of
crucial impo;tance here. For a quantitative comparison of

the entrainment and entrainment coefficient, the

relationship between Ap and Ag (see equation 2.3.9) must
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ENTRAINMENT PARAMETERS FOR GAUSSIAN AND POLYNOMIAL FUNCTIONS

#t‘ttt.‘t#.#.tt‘t#.t.t‘.‘.#‘tt.t#‘##‘tt‘tt*t.

. * *

. POLYNOMIAL . GAUSSIAN .

* * *
T L T T T R R PR RS R I R R R L L
. * . .
. b * 1/2 . 1/2 *
* = * (3/A) . (2/A,) *
. x * P P G .
* * . *
. U,x . * *
. —ee . B, /3 . B,/2 .
. M1/2 . M . M .
. ° . . *
* B * * .
. B . nB. /A . nB. /A .
: G172 " u/Ap " M/ Ag "
* o * * .
* . * *
* * . /2 *

n

* a * = (3/A,)1/2 * n (2/A) *
. . 2 P * G *
* * * *
et T T R R T T L L A S A A R bl

When both functional forms intersect at the half width,
the constant coefficients AP and AG may be related using

AP = (0.598) AG



be employed. The values of the entrainment and entrainment
coefficient are just as semnsitive to the functions fit at
the outer edge of the flow as is the volume flux., The same
conclusions concerning the use of these functions in
evaluating the volume flux applies to their wuse in
evaluating the entrainment. It is therefore suggested that
the Gaussian profile be used in computing the lower limit of
the entrainment. Further discussions concerning

experimental values for this estimate can be found in

section 4.1.

Section 2.4: Derivation of Momentum Constraint

The derivation for the equations of motion for the
turbulent jet has already been outlined in sectiom 2.2. If
the reader desires more detail, he may reference Tennekes
and Lumley (1972). The momentum constraint as présented in
most works begins with the simplified equation set as
represented by equations (2.2.1) and (2.2.5). The
simplified form of the x-momentum equation is then
multiplied by 2nr dr and integrated across the profile. In
general, it can not be assumed that if the contriﬁution of
an individual term to the differential equations of motion
is negligible over most of the flow, them the contribution
of that te;m integrated across the flow is also negligible.
Because of this, the derivation for the momentum

conservation <constraint is reexamimed in this section. It



will be shown that the neglected terms account for up to
eight percent of the source momentum,

The steady state (3/dt = 0) Navier—Stokes equations in
cylindrical coordinates for incompressible and isothermal
turbulent flow are well known. For the axisymmetric jet
with no swirl, the mean azimuthal component (W) and the
turbulent shear stress uw and wv are all zero,. For these

conditions, the continuity and momentum equations reduce to

19 au
= ==(zV) + == =0
 ar *V) * ok
_ 22 _-
w80 , 8 _ -1 3P | pp2;uy _ 887 13 oo
or p 9x p ax ar
vV 4 vAY -1 3R L mp2pyy - ¥ ) _ 18 (2) _ 25y + ¥
dx or p or p 1,2 r Or ax r
where
2 2
p2[ ] = 2= 12 @ (2.4.1)
arz r or axz

The first step is to solve for the pressure field by
multiplying the V momentum equation by dr and then

integrating from some reference r to infinity. The

functions Rl’ R2 and R3 are defined as

R, = / Bop2tvl - ¥ ) ar
r P r?

® 8V av
R, = [ (Uz= + V==) dr (2.4.2)
r 0x Jor



-(uv) dr
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The pressure field is then

_2———-—= R R+7‘wd—;la 2 (243)
p 1 2 3 r T r r T Or rv e

The last term on the right hand side is integrated by

parts to give

Poo - P Ty * W2 - Vv
______ = R - R -— R + v2 + f _——— — dr (2.4 04)
o 1 2 3 T
r

The pressure gradient is determined by differentiating

with respect to x. Since P_ is constant

av2 9

-1 9P d vh - w

- == = ~=(R —_ - —— — o= ————— — . .

S ?x ax( 1 R, R3) + 33 33 f - dr (2.4.5)
This expression for the pressure gradient is

sub;tituted into the U momentum equation, The U momentum
equation is multiplied by r dr and integrated from zero to
infigity. With the aid of the continuity equation, the
result can be written as follows

S-S (W2 + w2 - v2)r ar + [ 2 quv) dr + J 3-(:3V) dr
o N ar ar

0x °
i ii iii
© © —; ‘"'—-2- ©
a -
+ L 5= [ I--22F 4t rodr - S g-(R1 - Ry - Rg + Ry) r dr = 0
° ox r T o 9x
iv v
2
where R4 = u/p D [U] (2-4.6)



Term ii integrates to zero since the mean radial
velocity is zero at the limits of integration., Term iii
also integrates to zero since the Reynolds stress .is also
zero at both the centerline and at infinity. Using

integration by parts, term iv can be represented as

2 © 2 _ © © 2 2 _ L2

(iv) = £ Pzt ozt A n i) g,
2 . T ° o 2 b 4
-2 _ g2

= [ I--=-% ¢ oar (2.4.7)

° 2

The momentum integral becomes

. — .4
%; / (U2 + u? ix-—%—!—l) r dr
o
a (-]
=31 J/ (R; - Ry, - Ry + Ry) r dr | (2.4.8)

Up to this point, all the original terms in the
equations of motion have been retained. The convection and
viscous terms arising from integration of the V-momentum
equation are contained on the right hand side. The viscous
term from the U-momentum equation is also on this side. It
will be shown that these terms can be ignored and that the
momentum constraint is governed only by those terms on the
left hand side. The influence of the pressure field on the
momentum constraint is represented by the radisal and
azimuthal normal Reynolds stresses since these are the only

terms remaining from the integration of the V-momentum



equation.

An order of magnitude analysis is now <carried out.
Choose 8 as a characteristic scale for the width of the jet
and L as the scale for streamwise variations. The jet
half-width can by used as the.ratio of these two length
scales so that 8/L ~ 0.1. The 1local centerline velocity
Um is wused to scale the mean axial velocity. From
continuity, the radial velocity scale is Ums/L. The value
of the turbulent intemnsity at the centerline can be used to
determine the magnitude of the 1local turbulence velocity

scale, u, that is n/Um = 0.25. The source momentum flux

is approximated as Mo ~ (Um5)2.

First, consider the two viscous stress terms. Both of
these terms involve the Laplacian operator, Dz[ ]l as given
by the last equation in equations (2.4.1). The radial
derivative term is larger in magnitude by order (L/8)2 so
only it will be considered. The ratio of the integration of

Rl to the source momentum flux is

U 3
1 7 1 g 'm 2 plp 4 5
= R, r dr = === = —== §“ = === = 10" -> 10° (2.4.9)
M, o 1 ML p L UL
A similar procedure is carried out for the second

viscous term, R4. Direct integration of the radial term

shows this portion of the intggral is zero.
R, : <1 B3 52 _ BIp _ 304 oy 505 (2.4.10)
4 UmL

Since the similarity forms require the centerline
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velocity to Dbe inversely proportional to the axial length
scale, the Reynolds number is constant. Typical values of
the Reynolds number for available sets of experimental data
run from 104 to 105. It can be safely concluded that
the viscous terms can be ignored in the integrand of the
right hand side.

The off-diagonal Reynolds stress term, R3‘ is scaled

2%

) L= 0.006 (2.4.11)

R

e = (

b
Un

The estimate for the contribution due to the 'force'
exerted by the streamwise gradient of the Reynolds stress is
small enough so that it also can be safely ignored.

The final term to be examined is the convection term
from the V-momentum equation as represented»by RZ‘ An
order of magnitude analysis for this term produces

U
8 3

m
R, : E;E U, (-f-) 8% = 0.01 (2.4.12)

The radial transport terms could only hold at most a
few percent of the source momentum. It can therefore be
concluded that the contribution to the momentum constraint
by the terms on the right hand side of equation (2.4.8) is
negligible. Failure to consider these terms should at most
add only a few percent error to the estimation for the
momentum integral.

The 1left hand side of equation (2.4.8) can be
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multiplied by 2n and then integrated with respect to x to
yield the final form for the momentum integral. The

constant of integration is the kinematic momentum added at

the source.

M = f (U2 + w? - 2¥__Z X2 ) 2nr dr (2.4.13)
(]

Standard jet design attempts to acheive a top hat
profile at the exit. Published 1literature <cites =no
correction for boundary layer effects at the nozzle 1lip or
mentions any overshoot in the velocity profile., Experience
in the jet facility used im this experimental work (see
chapter 3) indicates the worst error condition in using a
top hat profile to measure the exit momentum flux would be
an underestimation of only two percent. As stated in
section 2.1, measurements have indicated that the momentum
of the top hat profile is conserved in the developing region
of the jet again with an error of around 2-3%. Considering
the difficulties in determining the integral at the outer
edge of the jet (see section 2.3) there seems to be little
point in seeking greater accuracy for this value.

¥bat is the role of the fluctuating terms on the left
hand side? First, consider only the ratio between the mean
axial velocity, U, and the normal turbulent stress, nz.
Using 25% as the estimate for the centerline turbulence
intensity, the contribution of n2 is only six percent of

the mean velocity. But figure 2.3.4 reveals that this is a




low estimate for the relative turbulence intensity increases

away from the axis. This is because the mean velocity

profile rolls—off faster with r than does uz. The effect

of the turbulence intensity on the integral using the above

scaling argument would be underestimated. Note the negative

contribution of v2 and '2

of u2 upon the integral. Based upon the available data

tends to reduce the influence

and computer models, George et al. (1982) have estimated
the combined effect of all the turbulent stress terms to be
between seven to eight percent.

The behavior of this integral has been carefuily
examined in Seif’s dissertation. Figure 2.4.1 plots the
contributions of the individual terms of the momentum
constraint for the data of Wygnanski and Fiedler and of
Rodi. The net contribution of each term is listed in Table
2.4.1. This table also lists the values according to Abbiss
et‘al. (1976) and the numerical solution of Seif (1982).
The failure of the data to conserve momentum is clearly
revealed. Wygnanski and Fiedler fail to account for 40% of
the source momentum, Rodi's CTA data and the LDA data of
Abbiss et. al. 1lack only 16% of the momentum. VWith the
exception of the pulsed wire measurements, the experiments
have all Afecorded a jet half width of n1/2=0,086.
Suprisingly, the measurements fail to agree upom the
centerline decay rate. This is wunexpected, since the

turbulent intensity is lowest along the jet axis so that it



i ad

’ KINI .IlNl N

-1 = ND ry{w! U yryq L -1 Vyyry r -1 Wy Py M{w
Reference By My | cav Axhﬁxv M, _ Acmzxva,xv My Acmimvix My AM_MZMZAMV m
o o m o m o m °

Wygnanski
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Fiedler 5.0 .540 122 .060 .064 .60
Rodi 6.0 770 7 .091] .106 .84
TABLE 2.3.1

MOMENTUM BALANCE




is this region where omne should expect the data to be
reliable. Yet it is here that the measurements have their
strongest disagreement. This matter will be discussed in
greater detail in chapter 4. At this point, it is
sufficient to state that the data does provide the evidence
to prove that the normal turbulent stress terms account for
anywhere from six to eight percent of the source momentum.,
As a result, when evaluating the validity of the jet
measurements based on the momentum constraint, the momentum
constraint as first presented in equation (2.2.7) should not
be used. The correct form of the momentum constraint is

that given by equation (2.4.13).

Section 2.5: Momentum Loss in a Confined Jet

The previous section has demonstrated that the current
measurements in the far-field region of the axisfmmetric jet
fail to conserve momentum. In this section it will ©be
hypothesized that the primary problem with existing data is
due to the physical facility. Some critical features of the
return flow must first be identified. To begin with, a
confined or enclosed jet is defined as jet in a finite
environment., For convenience in the analysis, it is assumed
that the cross—-sectional area of the room, AR' is a
constant a;d independent of x. The room cross—section is

much larger than the area swept out by the jet. The return

flow velocity, U_ is therefore much smaller in magnitude



then the velocity associated with the jet. Conservation of
mass requires the net volume flow across a cross section to
be zero. Since the volume flux increases downstream, the
return flow velocity increases with x. An unfavorable
pressure gradient must exist to drive this back flow. With
a simple flow model it is possible to demonstrate this
effect.

It will be shown that although the back flow and
adverse pressure gradient are much smaller in magnitude than
any of the physical quantities found in the turbulent jet,
their effect is not neglible. Because of the large area
involved in the return flow, there is a reduction of axial
momentum swept downstream at any cross section. The
analysis begins with the momentum constraint as derived in
the preceding section., Because of the reverse flow in the
confined jet, the ambient pressure is =no longef uniform,
The ambient pressure gradient is no longer zero and must be
inciluded in the momentum balance. The difference in the
momentum constraint between the jet and the confined jet
lies in the addition of the external pressure gradient
caused by the reverse flow. It is assumed the pressure
gradient is small enough so that its magnitude is negligible
when substituted into the equations of motion, thus ensuring
that a simillrity solution still wexists. However, it is
large enough to be of significant importance when integrated

in the momentum constraint. The balances for the ideal and



confined jet are respectively,

o - 2 2
8_ S (u? + 22 - (!-~i-! )) 2nr dr = 0
dx o 2
(2.5.1)
and
R - 2, 2
+
8. S0 4+ w? - (P v 10 (p gy g dr = 0
9x o 2 p 9x

Note the confined jet is not integrated out to r equals
infinity, but rather to some finite radius, R. To determine
the integration constants, evaluate the boundary condition
at the jet exit. For the ideal jet, the velocity field is

zero everywhere except within the top hat profile. Here,

only U is nonzero.

T2 . 2 v + w2
J (U° + a - (=== )) 2nr dr = M
o 2 °
5 (2.5.2)
M, = U5 A,

For the confined jet, the return flow is assumed to be
constant across the room’s area. The development will
assume that the area swept out by the jet flow is small
compared to the return flow. As a direct result, the back
flow at any cross section may be set equal to the product of
the return flow velocity and the room's cross—sectional
area. To illustrate the magnitude of these values, consider
the expergﬁent of VWygnanski and Fiedler (1969). His
experiment is chosen because his data has the greatest

contamination due to return flow effects. The wire cage



enclosing their jet had dimension of 2.3 by 2.4 meters for a
room area of 5.6 square meters. These boundaries are
accepted as the worst case conditions., Consider the axial
position of seventy diameters downstream (the exit diameter
is 2,54 cm, with an exit velocity of 51 meters/second). If
the outer edge of the jet is takenm at a value of n equal to
0.20 (oxr r = 0,36 meters), the jet area is 0.40 square
meters. At this point, the jet occupies only seven percent
of the room’s cross-sectional area, To calculate the volume
flux at this point, their predicted values of BU = 5.0 and
My/2 = 0.086 (it shall be later demonstrated that these
values are incorrect for the ideal jet) are wused in
conjunction with a Gaussian profile to predict the volume
flux at this point as 0.11 cubic meters/second. The return
flow velocity is 26 <cm/second at this point versus a
centerline velocity of 3.6 meters/second.

For the inviscid flow regime of the return flow,
Bernoulli’'s equation relates the return flow velocity to the

.pressure gradient,

-1 - 9 =8 (w2
5 33(Pa) = Ug 33(U) = 32 (UZ/2) (2.5.3)

This relation for the ambient pressure gradient can be
substituted into the momentum constraint for the confined

jet to yield

R -
3T @2 42 - (IIX ) - U2/2) 2xr dr = 0

(2.5.4)



It is this form which may be wused to determine the
constant of integration for the enclosed jet. For the
confined jet, the velocity field is equal to Uo within the
top hat profile. Because of the back flow, the velocity
field is now nonzero outside of the exit. Calculating the

constant at the jet exit plane yields

2 2 v__t ¥ - p2 = 2
£ (U7 + o% = (F=-3-= ) Uo/2) 2nx dr = M_ + UL Ap/2
= 72
where as before, Mo = Uo Ao (2.5.5)

Mass continuity can be used to relate the return flow
velocity to the jet exit velocity. Typically, the ratio of
the jet exit area to the room area is roughly less than or
equal to 10—4. This factor may be used to further simply

the result,

Uvo = U, (AR - Ao)
= UmAR for AR > A° (2.5.6)
This expression for the return flow velocity is

substituted back into the right hand side of equation

(2.5.5) with the result,

2 _ 2
M, + UgAp/2 = M+ (U A )7/(24p)
= Mo (1 + A /2Ag)
= M for Ap>dA (2.5.7)

When the room area is much larger then the jet exit
area, the integration <constants for both the ideal and

confined are the same,



P v2 + w?

J (U + u - (=== )) 2nr dr = M

[o] 2 °

R -= 2, .2

[ 4wl - (322 - 02/2) 2nr dr = Mg
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M =y A (2.5.8)
0 o o cee

The constraint for the confined jet differs from the
ideal jet in two ways. First, there is an ambient pressure

gradient as a result of the return flow (represented by the

U, term of the integrand). Second, the integral over the
mean velocity must now include the effect of the return
flow. For the <confined jet, decompose the velocity field
shown into two independent components, The radial
coordinate Re is the separation point between the region

of the laminar backflow and the zone of the turbulent jet,.

Under this scheme, the integral of equation (2.5.8) is

broken into two parts.

Re 2 2 vZ + w2
SO+ w? - (T--2-T) - 02/2) 2nr ar
[o]
i
R 2 2
+ £ (U% - UZ/2) 2nr dr = M
© i iii (2.5.9)

The only way in which these regions are <coupled 1is
through the Mmass conservation requirement — any fluid swept
downstream by the jet must be returmned by the back flow.

