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ABSTRACT

A new theory for boundary layers and for pipe and channels flows is proposed
based on similarity analyses of the inner and outer boundary layer equations in the
limit as the Reynolds number goes to infinity. Using the scales obtained from the
equations of motion, Near Asymptotics is used to determine the functions describing
the flow in the overlap region at finite values of the Reynolds number.

It was found that for boundary layers the flow is characterized by two velocity
scales in the overlap region (U and wu.), and not one as in classical theory. As a
result, the functions for the mean velocity and Reynolds stress profiles are power law
functions and not logarithmic. A clear distinction between boundary layer (inhomo-
geneous flows) and channel and pipe flows (homogeneous in streamwise direction) is
made. Channel and pipe flows scale with a single velocity in inner and outer variables
(u). Thus, the profiles in the overlap region are logarithmic as in the classical theory,
but the coefficients are Reynolds number dependent.

In the case of boundary layers with pressure gradient, a new definition for equi-
librium flows is obtained from the similarity of the outer equations. There is only
one new parameter (IT) needed as long as the boundary layer is not near separation.
From this new definition, many flows are indeed equilibrium flows, contrary to the
traditional belief that equilibrium flows are difficult to achieve in experiments. In ad-
dition, the new theory works for non-equilibrium flows which are evolving equilibrium
boundary layers. For boundary layers at separation the velocity and length scales are
consistent with Stratford variables.

It will be shown that the present theory is consistent with experimental data
available. The present theory provides a composite mean velocity profile for the entire

boundary layer at finite Reynolds number; therefore, the boundary layer parameters
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(displacement thickness, momentum thickness, and shape factors) can be determined.
Since a composite profile for the boundary layers is known, the Reynolds shear stress

can be obtained by integrating the boundary layer equations.
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Chapter 1

Introduction

There are few problems in turbulence which have been more generally regarded as
solved than the scaling laws for turbulent boundary layer flows. The classical analysis
is based on the assumption that there are two regions where universal scaling exists
which is independent of Reynolds number: one is near the wall (Law of the Wall) and
the other is a velocity deficit region covering most of the flow. A small summary of
the classical work will be given in this chapter, and the goal of this dissertation will

be stated.

1.1 The Boundary Layer Equations

The equations of motion and boundary conditions for a pressure gradient turbulent
boundary layer (with constant properties) at high Reynolds number are well-known

to be given by (Tennekes and Lumley 1972)

ou ou 1dP, 0
U—+V—=——+—
ox + dy p dx + dy

- <uv > +1/({;—(y]] (1.1)
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where U — Uy, as y — oo and U = 0 at y = 0. For fully developed pipe and
channel flows, the inertia terms (left hand side of the equation) are zero due to the
homogeneity in the streamwise direction. The viscous stresses are negligible over
most of the flow. As a result the equations and boundary conditions appropriate to

a turbulent boundary layer at high Reynolds number over this outer region are given

by

oU oU 1dPs 0
AT 74c AN . T 1.2
U8x+V8y T +8y[ < uv >| (1.2)

where U — Uy as y — oo. For the zero pressure gradient boundary layer the pressure
term vanishes identically.
Near the wall the viscous terms reappear, but the convection terms vanish iden-

tically in the limit of infinite Reynolds number, so the inner equation reduces to

1dP,, 0 | oU
O=—————+—|v—<uv> 1.3
p dr * oy ly oy u (13)
This can be integrated to yield
9 Yy dPs ou
__J _ - 1.4
u; ) dz <uv > +v By (1.4)

where u, is the friction velocity and U = 0 at y = 0. Note that the pressure gradient
in inner variables has been retained for now, but in fact it also vanishes exactly (at

least away from separation) in the limit of infinite Reynolds number to yield,

Uy, = — <uv > —H/((;—Z (1.5)

It is clear that in the limit of infinite Reynolds number, the total stress is constant
across the inner layer (but only in this limit) even for boundary layers with pressure
gradient, and hence its name “the Constant Stress Layer”. It should be noted that

the appearance of u, in equation 1.4 and equation 1.5 does not imply that the wall
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shear stress is an independent parameter (like v or U,,). It enters the problem only
because it measures the forcing of the inner flow by the outer; or alternatively, it
can be viewed as measuring the retarding effect of the inner flow on the outer. Thus
Uy is a dependent parameter which must be determined by matching solutions of the
inner and outer equations. It is also interesting to note that the inner layer occurs
only because of the necessity of including viscosity in the problem so that the no-slip
condition can be met. The outer layer, on the other hand, is dominated by inertia and
the effects of viscosity enter only through the matching to the inner layer. Thus the
outer flow is effectively governed by inviscid equations, but with viscous-dominated
inner boundary conditions set by the inner layer.

The flow outside of the boundary layer is given governed by Euler’s equation given

by,

duU, 1dP,
Up—X = - 1.6
dx p dx (1.6)

Obviously this equation is trivially satisfied if there is not a pressure gradient and if
Uy 1s a constant.

Equations 1.3— 1.5 also describe a turbulent fully developed channel flow driven
entirely by the pressure gradient. Here the convection terms vanish everywhere be-
cause of the streamwise homogeneity (i.e., the flow is independent of x). Thus the
inner equation are the same as the boundary layer in the limit, but the outer equations

are different.
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1.2 The Velocity Scaling Laws for the Zero Pres-
sure Gradient

It has been customary to seek solutions to the governing equations which depend
only on the streamwise coordinate through a local length scale §(z) , v. Monin and

Yaglom 1971. Thus, for the mean velocity over a flat plate
U=U(y,0,Usx,ts, V) (1.7)

The dependence of u, on the other parameters can be expressed from dimensional

considerations as a friction law by

us  fef N
=\ =g(5%) (1.8)
where
L0
5t =0 _ 5 (1.9)
v
and
Tw u?

=+ =2 1.10
Iz 0

Application of the Buckingham Pi theorem to the velocity itself yields a number
of possibilities, all of which describe the variation of the wvelocity across the entire

boundary layer. Among them are:

U Us

— = (yy ,5+> (1.11)
U — Us

—= =/, (%.5) (L.12)
U;U‘” ~F, (%,(ﬁ) (1.13)
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Note that since u. /U and 67 (or u.d/v) are related by equation 1.8, only the later
need be retained in equations 1.11 — 1.13. (This fact seems to have escaped Monin
and Yaglom 1971 who dismiss a separate dependence on u, /Uy, only on empirical
grounds.)

In the limit as 07 — oo, equation 1.11 becomes asymptotically independent of ¢

and U, and thus can at most describe a limited region very close to the wall, i.e.,

U_ [W] (1.14)

Us v

This is, of course, the familiar Law of the Wall expressed in inner variables as
originally proposed by Prandtl (1932).
A similar limiting argument for f, and F, yields two quite different candidates for

an outer profile; namely,

U—-Uyx B Y

=t (§) (1.15)
and

U—-Ux Y

T_FO‘” (5) (1.16)

Both cannot, of course, be Reynolds number independent (and finite) in the limit
if the ratio u./Us continues to vary (as the Millikan/Clauser theory requires, see
below).

The first form given by equation 1.15 has only been fleetingly considered by the
fluid dynamics community, and discarded in favor of the second alternative. Millikan,
following Von Karman for example, appears to have considered it briefly, noted that it
leads to self-preserving power law solutions of the outer equations, and then dismissed
these solutions as interpolation formulas. The second was proposed by Von Karman
1930 for boundary layers following a similar a similar proposal by Pannel and Stanton

1914 for channel and pipe flows. It has become the classical velocity deficit law.



CHAPTER 1. INTRODUCTION 7

Clauser (1954) (see also Hinze 1975) plotted only the highest and lowest Reynolds
number data of Schultz-Grunow 1941 in deficit form and concluded that the collapse
using equation 1.15 was not as satisfactory as that obtained using the deficit form
of equation 1.16. There is no evidence that either of these conclusions has been
refuted, or even questioned (even though there were numerous other Schultz-Grunow
profiles at intermediate Reynolds numbers which showed a clear trend with increasing

Reynolds number toward the highest).

1.3 Von Karman’s Log Profile

Assuming the Boussinesq 1877,1896 eddy viscosity model, the Reynolds stress can be

expressed in a similar form as a Newtonian viscous stress by,

_ dU
Tt = —PpUV = Vp——

% (1.17)

where 14 is the eddy viscosity. Prandtl’s 1925 mixing length hypothesis suggests a

physical model for v as,
dUu
v = pl?| == (1.18)
dy
It follows that the turbulent shear stress is given by,

(1.19)

where [ is the mixing length which has to be chosen. The goal now is to find a model
for the mixing length [ so that the Reynolds stress is known.

Von Karman assumed that the mixing length satisfies the following equation,

’d? Ty (1.20)
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where the mixing length (/) is independent of the magnitude of the velocity and is
function of the velocity distribution only. k is presumed to be a universal constant
which is the same for all turbulent flows and independent of Reynolds number. Using

the previous results he showed that the turbulent shear stress is given as

4
T = mz% (1.21)

Now Von Karman 1930 assumed that the shear stress varied linearly. (Note that
for fully developed flow in a channel or pipe, dPy/dx = constant. In the limit
as Reynolds number goes to infinity, if the pressure term is retained in the inner
boundary layer equation it is clear that turbulent stress distribution away from the

wall is linear.) Then by combining equation 1.19 and equation 1.21 he showed that

the relation between the stress at the wall and the turbulent stress reduces to,

Twy _ o (dU/dy)*
o h (U (1.22)

where 7,,/p = u? is the friction velocity. Integrating this equation twice and applying
the corresponding boundary conditions at the center of channel and at the wall, it

follows that

Um%:l] _ —%[ln(l -3 3 (1.23)

which is in fact the logarithmic profile, although not the one usually cited.

1.4 Prandtl’s Velocity Distribution

Prandtl 1932 was able to derive a logarithmic function for the law of the wall by
using two fundamental assumptions: First, the mixing length is proportional to the
distance from the wall; therefore,

[ = kry (1.24)



CHAPTER 1. INTRODUCTION 9

Second, instead of assuming the stress to vary linearly as Von Karman did, he assumed
that a constant stress layer existed near the wall. (From equation 1.5 it is clear that
there is indeed a constant stress layer even for boundary layers with pressure gradient.
So Prandtl’s assumption is better than Von Karman’s assumption of a linear stress
layer.) Equation 1.24 and equation 1.19, together with the constant stress layer
assumption yield,

2 2,2

u? = K2y [dUr

bl 1.25
. (1.25)
Taking the square root of the above equation and integrating with respect to y, it is

clear that a logarithmic function is derived and given as,

— = Zn(y") + B (1.26)

Us, K

where y* = yu,/v. This is the form of the log law usually cited.

1.5 Millikan’s Asymptotic Matching for Channels

Millikan 1938 took a completely different approach and began with the proposed
inner and outer scaling laws of equation 1.14 and equation 1.16, but for channels
where Uy, = U., the centerline velocity, and 6 = R, the channel half-width. He
argued that in the limit as Reynolds number goes to infinity there must be an overlap
region (or matched layer) if y* — oo and ¥ — 0 simultaneously such that both
solutions inner and outer velocity profiles exist in a common region. (This procedure
is known now as asymptotic matching, and it was the first example of it.) Then he
matched the velocity derivatives in this limit and concluded that
y+fz-(y+) _ ()

_ - 1.2
o Vg (1.27)
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where k was a universal constant, the von Karman constant.

It follows immediately that the velocity profiles are logarithmic and given by,

fily™) = UQ - %zn(?ﬁ) + B (1.28)
Lo =Y — Ye _ %ln@) + B, (1.29)

By matching the velocities themselves he obtained a friction law as,

U. 1. hu,
— = —In(
Ue K v

) + (Bi — Bo) (1.30)

where U, is the centerline velocity and h is the width of channel. Note that B; and
B, are also supposed to be constant, although in practice all the “constants” change
with Reynolds number.

Note that these functions are obtained in the limit, and are based on the assump-
tions of a single velocity scale (u,) and that an overlap exists. Also, note that the
turbulence community uses these solutions to describe velocity profiles in an overlap

region at finite Reynolds number.

1.6 Clauser’s Equilibrium Boundary Layers

Clauser 1954, following Millikan 1938, matched the ‘inner’ scaling of equation 1.14 to
the ‘outer’ scaling of equation 1.16 in the limit of infinite Reynolds number to obtain

the familiar inertial sublayer profiles for boundary layers as

1
v_ —In(y*) + B; (1.31)

Us, K

U-Usx 1
—— = ZIn(y) + B, (1.32)

Us, K
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and a friction law given by

Use 2 1
=/—=—né" +(B; — B,) (1.33)
Use Cf K

where k, B;, and B, are presumed to be universal constants. Note that in the limit
as 07 — 00, equation 1.33 requires that u,/Us — 0 for finite values of the constants.
By substituting the inner and outer scaling laws into the defining integrals for the

displacement and momentum thicknesses, Clauser 1954 showed that

O Uy
—=A 1.34
5 . (1.34)
0 Use Use
g_A%%P—A%%} (1.35)

where A; and A, should be universal constants which can be evaluated from integrals
of the outer velocity profile function. It follows that the shape factor is given by the
asymptotic relation

O U

H="=1-4
) U

Thus as 07 — oo and u, /Uy — 0 (if it in fact does), H — 1. Note that similar

(1.36)

results are obtained for the pressure gradient boundary layer.

The underlying assumption of the above matching is that the inner and outer
scaling laws used for the profiles, in fact, have a region of common validity (or overlap)
in the limit as 67 — oo. Long and Chen (1981) have remarked that it is indeed
strange that the matched layer between one characterized by inertia and another
characterized by viscosity does not depend on both inertia and viscosity, but only
inertia (hence the term ‘inertial sublayer’, Tennekes and Lumley 1972). They further
suggested that this might be a consequence of improperly matching two layers which
did not overlap. The fact that the limiting ratio of the outer length scale ¢ to both

of the commonly used integral length scales, d, and @, is infinite lends considerable
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weight to their concern. In particular, this implies that from the perspective of the
outer flow, the boundary layer does not exist at all in the limit of infinite Reynolds
number. If one imagines approaching this limit along a semi-infinite plate where the
boundary layer continues to grow, the outer length scale increases faster than any
dynamically significant integral length. This is particularly troubling since ¢ itself
is unspecified by the theory and can not be related to physically measurable length
scales except through the degenerate expressions above.

Clauser also extended the theory to include pressure gradient boundary layers.
Using “quasi”-similarity considerations, he defined an equilibrium boundary layer as

one which satisfied

5 dPs

B = . dr = const. (1.37)
where ¢ is an empirical length scale. He kept the same velocity deficit law; i.e.,
U —U _
T u fo(¥) (1.38)

and suggested that theses profiles are self-similar, which means all profiles collapse
into a single curve.

Although, Clauser’s analysis suggests b=10 (i.e., some observable thickness like
dg9), he was forced by his data to use 6 = &,. Even so, the results were not spectacular,
and Clauser tried with limited success to adjust the pressure gradient in his experi-
ments such that the velocity profiles along the test section agreed with the deficit law
given above for f=constant. We shall see later that the problem was that Clauser
had adjusted the friction velocity u, such that all profiles obeyed the log-law in the
overlap region. This created erroneous shear stress estimates with the result that the
Clauser pressure parameter § computed from them does not remains constant for a

given flow, even if it really is.
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Clauser’s theory for equilibrium boundary layer has been questioned before.
Among them: Townsend 1956a.b, 1961, 1976, Rotta 1962, Mellor and Gibson 1966
and Schofield 1980. In spite of the questions and doubts about Clauser equilibrium
flows, his 1954 paper remains the key work up to now on boundary layers with pres-

sure gradient.

1.7 Extension of Clauser’s Idea

Townsend 1956a,b, 1961, 1976 and Rotta 1962 used the idea of self-preservation which
is related to the full similarity considered later in this work. If all profiles are self-
preserving, all profiles along the streamwise direction of the flow should collapse as
a single curve. The physical reasoning is that in the limit as Reynolds number goes
to infinity, the equations of motion should become invariant. This is the idea behind
the Asymptotic Invariance Principle described in subsequent chapters. It is also what
Clauser was trying to accomplish with his equilibrium boundary layers by forcing wu.,
to collapse the profiles in deficit form as a single curve.