Rigorously speaking, such a decomposition is incorrect for a



nonlinear system of equations. However, if the return flow

is only weakly coupled to the jet it is possible to proceed
in this manner in order to qualitatively understand how the
confined jet differs from the ideal.

Since Re is much less than R, terms i thru iii can be

combined to give

J (14 43+ 43d) 2nr dr = V2 A2 (2.5.10)

Recombining with the turbulent terms of the jet region,

the boundary condition is now

- 2 2
So0% 4 w2 - (-2 X)) 2ne ar = M - 02A4/2
o (2.5.11)
The first term on the 1left hand side is the
contribution due to the turbulent jet. Since the return
flow is x dependent, the momentum integrated across the
turbulent jet is also a function of x and is demoted as
M(x), the local jet momentum flux.
R I
M(x) = f(U2 + 42 (Y-_2_¥ )) 2nr dr
2
o
= _ n2
Mo UwAR/z (2.5.12)
Examine the behavior of the terms on the right hand

side of the above equation.

results in & return flow

increasing in the

momentum, Mo'

downstream direction.

is a constant and the return

The increasing mass entrainment

velocity which is steadily

Since the source

flow velocity



is dincreasing with x, the right hand side of equation
(2.5.12) is decreasing with x. The momentum across the
confined jet profile is no longer constant but is instead
steadily decreasing in magnitude due to the presence of the
return flow,

To procede any further, the concept of
self-preservation or local invariance must be wused.
Consider a simple flow situation like the jet where the time
and length scales vary gradually downstream. Let the time
scales of the energy transfer processes be fast enough so
that past events (i.e. upstream conditions) do =not
influence the flow dynamics. Since the flow has no
difficulty in adjusting to a slowly changing environment,
the flow should be dynamicly similar when plotted with the
local time and length scales. Using dimensional anyalysis,
the volume flux can be related to the kinematic momentum
flux. The relationship is the same as that of the ideal
jet, only the local momentum flux, M(x), replaces the source
momentum flux, Mo (see equation 2.3.1).,

m(x) = K [M(x)11/2 (2.5.13)

Since the volume flux swept downstream by the turbulent
jet dis equal to the volume flux of the returnm flow, the
local momentum flux may be expressed in terms of the return
flow velocit;, room area, and downstream position.

m(x) = UmAR (2.5.14)

Equations (2.5.13) and (2.5.14) can be combined to



express the return flow velocity as a function of the local

jet momentum flux,

1/2
g - Ex_[M(x)] (2.5.15)

The momentum constraint givem by equation (2.5.12) can
now be <combined with wequation (2.5;15) and the terms
rearranged to express the 1local jet momentum flux as a
function of the source kinematic momentum flux, the axial
coordinate and the room area.

M(x) = ——=m==2oeee (2.5.16)

1 + (Kx) /AR

The final expression for the local jet momentum flux
nondimensionalizes the axial position using the jet's exit
diameter. In this form, the 1local momentum flux is a
function of x/D, Ao/AR’ and the source momentum flux,

M(x) = —————mmmmmm e S (2.5.17)

1+ (2/m) K2 (x/D)% (A_/ap)

As expected, the local momentum flux decreases with
increasing values of x. The behavior of this model is
consistent in two key limits: first, in the 1imit as the
room area becomes large (AR -> @) and secondly as the
axial coordinate approaches the jet exit (x/D -> 0). In
both <cases the confined jet approaches ideal jet behavior -
the 1local mémentum flux becomes independent of axial
position and is equal to the source momentum flux. It must

be noted that the model must be used with caution, The



initial decoupling of the velocity field assumed limited
interaction between the turbulent jet and the return flow.
Dimensional scaling for the confined jet uses the same basic
relationships as for the ideal jet, the only change being
the replacement of the source momentum with the local
momentum., This procedure also implicitly relies upon a weak
coupling between the two flows. It is this constraint which
determines the upper limit on x/D or Ao/AR to which this
model may be applied. Intuitively, we &expect this
constraint to be violated when the area of the turbulent jet
flow begins to occupy a significant area of the enclosure.
Section 2.6: Summary of Basic Considerations

In this chapter, several critical <concepts have been
presented with regard to the momentum balance in the jet.
When fitting a predetermined function to profile data, the
form of the function has crucial signifigance if used to
calculate volume flux or kinematic momentum flux integrals
across the profile. Next, a momentum balance was derived
containing lower order terms., This balance was examined for
both a confined and an ideal jet and the general results
presented in equation (2.5.8). At this point, the velocity
field for the confined jet was decoupled into two
components: Mthe turbulent jet and the return flow field.
Using the concept of 1local invariance, a relationship

between the volume flux and the local jet momentum flux was



hypothesized. The 1local momentum flux was shown to be a
decreasing function with respect to x and was represented in
final form by equation (2.5.17). These predictions will be
compared with experimental data in chapter 4. These
results, together with the computational work of Seif, will
be used to explain the inconsitencies in published
literature and suggest empirical profiles for the turbulent

jet.
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Chapter 3: Experimental Equipment

Section 3.1: Jet Facility

The jet facility used was an adaptation of an existing
structure originally constructed to investigate the jet
mixing layer. Modifications were made to duplicate the
boundary conditions of the jet flow of Wygnanski and Fiedler
(1969). This was done not only because we wished to repeat
their experiment as closely as possible, but also because we
faced the same design criteria. It is desirable to maximize
the exit velocity, Uo' since both the &exit Reynolds
number, Reo. and the centerline velocity, U, measured
at a fixed x/D are proportiomnal to Uo' An upper limit on
Uo is imposed in terms of the Mach number — we must ensure
compressibility effects are negligible. Selecting the exit
diameter involves a similar trade off. Recall the
appropriate axial length measure is x/D. The smaller the
diameter, the smaller the length of the facility. However,
Reo is also proportional to the exit diameter. We also
wish the exit area of the jet, Ao' to be large enough so
that the boundary layer at the nozzle exit is insignificant
when determining the source mass and momentum flux.

The physical dimensions of the jet are shown in Figure
3.1.1., Driving the flow was a 1 h.p. motor and high
pressure, paddle type blower. Swirl, spatial

inhomogeneities in the mean flow and turbulence intensities
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were removed using wire screens and one section of plastic
straws., The first contxaction of 16:1 was from the original
facility. Its geometry was two matched cubics optimized for
minimum pressure gradient as suggested by Morel (1975). To
repeat the conditions of Wygnanski and Fiedler, a second
contraction of 9:1 was added to bring the exit to the
required one inch diameter. The 1last contraction was
constructed using a fifth order polynomial. As demonstrated
by Tan—-Atichat (1980), such a curvature produces a more
uniform mean velocity distribution over a shorter length.
The exit profile is shown in Figure 3.1.2, The measured
profile had a velocity overshoot at the jet edges of 3%
relative to the centerline velocity. This effect was
balanced by the boundary layer thickness (approximately 2%
of the exit radius). The error terms arising from the
‘adoption of a top hat profile based upon the centerline line
velocity and the exit diameter may be accepted with an error
of less then 3%. The exit conditions listed in Table 3.1.1
were used for all experimental measurements reported in this
thesis. In chapter four a more serious problem with the
facility will be discussed: it is for this reason the exit
parameters were not determined with a greater degree of
accuracy.

Figure M3.1.3 depicts the <construction of the jet
enclosure. Our wish to provide a symmetrical enclosure was

compromised by construction cost and available physical



TABLE 3.1.1

JET FACILITY PARAMETERS

A A A A R A R R R R R R R R R R R R R R X R R R 22222 RS2SR R 22 2

* * * *
. QUANTITY * SYMBOL * VALUE *
* . * *
EEBERSE S AN EIRERI NS S AE SR ARSI R SRS ERR SRR EEESERIRRNEREESD
. . * *
* EXIT DIAMETER (inches) * D * 1.0 *
. * * *
* VELOCITY (m/s) * U * 55.0 *
* * ° * *
* VOLUME FLUX (m**3/s) * m * 0.271 *
. * ° * *
* MOMENTUM FLUX/UNIT MASS * M * 1.51 *
* (m**4/s%%2) . ° * *
. * * *
* REYNOLDS NUMBER * Re * 9.2 E+04 *
* * o . .
NN L e IO T™

A subscript 'o’ denotes a boundary condition at the jet
exit plane. Abbreviations for units are as follows: ‘m’
for meters and 's’ for seconds. The value for the momentum
flux is accurate to within three percent.
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space. The length from the jet exit to the far wall was 21
ft. (about 250 diameters), ceiling height 8 ft., and the
distance from jet centerline to the closest wall 5 ft. The
jet axis was equidistant from floor and <ceiling. The
enclosure was sealed in plastic to ensure a uniform seeding
distribution. The region at which the measurements were
taken is indicated in VFigure 3.1.3. Centerline velocity
measurements were taken from x/D of 70 to 120. Since it is
well established that mean profiles collapses for x/D
greater them 20, and the second moments for x/D greater then
70, profiles were measured at an x/D of 71 and 101.* In the
non-dimensional radial direction, =r/x, these measurements

spanned from -0.05 to 0.15.

Section 3.2: Optical and Signal Processing Equipment

The optical package (Figure 3.2.1) was a DISA two-color
modular optical system wused in a forward scatter mode to
maximize signal quality. An Argon—-ion model 165
Spectra—Physics laser was mounted on a bench in line with
the optical compoments., The optical configuration utilized
the 488 (blue) and 514 (green) nanometer wavelengths.
Quarter—wave plates were mounted at the exit of the laser
and the entrance of the optics to allow beam rotation, By
introducingkha 40 MHz frequency shift, the Bragg Cell

permitted accurate determination of reverse flow velocities.

* Reference the 1969 paper by Wygnanski and Fiedler
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The beam expander enlarged the aperture by a factor of 1.9.
As a result, the collected light intensity is approximately
multiplied by a factor of 14 and the signal-to-noise ratio
increased by 7. All measurements were taken using a 1.2
meter len37 The characteristics of the beam intersection
volume are given in Table 3.2.1. Since the receiver optics
were mounted close to the optic axis, the measuring volume
defined by the pin hole of the receiving optics is
coincident with the beam intersection volume. The values
listed in Table 3.2.1 may thus be considered valid
approximations for the measuring volume si;e.

| The optical bench and laser were mounted on a manual
traversing system with two degrees of freedom in the
horizontal plane. The limits of the traverse system were
identical to the range over which measurements were taken.
This equipment was placed within the enclosure.

The particle seed used was glycerin smoke. This was
generated using a heater element in a vessel of glycerin.
The seed concentration was monitored from the data
acquisition rate and monitor output on the counter
equipment. These outputs were used to manually adjust the
seed generation rate.

The signal processing equipment (Figure 3.2.2) also
consisted ;f DISA components. Each output from the two
photo-multiplier tubes was individually shifted wusing a

55N10 Frequency Shifter. For the frequency ranges



TABLE 3.2.1

PARAMETERS OF BEAM INTERSECTION VOLUME

LA A R X 2 R R R R R R R 2 X R R R 2 R R R 2 S 2 R 2222 2222 222222222222 2 8 3

* » * *
* QUANTITY . VALUE * UNITS b
» * * *
ERESEBRA AR ARNUBRRFELEREEREEFIRBAELERASEREEEENS LS RRERRRBES
. * * *
* BEAM INTERSECTION ANGLE * 2.60 . degrees *
* * * »
* BEAM WAIST DIAMETER * .31 * mm *
* * » .
. PROBE VOLUME LENGTH * 16. * mm .
* » * *
* FRINGE SPACE * 10.9, 11.5 = m *
* . * *
* FRINGE NUMBER * 28 * *
* * * *
* CALIBRATION FACTOR * 10.9, 11.5 * (m/s)/(Mhz) *
. * . *
BERSRRERARNEXSRSEEBREEERSEER SRS AENLNRNLRRRRERE NS

Abbreviations for units are as follows: m — micrometers,
mm — millimeters, m — meters, Mhz - megahertz, s — seconds.
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encountered in this experiment, the resultant incremental
shift was 100 KHz, corresponding to a fringe velocity of
approximately 1.1 meters/second. Following down shifting,
the signals were sent to two 55L90a counters. During the
course of the experiment, all measurements were taken in the
combined ﬁode. This made available in digital form the
burst time for eight fringes (Ps), the total fringe count
(N), and the sample interval between successive samples (T).
The output of the counter was interfaced to the computer
using a DISA 57620 Buffer Interface. The 576149 Coincidence
Filter Board was included in the interface and was progammed
as an additional validation device. It'ensured that the
measurements successively stored in the buffer from each
counter were coincident in time and from the same particle.
This permitted an instantaneous realization of the Reynolds
stresses and filtered out invalid samples. Additional
information on signal processing equipment and methods is
presented in chapters seven to nine,

Data was transferred using a parallel interface to a
DEC PDP 11/34 minicomputer. The minicomputer was used both
to store and process the data. A 16 ©bit machine, it was
capable of an accuracy of roughly 7 decimal digits for a
single precision variable and 17 digits for double

precision, The operating system was RSX11M.



Chapter 4: The Jet Measurements

Section 4.1: Centerline Velocity Values

The starting point in the evaluation of the jet data is
the centerline velocity decay rate; As previously mentioned
(see equation 2.2.,10) the centerline velocity value, Um,
is inversely proportional to x. Since almost all authors to
date have chosen to express the <centerline decay rate in
terms of the jet exit velocity, UO' and exit diameter, D,
that nondimensionalization is adopted. It is again
emphasized that on the basis of section 2.3 (in particular,
equations 2.3.5 and 2.3.6) such scaling is not the most
appropriate way to scale turbulent jet data. It is useful
in collapsing data only when the jet source is a <circular
jet with a uniform velocity (top hat) profile. Vhen
presented in this form, the data cannot be contrﬁsted with
that from jets with different source conditions. However,
since the primary purpose of this dissertation is to
identify the &errors present in existing data, the data is
presented in its original form to avoid confusion.

If the ratio of the centerline velocity to the exit
velocity, U,/U,, is selected as the dependent variable,

a 1/x dependence would be displayed on the plot. This is an
inappropriagg selection of variables, since far downstream

of the jet the dependent variable would quickly approach

zero and the plot would provide little visual information,



Instead, the inverse, Uo/Um is chosen as the dependent
variable since this value is directly proportiomal to the
downstream position and the resulting plot is a straight

line. The following curve is expected

° (x x
v D D

%)

cdl o
& =

(4.1.1)

As defined in PFigure 2.2.1, the number of exit
diameters from the jet exit, =x'/D is the independent
coordinate. Recall the distance from the virtual origimn is
the differemce between x'/D and xo/D, When plotted in
these scales, the virtual origin is the intercept with the
independent axis when the straight line describing the decay
rate is projected back to the origin. The data when plotted
in this manner are shown in Figure 4.1.1. The straight line
behavior of the points is evident, thus confirming the 1/x
dependence of the centerline velocity. All of the
measurements agree to an x/D of 60. Note that past this
position, the data of Wygnanski and Fiedler begins to
deviate from the straight line behavior as established by
data points closer to the origin., The LDA data taken during
this investigation shows similar behavior, although the
deviation occurs farther downstream. Only Rodi’s data is
consistent in its straight line behavior, although mna data
are reported beyond x'/D = 80. In their paper, Wygnanski
and Fiedler explained this behavior as follows:

'Judging from the mean velocity

(profile) alone, it would appear that the jet
is already self-preserving at some 20 nozzle



FIGURE 4.1.1

CENTERLINE VELOCITY DECAY
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Seif's predicted decay rate ('S', solid 1line) is
plotted using a virtual origin four diameters downstream and
his recommended value of B = 5.8. Value of <centerline
decay suggested by Wygnanski and Fiedler ('W', dashed linme)
is for a virtual origin seven diameters downstream and BU
= 5.0
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diameters downstream of the nozzle. If the
measurements were concluded at x/D<50 the
hypothetical origin of the flow would appear
to be located 3 diameters in front of the

nozzle. Taking into account measurements at
x/D>50, the hypothetical origin was moved to
7 diameters in front of the nozzle. A

similar observation was made by Townsend

(1956) for the small-deficit wake, and it may

be concluded that the rate of growth of the

jet is sensitive to conditions of

self-preservation, while the shape of the

normalized velocity profile is not.'

The authors of this paper did not document a value for
the decay rate, so their value of BU=5.0 has been
approximated from the straight line as drawn on their plot
for centerline values. This exact value of this constant is
obviously controversial, for Hinze’s text believes it to be
BU=5.4. For values of x/D<{50, Hinze cites By=5.9 as the
correct value to be read from Wygnanski’'s and Fiedler's
data. The confusion present in what should be a well
accepted value becomes more apparent when Rodi's paper is
read. Concerning the <centerline decay and his measured
values, Rodi writes

'"The data points follow the linear
distribution required by the theory for
self-preserving flow., The virtual origin is

at x/D=4, Except for a small shift in the

virtual origin, VWygnanski and Fiedler's

results obey the same decay law down to

x/D=57, when the slope of their decay curve

changes. This is difficult to understand.’

Rodi's paper fails to document any further explanation.
for this phenomena. This paper also fails to document a

specific value for the constant describing the <centerline

decay, thus increasing the confusion.