In brief, Townsend and Rotta assumed that solutions of the following forms exist:

Ulz,y) = Un + Uso(fv)fo(%) (1.39)
0 = UL (@)ro()

l (1.40)
where Uy, and [, are velocity and length scales to be determined from the equations
of motions only. Note that these self-preservation forms are very restrictive (as first
noted by George 1989) since there is only a single velocity scale for velocity and

Reynolds stress and there is no Reynolds number dependence in the functions. (This

is quite unlike the kind of similarity proposed later in this work.) By ignoring terms
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of order (u,/Uy)?, Townsend showed that the conditions resulting from this special

kind of self-preservation analysis are:

g—; = const. (1.41)
% = const. (1.42)

with the corollary
g = p(;*f % = const. (1.43)

The third condition is the same as Clauser’s, but the other two are very different.
In particular, d§/dz=const implies that the boundary layer grows linearly. Thus,
Ot increases, but wu,/U, remains constant. No one before seems to have noticed
the inconsistency with the logarithmic friction law, equation 1.33, which requires
Uy /Uy — constant unless kK — oo.

Schofield 1981 tried to show that the equilibrium conditions given by Rotta 1962
were true. But as will be shown later, when the range of Reynolds number is limited,
it is difficult to notice the variation with Reynolds number in the flow. For instance
from the integral boundary layer parameters (i.e., 0,/0, 0/0, and 4. /6) and ¢y for zero
the pressure gradient boundary layers examined later, most of the variation occurs
in the range from 465 < Ry < 8,000. For Ry > 10,000, the boundary layer seems
to grow linearly; but if higher values for Ry were considered the results will continue
to exhibit a significant variation with Ry. The same will be seem to be true for the
pressure gradient boundary layer as well.

Rotta 1962 concluded that the Clauser flows were not in equilibrium because the
similarity condition for linear growth rate and constant [ were not satisfied. He
suggested that the problem was that the Clauser experiment was performed on a

smooth wall, and argued that in order to get equilibrium flows the surface roughness
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would have to vary linearly in the test section. Therefore, he concluded that Clauser
flows were only approximately in equilibrium.

Figure 1.1 shows the Reynolds number based on the boundary layer thickness
(Rs versus R, of the moderate adverse pressure gradient of Clauser 1954. The data
is compared with a linear fit to the experimental data and a quadratic fit. There
is no doubt that the boundary layer thickness does not growth linearly, contrary to
Schofield 1981, Townsend 1976, 1956a,b, 1961 and Rotta 1962. The same is true for
the displacement and momentum thickness data in Figures 1.2 and 1.3 which is the
same data that Schofield used to conclude that the boundary layer grows linearly. It
is clear that the boundary layer does not growth linearly at finite values of Reynolds
number, and it is at most a first order approximation to say that it does.

The second example is the Ludweig and Tillman 1949 data in favorable pressure
gradient. Figures 1.4, 1.5 and 1.6 show the boundary layer thickness, displacement
thickness and momentum thickness versus R, respectively. The dashed line is the first
order regression, and the line is the second order regression. Again it may appear that
the boundary layer grows linearly, but careful analysis indicates otherwise. It is just
due to the limited range in Reynolds number of the data (i.e., 1000 ~ Ry ~ 4000),
unlike the previous case where the variation in Reynolds number was relatively large
(8,031 < Ry < 31,017).

The third example is the case where the flow moves from one equilibrium state
to another. The data of Schubauer and Klebanoff 1947, first with mild favorable
pressure gradient, then at strong adverse pressure gradient with eventual separation,
is shown in Figure 1.7. This example illustrates very clearly that the flow does not
grow linearly at all, even locally.

It is obvious then that the definitions given above by Townsend 1976, 1956a,b
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Linear Growth Rate?

Clauser 1954: Moderate Adverse Pressure Gradient
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Figure 1.1: The Reynolds number based on the boundary layer thickness (Rs) versus
R, of the moderate adverse pressure gradient of Clauser 1954.
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Linear Growth Rate?

Clauser 1954: Moderate Adverse Pressure Gradient
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Figure 1.2: The Reynolds number based on displacement thickness (Rs,) versus R,
of the moderate adverse pressure gradient of Clauser 1954.
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Linear Growth Rate?

Clauser 1954: Moderate Adverse Pressure Gradient
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Figure 1.3: The Reynolds number based on momentum thickness (Rp) versus R, of
the moderate adverse pressure gradient of Clauser 1954.
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Apparent Linear Growth:

Ludweig & Tillmann: Moderate Favorable. Press. Grad.
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Figure 1.4: The Reynolds number based on the boundary layer thickness (Rs) versus
R, of the moderate favorable pressure gradient of Ludweig and Tillman 1949.
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Apparent Linear Growth:

Ludweig & Tillmann: Moderate Favorable. Press. Grad.
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Figure 1.5: The Reynolds number based on displacement thickness (Rs,) versus R,
of the moderate favorable pressure gradient of Ludweig and Tillman 1949.
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Apparent Linear Growth:

Ludweig & Tillamnn: Moderate Favorable Pressure Grad.
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Figure 1.6: The Reynolds number based on momentum thickness (Ry) versus R, of
the moderate favorable pressure gradient of Ludweig and Tillman 1949.



CHAPTER 1. INTRODUCTION 22

Non-Equilibrium Flow: Non linear Growth

Schubauer & Klebanoff 1947: mild neg. strong positive eventual separation
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Figure 1.7: Moving Equilibrium Boundary layer: Schubauer and Klebanoff 1947
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1961 and Rotta 1962 for both equilibrium and non-equilibrium flows are not quite
right. The same data will be reconsidered later in Chapter 4 and shown to be in
excellent agreement with the new theory for equilibrium boundary layers proposed
here. In fact, it will be shown in chapter 4 that most flows that had been believed
to be non-equilibrium are indeed equilibrium flows using the new definition. Thus
equilibrium flows are not really very special or very difficult to achieve in experiments.

In fact, quite the opposite will be seem to be the case: It is hard not to generate them.

1.8 Coles’s Law of the Wake

The well known “Law of the Wake” proposed by Coles (1956) describes the outer flow
of the incompressible turbulent boundary layer. It based on the assumption that a
universal function, “the log law”, exists in the matched layer or overlap region. In
inner variables, the “law of the wall” is given as,
U 1,
— —f(Z

U, v

) =1f(y") (1.44)
and in outer variables “the deficit law” is given by,

Uw—U

Uy

5(3) =& (145)

The functions f and g are given as (Tennekes and Lumley 1972),

fy*) = %ln(er) +C (1.46)
and
(7) = In(y) + B (1.47)

where k, C and B are supposed to be “universal constants” and determined empiri-

cally. Furthermore, note that these self-preservation solutions (eq. 1.44 and eq. 1.45)
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are characterized by a single velocity scale u, (i.e., the Reynolds stresses and veloc-
ity in inner and outer variables should all scale with the friction velocity u, and the
functions should be independent of Reynolds number,v. Townsend 1956). As result,
the overlap layer is independent of Reynolds number in the classical theory (Tennekes
and Lumley 1972).

Assuming all the above to be true, Coles formulated the “law of the wall-law of

the wake” as (Coles 1956),

I1

== H(y) + o) (149

where II is the profile parameter which is a constant equal to 0.55 for zero pressure
gradient turbulent boundary layers, w(¥) is the "universal” wake function given in

(Coles 1956) as

w(¥) = zsinQ(gy) (1.49)

However, there is significant amount of evidence indicating that the overlap region
is Reynolds number dependent (Simpson 1970, Blackwelder and Haridonitis 1983,
Smith 1994, Erm and Joubert 1991, Klewicki and Falco 1990). In fact Gad-el-Hak and
Bandyopadhyay 1994 wrote an intense review showing the problems of the classical
theory. For instance, the “universal constants” k and C have been expressed as
function of Ry for Ry < 6000 (Simpson 1970). Also, the profile parameter II is a
function of Ry for Ry < 5000 in Cebecci and Smith 1974. These are both indications
that the boundary layer is dependent on Reynolds number.

The wake can be represented by multiplying equation 1.48 by u,/Us and sub-

tracting the velocity normalized with U from the inner solution f(y*) to obtain,
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W) = - - ) (1.50)

The data of Purtell et al. 1981 (Ry from 465 to 5100) and Smith and Walker

1959 (R from 3000 to 50000) can be used to further emphasize the problem with the
classical wake. In Figure 1.8, the wake is represented using equation 1.50 with the
friction velocity u, obtained from the viscous sublayer for the low Reynolds number
data, since the velocity profile is linear in this region (U" = y*). For the high Ry the
friction velocity is obtained from a fit to Ry vs Ry, from which dRy/dRx is obtained
and c¢ is calculated.’ Recognize that if the overlap layer is described by a logarithmic
function the data should be zero in this region. Clearly, Figures 1.7 and 1.8 do not
support the existence of a universal “log law” and “law of the wake” as the turbulence
community has believed for more than 40 years. This point will be discussed in more
detail in Chapter 3.

Contrary to the procedure used above, u, is not usually directly determined but is
instead obtained by assuming the existence of a universal function with known con-
stants k and B;, and using the mean velocity profile (U) and the kinematic viscosity
(v) (Coles 1956). This is known as the Clauser method. In fact, Coles used this
method in Coles 1956 to find not just u,, but to find 6. Thus contrary to popular
belief that the classical theory has only three universal parameters x, B, and B;; it
has two additional parameters 6 and wu, which are adjusted for each profile. This
probably explains why most of the flows in Coles 1968 do not satisfy the integral
momentum equation.

Figure 1.9 shows the wake (equation 1.50) using the Clauser method value for wu,.

Tt was shown in George et al. 1992, 1996 and later here that c; was in good agreement with
the measured cf (using floating element) data of Smith and Walker 1959. In fact, the values of cf
calculated from dRg/dRyx were very close to ¢; from the low Reynolds number data of Purtell et al.
1981 determined from the viscous sublayer by George et al. 1992.
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Although, most of the Reynolds number dependence is removed, the overlap layer and
the outer flow still show some Reynolds number dependence. Clearly as suggested
by others, the universality of the law of the wall and law of the wake are indeed
questionable. Part of the problem may have been that Coles 1956 only considered
relatively high Reynolds number data in his analysis, in contrast with the present
work where both low and high Reynolds number data are considered simultaneously.
Again the use of a limited range of Reynolds number could have led to the conclusion

that the overlap layer is independent of Reynolds number.

1.9 Clauser Theory and the Need for a New One

The extension by Clauser (1954), Hama 1954, Coles 1962 and others of Millikan’s
arguments to boundary layers with pressure gradients, roughness, compressibility
and a law of the wake (Coles” wake) all assumed the existence of the log-law. An
important reason for this has been the apparent agreement of experimental data with
the theoretical results, but as seen in the preceding section there is clearly reason for
concern. But there are theoretical objections as well.

There are a number of features of the Millikan/Clauser theory which, if not un-

satisfying, are at least interesting. Among them:

e (i) The velocity profile disappears in the limit of infinite Reynolds number (i.e.,

U/Usx = 1);

e (ii) The outer length scale is not proportional to any integral length scale, and
in fact blows up relative to them as the Reynolds number becomes infinite (i.e.,

0/d, and 6/0 — o0); and
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Coles’s Law of the Wake
Subtraction Method
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Figure 1.8: Coles’s Wake (eq. 1.50): wu, from velocity gradient at the wall and from
momentum integral equation.



CHAPTER 1. INTRODUCTION
Coles’s Law of the Wake
Subtraction Method
0.10 - O Q@ -
Q@,Q - 'Ei.
L 3 ° |
o @®C
0.05 O ) .
©
=)
> 0.00
=
_0.05 @' O Purtell et al. (u, from Clauser Method) _
{ ® Smith & Walker (u, from Clauser Method)
o O
=)
-0.10 & .
)
(S
-0.15 © ‘ : :
0.00 0.25 0.50 0.75 1.00

y/8&

Figure 1.9: Coles’s Wake (eq. 1.50): u, from Clauser method
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e (iii) The shape factor approaches unity in the infinite Reynolds number limit

(ie., H=26,/0 — 1).

While these might be considered plausible if the limit is approached by increasing the
free stream velocity or by decreasing the viscosity, they seem less reasonable if the limit
is approached by simply increasing the streamwise distance (e.g., by proceeding along
the surface). In addition, a practical objection can be raised because the logarithmic
forms permit only empirical models for the streamwise development of the boundary
layer parameters.

It might be argued that some free shear flows (like wakes) share these character-
istics; however, this is of small comfort since the very essence of a boundary layer
is the continuing loss of momentum to the wall. Experimentally, in addition to the
problem discussed earlier, there are other reasons for concern, since no shape factors
below about 1.25 have been reported, and boundary layer profiles seem to collapse
as well with momentum and displacement thicknesses as with the boundary layer
thickness determined from the profile (e.g., dp.99). Nonetheless it has somehow been
possible to live with these ‘problems’. Clauser (1954) and Tennekes and Lumley
(1972), for example, use the displacement thickness as the outer length scale in the
analysis of equilibrium boundary layers, even though its use is inconsistent with the
Millikan/Clauser analysis (see (i) above). Acceptance of these ambiguities can in
part be understood because of the relatively limited range of Reynolds numbers at
which experiments have been performed, but in larger part it probably should be
attributed to the absence of rational alternative theories. This is somewhat surpris-
ing since an even more fundamental objection can be raised to the classical theory:
It begins with two scaling ‘laws’, only the inner one of which is derivable from the

the equations of motion. The other, the velocity deficit law, depends entirely on
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experimental data.

1.10 The Problem with the Data and any Theory

In view of the difficulty of carrying out the experiments, especially close to the wall and
in determining the shear stress, it is unlikely that the data will speak unequivocally.
Moreover, the experimental problem is complicated by the fact that the all important
ratio, u,/Us, decreases ever more slowly with increasing Reynolds number, regardless
of what its limiting value is. Therefore experiments at higher Reynolds numbers will
be primarily useful for sorting out what the limits are, and less useful for sorting
differences in scaling. Experiments at relatively low Reynolds number will be more
useful for the latter because the greater variation of u,/Us will make trends more
evident. But even the low Reynolds number experiments will be of little value for
establishing the scaling laws unless the shear stress is directly determined, and to
an accuracy greater than the variation among experiments. Few experiments to-date
satisfy these criteria.

The fact that with the present work (described in the following chapters) there
are now two competing theories for the boundary layer makes a considerable differ-
ence because the data can usefully sort between them. With only one theory, the
experimentalist (who is really at his best when sorting theories) is under consider-
able pressure to obtain results which confirm it, particularly if the theory has been
believed to be correct. This has certainly been the case with the “log law” and its
consequences. There is ample evidence in the abundant literature of “creative” data
analysis to confirm the log results, especially with regard to choice of the appropriate

value of the wall shear stress (e.g., Coles 1968, Fernholz et al. 1995). Coles (1968), for
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example, not only uses equation 1.31 to determine the shear stress from the velocity
profile data, but then uses equation 1.33 to determine the appropriate value of the
boundary layer thickness 6. Thus both of these important parameters are allowed to
“float”, a reasonable approach only if the theory is known to be true and the con-
stants universal. The fact that few experiments using the values determined in this
manner satisfy the momentum integral equation is disturbing, to say the least.

Thus one of the major problems of the present study has been to recognize when
data “contamination” has occurred, to attempt to “decontaminate” the data when
possible, and to abandon it when that proved impossible. Because a certain element
of subjectivity is necessary in this process, a careful attempt has been made to iden-
tify precisely what was done so that the reader can judge for himself whether the
results here are reasonable. Final judgment can only await a new round of experi-
ments in which the experimentalist is unconstrained by the need to agree with either
theory. Fortunately a number of such experiments are in progress (eg., Princeton,
II'T/Chicago, KTH/Stockhom, NASA /Langley).