How serious is this departure from straight lipe
behavior? Since the ratio of the exit velocity to
centerline velocity is higher than predicted, the value of
the <centerline velocity is 1lower than would be expected.
Obviously, this effect has serious consequences in the
momentum constraint.

The importance of the centerline decay rate to momentum
conservation can be seen another way. Since the normalized
profile of Wygnanski and Fiedler <collapses satisfactorily
for an x/D>20 the jgt half-width should be a well
established constant for any axial position past this
location. Therefore instead of Uo/Um, By is chosen as
the dependent variable as shown in Figure 4.1.2, The data
points should fall on a horizontal line. For now, focus on
the value of By as predicted for the virtual origin
recommended by Wygnanski and Fiedler (xo/D=3).- Even if
one allows for significant error in the retrieval of their
data from the published figures, there is a clear tendency
for By to decrease with downstream distance. If By is
decreasing while the jet half-width remains constant,
momentum is being lost (see equations 2.3.10 and 2.4.13).
As an example, calculating BU at an x/D of 50 and 98 based
on a virtual origin of seven diameters gives a value for
BU of 5.4 ..and 5.0 respectively. This 8% difference in
BU indicates a 16% drop in momentum between these two

locations. The continunous drop in the value of BU implies



FIGURE 4.1.2
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an increasing amount of 1lost momentum as one goes
downstream! It is suggested that this shift away from the
initial centerline decay rate and the subsequent 1loss of
momentum is due to the return flow difficulties as predicted
in section 2.5,

If this is so, then the <centerline decay constant
measured by VWygnanski and Fiedler in the initial region of
the jet is near the correct value. If a virtual origin of
XO/D equal to three is accepted instead of xO/D equal to
seven, the values of By will increase. The jump in the
predicted value of By is shown by those points labeled '3’
in the plot. This small shift in the virtual origin
increases the value of By by 10% at an x'/D of 40 to 4% at
an x'/D of 98. In terms of the momentunm integral, this
implies a jump of 20% and 8% respectively. Note that even
with these changes in interpretation the asymptotic forms
are missing 15-20% of the momentum. This loss can only be
related to the profile itself. This will be discussed later
in detail

Results from all three investigations along with the
theoretical prediction of Seif are shown in figure 4.1.3.
Rodi's value of BU=6.0 is in good agreement with the
corrected value of VWygnanski and Fiedler of 5.9. The LDA
data taken during the course of this investigation has a
slightly lower value of By, agreeing with Seif's predicted

value of 5.8. The 1lower value of BU indicates 1lower



FIGURE 4.1.3
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values for the centerline velocities than predicted by the
CTA measurements, a fact which is consistent with the amount
of the <crossflow contamination on hot wires at turbulence

intensities corresponding to the jet centerline.

Section 4.2: The Mean Velocity Profile

The mean velocity profile, normalized by the centerline
velocity, is presented imn Figure 4.2.1. The data of
Wygnanski and Fiedler and of Rodi are in excellent agreement
with each other so their values are represented by the
single curve labeled 'W', The 1line representing Seif'’s
numerically generated profile has been labeled with an 'S’.,
The LDA measurements from this investigation were taken at
an x/D of 70 and 100,

Rodi's paper suggests 0.086 as the appropriate
half-width value for the jet profile. Recall the corrected
centerline decay rate of Wygnanski and Fiedler (Bu = 5,9
instead of 5.0) matches that of Rodi. Seif has shown that
for their data, the mean axial velocity term in the momentum
constraint accounts for 77% of the source momentum. An
exact breakdown of the momentum balance is shown in Table
4.2.1, When all the terms in the momentum constraint are
evaluated, roughly 16% of the source momentum is missing for
Rodi's measurements and 40% for the wuncorrected (see

preceeding section) data of Wygnanski and Fiedler.



FIGURE 4.2.1

MEAN VELOCITY PROFILE
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Although there is considerable scatter in the LDA
measurements, they indicate a wider profile than the other
data. There is also a slight tendency of the data to widen
at an x/D of 100. Given the scatter in the data of +2% near
the <centerline, this behavior can be attributed to a
selection of a <centerline velocity which is too 1low.
Further discussion concermning error estimates will be
introduced 1later. The LDA data does match the suggested
profile of Seif, so his half-width prediction of 0.095 is
recommended. With a centerline decay rate of Bu = 5.8 and
a half-width of My/p = 0.095, the LDA data satisfies the
momentum constraint to within the 3% accuracy limits of the
investigation (c.f. section 4.4). Note that since v2 was
not measured directly it was assumed to be equal to wz, a
fact consistent with the earlier measurements.

These results present ome critical gquestion. It is
expected that mean values computed using LDA techniques are
in general lower than CTA methods (see Buchhave 1980). The
centerline velocity values display this pattern (see Figure
4.1.3 and recall that a lower value of Bu implies a lower
velocity value). Why then is the LDA profile wider than
those taken wusing CTA measurements? At this point, a
completely satisfactory answer has not been formulated. It
is possible to justify these LDA measurements through the

momentum constraint, for if the centerline decay rate of

5.8¢B <6.0 is accepted the jet profile must have a half



width around My/a = 0.095 to conserve momentum.

One possible explanation for Wygnanski and Fiedler's
profile being narrower is that because of the back flow, the
flow was not really a jet, a fact consistent with the
momentum loss. Drawing quantitative facts from their
profile becomes even more qnegtionable if one accepts that
their virtual origin was off by four diameters. If this is
true, then the value of x would be incorrect in their
profile plots with serious consequences for those profiles
measured closer to th§ source. It becomes questionable if
their profiles do in fact collapse! Rodi’'s profiles, on the
other hand, do collapse which would seem to indicate that
the problem is intrinsic to the hot-wire technique, although
a straightforward examination of the effect of <cross—-flow
errors on a hot-wire a1vay§ leads to positive errors.
Hussain (1981) in a private communication has discussed
measurements of the jet in which the momentum appears to be
greater than that added at the source. This is, what would

be expected from hot wire measurements,

Section 4.3: The Turbulent Velocity Fluctuations

To complete the analysis of the momentum constraint,
only the normal turbulent stress terms need be considered.
These terms ;re normalized by the square of the c¢enterline
velocity. Both components do not roll off as fast as the

mean velocity, staying roughly constant out to n = 0.06.
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The axial component is plotted in Figure 4.3.1. Based on
the current investigation, the centerline value for the
turbulence intensity., u/Um, is 27%. Both Rodi and
Wygnanski and Fiedler measured slightly higher values of 28%
to 29%, the difference again being attributable to the cross
flow errors on the CTA results. Unlike the earlier
measurements, the present results show a promounced off—axis
peak. Buoyant plumes also exhibit this behavior which can
readily be attributed to the production of turbulent kinetic
energy caused by the higher shear rates off the jet
centerline (Beuther 1980).

For the most part, the LDA turbulence measurements show
good agreement with the hot wire results. This is
consistent with the observations of Buchhave (1979) where
the primary differences between the LDA and CTA were in the
mean velocity results whereas the streamwise velocity
fluctuations were quite similar.

The values for the azimuthal normal turbuleant stress,
wz. are plotted in Figure 4.3.2. These values agree quite
well with Rodi's results, but do differ from those of
Wygnanski and Fiedler’s. The agreement with Rodi's data can
be explained by the the improved methods used to minimize
for the cross flow errors and to perform the angle
calibrationj Seif's predictions are only slightly higher

than those of the current investigation. These measurements

indicale a centeriime turbulenmce imtensity, -«zmzm. ot

e
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FIGURE 4.3.1
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FIGURE 4.3.2

AZIMUTHAL COMPONENT OF REYNOLDS STRESS
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22% to 23%.

Section 4.4: The Momentum Constraint Evaluation

It is now possible to complete the momentum integral.
The LDA mean profile, which is in agreement with Seif’s
theory, holds 92% of the source momentum, The axial
component of the normal turbulent stress, which is only
slightly higher than that of Wygnanski and Fiedler and Rodi,
would ocontribute 19% of the momentum. The remaining normal
stress terms subtract from this gquantity. The azimuthal
component, agreeing with Rodi's measurements, is roughly
10%. Assuming the radial component contributes the same
amount, their net contribution is approximated as 10%. The
balance is too high by only 1%, an amount well within the

experimental error.

Section 4,5: The Effect of the Return Flow

At this point, it is appropriate to reexamine the
analysis of the momentum loss caused by the return flow.
From section 2.5, the momentum constraint for a confined jet
is given by

M(x) = == (4.5.1)

((1 + (2/0K? (x/D)2(A_/45))

Vhere lo is the jet exit area, Ap the 100 m area,

and K a constant relating the mass flux to the local

momentum flux (see equation 2.5.13)., It is unfortunate the



ratio AO/AR cannot be exactly determined for any of the

experiments. The enclosure used by Wygnanski and Fiedler
was 4 wire cage with a cross-~sectional area of 8 ft. x 7.5
ft. It is therefore impossible to accurately predict the
interplay between entrainment through the screem and return
flow inside the screen. The facilities wused in this
investigation present similar problems of interpetation,
The LDA experimental investigation was concluded before the
development of the confined jet theory. The sealed
enclosure was designed around available floor space in the
laboratory in conjunction with the spatial requirements of
the laser and traverse system. As a consequence, the room’s
cross—sectional area was mnot constant, Still, rough
approximations can be made. Environmental conditions are
summarized in Table 4.5.1. Note Wygnanski and Fiedler have
the least favorable ratio of AOIAR, thus explaining why

their measurements begin to lose momentum first. Although
data on Rodi'’s enclosure was unavailable, it should be noted
that his exit diameter/area was one half/fourth that of
Wygnanski and Fiedler. This probably explains why Rodi's
centerline data displayed consistent centerline behavior.

It is possible to make a correction for the confined
jet effects on the centerline data? Begin with the ideal
jet, where zhe mean velocity is isolated from the turbulent
stress terms in the momentum constraint. This is

accomplished by defining Q as that fraction of the momentum



TABLE 4.5.1

PARAMETERS OF EXPERIMENTAL ENCLOSURE

EEBRREESRREEEBEREELEREXER XSS SRS

* * * *

* D * A * A /A *

* * R * o "R *
EXEREEBSERBEERBRERSAERRRESREER SR AR A RS SR PRERRREREEBEBRB R XS |
» * * * *
* Rodi * 0.5 = ? * ? *
* * » * *
* VWygnanski and Fiedler * 1.0 * 7.5 X 8 * 9 X 10-5 =
* . » » *
* Present investigation * 1,0 * 10 X 14 * 5 X 10-5 =
* » * * *
EEBEERBREAEBEAEBEEEREEARABAR RN EB SR SR EEB USRS SRS REERRRRERS RS

The exit diameter, D, is expressed in inches. The
dimensions of the room are in in feet. The enclosure of
Wygnanski and Fiedler was wire cage, making exact

determination of an effective room area impossible. The
current investigation faced similar difficulties since the
room cross section varied with axial position.



constraint contributed by the mean axial velocity.

M = @ Z 02 2ar dr ideal (4.5.2)

For a polynominal fitted to a half-width of Ny/g9 =

0.095, and equation (2.3.10) is thus modified to

= 2
This procedure is repeated for the confined jet. Again
Q is that fraction of the momentum constraint contributed by

the mean axial velocity. For both the ideal and confined

jet, Q is assumed to be the same constant value

M(x) = Q Z v? 2nr dr confined (4.5.4)

2.53 (B) ny,,)%
The superscript ’'*’ indicates data taken from the confined
jet.

In Wygnanski and Fiedler's measurements, the profile
seems to continue to scale in similarity variables even
though the centerline decay rate has been strongly
influenced by the backflow. Even allowing for the
uncertainty in the virtual origin and its effect wupon the
profile, the major effect of the return flow seems to be in
the magnitude of the profile but not its shape. Therefore,
it seems reasonmable to assume that

*

It now remains only to relate the decay rate constant



B; as measured in the confined jet to the value of Bm
for the ideal jet. This can be done by using the results of
the momentum constraint analysis.
= * 2
M(x) 2.53 (anllz) Q (4.5.6)
(1 + 2/n k2(x/D)2 (A_/Ap)

Substitute equation (4.2.3) for the source momentum,
Mo‘ After cancelling common terms, the resulting’
expression relates BU to B;.

. ‘

T R Y A 172 e

As expected, this expression indicates that for the
confined jet, the centerline decay rate coastant will be
underestimated. Since BU and BM are directly
proportional (see equation 2.2.10) this relatiom holds
regardless of the dimensional form in chich the centerline
decay rate constant is formulated. The final form for an
equation to correct for the effect of the enclosure is

B=B" (1+ (2/n) K2(x/D)2(A /ap)) /2 (4.5.8)

Values for the centerline decay rate <corrected wusing
the above scheme for data taken in a confined jet is shown
if Figures 4.5.1 and 4.5.2 The constant value relating the
mass flux to the momentum flux is calculated using equation
(2.3.11) anE a Gaussian fit based on Seif’s results. This

would underestimate K and the effect of the return flow on

B. Enclosure values are those listed in Table 4.5.1. It is
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FIGURE 4.5.2

CONFINED JET CORRECTION TO CENTERLINE DATA
PRESENT INVESTIGATION
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difficult to make gqualitative judgements based on this
scheme., VWhen applied to the data of Wygnanski and Fiedler,
the method seems to overestimate returm flow effects. This
is expected, for their experiment was not completely sealed.
Corrections to the current investigation seem to
underestimate the backflow effect. This is suprising, since
the selected room area was chosen to maximize backflow
effects (i.e. the narrowest area of the room was selected).
Based on these results, the anslysis of the confined jet
seems to have a limited qualitative application, It is
however, the only model available by which one can design an
enclosure for jet experiments., If the enclosure is 1large
enough so that the denominator of equation (4.5.7) is one,
there is no effective difference between the ideal and the

confined jet.

Section 4.6: Concluding Statements on the Experimental
Results

In conclusion, the LDA measurements at an x/D of 70 and
100 have been shown to satisfy‘the momentum constraint even
though this flow shows evidence of being contaminamted by
the zreturn flow for x/D greater than 100. The major
difference between the LDA results and the CTA techniques is
found to be in the measurement of the width of the mean
profile. Although both Rodi and Wygnanski and Fiedler have
measured jet half-widths of “1/2 = 0,86, the results of

this current experimental program suggest a value closer to
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0.095. It is =not yet <clearly ' understood why the CTA
techniques should produce a narrower velocity profile since
previous experience would suggest the opposite. A
centerline decay rate of By = 5.8 is recommended versus

the corrected value for Wygnanski and Fiedler of 5.9 and
Rodi's value of 6.0. This discrepency in values is believed

due to cross flow errors on the CTA instrumention.



PART II: ANALYSIS OF THE LDA TECHNIQUE



~Chapter §5: Introduction to Part II: Analysis of the
-LDA Technique

Within the past decade, LDA counter measurement
techniques have seen widespread acceptance. Their quick
adoption by the experimentalists is due to a number of
reasoas, It’s calibration is linear, and is only sensitive
to one velogcity component. In addition, if equipped with
frequency shift, it is cafable of sensing reverse flow. As
a final benefit, the LDA is 'non—invasive, it dqes not
disturb the flow ‘patterns. Because of these
characteristics, the LDA is the only measurement tool
capable of providing answers in many primary research areas.
LDA systems have been used for measuremgngf in recirculating
flow, combustion studies, internal combustion engine
studies, two~phase flows, rotating machinery, and <capillary
blood flow. The introduction of complete LDA systems by
commercial manufacturers has permanently established them a§
a primary tool in the study of fluid mechanics.

Unfortunately, although the LDA is an extremely
versatile tool, it is also more complicated then
conventional CTA technigues. Unfortuantely, measurements
may be corxupted through errors arising from a wide variety
of sources. Fo; a newcomer to the field, proper alignment
of the optics may sometimes appear to be more of an art than
a science and the improper adjustment of the optics may

result a high noise signal. Incorrect settings on the



83

hardware can lead to angular bias. Particle size and
seeding distribution may contaminate LDA measurements.
Because of the mnany aspects associated with the

implementation of burst processing, the second part of this
‘dissertation has been designed in part es a primer fozx the
novice in LDA measurements. In addition, suggestions are
made by which one can judgé the quality and accuracy of LDA
measurements,

The first chapter begins with a review of the LDA
hardware and ‘defines the basic functions of the components
in an LDA system. The next chapter introduces the major
sources ©of bias or error in LDA measurements., First, it
must be determined if  the particler follows the flow.
Section 7.2 gives guidelines for the selection of an optical
package. Because the particle arrival zrate is dependent
-upon the velocity field, 2 simple arithmetic average cannot
be relied wuponm to evaluate the flow field. Instead,
residence time weighting must be used.. A rigorous
derivation for this technigue is reviewed in section 7.3.
In thg succeeding section, Buchhave’s (1979) investigation
of angular bias is summarized. Criteria for the correct
selection of <the sdmonnt of frequency shift is presented
here. In the remaining two sections of chapter seven, the
accunracy of the counnter hardware is evalnated.

The purpose of the final chapter is to present various

methods by which one can judge the signal quality of an LDA



system. To begin, Buchhave'’s analysis of particle path
lengths din in the optical probe volume is reviewed. His
results are then used to derive a‘ probability distribution
function for <counter statistics in a uniform laminar flow.
To extend these results to turbulent flows, the distribution
function is viewed as a conditional probabilty distribution
function. On the basis of this development, the
distribution function of -the fringe <count and its
applications are discussed in section 8.4, Other techniques
to gain a gunalitative impression of the signal quality is
discussed in sectiom 8.5, In addition, gualitative
measurements of particle concentration are also givem. The
final section summarizes the results and suggests certain

guidelines to be followed in data axquisition.



Chapter 6: The LDA Hardware

This chapter'ptesenps a cursory review of LDA theory
.and the hardware configuration of the equipment used in the
measurements presented in this dissertation. The LDA theory
presented here is Ey no means either complete or rigorous,
for its purpose is ounly to provide enough information so
that +the reader <can develop a. physical feeling for the
. concepts introduced in the following two chapters. Readers
interested in -more background into LDA theory can consult
such references as Durst, Melling and Vhitelaw (1976),
Ereated and Durrani (1977), and Adrian (1980). The
equipment description is presemnted to provide a foundation
for the ugderstanding of the fundamentsal sources of error

arising from hardwere design in LDA measurements.

Section 6.1: Fringe Model for Dual Beam Optical System

For the dual beam optical <c¢onfiguration of the DISA
55-X modunlar optics package, the operating principles of the
burst processar, or counter, will ©be examined wusing the
fringe model as first proposed by Rundd (1969). It must be
snoted that this model is not entirely correct and does not
successfully predict the signal strength for particle sizes

of the same order of magnitude as the fringe spacing?*.

Reference Farmer (1972), Robinson and Chu (1975), Roberds
(1977), and Adrian and Orloff (1977) ‘



However, the model does satisfﬁctorily explain the signal
characteristics (fregquency and burst time) ouwtput by
available commercial counter packages. The physical
principles underlying the fringe model are also much easier
to conceptualize then the Doppler shift phenomena.

As shown in Figure 6.1.1, the intersecting laser beams
interfere to form a set of fringes within the control volume
where the two beams meet., The distance between the fringes
can easily be determined from the intersection angle of the
beams (2) and the wavelength of the laser lime (1).

5, = A | (6.1.1)
2 sin(@/2)

The freqﬁency at which a particle traverses the fringes
is identical to the Doppler frequency (fD). As a result,
the Doppler frequency measured by the co#ﬁter is directly
proportional to the component of velocity perpendicunlar to
‘the fringe pattern., The constant of proportiomality (ox
cglibration factor, L) is again only a function of the beam
intersection angle and the wavelength of the laser. This
featnre makes the LDA system much easier to use than

conventional hot wire systems.

fD = Qx = 20, sin(2/2) (6.1.2a)
x
5 A
£
Ux = C fD N €c = A (6.1.2b,¢)
' 2 sin(Q/2)
Consider a particle with a velocity vector

perpendicular to the x—axis. Since the particle’s path does

not travel across the fringe pattern, a measurable Doppler
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FIGURE 6.1.1

INTERSECTING LASER BEAMS AND FRINGE PATTERN

Laser beams
Wavelength A

A

Fringe spacing &8¢ =
2sin —
2

Direction of velocity component, Uy

Beam intensity
distribution

Ipm

Wsnea




signal will not ©be produced. In addition there is no
"discernable difference in signal <characteristics between
velocity values equal in magnitude but opposite in
directian., This situmatiomn can be remedied by the
introduction of =a fregmency shift, fs, into one of the
incident laser beams, as depicted in Figure 6.1.2. Under
these conditions the fringe spacing remains unchanged, but
the fringes now have a coastant velocity directed along the
X-axis given by

s £ fs
The frequency processed by the counter is now related
to the particle velocity relative to the fringe pattern
fd = fD + fs = (Ux + Us)lﬁf (6.1.4)
‘Thuns, the appropriate selection of  frequency shift
enables the accurate determination of velocity valunes even
in cases of reverse flow. This important featnre is lacking
in most conventional hot—wire techniques. In addition, the
presence of shift enables the conditioning of the DPoppler

signal to a frequency xenge in which the electronics of the

counter can achieve optimum performance.



FIGUORE 6.1.2

EFFECT OF FREQUENCY SHIFT ON FRINGE PATTERN

Fig. 51. Frequency shifting may be described as a
movement of the fringes with the velocity vo = f - 5,



Section 6.2: Hardware Comfiguration of Burst Processor .

The DISA 55L90a counter may be viewed as a high speed
digital 'stop watch’. The key to the stop watch is a 500
MHz clock. This clock emits a <continuons train of logic
pulses at a frequency of 500 MHz. To measure anAinterval of
time, the pulses from the 500 MHz clock are counted and
stored 4din a —register. Since the number of ticks and the
time period between ticks is known, the product of these two
quantities dis the d#sired time interval. The stop watch is
capable of measuring +two  c¢ritical values: the time of
.£liéht for a particle to pass thru a preset number of
fringes (this valuone is called the burst time and is denoted
by PS) and the sample time interval between successive
particie arrival;, T. In addition, the ,/  55L90a <counter
counts the number ©of fringes the particle enconntexrs in
passing through thé measuring volume. For most of the
measnrements taken during this experiment, the output stored
from the counter consisted only of the burst time for eight
cycles and the total frimnge count.

To identify the error inherent in the hardware design
of the =connter, it is necessary to gain a rudimentary
nnderstiﬁding of hoew the stop watch works. The <circuit
diagram of ‘the Mconnter is presented in Figure 6.2.1. The
first step is to transform the analog Doppler sigmal into a
form which can be easily processed using digital electronic

techniques. The shifted signal from the receiver optics 1is
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first amplified to the desired level, and then the high
frequency noise and Doppler pedestel is removed using a
band-pass filter. A typical Dopplex signal is shown at the
top of Fignre‘ §.2.2. The  filtered signal  is shown
immediately below. This filtered signal is then input to a
- Schmitt trigger. The outpunt of the trigger is initially set
at logical '0’'. Vhenever the input signal excedes 200 =V,
the trigger ountput juemps to logical 'l' and xemains at that
level as long as the filtered Doppler signal is positive.
The result is a train of logic pulses, presented at the
bottom of Figure 6.2.2. The period of the pulses is the
time of £light to cross one fringe, so that the frequency of
the pulses is that of the filtered Doppler signal.

These logic pulses are fed to the count sequencexr. The

-~

pulses are nsed by the connt sequencer to determine whgn the
stop watches are to be turmed on and off. To prevent the
acceptance of realizations distorted by high noise levels,
the DISA 55L90a counter was used in a mode which enabled two
independent measurements of the Doppler frequency within the
counter {this feature is the 5:8 validation scheme). The
low and  high count registers shown in the counter's
schematic diagram are enabled for five and eight fringe
crossings respectively. The count sequencer enables both
registers to began counting on the leading edge of the

second pulse from Schmitt trigger—2. The count segquencer

disables the low/high count register on the leading edge of



FIGURE 6.2.2

ELECTRONIC CONDITIONING OF DOPPLER SIGNAL
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the seventh/tenth pulse. If{ the Doppler fregumnencies based
upon the two registers do mnot agree to 'within a aser
selectable waccuracy, the measurement is rejected and the
551,90a is reset. ¥For all mwmeasarements presented inm this
thesis, the tolerance was +1.5%. The value for the time of
flight from the high count registexr is recorded and output
in digital form to tge buffer as P8, the burst time for
-eight cycles. The magnitude of the burst time is hardware
limited to a discrete range between 64 nsec and 4.2 msec.

At the same time the count seguencer enables the low
and high comnt registers, the fringe count register is also
enabled. The fringe count register <counts the number of
logic pulses {i.e. fringe crossings) outpat from Schmitt
trigger—2. A two level validation «circuit (consisting of
Schmitt trigger—3 and the sequence deteqto;) detects the end
of the burst and triggers a reset for the 55L90's harxdware.
At this point, the value of the fringe count register (N) is
made available at the output. A data ready (DR) signal then
indicates that the measurement is complete. The total
number of cycles seen by the counter is N minus one.

Both burst time and fringe comnt are =always positive
guantities. The burst time is formatted as a real-variable
in normalized floating point format (i.e. the most
significant bit, the ESB, is always aore). The fringe count
is ©provided i;’ integer format. Thus, the informatiomn

obtained from the counter is output in base two as follows



Burst Time for Eight Cycles

Px3P12Px1PxO
Py =P 7P 6 ... P O.P -1P -2 2 (6.2.1)
Total Number of Fringe Crossings
N = F7F6 ... FO (6.2.2)

Section 6.3: Hardware Configunration of Bunffer and
Coincidence Filter

The wvalidation =zxate is defined as the mnumber of
realizations -per second accepted by the counter as reliable
measurements. The data transfer rate to the computer may be
up to six times this value for a two—color system {see Table
6.3.1). Since the counter must wait for a particle to pass
through the intersecting beams to output a measurement, the
validation rate is mot constant, but flucituates in a random
fashion (see sectiom 7.3). High spatial densities in
particle seeding oxr high vglocity values (which sweep the
particles through the measnring volume at a higher rate) may
cause two or more particles to arrive almost simultaneously.
The data rate may temporarily achieve very high peaks. When
measuring two or more components of velocity, data from the
conntgrs’ arrives =2t nearly the same moment in time, ;o the
data rate becomes even greater. Because of these effects,
certain experimental configurations can involve data rates
high enough to prohibit the transfer of digital output fxom
the counter to the computer.

The basic function of the buffer is thus to serve as



TABLE 6.3.1

VALIDATION RATE VERSUS DATA RATE

PEEBEBEBIBEREEREB AL PSR B R R R A C NP R L RE AP RB kg h

» *® *  J

* DIGITAL * VALIDATION = DATA *

* OUTPUTS - 'RATE » RATE .

* . * * *
*#‘*$**#tt##¢‘#‘#t#t*‘#*#*“****ﬁ‘#‘t#ttt*#t#*##*“.*t#tttt#
* ] * * *
* ONE * N1,P1 * £ * 2f .
. COUNTER * * * | *
* * N1,P1,T * £ = 4f *
* - * * *
‘3***#*#‘#*‘**t#4‘##***‘#**‘**###**‘t*#t‘#t*tt#*“‘*#'.#*‘#t
* * * * *
* TWO * N1,P1,N2,P2 + £ * . 4f .
*  COUNTERS = * * *
. * N1,P1,N2,P2,T * £ * 6f .
* * ’ * . * *
& *

#‘#**#*‘t‘#t‘#"#t‘#'#*#‘*#*##tt*‘*&&t#‘#*‘**#l#*t‘t*.‘*tt

For N = fringe count, P = burst time, T = sample interval




high speed temporary storage. While the buffer is storing
the LDA data, the computer is free to perform other
operxations. In case of moplti-channel measurements, the
buffer is also capable of identifying the source of the data
Li.e. from which counter the measurement originated). .

For mﬁlti~channe1 measurements, the DISA 576149
coincidence filter {(see Figure 6.3.1) may also be installed
with the buffer. The coincidence filter has two functions.
The primary functionm of the module is to ensure the
measurements consecutively stored within the buffer are from
the same particle. Recall that at the end of a burst, the
55L90a’s inform the buffer the data is available at the
counter’s output nusing the DR signal. Ideally._all the
counters on line should provide the DR sigmnal at the same
instant 4in time. Unfortunately, thél§£:;ence of multiple
particles within the measuring volume disrupts the sequence
of data <collectiom. The coincidence filter sacts as an
intelligent gate, which will not permit the information to
be passed on from counter to buffer unless 2ll the counters
emit a DR pulse within a user progranmmed period of time.

Besides guaranteeing that the realizations stored from
all counters are synchronons in time, the coincidence filter
also has it’'s owa stop watch to measure the sample time
interval, T, between accepted data realizations. The time

base (i.e. period of time between the ticks of the master

clock) for the floating point <clock system is wuser
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selectable. The sample time interval is available in
digital format as a non-normalized floating point bimnary

variable.

T 3T 2T _1T_0
T =T 7T 6 ... T,0 2 r o o x X (6.3.1)

m

An addigional benefit of the coincidence filterx board
is that it functions as an additional validation device.‘ If
one counter has for some reason produced a validated
measurement from noise, the chances are negligible that the
second counter has also validated a false signal.
Therefore, the <coincidence board also filters invalid
realizations.

The selection of the <coincidence window is <crucial.
WVhen the window becomes too small, the data acquistion raté
will bcéin to drop. Low velocity, loﬁg *}esidence time
realizations will ©be filtexred out first. For the jet
measurements of this investigation, the window was set
between 10 to 50 mi;roseconds. depending ox the radial
coordinate. To get =a feel for this value, consider a
detected frequency in the middle of the dynpamic range (the
low pass filters of the counters was consistently kept at 1
MHz during the investigation) of the counntex at 500 kHz.
For a coincidence window of 20 microseconds, the board would
demand that both bursts end within 10 cycles of one another.
Since the fringe count probability distribution functions
(Figure 8.4.5) indicate that in most cases the fringe count

rarely exceded 75, this would seem to be a reasonable



requirement., The measurements takenm unusing a single channel
LDA verified that the coincidence board was not filtering
ont the low veiocity realizations. It is emphasized that
these measurements wexre taken in forward scatter with an
excellent signal to noise ratio. In cases of increased
noise levels, it will be necessary to widenm the coincidence

window.



Chapter 7: The Measurement of Flow Propexties
by the LDA

Section 7.1: Particle Effects on Measurements

A proper choice of particle seed is the most crucial
decision facing the experimenter using an LDA system.
Possible séeding sources may easily be found by consulting
the available literatﬁre. Obviously, the most important
criterion is that the Doppler signal produced mnust have
adegunate ~signal strength and a good signal—-to—noise ratio.*
The seeding particle must not only produce a clear signal,
but must produce a velocity realization which is an accurate
indicator of the immediate velocity of the fluid. Larger
perticles, with an inertia pgreater then a fluid element,
will not be able to accelerate as quickly as the fluid. As
a result, the larger particles will be insensitive to the
high frequency oscillations of the turbulent flow field.

Consider the case where the particle concentration is
low enough so that the flow field is not affected by theirx
presence and each particle is alone in the turbulent field.
The particle is considered to be spherical and smaller then
the turbulence microscale, so that its behavior is as ﬁhough
it was immersed in a uniform velocity field. VWhen the

ambient velocity field changes, the acceleration of the

* A number of models have been suggested to determine signal
gquality’ given the optical characteristics of the
measurements system and the particle paxameters. Reference
Adrian (1979), Brockmann (1979), Agarawal and Keady (1980).



particle is driven by the Stokes drag force acting dune to
the velocity difference between the particle and the

surrounding fluid.

3
ad-p dU0 = 3mpp.d_ (U, - U_)
6 P P 4t £f7p f P
adl -= U, ~ U
at? £ P
wh a = (4 2
ere w ( pr) /(18upp) (7.1.1)

The zrelationship between the particle and filuid
velocities may thus be approximated as a limear, first order
system with time constant a. The results can be more
clearly examined using the frequency response function,
H(w), to relate the spectrum of the two velocities.

S (é) = lﬂ(w)lz S.(w)

P ’ k3

(7.1.2)

C—l 5 ()

1+ (aw)2

The frequency response function is a simple ioi pass
.filter. This is the expected fesnlt, confirming that for
_.¢certain higher frequencies, the particle will be wumable to
respond to fluctuatioms in the ambient flow field. To
ensure the particle velocity is equivalent to the fluid
velocity, the following criterion is established

“-“"c < 0.1 (7.1.3)
vhere o  is the lowest frequency at which attenuation‘ is
.acceptable.

For turbulent flows, the Lagrangian velocity provides

the appropriate frequency value to substitute into the above



equation. Using the Kelmogorov microscales of length .and
velocity (expressed in terms of the kinematic viscosity
,p/p, and the dissipation rate ,eg) the cut-off frequency

needed to measure the smallest flow scales may be estimated:

g = ((u/p)3s)1l4 length scale
A (z(p/p))1/4 velocity scale
we = 0-.74 vg/ng frequency cut—off

0.74(a(p/p))1/2

il

(7.1.4)

From the data of Champagne (1978), the dissipatiomn at
the jet centerline is approximated as

e = (0.38) U3/x (7.1.5)

for U = 5.8 U D/x

Since the centerline velocity is inversely proportional
to x, both the dissipation rate and tﬁe—ént—off freguency
decay with x (1/x4 ana 1/12 respectively). The
Eolmogorov length scale increases limearly with x. Table
7.1.1 lists the dissipation rate, length scale, and cut—off
frequencies calculated wusing the above formulas at three
centerline positioans.

For experiments in ihich only the rms velocities are of
interest, the cut—off frequency may be relaxed and fixed at
a higher value within the inertial subrange, €.g.

w, = 20 u/l ‘ (7.1.6)

I
The estimate of this quantity may be made by using the

centerline turbulence intensity as the appropriate velocity



TABLE 7.1.1

PARTICLE SIZE CUT-OFF FREQUENCIES

Cut~off Frequency Based on Kolmogorov Microscales

*****"***tt#t*tt**#‘ﬂ*'*#**.t###‘#***‘t#t#t“t#*t.‘#tt*#***

t . * * * -
* x/D * Um * e » n * g *
* » * . * . *
* * m/s * m /s * mm * hz *
* . * * - *
DT U g e i T RS A S R R L R L R L A
* - Py * * *
* 75 * 4.6 * 20. * .11 * 140 *
* PY * * - *
* 95 * 3.4 * 6.0 * .15 * 74 *
* * - . * .
* 120 * 2.7 * 2.3 * .18 * 47 *
. * * * * P
PR T T T T PR P R T R R L R R R L R R R L R L

Cut—~off Frequency Based on Inertial Subrange

*#*tt##t####*t##**.‘#“#‘*t‘t#‘#‘tt‘t##.‘tt‘**#*****#t**ttt‘

* s - » * *
* x/D - U * - * 1 . vy *
» . m * . * *
* * m/s * m/s * m * hz *
e * * . * -
e L T T T R T P R R L L S R A L L
» — * * - *
* 15 * 4.6 * 1.3 * 0.10 * 40 *
* * * * * .
* 95 * 3.4 * 0.95 * 0.14 * 22 *
» . - Py * *
% 120 * 2.7 * 0.76 * D.18 * 14 *
. » » » » P .
B e L L L L T e R R R R LN L R a R L

x/D axial position (D = 1 inch)

Um centerline mean velocity

g dissipation rate

g Kolmogorov length scale

u turbulent velocity at centerline

1 large eddy lenmgth scale



scale (i.e. u= 0.28 Um). Since the dissipatiom ,e, is
equal to usll, egquations (7.1.5) may be used to show the
proper choice for the length scale is 1 = (0.058)x. The
results of these <calculations arxe aléo listed in Table
7.1.1.