The task of this dissertation is somewhat more complicated than simply showing
that the new theory is consistent with the experimental data. Since there is an exist-
ing theory which has been more or less accepted as being correct, it is also necessary
to demonstrate that the data are inconsistent with it. Or failing that, that the new
theory works better. Fortunately the recent review of Gad-el-Hak and Bandyopad-
hyay 1994 considerably simplifies this endeavor. Their work is a comprehensive review
of the experimental contributions over the past 30 years; in particular, the failure to
achieve Reynolds number independence of either the outer scaling for the mean ve-
locity deficit, or of the turbulence quantities outside of the linear sublayer. Therefore

their effort will not be repeated here, and attention will be focused on showing that
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the data are at least as consistent with the new theory as with the old. In fact, it
will be possible to show that some of the alleged ‘problems’ with the data disappear

when viewed from the perspective of the new theory .

1.11 Objective of the Present Work

This work reconsiders first the theoretical foundations of the laws on which the
Clauser /Millikan analysis is based, and shows one of them (the velocity deficit law) to
be inconsistent with similarity of the outer equations of motion (in the case of bound-
ary layer with and without pressure gradient). Then it examines the consequences of
an alternative formulation of the outer scaling law which is consistent with similarity
in the limit of infinite Reynolds number. When combined with the Law of the Wall,
this new deficit law is shown to lead to velocity and friction laws which are power
laws, a consequence of two velocity scales in the overlap region. On the other hand,
pipe and channel flows will be shown here to be described by logarithmic functions
with coefficients that vary with Reynolds number, a consequence of a single velocity
scale for this flow (i.e., the velocity in both inner and outer variables scales with ).

In Chapter 2, similarity analysis is applied to the equations of motion for a bound-
ary layer with zero pressure gradient, and the velocity and length scales are deter-
mined from the equations of motion only. Then a Near Asymptotics Method is used
in order to find the functions describing the velocity profiles in the overlap region.
The advantage of this approach is that it is performed at finite Reynolds number
so the Reynolds number dependence of the boundary layer is captured, contrary to
the classical theory which is done in the limit and fails to capture the Reynolds

number dependence. The comparison of the zero pressure gradient theory with the
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experimental data is given in chapter 3.

The similarity analysis and results for the turbulent boundary layer with pressure
gradient in outer variables is given chapter 4. The similarity analysis for the same
flow in inner variables is given in chapter 5, and the overlap relationships are derived
there also. In chapter 6, the theory is applied to pipe and channel flows. Finally,

Chapter 7 contains a summary and the conclusions of this work.



Chapter 2

The Zero Pressure Gradient

In this chapter the theoretical foundations will be given for the zero pressure gradient
(e.g., Uy, = constant) turbulent boundary layer! The objective is to develop a theory
that will yield the scales and the functionalities for wall bounded flows in the near
the wall region. The scales are determined from the equations of motion in the limit

as Reynolds number goes to infinity using an Asymptotic Invariance Principle.

2.1 The Asymptotic Invariance Principle

For reasons that will become clear below, the traditional approach to the boundary
layer equations has been to abandon the possibility of full similarity, and seek in-
stead local similarity solutions of the type described earlier. As a consequence, the
local similarity solutions obtained were not necessarily similarity solutions of either
equation 1.1, equation 1.2 or equation 1.3, since no effort was made to insure that
they were. Instead investigators attempted to establish their validity by experiment

alone, dismissing as unimportant terms in the mean momentum equations which were

!Chapters 2 and 3 follow closely George, Castillo and Knecht 1996.

34
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inconsistent and and ignoring the higher order moment equations altogether.

An alternative approach (which does not seem to have been previously attempted)
is to seek full similarity solutions of the inner and outer equations separately. Since
these equations (equations 1.2 and 1.3) are themselves exactly valid only in the limit of
infinite Reynolds number, then their full similarity solutions will also be exactly valid
only in this limit. Seen another way, since the equations themselves have neglected
terms which are Reynolds number dependent and lose these terms only in the infinite
Reynolds number limit; solutions to these full equations will likewise be Reynolds
number dependent and lose this dependence only at infinite Reynolds number. This
idea will be referred to as the Asymptotic Invariance Principle. (This term appears
to have first been used by Knecht 1990, but with a slightly different meaning.)

The Asymptotic Invariance Principle can be applied to turbulent free shear flows,
as well as boundary layer flows. Similarity solutions for free shear flows (when they
exist) are, in fact, infinite Reynolds number solutions because the equations from
which they are derived are strictly valid only at infinite Reynolds number (c.f., George
1989). The difference in application here is that for the boundary layer there will be
two different scaling laws to be applied to the complete solution — one which reduces
to a full similarity solution of the outer equations at infinite Reynolds number, and
another which reduces to a full similarity solution of the inner equations in the same
limit. For finite Reynolds numbers, the Reynolds number dependence of the equations
themselves, however weak, dictates that the solutions can not be similarity solutions
anywhere. But, as noted above, this is no different than for free shear flows which
only asymptotically show Reynolds number independence.

In the following sections, the Asymptotic Invariance Principle will be applied to

some of the single point equations governing the zero pressure gradient turbulent
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boundary layer. In particular, solutions will be sought which reduce to full similarity
solutions of the equations in the limit of infinite Reynolds number, first for the inner
equations and then for the outer. The form of these solutions will determine the
appropriate scaling laws for finite as well as infinite Reynolds number, since alter-
native scaling laws could not be independent of the Reynolds number in the limit.
Once the method has been established by application to the equations governing the
mean momentum, then the same principle will be applied to equations governing the
Reynolds stress equations and the statistical quantities appearing in them. There
is, of course, no reason why the Asymptotic Invariance Principle can not be applied
to equations governing any statistical quantity, including multi-point equations, and

some inferences will be made as to what the results of such application might be.

2.2 Full Similarity of the Inner Equations

In keeping with the Asymptotic Invariance Principle set forth above, solutions are
sought which reduce to similarity solutions of the inner equations and boundary
conditions in the limit of infinite Reynolds number (i.e., 67 — 00). Solutions will be

sought of the form

U = Us()fily") (2.1)
W0 = Ri(2)ricc(y ") (2.2)
where
+=Y
vi=D (2.3)

and the length scale n = n(z) remains to be determined. Note that the subscript ico

is used to distinguish the scaled velocity and Reynolds stress profiles, f;(y™, 1) and
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ri(y*,0"), which will be used later, from their limiting forms used here. Obviously
fi and r; are dependent on 61, while f;,, and r;, are not.

Substitution into equation 1.4 and clearing terms yields to leading order in 67,

uf RSZ' 14
] = 78] [ o .

A similarity solution exists only if 1, Us;, and Ry can be determined so that all

the terms in brackets have the same z-dependence; i.e.,

Ui Rsi v
M ~ M ~ ansi] (25)

Since there are three scaling functions to be determined, but only two independent

constraints, there is some arbitrariness in their determination. A convenient choice
for n is

n=v/Us (2.6)
from which it follows immediately that similarity solutions are possible only if the

inner Reynolds stress scale is given by

Ry = U2 (2.7)

S

It is now also obvious that the inner velocity scale must be the friction velocity

so that
Usi = Uy (2.8)
It follows that
n = v/u. (2.9)
Ry = u? (2.10)

Thus, the integrated inner equation at infinite Reynolds number (i.e., 7 — o0)

reduces to
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For finite values of §*. this is equation is only approximately valid because of the
neglected mean convection terms.

The similarity variables derived above are the usual choices for the inner layer,
and thus the Law ? of the Wall is consistent with full similarity of the inner equations,
in the limit of infinite Reynolds number. For any finite (but large Reynolds number)
solutions for the inner layer will retain a Reynolds number dependence (as discov-
ered from the Pi-theorem in deriving equation 1.11) since the governing equations
themselves do so. It is obvious then that it is equation 1.11 which reduces to the
proper limiting form to be a similarity solution for the inner layer, and thus it must
be the real Law of the Wall for finite Reynolds numbers. At finite Reynolds numbers
however, it also describes the velocity profile over the entire layer. These ideas are
not incompatible since in inner variables the outer layer can never be reached in the

limit of infinite Reynolds number (i.e., as 67 — oo, y* — oo for finite values of y).

2.3 Full Similarity of the Outer Equations

In accordance with the Asymptotic Invariance Principle, solutions will be sought
which reduce to similarity solutions of the outer momentum equation and boundary
conditions in the limit of infinite Reynolds number. It is important to remember that
no scaling laws will be assumed at the outset, but rather will be derived from the
conditions for similarity of the equations.

For the outer equations, solutions are sought which are of the form

U—-—Usx = Us(2)fose(T) (2.12)

—UU = Ry(T)T000(T) (2.13)

2The word ‘law’ is formally incorrect since the result has been derived, and no longer depends
on experimental results alone to establish its validity.
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where

y=y/é(z) (2.14)
and Us,, Rs, and 0 are functions only of x. Note that extra arguments could have
been included in the functional dependence of f,» and 7, to account for the effect
of upstream conditions, etc. The velocity has been written as a deficit to avoid the
necessity of accounting for its variation across the inner layer. This is, of course, not
possible with the Reynolds stress since it vanishes outside the boundary layer. As
in the previous section, the oo has been added to the subscript to distinguish f,s
and 7,4, from the the 0"-dependent profiles scaled with U,, and R, used later. The
V-component of velocity has been eliminated by integrating the continuity equation
from the wall, thus introducing a contribution from the inner layer which vanishes
identically at infinite Reynolds number.

Substitution into equation 1.2 and clearing terms yields

(Uoo> § U], [0 dUn] o _ [Usdd] .
Uo) U dr |7 U, dz |7 ™ (U, da | Vo

dé 0 dUs, , [V R, /
B fon [ e

For a similarity solution to be possible, the bracketed terms must all have the

same z—dependence (or be identically zero). Therefore, it is clear that full similarity

is possible only if

(Uoc> d dUs, N 0 dUs, N (Uoo> do N do B (2.16)
Us,) Uy dx U, dx Uso/ dz dx U2
It follows immediately that
Uso = Us (2.17)
and
R, =12 ® (2.18)

*dz
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are the only choices, at least to within a constant of proportionality. Thus, the proper

velocity scale for the velocity deficit law must be Uy, and not u, as suggested by Von

Karman (1930) and widely utilized since (eg., Clauser 1954, Coles 1956, 1962).
Since Uy is presumed constant, the limiting form of the outer equation governing

the mean flow reduces to

v Rso ’
_yfoool - fooo//O fooo(f)dé = lm] T 000 (2.19)

This equation will not receive further attention in this paper since it is not possible
to close it without a turbulence model. It is important to note, however, that it
has served an extremely important role since it has determined the outer scaling
parameters according to the AIP, and hence the real deficit law.

The analysis above makes it clear that of the possible candidates for an outer
scaling law for the velocity, only the profile represented by equation 1.12 is Reynolds
number invariant in the limit. Therefore this must be the appropriate scaling for finite
Reynolds numbers as well. (This is, of course, the whole idea behind the Asymptotic
Invariance Principle.)

The old deficit profile, equation 1.13, can not be Reynolds number invariant in
the limit (unless u,/Us is non-zero in the limit), since F, = (u./Ux) fo. In fact, since
fo is Reynolds number invariant in the limit, it is clear why F, vanishes in this limit if
us/Usx — 0 (as required in the Clauser/Millikan theory). This is precisely objection
(i) registered in the Introduction.

The Reynolds stress scale, on the other hand, is not U2, but an entirely different
scale depending on the growth rate of the boundary layer, dd/dz. In effect, dé/dzx is
acting as a Reynolds number dependent correlation coefficient, just as for free shear
flows (George 1989). This will be shown later to be related to the fact that as the

Reynolds number increases, less and less of the energy is dissipated at the scales at
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which the Reynolds stress is adding energy to the flow so they become effectively
inviscid (v. George 1995). It will also be shown below that R, can be determined by
matching the outer Reynolds stress to the inner Reynolds stress. The need for such
a matching is intuitively obvious, since the only non-zero boundary condition on the
Reynolds stress in the outer flow is that imposed by the inner.

Millikan (1938) and others have objected to the type of similarity analysis em-
ployed here as leading to unphysical results for the boundary layer. Certainly there
is nothing unphysical about the velocity deficit law using Uy in and of itself, and a
case for such a deficit law could have been made, even with the data available at the
time (as was suggested earlier). Thus the fundamental basis for this objection must
have been the condition on the Reynolds stress. However, this would have been a

problem only if it were also required or assumed at the outset that R,, = U2, for

500
then it would have also been necessary that dé/dx = constant. Since the boundary
layer was believed not to grow linearly, Millikan (and many before and after him as
well) was forced to conclude that full self-preservation (in the assumed sense) was not
possible, and therefore had to settle for a locally self-preserving solution.

George (1989), however, pointed out that (contrary to the conventional wisdom of
self-preservation presented in texts) there is no reason a priorito insist that Ry, = U2
If this arbitrary requirement is relaxed, then there is no longer the requirement for
linear growth, and both equation 2.18 and similarity become tenable. In fact, these
conditions require that the outer flow be governed by two velocity scales, Uy, and a
second governing the Reynolds stress which is determined by the boundary conditions

imposed on the Reynolds stress by the inner layer. It will be shown below that the

inner and outer Reynolds stresses can overlap asymptotically only if

do
Rgp ~ U;@ ~ u? (2.20)
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which resembles closely the momentum integral equation, both a surprising and grat-
ifying result. More will be said on this relationship later.

That the outer (and inner) equations admit to similarity solutions (in the sense
of George 1989) should come as no surprise to the experimentalists who have long
recognized their ability to collapse the outer mean velocity data with only Uy and 9.
Hinze 1976 and Schlichting 1968, for example, show profiles normalized by U/U,, and
plotted as a function of y/§. Even the fact that the outer Reynolds stress scales with
u, (but only to first order) is in accord with common practice, since it is assumed
in the old theory — but in a way which could not account for the observed weak
dependence on Reynolds number. Thus one can speculate that Millikan’s conclusions
might have been quite different had he (and several generations after him) not been
locked-in to the too restrictive idea of self-preservation (i.e., single length and velocity

scales).

2.4 Scaling of the Other Turbulence Quantities

For the inner layer, there is only one velocity scale, u,, which enters the single point
equations; therefore all single point statistical quantities must scale with it. This
is, of course, the conventional wisdom, but with an important difference: The inner
layer does not include the overlap layer — the region between the inner and outer
regions — which is Reynolds number dependent. This is contrary to the conventional
wisdom of including the overlap layer as part of the wall layer. But since the inner
and outer scales are different, the dependent variables in the overlap layer must be
expected to be functions of both, and thus Reynolds number dependent. (Note that

different considerations must be applied to the multi-point equations since conditions
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at a point can depend on those at another, and in particular those at a distance.)

From the preceding analysis, it is apparent that the outer layer at finite Reynolds
numbers is governed by not one, but two velocity scales. In particular, the mean
velocity and its gradients scale with U, while the Reynolds shear stress scales with
UZds /dx ~ u?. Therefore it is not immediately obvious how the remaining turbulence
quantities should scale. In particular, do they scale with U, or u,, or both? If the
latter, then quantities scaled in the traditional way with only one of them will exhibit
a Reynolds number dependence and will not collapse. (Note that if the ratio of
velocity scales, u,/Us, is asymptotically constant, this Reynolds number dependence
would appear to reduce with increasing distance downstream and could lead to the
erroneous conclusion that certain quantities scaled with only one of them take longer
to reach equilibrium than others.)

In view of the possible similarity of the outer equations for the mean flow, it is
reasonable to inquire whether the equations for other turbulence quantities also admit
to fully similar solutions. For the outer part of the boundary layer at high Reynolds

number, the equation for < u? > can be written (Tennekes and Lumley 1972) as

0 < u?> 0 < u?> ou
U Vv = 2 —
ox * dy <p8m>
oU
— 2 —2 — — 2, (2.21
+ 3y{ <uv>} <uv>8y € (2.21)

where ¢, is the energy dissipation rate for < u? > and the viscous transport term has
been neglected.