The diameter of the glycerin smoke particles has been
estimated by Nee {(1983) to be between 0.1 to 1.0 microns.
The particle size is clearly much smaller then the expected
‘range of Kolmogorov microscales (see Table 7.1.;). However,
since the mean free path in air is approximately 0.1 micron,
the applicability wof the continunm hypothesis underlying
Stoke's Law is guestionable for the range of smaller
particle sizes. The response time of the particle may still
be roughly estimated using the equations presented above.
The density ratio between the glycerin—patticles and air is
.roughly a thousand to one. Using these values, the time
constant and ctut—off frequency are evaluated.

T, = 0.37 X 1079 sec

o =2.7 x 10*

c rad/sec  or fc = 4.3 khz (7.1.7)

The cut—off frequency is <clearly above the highest
Lagrangian fregquency predicted. The particles have a fast
enough response time so that the differeﬁce between fluid
and parxticle velocity is negligible even for the smallest
turbulence length and time scales. It may be concluded that
glycerin smoke may be used with confidence in the

axisymmetric jet to provide accurate flow measurements.



TABLE 7.2.1

PHYSICAL PROPERTIES OF OPTICAL GEOMETRY

LA L L RS ES SRR SRS RS AL EF S ESEE R RS RS S R Z R RS2SR A R R R R RS R

* »
* £ Lens Focal Length 1200 mn *
* »
* b Beam Separation ' 53 nm *
* 2 *
* Q Intersection Angle 2.60 deg *
» , *
* S Sensitivity .09 MHz/m/s *
* *
® Counter Bandwidth 64 kHz to 1MH=z *
* 9 meter/sec *
* *
* d Beam Waist Diameter 0.32 mm *
* f *
* 2¢c Probe Volume Leagth 14.3 mm *
* *
* *
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TABLE 7.2.2

CALIBRATION PROPERTIES OF OPTICAL GEOMETRY

AR A R R E R RS AR S A L S A R X R R R ER S R RSN R T Y B YRR E R R R R R e

. *
* Q Intersection Angle , 2.60'deg *
* *
T T R P
* *
* LB Wavelength (BLUE line) 488 nm *
* : *
hd afB Fringe Spacing 10.8 m *
* .
* NfB Fringes in Optical Probe Volunme 28 *
* *
* CB Calibration Factor 10.8 m/s/MHz s
* *
R L T AP,
* *
hd AG -Wavelength (GREEN line) 514 om *
* s
* 5:6 Fringe Spacing 11.3 m *
* *
* Neo Fringes in Optical Probe Volume 28 *
» } *
* CG Calibration Factor 11.3 m/s/MHz »
* *
e L T T T L PP



Section 7.2: Selection of Optical Package

The cxitiéal parameter of the transmitting optics is
the 'selection of the beam intersection angle. The probe
volume, the volume within the 1/e2 boundary of the optical
fringe modulation, is ‘depicted in Figure 7.2.1. The
vertices of the ellipsoidal probe volume are a function of
the beam intersection . angle , @, and the beam waist of the
focused lasexr bean, df,

dg de
2a = S531a73) , 2b = a4 , 2c = 3In7872) (7.2.1)

Since the beam intersection angle is commonly less then
45 degrees for most configurations, the dimension largest in
magnitude is ¢, the length along the optic: axis (z—axis in
the figure). Obviously, the probe volume is minimized and
the spatial resolution maximized by choosing an intersection
angle as lirge as possible.

Recall from chapter seven that the calibration constant
relating +the Doppler frequency to the velocity is also a
fnncfion of the beam intersection angle. Even if freguency
shift 4is present, the inverse of the calibration constant
can aiso be viewed as a sensitivity factor relating the
change in Dopgler frequency per unit change in velocity.
Equdtion 7.2.2 demonstrates that this sensitivity - factor
increases with the beam intersection angle and is inversely

proportional to the wavelength of the laser line.



FIGURE 7.2.1

OPTICAL PROBE VOLUME
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AfD = AUI/C = 8 AUx

S =2 sin(Q/2)
)

(7.2.2)

Thus, to dincrease the sensitivity of the LDA
.measurement system to changes in velocity and to maximize
spatial_resolution, the beam inte:section angle should be as
large as ?ossible. This intersection angle is determined by
the focal length of the front lens (standard sizes ramnge
from 80 to 1200 mm. for the DISA 55-X optics system) and
the beam separation diameter (this wvalue <could be varied
from 18 to 55mm.). ¥orxr a commercial optical package, the
upper limit for the magnitude of the ©beam separation is
fixed. The user may modify the beam»inter$ection angle
through the appropriate selection of the front lens.

Two other factors may also influenée'the selection of
the beam intersection anmgle. In chapter seven, it §as sbhown
that the Doppler signal most be band-pass filtered to reduce
noise. Thus, once the filters in the counter hardware have
been set, the sensitivity factor must be such that the range
of <velocities lies within the filter band. Unfortunately,
the predominate factor in the determination of the 1lens
.focal»nlength (and therefore the beam intersection angle) is
the physical geomefry of the flow field and me#surement
system. For the axisymmetric jet the primary problem is
ensuring that the system is svificiently far removed from

the flow sO as not to interfere with it. For a value of



x/D=100, or x=100 inches, the radial coordimate at the edge
of the field is n= 0.20 or y=20 inches. As a result, even a
focal length of 600 mm. on the front lens would place the
optical bench and laser in a position where it might affect
the entrainment flow field. Because of this, a 1200 mnm.
lens was used for all measurement points. Table 7.2.1 lists.
the optical parameters wused in this experiment. Those
parameters dependent upon wavelength are presented in Table
7.2.2.

-.Bection 7.3: Statistical Dependence of Flow Field and
Particle Arrival Rates — The Problem of Bias

Consider a seeding distribntion-which is controlled so
that only one particle is within the measuring volume at ani
instant in time., This constraint reguires a low particle
seed rate, so that rather than haviang a continuous flow of
data available, the information <comes as a series of
discrete points. Figure 7.3.1 depicts such a situation.
Even for incompressible flow where the particle seeding is
distributed statistically uniformly, the sampling process
is, in general, not independent of the process being sampled
(i.e. the wvelocity field). Measurements have shown (see
McLaughlin and Tiederman (1973) and Erdmann and Gellert
-(1976)7that the arrival rate and the flow field are strongly
correlated. During instances of higher velocity, a larger
volume of fluid is swept through the measuring volume, and a
greater number of discrete data points will be recorded. As

a direct result, an attempt to evaluate the statistics of



FIGURE 7.3.1
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the flow field using arithmetic averaging will bias the
results in favor of the higher velocities.

The correct method of perxrformiang the statistical
averages on individuonal realizations was presented by George
in 1975 (v. George 1976). This method will be Dbriefly
outlined and the major conclusions summarized here,.
Additional information cam be found in George (1978),
Buchhave, George, and Lumley (1979) and Buchhave (1979). By
initially formulating the averaging process in‘terms of the
Lagrangian flow field, it is possible to remove the
statistical dependence between the flow field and the
particle arrival rates. The sampled velocity is represented
as

U (t) = [J Dp(at) g(a) wilz(a.£)) da® (7.3.1)
.UL(g,t) is the velocity of the fluid at time t with
initial position a at t=0. The fumnction g, is a random
"distribution in space of Dirac functions which accounts for
the presence or absence of a particle at positiom a at téO.
Thus, this function selects those points in space where a
particle is initiaily located. The function WL(E) turns
the signal on (i.e. WL(é) equals one) during the interval
of time in which the particle passes through the measuring
volume and is zero foxr all other instances im time. When

a

integrating over all space, the product term of these two

functions turns the velocity history of the particle,

UL(g.t), on only when that particle is in tkhe measuring



volume.

It is possible to apply =a transformation from a
Lagrangian to an Eulerian mapping. A simple example of this
type of transformation is explained in Figure 7.3.2. The
"resunlt is

U_(t) = [I] U(z.t) glx.t) wlx) ax’ (7.3.2)

The Lagrangian velocity UL(E-t) is mapped to the
Enlérian velocity field U(x,t). The Eulerian distribution
function now determines the locations of the‘particles at a
given instant in time. If the distribution function is
integrated over an arbitrary volume, V, the result is the

namber of particles within that volume, np,

n (t) = [Jf glx,t) ax® - (7.3.3)
P v _

The ensemble average of the number of particles within

that volume is then
Z; = [ff g(z,t) dx3 = g(x,t) V C(7.3.4)
v

If the seeding is distributed uniformly in space and is

steady with <respect to time, then the ensemble average of

the distribution -functiomn is a constant value (say
g(x,t) = pc). In addition this coanstant value
is simply the paxticle concentration — the number of

[N

particles perx uﬁit volume,

e et e e e ——

g(x,t) = B, = np/V (7.3.5)

The function w(x) in egquation (7.3.2) now turns the



signal on only in the =region of space defined by the
measuring volume. The function w(x) defining the measuring
volume is a deterministic function equal to one for x within
the measuring volume, zero elsewhere. The product of g(xz.,t)
and w(x) is again non—zero omnly when a particle is in the
control volume. At this point, the analysis is limited to
those cases in which only one particle is present within the
me#suriné volume for any instant imn time. The function

'tprning on' the velocity field is
Il gtx.t) wix) ax3 (7.3.6)

Taking its ensemble average yields

IIT g(z.t) wix) dx? o (7.3.7)

This term is one whenever a particle is in the control
volume and zero otherwise, so that its average is the
fractioﬁ of time the signal is non-zero. This quantity is
then the sum of the <residence times, Pi‘ over all i

realizations divided by the total averaging or sample time,

s
II] g(x,t) w(x) dx” = - } P, (7.3.8)
s
Consider the left hand side. Since the ensemble

a.

average of the particle distribution function is constant,
" g(x,t) is taken outside of the integral sign.

Since w(x) is nonzero only within the measuring volume



va, the right hand side reduces to

S, 3 _
JIf g(x.t) w(x) dx moV (7.3.9)
The above two expressions are then solved to determine

the particle concentration

1
Be = 77797~ 2 P, (7.3.10)

This eguation states that the fraction of time a signal
is seen by the <counter is exactly the average number of
particles in the measuring volume. Further applications of
this result arxre discussed in clapter nine.

Retnran to equation (7.3.2). Recall that this equation
Ieiates the output of the counter to the Eulerian flow field
and the instantaneous particle distribntion, and that these
functions are statistically independent of one another (as
seen by their initial formulation inm the Lagrangiaan field).

An ensemble average of this guantity is easily performed.

U (6) = [II 0(x, ) g(z,t) wix) ax’ (7.3.11)

Considexr the left hand side. The time average of the
sampled velocity is the shaded area shown in Fiénre 7.3.1
divided by the total time interval over which the data is
sanpled. If Ui is defined as the ith reaiization of the

velocity, the left hand side can be expressed as
————— 1 s -
U (t) = 5= [0, (t) dt = ———=—== (7.3.12)

The right hand side is now simplified. First, since



the averaged Ezicrian iechity is constant, it <can be
removed outside of the integral sign. The integral term is

rearranged using equations k7,3.9) and (7.3.10) to the

following form

(7.3.13)

]
o]
~~
M
[ad
A d
=
<3

[/ vz, t) g(x,t) w(x) dgs

Equatidns (7;3.12) and. (7.3.13) are substituted back
into equation (7.3.11). .The result expresses the Eulerian

mean velocity as a functiod:aof the instantaneous velocities

and residence times.

)T, Py -
U(x,t) = ——=——=—= (7.3.14)
2 P." R S .
-1 Caee e
Thus, to measure the correct mean velocity, the

velocity points must be weighted with respect 'to the
residence time of the particle within the measuring volume.

A similar procedure must be followed for the higher moments.

For example

2 i i - (7.3.15)
1
2R ,

Expressions can also be developed for the variance of
these time averages as 2a function of the integral scale,

-
- .

T’ the time interval over which the data is taken, Tgor
and the mean data «=rate, Yrn Thus, if we define the

velocity covariance and the time integral scale of the

turbulence as



B(z) = u(t)u(t+z)

-]

1
'.Cu = - g B(‘C) dzT (7'3-163)
2
then it cam be shown (George 1978) that
_ ~ 2T 1
var[U] = aZ [ —— e ] (7.3.16D)
T . T
s s
2< 1
var[a?] = (3 [ =2+ - ] (7.3.16¢)
Ty 7. Ty

Note that for & high data rate, the variance 1is
essentially that bf- a continuous time functiom — it is
dominated by fhe texrm Zrn/Ts, the ratio of the integral
scale to the total averaging time. For low data rates, all
data points become statistically independent and the
variance is determined bj 1/7rTs, the number of
independenf samples. -

The above theory has assumed that during the time
interval over which the d#ta is taken, all realizations are
stored and utilized in the residence time compuntatiom of the
velocity values. In actual practice in fluid media witk
high particle concentration valmes, this will resunlt in a
large number of data points. A large high speed memoxry or a
computer fast enough to perform real-time manipulation of
the incoming data will then be regqmired. For experimental
situations, Buchhave (1979) has «zrecommended repeatedly
taking small batches of data to avoid large data storage
reQuirements. Residence time weighting technigques are used

to compute velocity values for each batch, and the results



of all the batches are averaged arithmetically. The
interval between successive batches should be separated by
at least two.intagxal scales to insure that each batch’ is
statistically independent. If o% is the variance of

the value from ome batch (obtained wusing egquations 7.3.14

and 7.3.15), the final ~variance of the value computed By

averaging the NB batch values is given by

2
°B
Var[X] = —-- o 7 (7.3.17)

Np

There is further discussion of this in Section 8.1.
Section 7.4: Bias Due to Dropout and Correction with
Frequency Shift

There is an additional source of contamination of LDA
counter measurements. The <counter hardware described in
chapter seven requires a minimum number of frimge <crossings
(eigﬁt for the DISA counter) to validate and record a burst.
Any particles moving parallel to the fringes will be ignored
and the <counter is insensitive to velocity vectors in this
tdead zone'.  The dropout ofvvalidated signal in this region
causes an angular bias because specific values of the
velocity vector will not be recognized by the LDA hardware.
However, if the particle trajectory does mnot cross a
sufficient number of frimges, a velocity may be imposed upon
the fringes (ﬁ;th the use of the frequency shift umnit) so

that the fringes <cross the particle path the required

minimum number of times.



How much frequency shift is enough? Buchhave's
analysis (1976) provides a gquantitative formulation to
estimate the zrequired frequency shift. The ellipsoidal
optical probe volume (with half axes a, b, #nd c) is again

2 boundary of the optical fringe

defined as the 1l/e
boundary. Def ine Ne as the minimum number of fringe
crossings required by the counter hardware and Nf #s ‘the
number of fringes in the volume at any instaat in time. The
ratio of these two numbers is defined as QN = Ne/Nf’

The total number of fringes is a fﬁnction of the beam
-separation, D2, and the beam waist diameter before the
focusing 1lens, d2. The number of fringes required for a

validated measurement is determined by the counter hardware

and set at a constant value of eight, i.e.

4D 2nd
2 2
N, = -2 Qg = -~ (7.4.1)
d D
Ty 2

Consider the plane containing the ellipsoid’s «center
and normal to the velocity vector. The area of the plane
enclosed by the ellipse (i.e. the projection of the optical
probe <volume onto the normal plane) is the optical probe
cross—section, Sp, for the given velocity vector. For
example, if the velocity is directed along the x—axis, its

valne is mbc. When the velocity is parallel to the z—axis,

the optical probe cross—section is nab. The value of Sp
for an arbitrary velocity vector is

S_(U) = nabec R
P (7.4.2)
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The measuring volume cross section, Sm, is the area
normal to the instantaneous velocity within which a set of
parallel particle tréjectories will produce a validated
measurement. As a result, it is not only a function of the
velocity wvector, but is dependent wupom the optical and
electronic hardware =as well. The relative cross section,
g is the ratio of optical probe <cross—sectioa to the
meéasuring volnme <cxoss section. This quantity is always:
less than or equal to one. Since the probe volume should be
'ijdentical to the measuring volume to avoid directiomal bias,
the relative cross section should be constant and equal to
one regardless of the particle trajectory. Buchhave derived
a relation for S as a fanction of Qy, the velocity

“vector U, and the velocity of the moving fringes ,Us, For

convenience, Q IQ!IUS is dJdefined as the freguency

s
shift factor.
2
1}
oy = S,/s, = 1 - a’QiR L L
(v - 1?2 (7.4.3)
where as before
2 1/2

2 2
R = & I y ¥ ]
R = 1ol e [i] [¥]
For a two—~dimemsional velocity field, this function 1is
plotted in polar coordinates in Figure 7.4.1. Figure 7.4.1la

provides a simple example to interpret the plot. The radial

coordinate is the relative cross section, . The circle is






the locus of points for which the probe volume is identical
to the measunring volume (i.e. ds = 1). The curve within
the circle is a plot of the relative cross section for =z
case without frequency shift and QN = 0.2. The angular
coordinate identifies the orientation of the velocity vector
(i.e. & = arctan(U/V)). As a specific example, suppose the
relative cross section is wanted for a velocity vector where
-the horizontal velocity component is equal to the vertical
component,., In this case & equals forty—~five degrees, and
the relative cross section is o, = 0.98. There is also a
distinct range of =eangles for wich the measuring cross
section is zero. This region corresponds to the dead zone
of the counter.

Figure 7.4.1b plots the same situation for different

S P

values of QN‘ Increasing values of QN increase the dead
zore <region and decrease the measuring cross section.
Obvionsly, the optical parameters shounld be set to minimize
.
QN by maximizing Ng, the total number of fringes im the
measuring volume. Since QN is proportional to the bean
separation, the ©beam separation should be as large as
possible.
Of course, the othef alternative is to increase the
frequency shift. Figure 7.4.1c demonstrates the effect on
the measuring vglume when the freqnency‘shift is twice the

expected velocity. Angular bias effects become significant

for QN greater than 0.2. If the frequency shift is five



times the expected velocity magnitude, as in 7.4.1d4, the
bias becomes negligible. It must be noted that this last
operatimg condition is .overly stringent. In a flow field
such as the jet, it is <reasonable " to expect that ¢the
magnitude of the velocity is ranghly correlated with
direction. A high velocity is more likely to be pointed
downstrean ‘than upstream. QU is dependent on direcfion.
The tendency for the relative cross-section to decrease as
the -angle increases is offset by the decrease in QU;
Still, to be safe, it is tempting to avoid angular bias by
using a large value for the frequency shift.

Unfortunately, large values of frequeacy shift, fs’
are undesirable for a number of reasons. First, higher
shift valnes require the counter to process higher frequency
signals. Experience in the laboratorf has Proven that the
better quality Doppler signals are those at low frequency.
Second, to measure the Doppler frequency due only to the
velocity of the particle, fD’ the frequency shift must be
subtracted from the frequency of the signal detected by the
counter fd’ i.e,

fp = £4 — £ (7.4.4)

If the shift is 1large compared to the Doppler
frequency, the Doppler frequency is the small difference
between two large - numbers. This can induce significant

exrror. To maximize resolution of the Doppler frequency, the

detected signal and the Doppler frequency should be of the



same order of magnitude.

The final reason is the accuracy of the digital iclock.
Recall that to measure the Doppler frequency, the counter
counts the number of clock ticks for eight cycles of the
burst. The precision of the measurement is directly
proportional to the 1length of time over which the
measuarement is taken  or inversely proportiomnal to the
freqnenc; of th; burst. Thus, due to the desigmn ©of the
counter . hardware (see section 8.5) the burst time has =a
better resolution for lower frequencies.

It may be conclnded that to maximize the precision of
the counter measurements, the frequency shift should be no
greater than the minimum amount regquired to avoid =angular
bias. - Note that when dealing with highly turbulent flows,
it may be necessary to increase the frequency shift so that
the mean of the detected frequency is céntered in the
counter’s bandwidth.

Section 7.5: Herdware Accuracy of Burst Time and Doppler
Freguency

The frequency information, fd’ detected by the
counter is computed 1using the total time period for eight
cycles. This gquantity has already been identified as the
burst ‘time, P8’ During this time period, the pulses from
‘the 500 MHz clock (two nanoseconds pexriod) are counted and
stored in the high count register. The high count registex

is a 21 bit binary counter. Suppose the frequency of the

detected signal is 500 kHz. The total time for eight



. periods of this signal is two microseconds so that the high
count .register counts 2000 pulses,

As seen in Figure 7.5.1, the largest possible error
will be a timing erxror of plus or minus one c¢lock pulse,

tc' Def ine €p. as the absolute error for the measured

time period of eight cycle;.
ePc = Pg(actnal) — Pg(measured) - (7.5.1)
The probability function for this error term is
‘depicted at the bottom of Figure 7.5.1. It is a top hat
function since all valnes are equally probable. This
behavior is analogous to the quantization error of an ideal
A/D converter. The mean value and standard deviation of the

error are easily calculated.

E<ep > = 0 SCep > = t2/3 = 1/3f2 S
The xelative error for the burst time estimate, Epg >
is ~calculated using the standard deviation of the
probability functiomn.
S(epc) :
€pe = ——;;——'X 100% = 7.2 (fd/fc) (7.5.3)

The relative -error of the buxst time is directly
proportional to the frequency of the detected signal and
inversely proportional to the frequency of the clock. This
is as expected. The 1lower the detected frequency, the
longer is the elapsed time period for eight <cycles of the
Dopplexr ©burst. The longer the time period, the higher is

the number of ticks counted by the digital <clock and the
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greater is the relative accuracy. Since the counter's clock
has a fixed valne, the only varying parameter affecting the
relative error is the detected fregquencye. For the
measurements recorded din this dissertation, the largest
valne is less then ©0.02%. Thus, the contribution of the
clock towards any measurement error secms negligible.

The relative error of the Doppler frequency, fD’ is
also of primary importance. Recall that the detected
frequency is obtained directly from the burst time. The
Doppler freguency is obtained by subtracting the freguency
shift, fs’ from the detected freguemcy., i.e. |
fD = fd~— fs (7.5.4)
Inaccurracies in the measnrements are suspected if the

frequency shift is laxge compared to the Doppler frequemcy.

It is relatively easy using the above eéuéﬁions to obtain an
exact relation for the size of this error. To begin, note
that the valme for the relative error of the burst time is
also equivalent to the relative error of the detected
frequency. Thus, the relative error of frequency of the
detected signal, e, , can easily be determined as follows
Epe = %de ~ Af/fd X 100% : (7.5.5)
To find the error relative to the Doppler frequency,
Ehc’ multiply equmation (7.5.3) by the detected frequency,
then divide b;ﬁ the Doppler frequency. The detected

frequency is then expressed as the sum of the Doppler

frequency and frequency shift to yield the final result,



2
e = Af/f. X 100% = 7.2 (£./f )(1 + £_/fp)
D¢ D D" e s° D (7.5.6)

The relative erxror for the Doppler frequency varies
inversely with thq clock frequency, but also is a function
of the frequency shift., The above 1limits illustrate two
essential behavior patterns. ¥When either the frequency
shift is much 1less than the Doppler fregquenmcy eor the
frequency shift is Zero, the detected and Dopplerx
frequencies are equivalent. The relative error for both the
detected and Doppler frequencies are the same. The moxe
interesting behavior occurs in the second 1imit, when the
frequency shift is much greater than the Doppler frequency.
In practical applications, such instances are more likely to
occur when the flow velocity approaches zero. For such
cases, the Doppler frequency is the sma}l‘i?fference between
two large valmunes. Here, the relative error is inversely
proportional to the Doppler frequency. The <relative erxor
- 0f the Doppler frequency has a maximum value as the Doppler
frequency approaches zero.

Figure 7.5.2 shows the ~zrelative error for freguency
shifts of O, 250, and 500 kHz. The 500 kHz value is the
npper limit for the range of freguency shift used imn this
experihent. The positive values of Doppler freguency are
plotted for a counter with a bandwidth set to accept signals
between 64 kHz% to 1 MH=z. Since the detected frequency is
limited to 1 ¥Hz, the maximum possible Doppler frequency 1is

given by this value minus the freguency shift. For example,



FIGURE 7.5.2
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given a frequemncy shift of 250 kHz, the maximum Doppler
frequency is
£, = 1MHz - 250 kHz = 750 kHz.

For zero shift, the presence of the high pass filter
prohibits signal frequencies below 64 kHz.

For zero shift, the relative error is directly
proportional to the Doppler f?equency. Equation (7.5.6)
reduces to a straight line depicted by the bottom curve in

Fignre 7.5.2. If this line is extended beyond the high—pass

filter cut—off fregquency, it would pass through the origin.

Witk nonzerxro shift, the 1/fD dependence mnear the
origin becomes clear. For a given Doppler frequency,
increasing values of shift increase the relative error. If

the Doppler frequency could increase indefinitely, these
curves would eventually merge  with the ~zero shift <case.
Fortunately, the relative error is still only fractions of a
percent. GiQen a 500 kxHz shift, the relative error is 3%
for a Doppler frequency of 1200 Hz (approximately 1.3 cm/s).
It may be concluded that the <effect of <clock error is
negligible for the equipment nsgd in the velocity field
nnder investigation.

Once the measurement is completed, the contents of the
high count register are hardware transformed to floating
point format (see Figure 7.5.3). The ten most significant
bits of the high count register are stored in the mantissa.

Rounding does not occur, the remaining bits are ignored.



FIGURE 7.5.3

COUNTER TRUNCATION OF BURST TIME
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The largest error condition will occur when the MSB is set
to one, the remaining nine bits of the mantissa arxre zero,
eand the truncated bits ~are all oﬁes. For this case the
relative error is one part in 29. The relative exrror due
to truncation is expected to have the following range of
values.

Ps(actnal) - P8(truncated)
= e X 100%

(7.5.7)

, "9
100/27 > €py > D

0.19 > Eps > 0

The same analysis presented previously in this section
is now repeated. Assume the probability density function
(p.d.f.) for the relative error is a top hat function. The

mean <value of the p.d.f. is adopted as the final estimate

to the relative error. In general, for a mantissa with b

bits.n
- o~ b . v
Epy = 2 X 100%
Epy = 0.39 for 8 bit mantissa ’ (7.5.8)
8Pt4= 0.098 for 10 bit mantissa

The procedure to obtain the =relative -error of the

Doppler frequency from the burst time error is the same as

before

= 27b (3
2 (x + fs/fD) X 100%

(7.5.9)

The above egquation is plotted in Figure 7.5.4 for a ten

bit mantissa (for am 8§ bit mantissa, simply multiply the
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constant relative error for the burst time (regardless of
frequency shift) and the Doppler frequency for a zero shift.
Higher wvalues of shift increase the error inherent in the
Doppler fregunency. Althongh the relative error dse to
truncation is an orxrdexr of magnitude greater than the clock
error,,ifs effect still seems to be small. For exanple,
evenr with a 500 kHz shift, the error in measuring a Dopplex
frequency of 50 xHz (about 54'cm/sec) is about onre percent.
It has been shown that in most «cases, the truncation
error, not the clock error, is the sounrce of greatest error.
However, even the truncation error is normally a fractioﬁ of
a percent. The major source of error in the estimate of the
‘burst time and Doppler frequency is mnot in the digital
hardware, but in the noise ‘inherent in the received Doppler
signal, It is the level of accuracy in—5:8 comparison test
that limits the accuracy of the burst time and freguency
measurements. For the DISA 55L90 counter, the minimum erxor

is therefore 1.5%.

Section 7.6: Hardware Accuracy of Sample Inverval
The sample interval <clock has a hardware design
different from the &electronics measuring the burst time.

The period of the pulses, of the master or time ©base

tb’

clock used to™ measure the sample interval time between

successive data realizations, T, is wuser selected. These



time base pulses are counted in the eight bit '1'ln mantissa
counter. The counter is incremented with each time base
pnrlse and has an absolnte error offplus or minus.one time
base clock pulse. At this point the output is in
nonnormalized form. When the clock overflows omn 256 counts,
the T exponent is incremented. At the same time the T
counter is reset to 128 (see Figure 7.6.1) and the period of
the time base clock pulses 1is doubled. After the first
Qverflow occurs, the accuracy of the sample. interval élock
is determined by its representation in floating poini form.
The behavior of the relative error for the sample interval
may be treated in a fashion identical to the truncation

error of the previous section {(see Figure 7.6.2),

0 < &g < 2P x 100%
0 < ep < 0.39% -

(7.6.1)
E<er> = 0.20 %

S(zT) = 0.11 %



FIGURE 7.6.1
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FIGURE 7.6.2

DIGITAL CLOCK MEASUREMENT ERROR - SAMPLE INTERVAL
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Chapter 8: Validation of Measurement Technigques
Section 8.1: Software  Programming Considerations and
Relative Errors of Statistical Estimates
Because of "the need = to investigate software
‘verification metheds for the LDA counter, special software
was yritten for this experiment. The verification methods
to be dinvestigated included over a half dozen different

statistical functious. Because of the large number of

operations to be performed, it was not feasible to apalyze .

the data in real time. Instead, all measurements were to be
stored on .disk.

In the preceding chapter it has been shown that the
conputation of the flow field statistics requires residence
time weighting to avoid the bias errors arising .from the
correlation between the sampling ra;é mand flow» field.
Record lengths or batches longer than two integral scales
are taken, then each realization within this period is
averaged using residence time weighting, and the results of
successive batches are arithmetically averaged to form a
final time average. All single <channel measurements were
recorded using this technique.

Recall that when moments of a p.d.f. are being
computed, the statistical convergence of these moments is
determined by the number of independent sanples (see section

7.3). Since it is often impossible to control the particle

seeding accurately enough to guarantee that every sample is



statistically independent and since the residence time
weighting requires that every sample to arrive during the
sample period be processed, storage space on the disk may
not be optimized.

In order to minimize storage 'space for the two
component measurements, the following technigue was adopted.
The computer records a sample, waits t%o integral scales,
records the =next sample yo occur, and repeats the cycle
thil the desired number of realizations have been recorded.
Conseguently, every recorded value is statistically
independent of the other. To calculate the time lag between
each measurement, the dintegral scale, ru, is estimated
using the data of Wygnanski and Fiedler. For a
nondimensional radial coordinate =7 less than 0.10, the
integral scale is inversely proportional to the local mean
axial velocity, U and proportional to the axial coordinate,

x, thus

T = 0.042 /U (8.1.1)

"For values of n greater than 0.10, the comstant in the
above equation decreases as 17 increases. Although the
relation does not hold across the entire profile, it does
provide a reasonable estimate by which the time lag between
samples may be set. Figure 8.1.1 shows the integral scale
for the two Iocations at which profiles were measured.

These values were computed using the mean velocity profile

of Seif. The increase in the time scale as the radial
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coordinate increases may be attributed to the decrease in
the 1ocal mean velocity. The eddies are swept past a poinmnt
at a slower rate, so the integral time scale becomes larger.

Based on these valmnes, the programmed time lag for the
two channel measurements was set to 0.1 second. This was
not, however, the average time period between samples.
Recall that the counter must wait .for a wvalidated
realization before accepting the measurement. Because of
the sparse seeding, a typical data rate was between three to
five hexrtz so that the average time between samples was
between 0.2 to 0.3 seconds. For the two component
measurements, taken with N statistically independent
realizations, the wvariance of the sample mean, Usm’ is
related to the variance of the measured velocity, UM'

Var[UM]
Var[Usm] = -——;~—— v (8.1.2)

The relative error for the sample mean is

Std[Usm]
e[0} = ———==~~-= X 100% (8.1.3)
v?

The preceding chapter has established that hardware
errors are mnegligilble compared to turbulence intensity
levels in the flow. As a result, the variance of the
measuored velocity is simply the variance of the true
velocity field.™ The relative error for the measurement of

the mean velocity is

e[U] = - X 100% (8.1.4)

1

g



Taking the worst case condition at the outexr edge, say
a turbulence intensity of 100%, the relative error for the
mean velocity is computed. Since 8400 samples were taken
per data point, the expected accurracy is roughly 1.1%. The
obsexved scatter was closer to 4% for the mean values.

A similar procedure can be followed for the higher

moments. It can be shown that

|

— 2n

Var( uz ] = (8.1.5)

Zig

The third and fonrth.moments measured by Wygnanski and
Fiedler in the jet exhibited Gaussian behavior up to a
radial coordinate of yq¢q = 0.10. Assuming a Gaussian
distribution for the velocity, the relative error for the

turbulent normal stress can be easily calculated

el ;E ] = =3 x 100% - (8.1.6)
N
Using the above valne#, a 3% error in the turbnlent/
stress terms is predicted, a number matching the observed
scatter., Note that Tennekes z2nd Wyngaaxd (1972) have shown
the error might be considerably higher for a distribution
which is not Gaussian.

For the single channel measurements, the flow field was
continuously sampled. The seeding rate was increased so

that the average data rate was 70 samples per second for a

sample period of 0.014 seconds. This rate is high enough so



‘that the statistics of convergence is essentially dominated
by the total sample period. This sample period, Ts, was
250  seconds. ¥hen these <values are substituted into
equation (7;3.16b) ‘with a time scale of .050 seconds, the
relative exror is

s[0] = 2% (8.1.7)

The discrepency between the calculated error bounds and
the. observed scatter in the data can only be attributed to a
slow oscillation or random meandering of the jet. Such an
effect 1is probably .dng both to the back flow and the
nonsymmetric enclosure. The return flow was not a uniform
laminar flow, for at times large bursts of fluid could be
obsexved being swept back along the ounter edges of the

enclosure.