By considering similarity forms for the new moments like

% <u?> = K,(2)k(®) (2.22)
2 = Pnm) (2.23)
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——<uv> = Tp,(z)t(®) (2.24)
€&w = Dyu(x)d(7) (2.25)

and using Ry = U2.dd /dzx, it is easy to show that similarity of the < u? >-equation is

possible only if

K, ~ U2 (2.26)
U ds  Usu?
do
T2y ~ Ujjo% ~ Usou? (2.28)
U ds  Uyu?

All of these are somewhat surprising: The first (even though a second moment like the
Reynolds stress) because the factor of dd/dx is absent; the second, third and fourth
because it is present. The mixed forms using u, and U, instead of dd/dz should be
especially useful for scaling experimental data at low to moderate Reynolds numbers
where u, /Uy shows considerable variation.

Similar equations can be written for the < v? > and < w? >; i.e.,

0<v?®> 0<v?®> ov
I>7 - X7 7 9 bl
U 5 +V 3y <p8y>
0 3
+ 8_y{_ <v’>-2<pv >}—26v (2.30)
and
0 < w? > 0 < w? > ow
e " 7 9 hthd
U B +V oy <p82>
0 9
+ 8_y{_<w v>}—26w (2.31)

When each of the terms in these equations is expressed in similarity variables, the

resulting similarity conditions are:

UK, dd
— 2.32
6 dzx (2.32)

D,~PF, ~
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U Ky do
D, ~ P, ~ — 2.33
6 dx ( )
UK, dd
Ts ~ — 2.34
v? 0 dx ( )
UK, do
T, — 2.
w2v 5 dr ( 35)

There is an additional equation which must be accounted for; namely that the sum
of the pressure strain-rate terms in the component energy equations be zero (from

continuity). Thus, in similarity variables,
Pu(z)pu(F) + Po()ps(§) + Pu(2)pu() =0 (2.36)
This can be true for all 7 only if
P,~PFP,~P, (2.37)

An immediate consequence is that

US d5  Usu?

Dy~ Dy,~Dy~Dg~—— 2.38
0 dx 0 ( )

where Dy is the scale for the entire dissipation, and
K,~K,~ K, ~ U2 (2.39)

Thus all of the Reynolds normal stresses scale with U2

[oop)

and not with u? like the
Reynolds shear stress.

The remaining equation for the Reynolds shear stress is given by

U8<uv>+vc9<uv> _ %+@
B gy “Play "oz
+ 8—y{—<uv >}—<v >8—y (2.40)
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This does not introduce any new similarity functions, but it does impose a surprising

constraint on the ones which exist already, namely,

do dd
Ko~ R o U2 (—2)2 2.41
v Rsod$ UOO(d.T) ( )

There is an apparent contradiction between equation 2.41 and equation 2.39. It
must be recalled, however, that that Ry, is only asymptotically equal to u? (from the
matching), so the outer Reynolds stress scale evolves to this value with increasing
Reynolds number. Obviously, the two conditions together require that in the limit of

infinite Reynolds number,

do 2
pra ;j—; ~ constant (2.42)
x oo

It is in, indeed, somewhat surprising that similarity of the turbulence moments in
the outer flow is possible only if the asymptotic growth rate (do/dx) of the boundary
layer is constant. If this constant is indeed zero, as argued later, then it is clear that
similarity of the outer moments is approached only at very high Reynolds numbers
since u, /U, approaches its asymptotic value very slowly. The full implications of
this will be considered in more detail in section 2.13.

From equations 2.38 and 2.29 it follows that

U3

D, ~
5

(2.43)

The relations given by equations 2.39 and 2.43 were assumed without proof in the
George 1989 analysis of free shear flows. The additional constraint imposed by equa-
tion 2.37 was not derived, however, and arises from the additional information pro-
vided by the pressure strain-rate terms.

Before leaving this section it should be noted that conditions for similarity of the

turbulence moments also give a clue as to when, if ever, this asymptotic state might
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be achieved. Similarity solutions of the Reynolds stress equations are possible only
when Dg(z) ~ U32/§ where Uy = Uy for the boundary layer. There are only two

possibilities for this to occur (George 1995):

e i) Either the local Reynolds number of the flow is constant so that the effect
of viscosity on the energy containing eddies (and those producing the Reynolds

stress as well) does not vary with downstream distance; or

e ii) The local turbulence Reynolds number is high enough so that the Reynolds
stresses are effectively inviscid and the relation € ~ ¢3/L is approximately valid

(for a physical length L ~ §).

Unlike some flows (like the axisymmetric jet or plane wake) where the local
Reynolds number is constant, for the boundary layer it continues to increase with
downstream distance. Therefore the only possibility for similarity at the level of the
Reynolds stresses is (ii). Thus similarity in the outer boundary layer at the level of
the second order moments can occur only when the turbulence Reynolds number is
large enough.

Since the local Reynolds number for the boundary layer continues to increase with
increasing downstream distance, the similarity state will eventually be reached. The
higher the unit Reynolds number of the flow (U /v), the smaller the value of = at
which similarity of the second order moments will be realized. (Section 2.8 below
will attempt to establish approximate bounds where each part of the boundary layer
can be Reynolds number independent.) It is worth noting that there appears to be
nothing in the equations to indicate whether the similarity state achieved in the outer

part of the boundary layer is independent of upstream effects.
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2.5 The Overlap Layer: An Application of Near-
Asymptotics

It is obvious that since both the outer and inner profiles are non-dimensional profiles
with different scales and the ratio of the scales is Reynolds number dependent, then
any region between the two similarity regimes cannot be Reynolds number indepen-
dent, except possibly in the limit. The actual mean velocity profile at any Reynolds
number, however, is the average of the instantaneous solutions to the Navier-Stokes
equations and boundary conditions. And this profile, whether determined from a real
flow, DNS simulation, or not at all, exists, at least in principle, and is valid every-
where regardless of how it is scaled. Therefore both scaled forms of this solution,
fily™,0%) and f,(7,0") (equations 1.11 and 1.12 respectively), represent the velocity
everywhere, at least as long as the Reynolds number is finite. In fact, the parameter
0T uniquely labels the fanning out of the inner scaled profiles in the outer region and
the outer scaled profiles near the wall (e.g., Figures 1, 2 and 3 of Chapter 3).

Thus, f; and f, are quite unlike their limiting forms, f;oc and f,o, which are
infinite Reynolds number solutions only for the inner and outer equations respectively.
If f; and f, are considered instead of f;», and fos (as is usually done), the problem
of determining whether an overlap region exists is quite different from the usual
asymptotic matching where infinite Reynolds number inner and outer solutions are
extended and matched in an overlap region if one exists. Therefore, the objective
here is not to see it f; and f, overlap and match them if they do. Rather, it is to see
whether the fact that these scaled finite Reynolds number solutions (to the whole flow)
degenerate at infinite Reynolds number in different ways can be used to determine their

functional forms in the common region they describe in the limit. The methodology
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outlined below (termed Near-Asymptotics) is believed to be new, but is necessary
because the traditional approach cannot account for the possibility of the matching
parameter tending to zero, as might be the case.

The fact that analytical forms for these Reynolds number dependent solutions
are not available and are only known in principal turns out not to be a significant
handicap. There are several pieces of information about the two profiles which can

be utilized without further assumptions. They are:

e First, since both inner and outer forms of the velocity profile must describe the
flow everywhere as long as the ratio of length scales, 67 = d/n = 07, is finite,

it follows from equations 1.11 and 1.12 that

L+ fo(g.07) = g(67) fily™,67) (2.44)
where g(6") = u,/Ux is defined by equation 1.8.

e Second, for finite values of 5T, the velocity derivatives from both inner and outer
forms of the velocity must also be the same everywhere. It is easy to show that

this requires that
vy d y* dfi
L+ fody  fidy*

(2.45)

for all values of 6" and v.

e Third, in the limit, both f, and f; must become asymptotically independent of
07, Thus f,(7,0") — fose(¥) only, and f;(y",0") — fiee(yh) only as 67 — oo
or otherwise the velocity scales have been incorrectly chosen. (This is, in fact,

the Asymptotic Invariance Principle.)

Now the problem is that in the limit as 7 — oo, the outer form fails to account

for the behavior close to the wall while the inner fails to describe the behavior away
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from it. The question then is: In this limit (as well as for all finite values approaching
it) does there exist an “overlap” region where equation 2.44 is still valid? Since both ¢
and 7 are increasing with streamwise distance along the surface, this “overlap” region
will not only increase in extent when measured in either inner or outer coordinates, it
will move farther from the wall in actual physical variables. (Note that this is quite
different from pipe and channel flows in which the overlap layer remains at fixed
distance from the wall for all 2 because of the streamwise homogeneity, as long as the
external parameters are fixed.)

The question of whether there is a common region of validity can be investigated
by examining how rapidly f, and f; are changing with §*. From the Taylor expansion

about a fixed value of 47,

fily®; 07 + AST) — fily™;07) 1 Ofiy*;0") ‘
AS* fi(y+; 0%) A A

= S(6%,y")  (2.46)

and

fo(y; 5+ + A5+) B fo(g; 5+) —~ 1 8fo(ya 5+)
AST f,(7; 0T) T fo(mot) 9ot

]g = 5,(6%,7) (2.47)

Thus S; and S, are measures of the Reynolds number dependencies of f; and f,
respectively. Both vanish identically in the limit as 07 — oo. If ™, .. denotes a
location where outer flow effects begin to be strongly felt on the inner scaled profile,
then for y* < y*, .. S; should be much less than unity (or else the inner scaling is
not very useful). Similarly, if 7,,;, measures the location where viscous effects begin
to be strongly felt (e.g., as the linear velocity region near the wall is approached),
then S, should be small for § > 7,,,,. Obviously either S; or S, should increase as
these limits are approached. Outside these limits, one or the other should increase
dramatically.

The quantities S; and S, can, in fact, be used to provide a formal definition of an
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“overlap” region where both scaling laws are valid. Since S; will increase drastically for
large values of y for given §* and S, will increase for small values of y, an “overlap”
region exists only if there exists a region for which both S; and S, remain small
simultaneously. In the following paragraphs, this condition will be used in conjunction
with equation 2.44 to derive the functional form of the velocity in the overlap region at
finite Reynolds number, hence the term ‘Near-Asymptotics’. Obviously there is a very
close relation between the idea of Near-Asymptotics and Intermediate Asymptotics
(Barenblatt 1978), the difference being that the former is carried out at finite Reynolds
number.

Because of the movement of the matched layer away from the wall with increasing
X, it is convenient and necessary to introduce an intermediate variable ¢ which can be
fixed in the overlap region all the way to the limit, regardless of what is happening in
physical space (v. Cole and Kevorkian 1981). A definition of § which accomplishes

this is given by

g=ytot " (2.48)
or

yt=got" (2.49)
Since 7 = y* /67", it follows that

g=got"" (2.50)

For all values of n satisfying 0 < n < 1, § can remain fixed in the limit as 07 — oo
while 7 — 0 and y™ — oo. Substituting these into equation 2.44 yields the matching

condition on the velocity in terms of the intermediate variable as
L+ fo(@07" 7, 0%) = g(6%) fi(30™". 67) (2551)

Now equation 2.51 can be differentiated with respect to % for fized ¢ to yield
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equations which explicitly include S; and S,. The result is

01+ fo) _dg fix Ofi 8y+‘ 0fi
oy v dor T I\ Byt s aot e T 9oyt

1+fo

. 85+\ } (2.52)

Carrying out the indicated differentiation of y™ and § by ¢+ (for fixed 7), and multi-

plying by 6% /(1 + f,) yields (after some rearranging)

oot T OOEL) w0k 6tde o f10f 1 0+
(L+f,) oy lov 7 fioytler — g do+ f; 00t v 1+ f, 90+ 7
(2.53)
It follows immediately from equation 2.45 that
y o+f)y _ 9d"dg o ]1 __ L o+ o) (2.54)
1+ f, oy l&F g dot fiodotlvt 1+ f, 06t W '
Equation 2.54 can be rewritten as
700 L)| e s
T+ 7, ag | =5(0") =d7(S; = 95,) (2.55)
where v = (") is defined by
0" dg
M= -———= 2.
o) =228 (2.56)

Note that the first term on the right hand side 2.55 is at most a function of 6™ alone,
while the second term contains all of the residual y-dependence.
Now it is clear that if both
8T8, << v (2.57)
and
TS| << v (2.58)
then the first term on the right-hand side of equation 2.54 dominates. If v — 0, then

the inequalities are still satisfied as long as the left hand side does so more rapidly

than +. Note that a much weaker condition can be applied which yields the same
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result; namely that both inner and outer scaled profiles have the same dependence on
5t i.e., S; =S, in the overlap range so 7 is the only term remaining. (The author is
grateful to Professor R. Karlsson of KTH /Stockholm for pointing this out.) If these
inequalities are satisfied over some range in y, then to leading order, equation 2.54

can be written as
y 01+ fY) ‘
1+ Y oy e

The solution to equation 2.59 can be denoted as f{!) since it represents a first order

— 5(5%) (2.59)

approximation to f,. It is not, however, simply the same as f,o, because of the 6+
dependence of v, but reduces to it in the limit. Thus, by regrouping into the leading
term all of the y-independent contributions, the method applied here has yielded a
more general result than the customary expansion about infinite Reynolds number.
(It is also easy to see why the usual matching of infinite Reynolds number inner and
outer solutions will not work since the limiting value of v might be zero.)

From equations 2.45 and 2.59, it follows that

yt 8fi(1) N
10y 5 =069

(2.60)

An interesting feature of these first order solutions is that the inequalities given by
equations 2.57 and 2.58 determine the limits of validity of both equations 2.59 and
2.60 since either S, or S; will be large outside the overlap region. Clearly the extent
of this region will increase as the Reynolds number (or %) increases.

Equations 2.59 and 2.60 can be readily integrated to yield (to leading order)
L+ fP@F.6%) = Co(sh)g® (2.61)

fWre%) = Gy (2.62)

In the remainder of this paper, the superscript (1) will be dropped; however it is these

first order solutions that are being referred to unless otherwise stated. (Note that some
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earlier versions of this theory included additive constants which were believed to be
zero only on experimental grounds. The derivation here makes it clear that these
constants are indeed zero.)

The relation between u, and Uy follows immediately from equation 2.44; i.e.,

f _ Us +y _ Col87) 5t
JE = =gty = 2208 2.
2 = 0. 0= o (2:63)

Thus the friction law is also a power law entirely determined by the velocity param-
eters for the overlap region. However, equation 2.56 must also be satisfied. Substi-
tuting equation 2.63 into equation 2.56 implies that v, C,, and C; are constrained
by

dy d
I S AL Ry M 2.64
" T ast e (2.64)

Equation 2.64 is exactly the criterion for the neglected terms in equation 2.54 to

Co}

vanish identically (i.e., S; — S, = 0). Therefore the solution represented by equations
2.61 — 2.64 is, indeed, the first order solution for the velocity profile in the overlap
layer at finite, but large, Reynolds number. Clearly when y* is too big or 7 is too
small for a given value of 0™, the inequalities of equation 2.57 and 2.58 cannot be
satisfied. Since all the derivatives with respect to 6™ must vanish as 67 — oo (the
A.LP.), the inner range of the outer overlap solution is unbounded in the limit, as is
the outer range of the inner.

Thus the velocity profile in the overlap layer is a power law with coefficients
and exponent which depend only on Reynolds number, §*. The functions C;(§%),
Co(07) and v(0") must be determined either empirically or from a closure model for
the turbulence. However they are determined, the results must be consistent with
equation 2.64.

Equations 2.61 and 2.62 must be asymptotically independent of Reynolds number,

since f; and f, are. Therefore the coefficients and exponent must be asymptotically
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constant; i.e.

7(5+) - Yoo
Oo(5+) — Coso

Ci(5+) — Ciso

as 0t — oo. These conditions are powerful physical constraints and together with
equation 2.64 will be seen to rule out some functional forms for ~, like that suggested
by Barenblatt 1993 for example (see below). Therefore it is important to note that
they are a direct consequence of the AIP and the assumption that scaling laws should
correspond to similarity solutions of the equations of motion.

It is convenient to write the solution to equation 2.64 as

% = exp[(7 — Voo) IN 6T + A (2.65)

where h = h(6") remains to be determined, but must satisfy

dh dh
_ [ _
VT Ve = 70 T T (2.66)

It is easy to show the conditions that both C,s and Cj, be finite and non-zero

require that:

FEither

e (,, C; and 7 remain constant always;
or

e (i) ¥ — Vs faster than 1/Ino™"

and
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e (ii) h(0") — he = constant.

It follows immediately that
COOO
C;

Note that condition (i) together with equation 2.66 requires that dh/dIno*™ — 0

faster than 1/In ™.

Condition (ii) rules out solutions of the form suggested by Barenblatt 1993 who
proposed power law profiles with v = a/Iné" for which h = Inb—alInlnd* where Inb
is the integration constant. Obviously this A is unbounded in the limit as 6 — oo.
Substitution into equation 2.65 yields C,/C; = b(e/Ind+)A. Thus, either C, — 0
or (;; — oo or both. Both of these are unacceptable alternatives in that they are
inconsistent with similarity of even the mean velocity. 3

In Chapter 3 it will be found on empirical grounds that the variation of v — 7

and C,/C; with 07 is described to an very good approximation by

A

where a = 0.46. This can easily be shown to satisfy the constraints above.

Before leaving this section it is reassuring to note that in flows where the inner
and outer velocity scales are the same (as for the channel flow of Appendix I), the
procedure utilized above leads to the familiar logarithmic profiles with coefficients
which are Reynolds number dependent, but asymptotically constant. The possibility
of Reynolds number dependent parameters for the log law in pipe and channel flows
is certainly contrary to the prevailing wisdom, but consistent with widespread spec-

ulation in the experimental community over many decades. Finally, both the power

3Barenblatt’s form does produce a logarithmic drag law which is desirable for channel flow, but
not necessarily for a boundary layer. A logarithmic drag law can be obtained for channel flow in
another way as shown in Appendix L.
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law profile proposed here and the log profile have recently been shown by Oberlack
(1996) to be consistent with a Lie group analysis of the governing equations for par-
allel shear flow. The AIP and Near-Asymptotic analysis used here has supplied the
information missing from the Lie group analysis; namely, where at least two of the

particular analytical solutions apply.

2.6 A New Friction Law

The relation between u, /U and 6 has already been established by equation 2.63.

This can be rewritten as

* Oo — Oo _
g— = 65+ = o° vind* (2.69)

The asymptotic behavior of u. /U, obviously is determined by both 7 and the ratio
C,/C;, which are themselves interrelated by equation 2.64.

The advantage of this form of the solution is easily seen by substituting equations

2.65 and 2.66 into equation 2.69 to obtain

= exp[—Yoo IN 6T + A (2.70)

b

Thus u./Us is entirely determined by v, and h(d%). It is easy to see from the above
conditions on 7 and h(0%) that if 7, # 0, then u,/Usx — 0. On the other hand, if
Yoo = 0, then u, /Uy — const. Either possibility, is consistent with similarity of the
mean and turbulence quantities considered earlier. However, an energy dissipation
argument will be presented in section 2.13 which suggests that the limiting value
of v must be finite. This conclusion will be seen to be consistent with the data
analysis of Chapter 3 where the best estimate is v, = 0.036, but there is considerable

uncertainty.
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The friction laws written above all use u, on both sides of the equation. This can
be cast in an alternative form by eliminating the dependence of the right-hand side

of equation 2.63 on u,; i.e.,

1/14 =/ (1+7)
s _ (Q) (Uoo5> (2.71)

Uoo CZ v
o /(1+7)
Oo 2/(147) Uoo(s —2v/(1+~y
¢ =2 (5> ( : ) (2.72)

Unfortunately, because C,/C; is itself a function of Reynolds number, this form is
less useful than it might appear to be. In sections 2.11 and 3.10 the relation of Rs
to Ry and Rs, will be determined so that the friction law can be expressed in terms

of any of the convenient Reynolds numbers.

2.7 The Reynolds Stress in the Overlap Layer

By following the same procedure as for the velocity, the outer and inner Reynolds
stress profile functions for the overlap region can be obtained. For example, the
Reynolds shear stress is given by,

ro(@;0%) = Do(d%)g"*") (2.73)

ri(yti6t) = Dyt (2.74)

where a solution is possible only if

o gl 2.
Rsi Do ( 75)
and
a3 d D
T AL —O} 9.
"0~ dsr D, (2.76)
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Unlike the velocity, however, more information about the Reynolds stress is avail-
able from the averaged momentum equation for the overlap layer since both equations
1.2 and 1.4 reduce to

0

By (—<uv>)=0 (2.77)

in the limit of infinite Reynolds number. Thus,
BRyDg" ™ — 0 (2.78)

and

BRuDy™" ™ — 0 (2.79)

Since both D, and D; must remain finite and be asymptotically constant (if the

Reynolds stress itself is non-zero), these conditions can be met only if
6 —0 (2.80)

From equation 2.11 for large values of y™, the Reynolds stress in inner variables

in the matched layer is given to first order (exact in the limit) by
ri — 1 (2.81)

Since R, = u?, this can be consistent with equation 2.74 only if D; — 1 as §+ — oo.

It follows immediately that
D.
Ry — —u? 2.82
in the infinite Reynolds number limit, just as suggested in Section 2.3.
Some insight into the behavior of D,(d%) and D;(6") can be obtained by intro-

ducing the momentum integral equation defined by

g u?
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Using this, equation 2.82 and the similarity relation for R,, from equation 2.18
yields
Dy(6%)  df/dx

(2.84)

The relationship between 6 and § will be explored in more detail below, and it will

be shown that 6/0 is asymptotically constant. Thus the scale for the outer Reynolds

2

*

stress is asymptotically proportional to uZ as noted earlier, and the outer layer is
indeed governed by two velocity scales. Note that for finite Reynolds numbers, both
D, and D; are Reynolds number dependent. Hence, u? alone should not be able
to perfectly collapse the Reynolds stress in either the overlap or outer layers, except
possibly in the limit of infinite Reynolds number. This has been observed by numerous
experimenters (e.g., Klewicki and Falco* who show persistent Reynolds number trends
in the Reynolds stress measurements).

The interrelation of the Reynolds stress and velocity parameters can be examined

by considering the production term — < wv > 9U/0y . Since this must be the same

whether expressed in inner or outer variables, it follows that

CODOU;@ ~ C;D;u? (2.85)

dx
or asymptotically, D, = C;(D;/C,). C, and D; achieve a nearly constant value
for relatively low values of Ry while C; only approaches a constant value for much
higher Reynolds numbers. Obviously the outer Reynolds stress parameter follows the
inner velocity, thus emphasizing the role of the boundary condition provided by the

Reynolds stress on the outer flow by the inner.

4submitted for publication
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2.8 The Effect of Reynolds Number

The overlap layer identified in the preceding sections can be related directly to the
averaged equations for the mean flow and the Reynolds stresses. Of particular interest
is the question of how large the Reynolds number must be before the boundary layer
begins to show the characteristics of the asymptotic state.

The averaged momentum equation from about y* > 10 out to 7 < 0.1 is given

approximately by
0 <uv>

0= By

(2.86)

It has no explicit Reynolds number dependence; and the Reynolds shear stress is ef-
fectively constant throughout this region. Unfortunately many low Reynolds number
experiments do not have a region where this is even approximately true because the
convection terms are not truly negligible. Hence it is unreasonable to expect these
experimental profiles to display any of the characteristics of the overlap described
above, except possibly in combination with the characteristics of the other regions.
(For example, the composite velocity profile of section 2.10 can be used to obtain the
Reynolds stress by integrating the complete momentum equation from the wall.)
Even when there is a region of reasonably constant Reynolds stress, however, this
is not the entire story because of the Reynolds number dependence of — < uv > itself.
Recall that the parameters D;, D,, and [ (and the velocity parameters C,, C; and v as
well) were only asymptotically constant, and only in the limit did 8 — 0. The origin
of this weak Reynolds number dependence can be seen by considering the Reynolds
transport equations. For this “constant shear stress region”, the viscous diffusion and

mean convection terms are negligible (as in the mean momentum equation), so the
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equations reduce approximately to (Tennekes and Lumley 1972),

ou; o< ouy,

8Uk 8UZ 0< UURU2 >
>)— < UjUg > —+ < UgUg > — —€ik
81’2 8x2 81'2

(2.87)

0=—(<p

where U; = Ud;;. Thus viscosity does not appear directly in any of the single point
equations governing this region, nor does it appear in those governing the outer
boundary layer.

In spite of the above, however, viscosity can be shown to play a crucial role in
at least a portion of the constant stress layer, even at infinite Reynolds number.
The reason is that the scales of motion at which the dissipation, €;;, actually takes
place depend on the local turbulence Reynolds number, R; = ¢*/ve. For R; > 1000
approximately, the energy dissipation is nearly completely controlled by the large
energetic scales of motion. These are effectively inviscid, but control the energy
transfer through non-linear interactions (the energy cascade) to the much smaller
viscous scales where the actual dissipation occurs (v. Tennekes and Lumley 1972).
When this is the case, the dissipation is nearly isotropic so €;, &~ 2€d;z. Moreover, €
can be approximated by the infinite Reynolds number relation: € ~ ¢*/L where L
is a scale characteristic of the energy-containing eddies. The coefficient has a weak
Reynolds number dependence, but is asymptotically constant. Thus, the Reynolds
stress equations are effectively inviscid, but only exactly so in the limit. And in this
limit the Reynolds shear stress has no dissipation at all, i.e., €12 = 0. (Note that
these are nearly the same conditions required to observe a k=°/3-range in the energy
spectrum. )

At very low turbulence Reynolds number, however, the dissipative and energy-
containing ranges nearly overlap, and so the latter (which also produce the Reynolds

shear stress) feel directly the influence of viscosity. In this limit, the energy and
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dissipative scales are about the same, so the dissipation is more reasonably estimated
by € ~ vq?/L?, where the constant of proportionality is of order 10. The dissipation
tensor, €, is anisotropic and €9, in particular, is non-zero (Launder 1993). (Hanjalic
and Launder 1972, for example, take €10 = — < ujug > /q26.)

For turbulence Reynolds numbers between these two limits, the dissipation will
show characteristics of both limits, gradually making a transition from e ~ v¢*/L? to
€ ~ ¢*/L as R; increases. Thus the Reynolds stresses themselves will feel this directly
through their balance equations, and will consequently show a Reynolds number
dependence. Obviously, in order to establish when (if at all) parts of the flow become
Reynolds number independent, it is necessary to determine how the local turbulence
Reynolds number varies downstream and across flow.

Over the outer boundary layer (which is most of it), L ~ 30 and ¢ ~ 0.1Ux.
So when Uy,6/v > 3,000, the dissipation in the outer flow is effectively inviscid.
Above this value the mean and turbulence quantities in the outer flow should show
little Reynolds number dependence, and this is indeed the case — when they are
scaled properly! This outer region can, of course, not be entirely Reynolds number
independent. except in the limit, and this residual dependence manifests itself in the
overlap layer in the slow variations of ~, for example.

The near wall region is considerably more interesting since in it the scales govern-
ing the energy-containing eddies are constrained by the proximity of the wall. Hence,
the turbulence Reynolds number, R;, depends on the distance from the wall, y. In
fact, Ry ~ y™ with a coefficient of about 3; so, in effect, y* is the turbulence Reynolds

number. Because of this, two things are immediately obvious:

e First, since a fixed value of y™ does not move away from the wall as fast as 0,

then as the Reynolds number increases more and more of the boundary layer
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(in outer variables) will become effectively inviscid and will be governed by the
inviscid dissipation relation. And correspondingly, the mean and turbulence
quantities in the overlap layer will become Reynolds number independent, al-
beit very slowly. Clearly these limiting values cannot be reached until the entire
overlap layer is governed by the infinite Reynolds number dissipation relation
and its coefficient has reached the limiting value. Obviously this can happen
only when there is a substantial range satisfying y™ > 300 and for which the
mean convection terms are negligible, typically 7 < 0.1. Thus the asymptotic
limits are realized only when 300v/u,. << 0.16 or u.d/v >> 3000, which cor-
responds approximately to U,0/v >> 10,000. This is above the range of the
available data which end at about 50, 000. Therefore the overlap layer, to the
extent that it is identifiable at all, should (and does, as will be seen in Part
IT) display a Reynolds number dependence, not only in C,, C;, and -, but

correspondingly in the behavior of < u? >, < uv >, etc.

e Second, there will always be a MESOLAYER °, below about y™ ~ 300 in which
the dissipation can never assume the character of a high Reynolds number flow,
no matter how high the Reynolds number for the boundary layer becomes.
This is because the dissipation (and Reynolds stress as well) can never become
independent of viscosity — even though the mean momentum equation itself
is inviscid above y* ~ 10! This fact is well-known to turbulence modellers
(v. Hanjalic and Launder 1972), but the consequences for similarity theory
and asymptotic analyses do not seem to have been noticed previously. It is

particularly important for experimentalists who have routinely tried to apply

>This appropriates a term from Long 1976 (see also Long and Chen 1982) who argued strongly
for its existence, but from entirely different physical and scaling arguments which we find untenable.
Nonetheless, despite the skepticism which greeted his ideas, Long’s instincts were correct.
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asymptotic formulas to this region, wrongly believing the mesolayer to be the

overlap region.

Thus the constant stress layer is really four separate regions, each having their own
unique character. The overlap layer (y* > 300, 7 < 0.1) obtained in the preceding
section which is nearly inviscid; a ‘mesolayer’ (10 < y* < 300) in which the viscous
stresses are negligible, but in which viscosity acts directly on the turbulence scales
producing the Reynolds stresses; a buffer layer (5 < y™ < 10) where the Reynolds
stress and viscous stress both act directly on the mean flow; and the real viscous
sublayer, the linear region near the wall (y™ < 5) where the viscous stresses dominate.
And of these four regions, the overlap layer will be the last to appear as the flow
develops or as the Reynolds number is increased. Thus it will be the most difficult to
identify at the modest Reynolds numbers of laboratory experiments. Identification
will be easier if the properties of the mesolayer are known, and accordingly a model

for it is presented in the next section.

2.9 A Mesolayer Model

It was Long 1976 (see Long and Chen 1982) who first argued for the existence of
a mesolayer — but on very different physical grounds. He did not consider the
turbulence energy equation, but instead only the mean momentum equation. From
it he argued that some residual viscous stress must be retained in addition to the
Reynolds stress, and used this to define a meso-length scale which varied as the
square root of the flow Reynolds number. All subsequent deductions were based on
matching four flow regions, one of which was characterized by this new length scale.

The suspicions that a new layer involving viscosity and inertia was needed between
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the overlap and viscous layers has proven to be quite insightful. The arguments,
however, can not be justified since there is simply no physical basis for arguing that
the viscous stress must be important in the equations for the mean flow. In fact it is
negligible outside of y* = 10. It was argued in the preceding section that viscosity
enters the dynamics of the mesolayer only through its effect on the energy cascade,
and that is reflected in the nature of the dissipation, and in turn in the component
Reynolds stress equations.

It is easy to show that no new length scale is necessary to account for this dissi-
pation effect. The whole reason for the existence of this mesolayer is that the local
turbulence Reynolds number near the wall can never be large enough for the dissi-
pation to become inviscid. Near the bottom of the constant stress layer, the scales
of the energy-containing eddies and those at which the energy is dissipated will be
nearly the same size, and in this limit € ~ v¢?/L? where L is typically about equal
to y, the distance from the wall. At the outer part of the constant stress layer, the
required scale separation will have been achieved — if the flow Reynolds number is
high enough — so the dissipation is nearly inviscid and thus € ~ ¢*/y. The essence of
the mesolayer is that neither of these limits applies and a transition from one to the
other is occurring. Thus in the mesolayer, v¢?/y? ~ ¢*/y, and it follows immediately
the length scale for the mesolayer is just proportional to y ~ v/q ~ v/u,. But this
just says that the mesolayer length scale is proportional to the viscous one. It does
show clearly, however, that the mesolayer is bounded by relatively fixed values of y*
as argued earlier, the slight variation being due to the fact the ratio ¢/u. has a weak
Reynolds number dependence (for a given of y™). and is constant only in the limit.