Section 8.2: Particle Path Lengths in Optical Proﬁe Volume
In the next section a probability distribution fumction
is derived for the path length of the particles through the
opticaliprobe volume. The 1975 article by Buchhave provides
the foundation for this amnalysis(v. Buchhave 1976). He
developed an exact formula for the path length of =an
arbitrary trajectory through the probe volume. He furthér
developed this relatiomship to find the surface area in
which passing “particles would have a path length greater
th#n'or equal to a certain wvalue. Buchhave used these

results in his investigation of the angunlar bias discussed



in section 7.4. His analysis 1is repeated here for
completeness. These 1results are then wused in the next
section to develop a probability distgibution function for
the path length in a uniform laminar flow field.

The optics are operating in dual beam, differential
Doppler mode. To simplify the mathematics, the optical
probe volume and the measuring volume = are " assumed to be

identical. In other words, a signal is seen by the

..processing hardware whenever a particle is within the -

optical probe ~volume. The llez—intensity boundaries of

the optical probe volume are assumed egquivalent to the
physical area in space in which a signal from the particle
ezceedes the counter trigger level. The x, y, z coordinate
system 1is definmed with iespect to thé optic axis of the
intersecting laser beams. The plaﬂ; ‘%of fringes is
?etpendicnlar to the x—axis. The z—-axis is parallel to the
fringes and oriented such that the x-z plane contains the
intersecting laser beams (see Figunre 8.2.1) In this systém,

the ellipsoidal optical probe volume is given by

2 2

2
(¥l Frz1" _
iyl Gl 1 (8.2.1)

o IM

=1
Lal

Consider an arbitrary straight line particle
trajectory, 1. The line parallel to this path and passing
through the origin of the x, ¥y, z coordinate system defines

the 1l-axis and a second coordinate system. Let a be the

angle between the z and 1 axes. The angle between the



FIGURE 8.2.1

PROBE VOLUME COORDINATE SYSTEM

d, path length




x—axis and the projection of 1 omnto the x-y plane is B. The
plane perpeﬁdicular to 1 and containing the origin of the x,
Yy, z system defines the &, m axes, the E—axis being the
intersection of the x-y plamne and the &, 1 plane. The
mapping of a2 point from the second to the first coordinate
system is givemn by

lsinacosP + EsinB + ncosacosh

lsinesinp + nsinBcosa — Ecosp
= lcosPp + msinf

it

X

y (8.2.2)
z

i

The surface of the probe volume may now be expressed in
the new coordimate system
A12 + B1 + C =0 ' with the coefficients

A (coszﬁsinzn)/az + (sinzﬁsinza)/b2 + (cosza)/c2

1

B = (2sina/a?)(&sinBcosp + ncoszﬁcosa)
+ (2sinasinB/b2)(~fcosp + nsinfcosa)
(8.2.3)
+ (—2nsinacosu)/c2
C = (Ezsinzﬁ + nzcoszﬁcoszu + 2§nsinBccosﬁcosa)/£2
+ (§2ccoszﬁ + qzsinzﬁcosza - 2¢tnsinfecosfcosa)
+ (n2sine) - 1
The particle path through the measuring/probe volume is
uniquely determined by the angles a and B and the
coordinates & and n. The two valmes of 1 at which the

trajectory intersects the ellipsoid's surface may be found

by solving the ‘above equation using the quadratic formula.

The solution is

1 = e (8.2.4)

e nmtinla math lenvth. d. is also function of a, B.



¢ and n. Its magnitnde is the difference of the two values
" of 1 given by eguation (8.2.4), thus
(82 - 4aC)1/2

d = (1, - 1_) = —=———=—————= (8.2.5)

The counter can only supply information concerning the
x-component of velocity, U, and the total time required to
cross the measuxring volume, P. For this reason it is
convenient to deal with the component of the particle path

- leagth-along ‘the zfaxis,.dx, given by - .. . Lo

‘dx = U P = 4 cosfisinn
(82 - 4ac)1/2
d_ = ——————-= —_— cosfsina (8.2.6)

A

The path length is maximized for a trajectory passing
through the center of the ellipsoid. For such a particle, §
and m are zero. Using equations (8.2.35 ;;d (8.2.6) it can
be shown that the expression for the maximum possible path
length, d__, given a fixed velocity vector is

a .= Zcosﬁsinn/Allz
(8.2.7a)

a
d = 2&{1 + - tanzﬁ + -—2 —-—-—z—_.......z._-l
c” cos“Ptan“a’

The angles a and p axe functions of the velocity
vector. The maximum path length can therefore be expressed
in terms of the components of the velocity vector (i.e. U,
V and W) as

tana = (G2 + v2)~1/2;y

v/ (v + v3)1/2

i

cosfB
(8.2.7b)

vV/U

it

tanf



rv2  v*  w*i-1/2

d_ = 20 -  + -, +
xm L2 * 2 21
Equation (8.2.6) prevides greater information if
interpreted from a slightly differeat viewpoint. This

relation may be rearranged to determine what values of ¢ and
n produce a coastant path length di, Equation (8.2.6) may

be represented in the following fashion

¢ - sinla , sin’peos®a . cos?Beesle
a2b2 a202 p2c2
(8.2.8)
L o cos? sin”
a2c? b2c2
M = 2sinficosficosa ro_i_ . -—l—}
aAcz b2c2
N = _[ses?psin’a sin’psin’a | 522351(1 - Q2(1 +
L a2 b2 2 4 :
a2 a2 1
+ - tanZp + -, ——5==="5"))
b c” cos“ftana
Q = dx./2a
This form dis the same as that in Buchhave's
publication. For future 1use, it will prove to be more

convenient to represent the coefficient N in terms of A

(eguation 8.2.3) and the maximum possible path length, dxm

in (equation 8.2.7), i.e.

T r_9x727
N = —A}1 - —— (8.2.9)
L la__1 |



Equation (8.2.8) defines an ellipse withinm the §4n
plene. Any particle path passing inside the ellipse will
have a path length greater than orx eq;al to dx' To find
the area of ‘the &ellipse, a third and final coordinate
transformation is applied. A new set of axes inm the ¢§E-nq
plane is defined s0 that these new axes (&' and ') are
aligned with the axes of the &ellipse givemn imn eqguation
(8.2.8). The mnew coordinates are defined to remove the
cross product term MEy.

¢ = E'cosy =~ n'siny (8.2.10)
n = E'siny + n'cosy

This product term is zero when

K - L .
tany = ———--— i'{ (*——-*)2 + 1 } (8.2.11)
M

- Equation (8.2.8) expressed in the £' = n' planme is

g2 a2
a'2 b’2

N(1 + tanzy)
4?2 = e (8.2.12)

K — Mtany + Ltan“y

N(1 + tan27)
502 o e Il

L - Mtany + Ktanzy

The area enclosed by the ellipse is

r_________Efil_i_sgsfxlf _________

S = ga'b’' = ul
(K-Mtany+LtanZ?y) (L-Mtany+KtanZy)
(8.2.13)

The above expression was used by Buchhave in his

analysis of angular bias. The counter’'s requirement for 2



minimum number of fringe crossings may be viewed in terms of
2 minimum path length. For a given frequency shift and
felocity vector, he <calculated the minimom path length
needed to validate a signal. Suppose Ne fringes are

needed for a measurement in the optical probe volume. This

requires a minimun expected residence time Pe such that

Ne
P o= —ofo (8.2.14)

»e fD.+ fs
As before, f; is the Doppler frequency and f_ the

frequency 'shift. The required minimum path leagth dx is

e
then
U N, )
dxe = 1 (8.2.15)
D s
This may be expressed in terms of the total number of
fringes in the comntrol volume (Nf) and the fringe
velocity, Us‘
N
e 1
d = e .
xe 2a Ne 1+ U_/T (8.2.16)

Note that as the frequency 'shift is increased, the
 minimum path length required is also decreased. This above
relation may be used in equation (8.2.13) to evaluate the
measuiing area in the &-n plane. Any particle traveling
through this Feasuring cross—section will produce a
validated signal. Any particle path crossing the &—mn plane
outside of the measuring area will not cross enough fringes

to produce a validated measurement.



Section 8.3: Probability Distribution Function for Particle
Path Length in Laminar Flow

The res;lts of the previous section can also be used to
developA an expression for the probability distribution
function for the path length in a laminar flow field. For
uniform seeding, the point at which a particle crosses the
&E-n plane is arbitrary aand can be regarded as a random
variable. All points in the ¢§-n plane have an equal
probability of being in the crossing path. Because the
x—component of the path length, dx’ is a fnnctio; of this
intersection point, it also is a random variable. It is
expected that the exact form of the probability distribution
function is dependent on probe volume size (a._b. c¢) and the

the velocity vector (i.e. a and B are a fumction of 7).

The number of particles crossing a surface in the &7 plane
is directly proportiomal to the surface’s area. If a
detector is sensitive only in the area defined by this
surface, the probability of detecting a particle within a
fixed period of time is clearly a function of the area. If
the area is doubled, the probability of detecting a parxticle
within that fixed time span would also be doubled. In =a
sijmilar fashion, it <can be said that the probability of a
detected particle having a path length greater than & may be
determined by Mtaking the surface area through which a
particle will have a path length greater than 5, say S(&))

)

and dividing this gumantity by the measuring area S(dxe

i.e.



Pld_38] = ——o——"c (8.3.1)

The»probahility for P[dx>dxe] is equal to one.-
This is as expected since all detected particles must have a
path length greater thanm d__, the minimum path length
requnired for a particle to be detected. As b increases, the
area containing path lengths greater than or equal to this
value decreases,  so - the probability of  such . an .event
decreases. Eventually, for large emoungh 5, S(dx=6) equals
zero and the probability of finding a path length gieater
than this value is =also zero. Examination of equation
(8.2.8) =reveals that the &expression for S contains the
fanctions K, L, M, N, Q@ and tany. Note that K, L, M and
tany are dependent om a, b, ¢, & vadd n only and are
independent of the path length.»dx. Upon substitution of

eqnations (8.2.8) and (8.2.9) into (8.3.1), the terms

containing these functions cancel and eqguation (8.3.1)

reduces to
P[dx>8] e Y~ S i » (8.3.2)

for R(d3) given by

e 1 - .81
R 1 La .. ]

xm
Examining the above expression for the functiom R, it

is clear that the mathematics can be further simplified when

expressed in a non—dimensional form. The normalizing factor



is the maximum possible path length, d__ .

xm
r = d_/a A, = d__/d 2
x' % xm e xe xm  (8.3.3)
1 - l2 .
P[A>8] = ————= for A_J<ag1
1 - xi ©

The mtility of such a form is apparent when this
variable 1is expressed in terms of either the fringe count,

N, or the residence time, P.

s o _Sx _ mR_ _ P
d__ TP, P_
(8.3.4)
A = ? = ~§£-(__f_2_1-_f_$__)_ = §
Pm Nm/(fD + fs) Nm

The cumulative distribution function (F) is given by

F[8] = P[A<8] = 1 — P[A)>5]
- (8.3.5)
A2 - a2 -
FIA] = ——=-=2 for A (A<l
1 - 12 e

The probability distribution function of a variable is
the derivative of the cumulative distribution functiom with
respect to that variable. The derivative of the preceding

equation is
P[A] = ——2&-_ for A_<a<1 (8.3.6)

The probability distribution function of A given U is
a straight 1line. It does mnot matter whether the path
length, fringe count or residence time is being examined,
for when expressed inmn suitable nondimensional form all

variables have the same probability distributiom functionm.
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To measure this function, the following steps must be
performed. First, the velocity vector of the laminar flow
must be known. Based on the oriemtation of the <velocity
vector with respect to the axes of the optical probe volunme,
¢ and B are detexrmined. The x-component of the maximum
possible path leagth is then computed wusimg equation
(8.2.7). This may then be used to compute the mnormalizing
coefficient.

Such a procednre is followed for the histogfam produced
in Figunre 8.3.1. This is the only plot presented in this
dissertation which is not data resulting from the use of the
five watt Argon—ion laser. Instead, a2 second Disa 55X
optical system with a Helium-Neon laser as the light source
was used for the measurements. For maximnh signal strength,
these measurements were also taken in a forward scatter
mode. The seeding techmigue was unchaﬁged.

The x—axis of the probe volume is aligned with the
direction of the flow (i.e. ¥V=W=0). The spacing between
fringes, 8., is spproximately 15 pm with a2 maximum path
length along the x—axis of .23 mm. The measurements were
recorded with a frequency shift of 200 kHz. The
non—dimensional path length is expressed in terms of the
fringe count since the fringe count is an integer value. An
integer value Teguires less storage space {(one word for an
integer value versus two words for a single precision real

value) and arithmetic operations imvolvimg integers may be



FIGURE 8.3.1

PROBABILITY DISTRIBUTION FUNCTION -OF A IN A LAMINAR FLOW
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pexformed at a faster <xrate than real operations. The

maximum number of expected fringes is estimated as follows:

f) = U/6; = 0.19 MHz
P = 2a/0 = 81 ps - ' (8.3.7)
N, = (fy + £,) P, = 31 fringes

Unfortunately, the theoretical prediction differs from
the =actunal _measurements. The experimental values for the
distribution function have a significantly higher value for
the lower values of A (i.e. low burst times and low fringe
counts). The p.d.f. does not peak as higﬂ as expected, but
the cut—off point 1is correctly predicted. It is believed
the reason for this behavior is fonndv in the =range of
particle sizes. Recall the derivation“£03 the angular bias
and the probability distribution fanction of the
non—-dimensional path length has assumed the counter trigger
level to be equivalent to the 1/e2 intensity level of the
intersecting . laser ©beams. However, the intensity of the
scattered light has a strong functional dependence upon the
particle size. Smaller diameter parxrticles will produce
recognizable signals only over a smaller measurimg volume
size. They will therefore have smaller values for the
maximom possible~valnes of path 1length, burst time, or
fringe <count. Thus lower values become more probable than
wounld be expected from the nondisperse theory developed
here.

Such an effect might also be due to high particle



concentrations. Suppose a particle 4is in the measuring
volume and has crossed enough fringes to fulfill the 5-8
comparison test. A second particle now enters the vqlume
and the signals from the two particles interfere with one
another. The amplitude modulation of the resultant signal
(see Figure 8.3.1) can cause the counter to prematunrely mark
the end of 'a burst and reset before the first particle
leaves the measuring volunme. The measured path length,
fringe <count, and residence time are truncated. For the
measurements shown in Figure 8§.3.1, the low seed
concentrations and visual observation of the filtered
Doppler siénal during the sampling interval indicate that
this errxor «condition was rare. It seems the difficn;ty in
matching theoretical and cxperimental <resn1t to the
probability distribution function is primarily due to the
spread in particle size. There seems to be no practical way
to account for the effect of particle size wupon the

distribution function.

‘Section 8.4: Probability Distributiom Function for Fringe
Count in Turbulent Flow
For turbulent flow, a more serious implication of the
results of Figare 8.3.1 axe revealed if the effects of
angular bias are reconsidered. Buchhave's analysis has
assumed that the particle produces a measurable signal when

the particle is the optical probe volume. The intensity of



the scattered light is a function of particle size. Larger
particles reflect a stronger Doppler signal. For smallerx
particles the volume whiéh prodnces-a measurable signal is
reduced and these smaller particles travel a shorter
distance in which they must cross the required minimun
number of fringes. As a result, the predicted amount of
frequency shift regunired to produce an unbiased result for
the smaller particles is underestimated. It is therefore
suggested that before any data is taken, the experimenter
check the ‘characteristics of the seeding particles by
examining a plot such as that presented in Figure 8.3.1.
Although it can provide no gquantitative data for the amount
of frequencf shift required, it can warn the experimenter if
the initial conditions ;f Buchhave's model is applicable
(i.e. given sufficient frequemncy shiff. is the measuring
volume the same as the optical probe volume for all particle
sizes?).

The problem of angular bias arises because the connterb
requires a minimum number of crossings to validate a
measurement. A crude indicator of angalar bias can be found
by examining the probability distribution of the fringe
count. Infrequent occurrences of low fringe count valnes
indicates ‘the- shift has been correctly set. If a
significant number of realizations have a fringe count equal
to or mnear the minimum requirement, it is probable that

there has been a significant fraction of undetected
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particles which have failed to cross the minimum number of
fringes. A high incidence of low fringe couants indicates
angular bias.

The results of the preceeding section can be wused to
predict the expected shape of the fringe count distribution
function. [Equation (8.3.4) can be regarded as a comditiomnal
. distribution functiom when dealing with turbulent flows.
Given a velocity vector, it determines the probability of
the nondimen;ional path length. The nondimensional path
length may be expressed as the fringe count divided by the
maximum possible fringe count for that velocity vector
{equation 8.3.6). By <c¢hanging variables from A to N,
eguation (8.3.4) can be used to determine the functional
form for the probability of the fringe “count given the

velocity vector, thus

PINlgl = —--28—
N2 - Ni
(8.4.1)
xm
N, = - |1 + fs/fDI

where C€ is the calibration factor given in equation 6.1.2
and d is a function of U as given ia equation 8.2.7.

xm
Once a distributionm function is defined for the
velocity vector, the distribution function for the fringe
count may be found unsing
PIN] = fPIN|U] P[D] 4¥ (8.4.2)

The above equation is integrated over =all possible

velocity vectors. The results of a nemerical imtegration



using the above approach are depicted in Figure 8.4.1. The
parameters of - the optical probe volunme used in the
integration afe.identical to those of the oétics used in the
jet experiment. For this plot, the mean velocity and
frequency shift are held constant while the turbulence
intensitj is varied to determine its effect upon the
probability distribution fanction of the fringe count. A
normal distribmtion (or Gaussian distribution) is assumed
for the flow field, i.e.