In the mesolayer, the nature of the dissipation is changing with distance from the

wall as the local Reynolds number, y*, increases. And it is this evolution from low
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to high Reynolds number dissipation which provides a clue for building a model for
at least part of the mesolayer. Note that the analysis below is a physical model based
on an assumed form of the dissipation, and is therefore quite distinct from the AIP
and Near-Asymptotics approach described earlier. It will be shown, however, to be
consistent with the latter, and to lend considerable insight into it.

Since it is the dissipation itself which creates the mesolayer, it is reasonable to
begin by assuming a form for how the dissipation changes with Reynolds number,
and then pursuing its logical consequences. A simple model incorporating both the
high and low Reynolds number dissipation limits is

3 e

q
e=ar + C2V 75 (2.88)

For very high values of ¢L/v the first term dominates, but the second overwhelms
it when gL/v << ¢y/c;. Variations on this idea have appeared in numerous low
Reynolds number turbulence models (c.f. Hanjalic and Launder 1973, Reynolds 1976,
Rodi 1993). Since only the near wall region is of interest, it is appropriate to take
L =y, as done by many single equation turbulence modellers for the near wall region.
As long as y* > 30, the kinetic energy equation for the turbulence reduces to
simply a balance between production and dissipation, the turbulence transport terms
being negligible; i.e.,
—<uv>g—l?j:€ (2.89)
The turbulence transport terms are certainly not negligible in the region 10 < y* < 30
which is also part of the mesolayer, so any success of the model in this region must
be regarded as fortuitous. (The authors are grateful to Drs. M.M. Gibson and W.P.
Jones of the Imperial College of London for helpful discussion about this region.)
Now consistent with the single equation turbulence model is the assumption that

the Reynolds stress can be modelled with an eddy viscosity acting on the mean
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velocity gradient; i.e.,

d
- <uv >= th—ly] (2.90)

The usual choice of turbulence modellers is (Rodi 1993)
Vp = C3— (2.91)

Substituting the dissipation and Reynolds stress models into the energy balance

of equation 2.89, dividing by ¢*/e, and taking the square root yields

oU cl) q (02> v
— =)=+ (=2) = 2.92
Oy (03 Yy cz/) y? ( )

or in inner variables,

_l,_
L O
dy* C3 Uy C3

Obviously it is the factor ¢/u, which determines whether the first term on the right
hand side integrates to a logarithm or a power law (or something else).

It is easy to show that in the overlap region (just as for the Reynolds shear stress
considered earlier), ¢*/u? = Ci(6T)y™. © The overlap velocity power law can be
recovered in the limit of large y™ if @ = 2, which is, in fact, consistent with the eddy
viscosity and dissipation modeling assumptions above. Substitution into equation

2.93 and integration yields immediately,

1

u+ = Oiy” + C’miy+_ (294)

The integration constant has been taken as identically zero to correspond to the
previously derived overlap layer as y* — oo, and the other parameters have been

collected into C;(6") and C,,;. The second term is unaffected by the behavior of

8This is a consequence of the fact that the inner and outer scales are different. Pipe and channel
flows, however, show a logarithmic dependence for all quantities.
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q/u.; hence there is reason to hope that it may be the same for all wall-bounded
flows. (Note that equation 2.94 can be derived using only the overlap characteristics
without reference to an eddy viscosity model.)

Thus the additional contribution of the mesolayer to the velocity profile (in inner
variables) is C’miy“‘*l. The parameter C,,; must be negative and should be nearly
constant. It will be seen later in Chapter 3 that that because of the relative values of
C; and C,,; there is no region where the second term dominates, at least where the
assumptions are valid. Therefore there will be no y+_1—layer, only a modified power
law region. Moreover, because of this, the first term in equation 2.94 will be clearly
visible only when the second is negligible. Since this is not the case for many of
the low and moderate Reynolds number experiments, it will not be possible to even
identify the parameters C;, C,, and v for most of the data without first accounting for
the mesolayer contribution. (Note that similar considerations for a channel or pipe
flow yield a similar term added to the log profile.)

Equation 2.94 can be expressed in outer variables as

U

77— = Cop" + Cmoy ™! (2.95)
where
L C
Crmo = Crni6™ 1;}— = Crir6" (+) (2.96)

Obviously if C,,; is constant, C,, is not.

Since the constant stress layer for much of the data under consideration extends
to only values of y* of a few hundred, inclusion of the mesolayer profile into the data
analysis significantly modifies the conclusions about where the power law overlap
region is located, as well as the values deduced for the parameters C,, C;, and 7.
Both the inner and outer expressions will be utilized in the Chapter 3 to analyze the

velocity profile data.
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Before leaving this section it is interesting to note that equation 2.93 offers another
insight as why the familiar log profile has survived so long. Suppose there were a
region in the boundary layer for which production were not only approximately equal
to the dissipation, but for which the ratio q/u, were also approximately constant. If
this region were at sufficiently large values of y* for the second term to be relatively
small, then to a first approximation dut/dy™ ~ 1/y*. Thus the profile corresponds
exactly to that originally deduced by Prandtl (1932) from an viscosity hypothesis.
These assumptions above are satisfied only over a narrow region for boundary layer
flows (50 < y* < 150), but this is exactly the region where the log law is known to
work best in boundary layer flows (Bradshaw and Huang 1995). (It will be seen later
in Chapter 3 that the overlap plus mesolayer profile derived above and the old log
law are nearly indistinguishable over this range.) In fact, these same authors note
the seemingly paradoxical facts that the log profile is remarkably ‘resilient’, but its
range of validity does not seem to increase with increasing Reynolds number like a
proper overlap solution (or like pipe or channel flow). All of these observations are
consistent with the interpretation that the boundary layer ‘log region’ is in fact just
a portion of the mesolayer. Thus von Karman’s log law is preserved, but only as an
approximation over a limited range to the mesolayer. Clauser’s identification of this

region with Millikan’s matched layer is, however, clearly incorrect.

2.10 A Composite Velocity Profile

It is possible to use the information obtained in the preceding sections to form a
composite velocity profile which is valid over the entire boundary layer. This is

accomplished by expressing the inner profile in outer variables, adding it to the outer
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profile and subtracting the common part (Van Dyke 1964), which is the profile for the
overlap region. Alternatively, the outer profile could be expressed in inner variables,
etc.

The composite velocity profile in outer variables is given by

% =1+ £@.00)] + g; [fi@s*.0%) = Ci(go™)] (2.97)

Recall that f,, f;, C; and ~ are all functions of 6", as is u./Us. The mesolayer
contribution has been considered to be part of the inner solution, but could have
been included with the common part since it is known.

The composite velocity solution has the following properties:

e As 67 = 0/n — o0, U/Ux — 1+ fo(y). Thus there is a boundary layer
profile even in the limit of infinite Reynolds number and it corresponds to the
outer scaling law. This can be contrasted with the Millikan approach for which
U/Usx — 1, a limit remarkably like no boundary layer at all, even in its own

variables.

¢ Asy — 0, U/Ux — (us/Us) fi(yd™) for all 6/n. This is because the small g
behavior of [1 + F(7)] is cancelled out by the last term leaving only the inner

solution.

e Asyét — 00, U/Uy — 1+ f,. This is because the large 7§+ behavior of f; is

cancelled by the last term.
e In the matched layer, only the power law profile remains.

It is an interesting exercise to substitute the composite solution into the full bound-
ary layer equation given by equation 1.1. As expected, it reduces to equation 1.2 for

infinite Reynolds number and to equation 1.4 as the wall is approached. This can be
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contrasted with the substitution of the Millikan/Clauser log law plus wake function
(v. Coles 1956) in which the outer equation vanishes identically in the limit of infinite
Reynolds number.

An alternative composite solution can be obtained by multiplying the inner and

outer solutions together and dividing by the common part; i.e.,

U _ [L+ fo(.0")]fi(go+, 6%)
i o (2.98)

For the zero pressure-gradient boundary layer, this composite solution is nearly in-
distinguishable from equation 2.97 when plotted against the experimental data.
2.11 The Displacement and Momentum Thick-

nesses

The displacement thickness, 9., is defined by
U, = / (U — U)dy (2.99)
0

This can be expressed using equation 2.97 as

5. B

< =—li~ DR 1 (2.100)
or

5 1 I

O _ gt 2.101

5=t Ra*) (2.101)
where

L= / fo(@.07)dy (2.102)

0

I = /0 TRyt = Gyt dyt (2.103)
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and the Reynolds numbers Rs and Rj, are defined by

U6
Ry = (2.104)
v
and
U9,
R, = == (2.105)

The integrals I; and I, are functions only of the Reynolds number and become asymp-
totically constant.

The momentum thickness, 0, is defined by
V20 = / U(Us — U)dy (2.106)
0

Again using equation 2.97, the result is

9 *
5= (it 1) =R~ [Iz + 20, + 155 } (2.107)
or
o 1 1 Uy
g——11+]3{1+39 [12+214+15UOJ} (2.108)
where
o0
Ry = 0 (2.109)
14
and
o0 2
Iy = S(7,0)| " dy 2.110
3 /0 /o(7,67)] " dy (2.110)
Iy= /Ooo [fily*,6%) = Coy™| foly™ /0%, 0 )dy (2.111)
I = /Oo [fiw*,6%) — Ct ]yt (2.112)
0

Since u, /Uy, varies in the limit as (Uy,d/v)™/3+) and v > 0, all terms but the
first vanish in the limit of infinite Reynolds number. Thus, as for the displacement

thickness, the momentum thickness is also asymptotically proportional to the outer
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length scale, but with a different constant of proportionality. It will be seen in Chapter
3 that this limit is approached very slowly, and the limiting value is achieved at
Reynolds numbers well above those at which experiments have been performed.

The shape factor can be computed by taking the ratio of equations 2.100 and
2.107. The result is

H = 6,/0

I + LRS*
_ Lt Bl (2.113)
(I + I3) + Ry (I + 214 + Isu. /Us)

For large values of Reynolds number, the asymptotic shape factor is easily seen to be

given by
I
H
I + I3

(2.114)

Note that since f, < 1 always, it follows from their definitions that I; < 0, I3 > 0 and
|I;| > I3. Therefore the asymptotic shape factor is greater than unity, in contrast to
the old result, but consistent with all experimental observations.

It is obvious from equations 2.100 and 2.107 that both the displacement and
momentum boundary layer thicknesses are asymptotically proportional to the outer
length scale (or boundary layer thickness) used in the analysis. Note that it does
not matter precisely how this outer length scale is determined experimentally, as long
as the choice is consistent and depends on the velocity profile in the outer region of
the flow (e.g., dp.99 Or d0.95). This is quite different from the Millikan/Clauser theory
(with finite k) where the displacement and momentum thicknesses vanish relative to

the unspecified outer length scale.
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2.12 Streamwise Dependence of the Boundary Layer

The friction coefficient can be written entirely in terms of Ry by using equations 2.108

and 2.72; i.e.,
c,
cr = g(a)mm[ (

where the term involving Isu, /Uy has been neglected. Also, I and I are much less

T 13> (R + Iy + 21,)] 72/ (2.115)

than Ry, so that

C ~1
~o 2(=2)2/ () <7> ~2/14) 2.11
e R 2AE) 7)) (B (2.116)

The integral of equation 1.1 across the entire boundary yields the momentum

integral equation for a zero-pressure gradient boundary layer as

a1

Thus the z-dependence of 6 can be obtained by integrating

-1 N Y4l
{ (I ™ ) <%) L+ Ryt (I + 2Ly Ry dRy = dR,  (2.118)
1 3 0

where R, = Uz /v.

If the values of C;, C,, v and the I's can be evaluated as functions of Ry, equa-
tion 2.118 can be integrated numerically to yield the variation of Ry as a function of
R, — R,, where R, is a virtual origin which will be determined by how the boundary
layer is generated. This will be carried out in Chapter 3 using empirical relations for
the parameters. The x-dependence of H, and the other boundary layer parameters
can be similarly determined by substituting the results of the integration into the
appropriate equations.

It is interesting to note that if v can be considered to be constant over some range

of Reynolds numbers, then equation 2.118 can be integrated analytically to obtain

C 2/(1+3’7) 1+3’Y _1 (1+
Ry = 22 R, — R, 7)/(1437) 2.119
’ (C) {<1+7> {Il—l—lg}( % (2.119)
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where z; is the virtual origin for the section of the flow under consideration. Thus the
boundary layer thickness is proportional to z(*7/(+3%)  For example, if v — 1/10,
9 — 2"/14, If v — 0, the asymptotic growth is linear; and the smaller v becomes the
closer the power approaches unity. Because of the slow approach of v to its limiting
value, a most important experimental clue that the present analysis is correct will
be whether the exponent, (1 +7)/(1+ 37v), increases toward unity as data points are
added from distances farther from the leading edge, especially if data from points

close to leading edge are successively dropped.

2.13 The Asymptotic Behavior of u,/U, and 7

It is interesting to examine the relation between the asymptotic value of v and . /U.
Since v must be asymptotically independent of %, the only possible values for v,
are either a finite constant, or zero. For the former, u. /U, — 0, while for the latter
the limiting value is finite and non-zero. Note that both of these satisty the condition
from Section 2.4 for similarity of the Reynolds stress equations in the outer layer
(i.e., do/dx ~ constant), although a zero value for the boundary layer growth rate
certainly is not easy to interpret in this context.

A zero limit for « itself can be considered by using Equation 2.70 to obtain

;—; — explh] (2.120)

Recall that if v — 0 faster than 1/Ind* and h — const as required, this insures
a finite asymptotic value of w,/U,. Hence there is no question about whether the
turbulence moments in the outer layer approach a state of asymptotic similarity; they
do, since the limiting value of both df/dx and dé/dz is finite. A finite and non-zero

limiting value for u, /U, is certainly contrary to traditional thinking, and would have
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important implications for the engineer.

So there would seem to be a strong argument for v — 0. But this presents
another problem. In the overlap region in the limit of infinite Reynolds number, the
production of turbulence energy is exactly balanced by the rate of dissipation. Thus,
in inner variables, et = Pt = 4Ciyt" " since < —uv >= u?2 in this limit. If there is
indeed an energy dissipation law (Frisch 1995) which demands that the local rate of
dissipation be finite and non-zero in the limit of infinite Reynolds number, then 7
must also be finite and non-zero since C; must be finite and non-zero for similarity
as noted earlier. In fact, the data shown in Chapter 3 are most consistent with a
non-zero value of 7, but the experimental evidence is not conclusive.

The consequences on the ratio, u,/Us, of a non-zero value of 7, are easily
seen from equation 2.70 using the fact that h — InChs/Cie. Clearly u,/Usx —
(Cono/Cino)0T 7, which obviously goes to zero in the limit as 67 — oo. Thus this
limit is consistent with all of the requirements imposed by the similarity theory.

Regardless of what the limiting values are, they will not be achieved until both in-
ner and outer parameters become Reynolds number independent. Hence this limiting
value will not be reached before Ry > 10°, and perhaps much later. Unfortunately
this is already beyond the limit of all experiments to-date.

There is another interesting aspect of a finite and non-zero limit for w, /U, how-
ever unlikely it may be. If both u, and U, are the same in the limit, shouldn’t an
asymptotic theory based on either alone (like the Millikan/Clauser theory) be cor-
rect? An asymptotic approach of v to zero (or even a small value), indeed makes
it possible to recover the logarithmic relations of the classical theory as a limiting

case. It is easy to show, however, that the limit is not very useful. The profiles of
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equations 2.61 and 2.62 can be expanded for small values of v as
fily™;67) = Cie™ = Cy(1 + ylnyt +..) (2.121)

and

fo@;0%) = Coe?™ & Co(1 +Alng + . ..) (2.122)

Thus the asymptotic boundary layer profiles would appear logarithmic to leading
order, even for finite values of 7. (The authors are grateful to Prof. Prosperetti of
Johns Hopkins University for pointing this out.)

From these “log” profiles and the asymptotic friction value of equation 2.63 it
follows that the effective von Karman/Millikan “constants” of equations 1.31 and

1.32 are given by

1/k = Y Cino (2.123)
B = (e (2.124)

and
B, = Cino(1 — Cioo) (2.125)

Thus the Millikan /Clauser result appears to have been recovered in the limit as Ry —
00, except for the fact that k will blow up if v — 0.

This unseemly behavior of x is not a consequence of either theory by itself, but of
the requirement that u./Us be a non-zero constant. In fact, if the Millikan/Clauser
scaling arguments are applied to the turbulence moment equations, then it is easy
to show that similarity of the Reynolds stress equations is possible only if doé/dx =
constant and u, /Uy, = constant. And the only possibility of satisfying equation 1.33
with a finite value of u, /U, is for k to increase without bound, exactly as derived

here. Therefore, either the old theory is not the limit of the new (if u,/Uy — 0),
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or it is but with an infinite von Karman constant (if the limiting value of u, /Uy is
finite).

Before leaving this section it is useful to consider again why the mean velocity
profile could have been accepted for so long by experimentalists as logarithmic. There
are two reasons, the first of which was considered earlier in Section 2.9; namely that
the “log” profile identified in many boundary layer experiments was probably not the
overlap region of Millikan/Clauser (or the present analysis), but instead part of the
Mesolayer. The second reason is that it is very difficult to tell a logarithm from a
weak power using experimental data alone since one can always be expanded in terms
of the other. Suppose for the moment that it is indeed the overlap region which is
being examined and that the present theory is correct, but that an experimenter
believed the log theory to be correct with a constant and finite value of k. The values
for C; and v at Ry = 50,000, the limits of experimental data, will be estimated later
in Chapter 3 to be about 12 and 0.09 respectively. These yield a value of 1/k = 1.1
which is nowhere close to the generally accepted value of about 2.5, believed to be
the asymptotic value for both boundary layers and pipes. Over the range of most
experiments, however, Ry ~ 10, v varies between about 1/5 to 1/7 while C; ranges
from 9 to 10. Using v = 1/6 and C; = 10 yields about an estimate of 1/k ~ 1.7.
However, the expansion above converges rather slowly and terms above first order are
not negligible (nor were they in the calculation above). To third order in vy Iny™, the

effective value of k is given by

1 1 1 1
=Gl + 5ylny™ + Z(vIny™)? + —(yIny™)’| (2.126)
K 2 6 24

Now the presence of y* in this expansion is interesting since it is well-known
that attempts to fit the log law at modest Reynolds numbers depend on where the

point of tangency is chosen. If k is evaluated by fitting a log profile which is tangent
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to the data at y™ = 100 (as suggested by Bradshaw 1993), using the above values
in the expansion yields an estimate of 1/k &~ 2.5 or k & 0.4, which is the value
usually assumed. Most often in practice, the experimenter picks his point to obtain
the “right” value of k (hence its universal value), and accepts whatever value of the
other universal (but highly variable!) constant which comes out. In view of this and
equation 2.126, the seemingly paradoxical variability of B; and constancy of x is not
at all surprising since the ‘right’ point of tangency can always be found.

As noted above, there is considerable debate in the literature about the value of B;
with cited values ranging from 4 to 12 From equation 2.124 it is equal to C;. C; will
be seen later to vary from about 7 to 10 over the range of the low Reynolds number
experiments. This is higher than the value of 4.9 suggested by Coles 1968, but well
in the range of recent experiments, some of which also show much higher values and
a Reynolds number dependence (Nagib and Hites 1995). There is no consensus value
for the outer 'constant’ B,, and it is seldom reported at all. Perhaps equation 2.125
suggests a reason for this in that it is quite small since C, is never very far from
unity. Hence estimates for it would vary widely since the errors might be larger than
its value.

In summary, at least some of the general satisfaction with the log law over the
range of most experiments can be explained with the new theory. Even the sensitivity
noted by experimentalists to the choice of the point of tangency can be explained
because of the Iny™-terms in the expansion of « for finite values of . The power law
profiles (and the parameters in them) resulting from the present theory, if correct,
should be much less sensitive to the actual range of the data used, especially if the

limits imposed by the mesolayer are honored.



Chapter 3

Comparison of Theory with data

for ZPGBL

The results from the zero pressure gradient theory (previous chapter) will be presented

in great detail and compared with the data.

3.1 The Velocity Deficit Region

Since there is usually little doubt as to the proper value of U, in any given experiment,
there is no data manipulation which can be done, particularly if a directly determined
length scale (e.g., like dg9) is used. Unfortunately, as will be seen below, there can be
considerable doubt as to the value of u,, and this presents serious problems to any
evaluation of the data. The question of what is the proper value of u, will be deferred
until the next section, except to note that it will often be seen to be in dispute.
Figure 3.1 shows plots of the data of Purtell et al. 1981 (465 < Ry < 5,100) in the
outer variables of equations 1.12 and 1.13 in both linear-linear (leftmost) and semilog

(rightmost) plots. For the U,-scaling shown at the topmost, the collapse is excellent

81
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far away from the wall at all Reynolds numbers, and the point of departure from the
"asymptote” moves closer to the wall with increasing Reynolds numbers. As noted
above, this is the expected behavior for an asymptotic outer solution. However, when
the Purtell et al. data are plotted in the usual outer variables using u, determined
from the velocity gradient near the wall (middle figures), there is an obvious tendency
for the collapse to come apart away from the single point where it must collapse
because of the outside boundary condition. That this happens in the heart of the outer
flow where an outer scaling law should work best is at the very least disconcerting
from the perspective of the old theory. Absent almost completely is the expected
splitting off toward the wall with increasing Reynolds number. The bottom figures
of Figure 3.1 show the same data, but using values of u, chosen to collapse the log
layer. (These are in fact the values cited in the paper of Purtell et al.) Even though
the data is forced to match at a single point in the “log” region, the same trends are
clearly present.

Figure 3.2 shows the velocity data of Smith and Walker 1959 (3000 < Ry <
50,000) plotted in deficit form. The shear stresses used in the bottom figures were
determined to make the “log” region collapse (the Clauser method discussed below)
so that the collapse in the traditional scaling is “optimized”. Moreover, the variation
of u,/Us is much less than for the Purtell et al. data because of the higher Reynolds
number range. Clauser 1954 plotted only the highest and lowest Reynolds number
data of the somewhat less extensive data of Schultz-Grunow 1941 for the U, scaling
and concluded the absence of collapse ruled it out as as suitable scaling law. The u,
data was plotted only as a shaded area and deemed acceptable. Certainly if it were
expected that the entire velocity profile should be Reynolds number independent, then

Clauser’s conclusion is reasonable. On the other hand, if it had been expected that
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the outer layer is only asymptotically independent of Reynolds number, then the Uy
scaling might have merited further consideration, particularly since as the Reynolds
number increases the remainder of the Schultz-Grunow profiles, like the Smith/Walker
profiles, are clearly moving toward that of the highest Reynolds number, and the
region of collapse is moving toward the wall.

That the old outer scaling in previous works was deemed acceptable is probably
due to the moderate Reynolds number range of the data, the choice of u, to force
the “log region” to overlap, the indirect determination of 0, and the mixed (inner
and outer) nature of the variables used (i.e., u, and 9). In spite of this, the outer
data normalized by u, do not appear to be consistent with the asymptotic nature of
an outer scaling law. This is closely related to the observations of Gad-el-Hak and
Bandyopadhyay 1994 who noted the failure of the "law of the wake ” to reach an
asymptotic state.

Thus, contrary to previous interpretations, the data would seem to indicate a
preference for the new formulation of the velocity deficit law using U, (equation 1.12).
Further evidence for the new deficit law is shown in Figure 3.3 using the recent data of
Klewicki 1989. The more limited Reynolds number range of this data (1,000 < Ry <
5,000) makes the Reynolds number independent range appear to be even larger than
in the other two data sets. It was noted earlier that at these low Reynolds numbers

us/Usx is varying quite rapidly so the success of the Ux-scaling is quite impressive.
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Figure 3.1: Velocity deficit data of Purtell et al. 1981 (linear-linear and semi-log).
Top, proposed scaling with U,.; Middle, old scaling with wu, from Clauser method;
Bottom, old scaling with u, from velocity gradient near wall.
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Clauser method (bottom).
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3.2 The Near Wall Region

The near wall region can not be addressed without first deciding what values of u, to
use for a given data set. Unfortunately, direct measurements of 7,, have, for the most
part, not been very satisfactory for a variety of reasons, not the least of which being
that the results did not confirm the Millikan/Clauser theory. Therefore it has been
common practice (since Clauser 1954) to choose values for u, which are consistent
with the “universal” log law results for the matched layer, by which is usually meant
the constants chosen from the more abundant pipe and channel flow data. Coles
(1968) notes that the results obtained in this way are seldom consistent with the
momentum integral equation. Nonetheless, in spite of the fact the measurement
errors tend to cancel when the integrals are computed from the velocity profiles and
therefore should be more accurate than the profiles themselves, the friction results
calculated from them have been usually discarded in favor of the Clauser method.
Typical of such results is Figure 3.4 which shows the data of Purtell et al. 1981 in
inner variables using the wall stress determined from the Clauser method (bottom)
and from the velocity gradient near the wall (top). Note the excellent collapse in the
“log” region of the former, but also recognize that the data should collapse best in
this region because u, has been chosen to insure that it does — in fact the choice of
the tangency point for the log is obvious from the figure. More interesting, however, is
what has happened to the measurements in the linear layer for small values of y* < 8
or so where the data do not collapse at all.

This problem with the inner scaling has been noted before (e.g., Kline et al. 1967),
and it seems to have been customary to opt for the method which collapses the “log
layer”, and rationalize the problems this presents by assuming the measurements

near the wall to be in error. While certainly all measurement sets are subject to
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Figure 3.4: Inner scaling of Purtell et al. (1981) data: Top, u, from velocity gradient;
Bottom, u, determined from Clauser method.
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inaccuracies near the wall, the choice represents more an expression of faith in the
log law than a consequence of careful error analysis. In fact, curiously, measurements
in the linear regions of pipes and channels seem to have been routinely made over
the past 50 or so years with little difficulty as long as the ratio of wire diameter to
distance to the wall was greater than about 100 (e.g., Monin and Yaglom 1972, vol. 1,
Figure 3.25). Perry and Abell 1975 measure to within 0.4mm with 4um hot-wires in
a pipe flow before noticing effects of wall proximity. By the same criterion, the data
for Purtell et al. should be expected to be valid to values of y* from 2 to 5 for eight
of the 11 data sets. Thus, either hot-wires have behaved very differently in boundary
layers than in pipes, or the experimenters have been unwilling to accept the answers
the wires were providing.

The values of u, from the velocity gradient were made using a linear fit for the
data in the region 3 < y* < 6 and points closer to the wall were ignored since they
were clearly contaminated by near wall effects on the wires. (It will be seen below that
there is evidence that the shear stress has been underestimated by about 20% by this
method, but with relative errors which are nearly Reynolds number independent.)
The data show clearly that the linear region both exists and the data in it collapse
nearly perfectly. Moreover the extent of the linear region appears to be greater than
for pipes and channels, but decreases with increasing Reynolds number. As expected
from the new theory, the data outside the linear layer does not perfectly collapse in
inner variables, but shows the Reynolds number dependence which must be present
if the inner and outer scale velocities are different.

Similar profiles for the near wall region were published by Blackwelder and Hari-

tonidis 1983 who documented the difference between the shear stress inferred from
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the velocity gradient near the wall and from a fit to the “log” region. (These sys-
tematic differences were typically 15% and are tabulated in Table I of their paper.)
Their plot of the velocity profile (normalized using the shear stress determined from
the linear region) is strikingly similar to that of the Purtell data plotted in Figure 3.4.
Of special interest is the fact that the very near wall data show clearly the onset of
the near wall measurement errors well inside the linear region, except for the highest
Reynolds numbers.

In the absence of direct force measurements, the fact that the velocity profile near
the wall collapses in both these data sets using the wall shear stress inferred from the
gradient suggests strongly that both the mean velocity and the shear stress have been
reasonably estimated, at least at the lower Reynolds numbers. A similar inference
cannot be made using a value of the stress which collapses a “log” region, since (as
pointed out above) it is based on the assumptions that such a region exists and that
the constants describing it are Reynolds number independent. Clearly the second of
these is incorrect if the profiles normalized using the shear stress inferred from the
velocity gradient are correct, and the first may be wrong as well.

The first important inference which can be seen from these figures is that the data
collapse (if a cross-over can be called ‘collapse’) in the “log” region only if the shear
stress is calculated from a method which forces it to by assuming such a layer exists,
and then only by compromising the collapse in the linear region. On the other hand,
when the measured shear stress is used, the profiles collapse well very close to the wall,
but not in the “log” layer. The lack of collapse in the linear layer when the “Clauser
method” is used is particularly serious since there are no adjustable constants or
Reynolds number dependencies here; the measurements must yield u* = y* if they

are to be believed.
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A second important inference from the figures is that when the data are normal-
ized by a “proper” shear stress, the point of departure from the linear region moves
closer to the wall with increasing Reynolds number toward what might be a limiting
value. This is clear evidence that if there is an intermediate layer outside the linear
region, then it is only asymptotically independent of Reynolds number. The apparent
Reynolds number dependence of the extent of the near-linear region is consistent with
the new theory presented earlier since only the linear region of the flow is Reynolds
number independent in inner variables. Once the mesolayer and overlap region are
entered, neither u, nor U, completely collapse the data until the influence of the
inner region has disappeared and the outer flow has been reached. Many (v. Gad-el-
Hak and Bandyopadhyay 1993) have noted similar trends for the turbulence moment

data near the wall, especially < u? > and < —uv >.

3.3 The Overlap Layer and the Mesolayer Region

Figure 3.5 shows log-log (leftmost) and semilog (rightmost) plots in inner variables
(using the velocity gradient at the wall to obtain the shear stress) for a few of the many
cases which were considered. It is easy to argue from the log-log plots that there is
evidence in all the data of an extensive power law region ranging from approximately
yt > 50 to 7 < 0.2. However, as noted in sections 2.8 and 2.9, great care must be
used before inferring that this is the overlap region, especially at these low Reynolds
numbers. It will be seen later that indeed it is not. The semilog plots show for
comparison the same data in the traditional semi-log plot in inner variables along
with the the traditional log profile (1/k = 2.44, B = 5.0). Obviously an argument for

a log region can also be made, although perhaps not the traditional one. Figure 3.6
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shows the log-law using u, from the Clauser method (leftmost) and from the velocity
gradient at the wall (rightmost). Note the apparent collapse in the inertial sublayer
whereas, the viscous sublayer is Reynolds number dependent even though it is well
known that this region is describe Ut = y*. On the other hand, when u, from the
velocity gradient is used the viscous region is indeed linear and the overlap region

shows Reynolds number dependence, consistence with the present theory.

Spalart 1988 recognized the difficulty of determining functional dependencies from
velocity profile plots and suggested plotting y*du™ /dy™ versus y* since a constant
region of the former would indicate a logarithmic variation of U. In view of the
possibility of a power law region, a more useful plot is y*du™/dy* versus u™ since
it yields a constant value if the relation is logarithmic and a linearly varying region
if a power law. (Note that it does not matter if outer variables are used instead of
inner.) Figure 3.7 shows profiles of ydU/dy versus U using the data of of Purtell et al.
1981 in both inner and outer variables. While the data are subject to interpretation
because of the large scatter, there is some evidence of the power law region in each
set, and certainly considerably more evidence than for a log region. Also evident
is the Reynolds number dependence of the slope and intercept, consistent with the
theory and the observations above.