— (U - 0)2/252

PIU] = ————mmmmmeme (3.4.3)
o (2x)"1/2
where cz = u2

A mean flow velocity of two meters per second with a
frequency shift of 400 kHz is chosen to simulate the flow
field seen towards the .outer gdge of the jef. The
probability distribution functiom for the fringe counnt is
shown for turbulent intensity levéls of 10, 25 and 50%. The
range of the numerical integration of the velocity field is
plus or minus three standard deviations about the mean.
Each step of the integration is 1/100 of the integration
range. As a check, the distribution function of the fringe
counnt is integfated and in 211 cases is within two percent
of the expected value of omne.

For a simple flow such as this, the velocity vector is
always directed along the x—axis. The maximum path length

for the theoretical model is therefore independent of the
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FIGURE 8.4.1

THEORETICAL PREDICTION OF FRINGE COUNT HISTOGRAM
VARIATION WITH HIGHER TURBULENCE INTENSITY LEVELS
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velocity magmnitude amd is a constant with value 2a. This
behavior pattern is =not followed by the fringe <count.
Because of 'the frequency shift, the number of fringes a
‘particle traverses im its flight across the measuring volume
is a function of the =residence time within the volume.
Given the same path, a slower particle will <creoess ﬁore
fringes than a p;rticle moving at a higher speed. As the
turbulence.iﬁtensity is increased, the incidence rate of
slower moving particles increases so that the probability of
a higher fringe connt also increases. In contrast to the
sharp cut—off of the distribution function in laminar flow,
the occurence of lower velocities with increasing tuxrbulence
levels -¢cause a gradual decay of the £fringe count
distribution function. - 'As in the laminar case, the
distribution function of the fringe count for a turbulent
flow 4initially displays linear behavior. The initial
behavior seems to be largely governed by the mean velocity
and frequency shift. It is a very weak function of the
turbulence intensity level.

Of course, turbulence is a three—~dimensional phenomena.
The one—dimensional flow field used above does not reveal
behaviér patterns for those cases where the instantaneous
velocity vecto; is not aligned with the x-axis. In Figure
8.4.2, the fringe count distrbution function is plotted for
both one and two dimensional flow fields. A bivariate

normal distribution models the turbulence. The <correlation
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FIGURE 8.4.2

THEORETICAL PREDICTION OF FRINGE COUNT DISTRBUTION FUNCTION
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coefficient between the two velocities, uv, is zero. The

mean velocity is again directed alomg the x—exis with a -

value of two meters per second. The normal Reynqld's
stresses of both velocity components are assumed egunal. The
turbulence intensity level is fifty percent. The probablity

distribution for the velocity field under these constraints

is
S - 2+ w2y /267
2n
where‘ﬁz'= n2 = 72

Note the component of velocity ©perpendicmlar to the
optic axis and parallel to the fringe plame, V, is chosen as
the soecond component of velocity. A shjft of the velocity
vector toward this axis causes a greater decrease im the
maximum possible path length than when the velocity is
directed along the optic axis. For example, suppose U is
equal to W, and V is set to zero. Using equation (8.2.7) it
can be shown that the maximum path length is still
approximately the same as the beam waist diameter (0.32 mm).
IJf U is egqual to V while V is zero, the maximum path length
is roughly 70% of the beam waist diameter (0.22 mm).

The fringe count distribution for the 2-D case is very
similar in nature to the simple 1-D prediction. The initial
behavior is again lineaxr with a slightly larger slope. The
peak of the distribution function is also higher so there is

a slight increase in the probability of lower fringe count



values. On the other  hand, the tail of the distribution
‘decays faster than in.the 1-D case.

This behavior may be.casily explained. Recall for the
1-D ease that the maximum path length is coastant and
independent of the velocity value. This is not true for the
2-D case. As the velocity vector swings away from the
x—axis to the y-axis, the path length decreases. The
shorter path length results in a lower frimge count. The
higher incidence of low fringe counts in the 2-D model may
be attributed to this angnlar effect.

How well does theoxry agree with experimental results?
Figure 8.4.3 demonstrates the contrast. The experimental
data is computed from one of the single channel mode
realizations (i.e. . only one vgigciﬁy component is
recoxded). For this case, the fringe plane is perpendicular
to the jet axis. The data point location is x/D = 6§7.25 and
mn = 0.09. The measured mean velocity at this point is 2-3
meters/second with a local turbulence intensity level of
50%. The frequemncy shift is 300 kHz. The theoretical
prediction is based on a 2-D flow field (equation 8.4.4)
with the above <characteristics. Considering the error
induced by varying partiéle sizes as revealed in Figure
8.3.1, the agreement is very satifactory. Both experimental
data and theoretical predictions clearly display an initial
region of lineﬁr growth leading to a peak in the fringe

count distribution. This trend is then followed by a
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FIGURE 8.4.3

PROBABILITY DISTRIBUTION OF .FRINGE COUNT
THEQRETICAL AND EXPERIMENTAL RESULTS
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FIGURE 8.4.4

PROBABILITY DISTRIBUTION OF FRINGE COUNT
THEORETICAL AND EXPERIMENTAL RESULTS
REDUCTION OF MEASURING VOLUME IN NUMERICAL MODEL
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gradual decay. The peak of the experimental results occuxrs
at an earlier valme and is wider then the model. This
‘behavior can be attributéd to the smallex particles seeing a
smaller measuring volume size.

Results for the two channel mode a;e found in Figure

8.4.5. For these measurements, the line perpendicﬁlar to

the fringe plane is at an angle of 45° with respect to the

jet axis. The behavior of the fringe count distribution
acropss the jet cxross section is shown here. The same
characteristics are displayed, with an initial linear

behavior leading to a peak followed by gradmal decay. The
decrease in the mean velocity with increasing radial
coordinate lowers the slope of the linear region and the
peak of the distribution function; " The increase in
turbulence intensity with the radial coordinate spreads the
distribution function. None of the results seem to indicate
angular bias — there is not an unanusually high incidence of
low fringe counts.

An important departure from the general characteristics
in the distributiom is. seen for the data set at the very
edge of the jet. The eight bit binary counter which tracks
the fringe crossings overflows on the 256th count and since
the carry bit is lost the <value of the fringe count
effectively 1resets to zero,. For example, the standard
haxrdware 1is incapable of differentiating between eight

fringes and 264 fringes! Due to the low mean velocities at
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FIGURE 8.4.5

PROBABILITY DISTRIBUTION OF FRINGE COUNT
VARIATION ACROSS JET AXIS FOR TWO CHANNEL DATA
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the outer edge of the jet, the distribution function clearly
indicates a significant number of occurrences near the 256
c¢ount unpper limit; Fringe counts above 255 are reflected
back to lower values at the inner region of the distribution
function. This is clearly highlighted in Figure 8.4.6.

It is simple to estimate the velocities at which
overflow is expected. The maximum number of fringes a
;arficle may encounter given the velocity vector has already
>éen presented in equatiom (8.4.1). It is repeated here for

onvenience,

Xm

N = -5 1 + fs/fD] (8.4.5)

Obvionsly, as the Doppler frequency approaches zero,

Faen

he fringe <count becomes large. Figure 8.4.7 demonstrates
ow this function may be wused to indicate the wviable
casurement zone of the counter. Given a velocity vector,
he maximopm path length, dxm' is calculated using equation

8.2.7). As an example, suppose the velocity vector is
ligned with the x—axis. Assume the beam waist diameter is
.32 mm, the calibration factor is 11 meters/sec/MHBz and the
requency shift is 400 XxHz. Since at least eight fringes
ist be  erossed, the lower limits of the measurement zone
'y be calculated by substituting eight into the 1left hand
de of the above equation. For the above conditions the
unter will correctly measure velocities down to -2.6

ters/second (point A). Any lower velocities (i.e. those
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FIGURE B8.4.6

FRINGE COUNT OVERFLOW
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FIGURE 8.4.7

FRINGE COUNT VS DOPPLER FREQUENCY
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points to the left of A) are subject .to directional
uncertainty .and will be dnterpreted by computer software as
positivg velocity vectors. The condition for‘ fringe c¢ount
overflow may  also be evaluated using equation (8.4.5). A
count of 256 cycles for the above values gives an overflow
range from —-56 cm/second to 44 cm/second.

Fringe count overflow does not affect the velocity
estimate since. this value is inversely proportianal to the

burst time for eight friages, P and independent of the

8”
"fringe <count, N. However, its immediate effect is to
.underestimate the residence time, P, since this wvalme is
computed using both the fringe count and the burst time for
eight fringes, i.e.
P =-NYP8/3 - (8.4.6)
Becanse only the residenc¢ time 1is affectéd, this

overflow <condition is serious only in turbuleant flows, for

t is nnder these flow comnditions that a reliable estimate

oo

of the residence is mneeded to avoid bias. Since the
residence time for velocities near zero is underestimated,
the weighting factor for these velocities is too small. The
mean velocity will therefore Dbe ~overestimated. Figures
8.4.5 ‘;nd 8.4.6 indicate that fringe count overflow is a
rare condition f;r the recorded data of the jet experiment
and its effect on the calculated parameters of the flow

field has been negligible.

In conclusion, it has been demonstrated that monitoring
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thé fringe <count distribution function <can provide very
useful gqualitative and guantitative information. First 1t
can be used to estimate the measuring volume size seen by
‘the particles. Second, it can also pgive waraning of
increased angular bias effects due to small particle sizes.
Finally, it cam indicate fringe count overflow and the
resulting contamination of time averages using residence
time weighting. The attractivemess of monitoring incoming
data wusing the friqge count has an additional bemefit since
the‘fringe count is an integer value. Arxrithmetic operations
on the computer are processed much faster thenm would occur

when dealing with real values.

Section 8.5: Software Verification Tecﬁniéues

In this §ection, possible software verification
techniques are presented. Although offering little in the
way of solid quantitative =results, it is,'hoped future
experience will show they can provide a qualitative guide by
which the seeding density and noise characteristics of the
LDA signal <can be judged. Since this is the first
experiment in which these tools have ©been applied, an
accurate evaluation of their worth is not possible. This
measarement progranm shounld be viewed as the first im a
series of investigations to provide an empirical gnide.to

interpreting their meaning.

In Section 7.3 it was shown how the statistical



dependepce of ’the sampling process on the flow field can
bias counfer_measnrements when arithmetic averages are used
in processing the data. It has been demonstrated that
residence time weighting <correctly processes the data
without making any assumptions concerning arrival time
statistics. The derivation of this technigque only mandates
that the particle seeding must be statistically uniform. As
a secondary result of the derivation, it was shown that the

average number ©of parxticles per unmit volume was
B o= e Y 2, (8.5.1)

where R is the number of particles per unit volume, Ts

is the total length of time for the sampling period, va
is the measuring volume, and Pi the residence time for the

ith realization. It must be emphasized that this is the
particle _concentr#tion seen by the counter, and not
necessarily the comncentration in the flgid. This is bécanse
the measured value is sensitive both to the particle demnsity
in the fluid flow as well as the adjustment of the optical
and counter hardware. In addition, if one were to obtain a
quantitative value, the measuring volume must be known. The
previois section’s investigation into the fringe count
probability distribution function has demonstrated the
measuring volume’s dependence on parxticle size. Because of

these wuncertainties, the above equation is useful only in a

qualitative sense.
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FIGURE 8.5.1

PARTICLE CONCENTRATION SEEN BY COUNTER
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Measured values of the concentratinn across the profile
are showa in Fignre 8.5.1. Instead of &expressing the
concentration in terms of particles per unit volume, the
percentage of time a particle is im the measuring volume 1is
presented. - This value is determined by shifting the
measuring volume to tﬁe left hand side of equation (8.5.1).
On an average, validated bursts occupy 0.2 % of the total
sampliag period. These data points were not taken
simultanéonsly in time, so it is impossible tokseparate time
and spatial variations. Although the jump at the outer edge
is large on a relative basis, the difference is small when
expressed as an absolute value. The low value for the
concentration also indicates that the occurrence of multiple
particles. in the measuring volume was rare during the course
of the experiment. Based on these results, it see;s safe to
assert that the enclosure was uniformly seeded.

Although the experimenter can frequently judge his
signal guality by momitoring the Doppler signal on an
oscilloscope, few have tried to present a feel for the
signal gquality of their measunrements in their publications.
It i; for this reason that the two following parameters arxe
proposed. They are to serve as a means for providing the
reader with a feeling of how well the LDA system is tuned.

For a single channel systen, the correlation
coefficient between the velocity and residence time is

defined as covariance between the residence time and the
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velocity, Oppgs normalized by the standard deviation of the
residence time, %p, and the standard deviation of the

velocity, g, i.e.
(8.5.2)

The higher the velocity, the shorter the residence

time, so the two values should be negatively correlated. Of

‘course, a perfeot eorrelation- 4dis -unexpected ~since -the — -

residence time is a function of the velocity vector and the
particle path. When plotted across the jet profile as shown
in Figure 8.5.2, the value is fairly consistent at a value
of -0.6. Recall the local turbulence intemnsity u/U in the

jet was a minimam  value of 27% at the jet centerline and

Tawn

rapidly increased with the radial coordinate to levels above
50% at %=0.10. The constant value for the correlation
coefficient, p,,, is very encouragimg, sinmnce it implies
the ‘correlation coefficient is largely independent of
tirbnlence'intensity.

Dunal channel systems present one additioxral
possiblilty. ©For cases where the focal length is large, the
measuring volumes of the two beams .are nearly coincident.
For these <case’s, it is expected that the residence time
originating from each counter should be the same. As
before, a correlation coefficient is defined, only this time

the two variables are the residence times from each counter

Cni1pg



‘FIGURE 8.5.2

RESIDENCE TIME - VELOCITY CORRELATION COEFFICIENT
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FIGOUORE 8.5.3

RESIDENCE TIME - RESIDENCE TIME CORRELATION COEFFICIENT



These values are seen to be highly correlated with a
value betweén 0.8 to 0.9 across the profile, with a slight
decrease at the outer edges. Again, it is difficult to draw
conclusions since similar measurements in other flows are

unavailable.

Section 8.6: Summary and Conclusions

The development in the second part of this dissertation

has fé;#sed'ﬁﬁbﬁ thewbofrebf use"of thévLﬁA buEsfufgb;esgaf;
A derivation has been presented for the probabilty
distribution function of the path length in a uniform
velocity field. It was shown th#t the path length conld
easily be expressed in terms of the fringe <count or
residence time. The distribution function proved to be a
straight line function, the larger values of the pﬁth length
having a higher probabiltiy. This distribution functiom can
be viewed as a conditiomal distribution function forxr use in
a turbulent flow field. If one adopts a reduced measuring
volume size to account for small particle effects,
reasonable results can be produced. Unfortuantely, the
calculation time is excessive for real time data acquisition
and the;e is no way to predetermine 'a reliable measuring
volume size.

The most serious consequence of this amnalysis is in

terms of angular bias. Buchhave’s equation for the

measuring volume <cross section (equation 7.4.3) is 8



function of welocity wvector, ficqnency shift, and measuring
volume size. By measuring the probabiltiy distribution
function of the path length in a laminar flow, it is
possible to crudely determine the true measuring volaume.
This information #an then be =used to determine the
appropriate freguency shift.

It is snggested that the fringe <count is the better
variable to wuse when computing the distribution function.
Since it is an integer wvalue, the computer <can execute
mathematical functions at a faster rate. Also, the fringe
count has two other distinct advantages. The distribution
function of the fringe count is the only way to detect the
condition of frimge count overflow g2nd the subsequent severe
underestimate of the residence time (although it must be
noted that this is a wery rare case indeed). Secondly, a
crude method of checking for the absence of angnlai bias is
to ensure a high incidence of high fringe count in the LDA
data, It is bhighly recommended that a data acguistion
routine therefore compute in real time +the distribution
function of the fringe count. To ensure that the baad-pass
filters are correctly set, it is also recommended that the
distribution function for the detected frequency (i.e. the
signal dinput to the counter uncorrected for frequency shift)
also be present;d on a real time basis.

The correct method of data processing to avoid bias is

residence time weighting. Practically speaking, this method
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must be dome in the batch mode with each batch <covering a

fixed 1length of time, not a2 fixed number of samples. Each

batch shounld be separated im time by at 1least two flow

integral scales. For further information on this techanigque,
consult the referemces mentioned in section 7.3. For
residence time averaging, both the residence time, P, and

particle velocity, U, are required. These paraméters are

2lso those required to implement the software verification

methods presented in section 8.5. There is mno additional
cost 3in program storage. The additiomnal cost in processing
time is insignificant, comnsidering the useful information it
can provide. Calcnlati&n of the effective particle
concentration may be unsed to evaluate if the seeding 1is
statistically uniform (required for~ residence time
‘averaging). Correlation coefficients between the velocity
and residence time (for single <c¢hannel < LDA) and the
residence times from separate channels (for two chanmel LDA
where the measuring volumes are coincident) may in the
future frovide a reasonable guide toward signal quality.
The experimental results of this investigation indicate a
good quality sigmal in 'a highly turbulent flow can Vbe
expected to have correlation coefficients with the following

values

GPU = —0.6 UPlPZ = 0.8 "'> 0.9 (8.6.1)

It is hoped that these parameters may prove to be a useful

tool in setting standards by which the scientific community
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