There are several complicating factors in using any of the type of plots above to
determine whether there is a power law region (or for that matter, a log region).
The first is that if there is a mesolayer region in which the power law is modified
(as argued earlier), then any data inside y™ = 300 approximately must be excluded.
This eliminates all of the Purtell et al. data. The second is that the data outside
7~ 0.1 (or y* = 0.15") must be eliminated since the convection terms are becoming

important. Thus, none of the velocity data below about Ry = 10,000 can be used
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Figure 3.5: Velocity profiles in inner variables: Data from Purtell et al. (1981) using
u, from velocity gradient. Right: log-law; (long dashed line) Left: power law (line)
with Ut = y* (dot-dashed line).
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— and that is most of the available data. Fortunately, by constructing a composite
solution for the entire profile and applying it to all the data at once, it is possible to
solve for the parameters of the individual pieces, even though they describe regions
which are not clearly visible since they are simultaneously influenced by different

physics.

3.4 Optimization of Velocity Parameters:

The value of the velocity parameters, v, C, and C; proved to be strongly interre-
lated, hence the scatter in the data when each profile was considered individually.
Therefore the final optimization of the velocity coefficients was determined including
equation 3.9 (the v function) and the corresponding solutions for C,/C;, u./Us,and
the function for C, (equation 3.7) together with all the velocity profiles (using the
semi-empirical composite profiles described in section 3.9) in outer variables simulta-
neously.

The objective function to be optimized is the sum of the relative errors of all
velocity profiles in outer variables from Ry = 465 to 48,292 (data of Purtell et al.
1981 and Smith/Walker 1959), and is given below as

48,292 T

Objective Function: Y Rel. error [ABS(— - 1)} (3.1)
Rp=465 Feo

where U is the mean velocity data dimensionalized with the free stream velocity
(Usx) and F,, is the composite velocity profile in outer variables. Note that the
sum represents the summation of the relative error from a lower limit (in this case
Ry = 465) and an upper limit (Rp=48,292). The optimization is carried out in

such a way that the following constraints on selected individual profiles are satisfied
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simultaneously:

U
[ABS(—FCO - 1)]%:700 =0 (3.2)

U
ABS(52 =D o0 = (3.3)

U
[ABS (52 = D] 1y gsag = (3-4)

U

[ABS(% N 1)]39:26,512 =0 (3.5)

These equality constraints ensure that no limited range of Reynolds number can
dominate the optimization.

The Smith/Walker data in the very near wall region were limited because of the
high Reynolds number and the resulting thin sublayer. Therefore it was necessary
to input directly some estimate of the c¢g. The values used for these profiles (only)
were those obtained from the momentum integral as described in section 3.6. The

additional constraint for the skin friction is then given as,

48,292 c
> Rel.error [ABS(—fdg/dz — ] , =0 (3.6)
Ryp=3,000 Cfthr (Smith/Walker)

The constants A, a, B, Cyoo, Voo, Coa and C,p were calculated such that all the
constraints were satisfied simultaneously. C,5 and C,p are the coefficients for the C,

expression given as,

Cy = Cooo + Copexp(—Copd™) (3.7)

The optimal values obtained for the design variables are given as C,o, = 0.897,
Cice = 55, Voo = 0.0362, A = 2.90, a = 0.46, C,4 = 0.244 and C,5 = 0.0059. One of
the advantages of this optimization is that the solutions for the velocity coefficients
are generated directly. As result, more accurate velocity profiles are expected than for
previous optimizations, in which values for the velocity parameters were generated

for every profile. Then a curve fit to this data was needed it to smooth the scatter.
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The actual values of the parameters v, C, and C; and C,/C; are shown in Figure
3.8 by the solid lines. There was remarkable consistency in the estimates of both
~v and C, for all of the methods utilized, especially when the role of the mesolayer
was accounted for. The mesolayer parameter itself was found to be approximately
constant at C,,; = —37.

The values of v, C,, C,/C; and C; are plotted in Figure 3.8 as functions of .

Note for future reference that the relation between 6™ and Ry is given by

o 0
Ry =205 (3.5)

Ue O
since 7 = u,d/v. The conversion from one to the other can either be done using the
data, or the theoretical relations for u,/Us and 0/ determined below (These will be
shown later in Figure 3.18 after the development of the relationships in section 3.9.).

The values of v shown in Figure 3.8 drop rapidly over the same range for which
C, shows most of its variation (Ry < 1000), and then ever more slowly. Whether ~
would continue to drop beyond Ry > 50,000 can not be determined from the data,
which are consistent with both non-zero and zero asymptotic values of ~.

The suggestion of Barenblatt (1993) that v = a/Indé* does provide a reasonable
fit to the data for ~; however, the C,/C; = b(e/Ind*)* — which results from the
constraint equation — does not. As noted earlier, this failure can most likely be
attributed to the facts that v — 0 is inconsistent with the requirement for finite
energy dissipation, and that C,/C; — 0 does not satisfy the similarity of the mean
reynolds stress squations.

A modified form of Barenblatt’s assumption, however, which is consistent with

both the Navier-Stokes equations and similarity is

—aA

VT Yoo = (Ino+)i+e (3.9)
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where a > 0 is a necessary condition. Of all the forms tried for which solutions to the
constraint equation could be found, this provided the best fit to all the parameters,
and it was used in the final optimization shown in the next section.

Of the forms of the empirical fit to v used above, equation 3.9 is particularly useful

since as noted earlier h(d1) can be determined from it. From equation 2.66 it follows

that
A
h=———+hx 3.10
(Ino+)~ * (3.10)
from which C,/C; is given from equation 2.65 by
%(: = g:: exp[(14+ a)A/(Ind™)?] (3.11)

It follows immediately from equation 2.70 that

5; = %"5*‘“ exp((1+a)A/(Ing+)*) (3.12)

It should be noted that equation 3.9 is the only empirical equation that enters the
entire theoretical formulation, aside from the interpolations used to construct the
composite profile. Most importantly, it enters at the very end of the analysis, and
not at the beginning as in the classical theory (the assumed velocity deficit law).

The theory states that the asymptotic value of C, should be constant. This indeed
appears to be the case as shown in Figure 3.8, and the asymptotic value of C, is
reached quite early. The range over which the exponential decay term is important will
be seen later to correspond closely to the range in which the wake function (defined as
the outer scaled profile minus the power law) is strongly Reynolds number dependent.
This behavior is consistent with the Reynolds number arguments put forth earlier for
when the outer flow can begin to be Reynolds number independent.

The velocity coefficient C; can be determined either from the inner velocity profile

data, or from the friction coefficient by substituting the data for c; and the values of
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and C, determined above into equation 2.71. Unfortunately it is impossible to avoid
confronting the problem of the shear stress. As is clear from the discussion in the
preceding and following sections, there are serious questions about precisely what c;
(especially for the low Reynolds number) should be, and those uncertainties directly
affect the plots of the velocity data in inner variables. Two different approaches were
used: The first attempted to directly obtain the wall shear stress from the data using
either a direct estimation of 7, from the velocity gradient at the wall (Purtell et al.
data), or from the momentum integral (Smith/Walker data). The second, the results
of which are presented in Figure 3.8, used optimization methods which did not depend
on any measurement of the shear stress at all but used the theoretical friction law to
determine it. One advantage of this approach is that the friction measurements can
be used as an independent measure of the success of the theory, since the choice of
parameters is independent of them.

Combining the C, function (equation 3.7) with equation 3.11 leads immediately to
an explicit relation for C;. (Note that C, could have been assumed constant for all but
the lowest Reynolds numbers without significantly changing the results; see Figure
3.7.) These parameters were used in the remainder of this chapter for calculating all
the velocity profiles, shear stress and integral boundary layer parameters presented

later.

3.5 The Mesolayer and Overlap Profiles:

Figures 3.9 and 3.10 show twenty of the Purtell et al. and Smith/Walker profiles in
outer variables, with the mesolayer profile of equation 2.95 using only the parameters

determined above and equations 3.9 — 3.12 with equation 3.7. The two vertical dashed
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lines on each plot mark the limits of the mesolayer (30 < y* < 300). Note that for
two lowest Reynolds numbers (Re = 465 up to about Re = 1340), the entire outer
region is contained within the boundaries of the mesolayer, which indicates that the
convection terms are not making any contribution into the outer flow yet. The outer
flow develops quickly, however, for Ry > 1340, but it is only for Ry > 10,000 that the
overlap region begins to emerge. The overlap region goes from the upper extent of the
mesolayer to 7 = 0.1 approximately, the latter denoted by the light dotted vertical line
on the plots for Ry = 13,037 and higher. Aside from the Smith/Walker data closest to
the wall (which are probably in error since they were taken with Pitot tubes and were
not corrected), the theoretical relationship provides an excellent description of the
flow from well below the expected limits (y* > 30) to well outside it for all Reynolds
numbers. Especially gratifying is the ability of the mesolayer term to capture the
low Reynolds number behavior. The entire sequence of profiles from very low to very
high Reynolds number is confirmation of the arguments put forth in Section 2.8.

In spite of the apparent success outlined above, there is still some reason for
concern. The Smith/Walker mean velocity data was taken by Pitot tubes for which
the measured mean velocity is known to be in error due to turbulence and velocity
gradient effects. While hot-wires have a smaller error due to the fluctuating cross-
flow, they have other problems which become important as the wall is approached
(particularly with calibration at low velocities and heat loss to the wall). In addition,
as noted in Chapter 2, a residual dependence of the flow on upstream conditions can
not be ruled out from the Reynolds averaged equations. In view of this, the actual
values reported need to be refined by further experimentation which takes account of

all the factors influencing their determination.
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Figure 3.9: Velocity profiles in outer variables together with overlap plus mesolayer
theoretical profile, data of Purtell et al. (1981). Dashed vertical lines show the
boundaries of mesolayer (30 < y™ < 300).
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3.6 The Data for the Friction Coefficient

The theoretical friction law is uniquely determined by the ratio C,/C; and by ~.
But these are all determined by equation 2.70 once the function h is specified. As
noted above, there is considerable confusion and disagreement about the shear stress,
so in the final optimization above, none of the data (for the low Reynolds number
data) were considered reliable and only the theoretical values were used. Thus the
theoretical friction law depends only on the empirical choice of the h — function and
the parameters determined from the velocity profiles.

Figure 3.11 shows u./Ux versus Ry in linear-linear (leftmost) and semilog (right-
most) plots. The theoretical results using equations 3.8, 3.12, and the constants
determined above are shown by the solid lines. The experimental data in the upper
plots are from the floating element data of Smith/Walker 1959, the force balance data
of Schultz-Grunow 1941, and the shear stress computed from the momentum integral
data of Wieghardt and Tillman 1944 by Coles 1968. In addition, the data obtained
by Spalart 1988 from a DNS simulation of boundary layers at low Reynolds numbers
is also included. The agreement between the theoretical result and the experiments
is especially remarkable since NONE of the data was used in the determination of
empirical constants. Interestingly, both sets of data using direct measurement have
previously been widely disregarded since they did not agree with the results obtained
by applying the Clauser method to the velocity profile data of the same experiments.

The bottom figures of Figure 3.11 show several other data sets which are more
or less in agreement with the theory. There is considerable scatter in the results,
especially when the velocity gradient estimates from the Purtell et al. data and the
Blackwelder/Haridonitis data are considered which are consistently about 15% to 20%

low. These low values are due to using values of the velocity to estimate the gradient
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above y* = 3 where the Reynolds stress is already beginning to rapidly appear.
Similar behavior of plane wall jet data has been noted by Abrahamsson 1996 using
the velocity profile data of Karlsson et al. 1993. These data were of sufficient quality
that the differences in shear stress estimates from the gradient could be expressly
accounted for by using a Taylor expansion for the velocity at the wall (see below),
proving that the percent error was indeed Reynolds number independent.

Particular attention must be paid to the extensive data of Smith/Walker, both
because of its quantity and the fact that three different methods were used — direct
force measurements using a floating element, calculation from the momentum inte-
gral using df/dz, and the Clauser method — and, perhaps as important, the data
have been conveniently tabulated in the report so there is no uncertainty as to what
they really are. The ¢; deduced from the Smith/Walker momentum thickness data
represents 2d0/dz (actually 2dRy/dR,) obtained from fits to the measured values of
Ry and R,. The values shown are not those presented by Smith/Walker who fitted
a curve to logRy/logR, as a polynomial in R,, and obtained results closer to the
Clauser method than to their floating element results for the lowest Reynolds num-
bers. The values shown were obtained by fitting Ry/RL1%" as a polynomial in R,.
(The factor of 1.167 was chosen to correspond approximately to the value of v over the
range of the data and the drag law which would result from it using equation 2.118.)
Both of these relations predict nearly the same values of c; over the highest range
of the data, but they diverge for smaller values of Ry. There is a substantial differ-
ence in the extrapolations of these relations to values of Ry < 10*: The log-derived
curves bend up rather rapidly like the bulk of the data reported using the Clauser
method, while the alternative fit yields a curve which passes directly through the

lowest Reynolds number velocity gradient estimates of Purtell et al. The obvious
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conclusion is: Extrapolations of fits to outside the range of the actual data should
not be used since almost any desired result can be obtained. It should be noted that
the Clauser method results are also in close agreement with the theory, but only over
a limited range in Reynolds number. This is not surprising, since as pointed out in
section 2.9, the von Karman/Prandt log profile (with its mixing length origins) is in
fact a first approximation to the mesolayer/overlap result around y™ = 100 which
is the point most often used in the determination. (In fact, the “effective” value
of the von Karman constant from the parameters obtained above is almost exactly
0.42 at Ry = 10%.) Unfortunately for very large and very small Reynolds number,
the variation of C; and v with Reynolds number seriously erodes the accuracy of the

approximation, so the friction estimates from this method are not reliable.
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Figure 3.11: The skin friction coefficient as function of Ry. (Left: linear-linear, Right:
semi-log)
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3.7 Empirical Velocity Profiles for the Wake and
Buffer Regions.

A velocity profile valid over the entire flow can be obtained using equation 2.97 if
empirical relations are introduced to account for the variation of f,(7,d") outside
the overlap layer and f;(y™,d") inside it, This is exactly analogous to the use of the
van Driest equation for the mixing length, the arctan profile for the Law of the Wall,
or Coles Wake Function for the outer layer. All seek to use an empirical relation to
splice together the various regions of the flow so that a continuous profile is obtained.

The part of the inner layer between the linear region and the inertial sublayer
and the old log layer has often been referred to as the buffer layer. The same ter-
minology will be used here to refer to the region of adjustment from linear to the
meso/overlap region. A useful expression which makes this transition smoothly and

in good agreement with the Purtell et al. data is given by
+ + +5 47, Omi +5 91«
fily™) =y exp(=dy™) + (Ciy™" + y—+)[1 — exp(—dy™)] (3.13)

The y+5—dependence of the exponentials allows not only the no-slip condition to
be satisfied at the wall, but also the boundary conditions on the first four velocity

derivatives if the damping parameter d is chosen as

where ¢4 is the coefficient of the fourth order term in an expansion of the velocity at
the wall (i.e., u™ =y + eyttt - -). For the curves shown in this paper d = 0.00002
and the mesolayer constant was C,,; = —37, corresponding to ¢, = —0.00074. The
value for ¢4 is very difficult to determine with any accuracy, but was estimated from

the data of Purtell et al.
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3.8 The New Law of the Wake

In this section a new wake function which describes the outer flow will be proposed.
For that portion of the boundary layer outside the log layer, Coles 1956 defined a
“wake function” to account for the difference between the actual velocity profile and
the log behavior. Similarly, a wake function can be defined here for the outer flow by
subtracting the overlap solution in outer variables from the velocity normalized by

Us. The resulting wake function is given by

w(7,0") = Uﬂ -Gy (3.15)

(Note that the term “wake” is probably not a great choice given our new understand-

ing of this region, since € is not constant, but continues to increase with z.)

The topmost plot of Figure 3.12 shows the velocity profile data of Purtell et al.
and Smith/Walker plotted as U/Uy — C,g" versus . The overlap region (or power
law layer) manifests itself as the region for which the velocity difference, U/Uy —C,y”
is zero. The sharp drop for small ¥ occurs in the viscous sublayer, while the region
for 7 > 0.1 approximately is the ‘wake’. Two features are evident: Clearly there is an
asymptotic wake function for Ry > 3000. Second, as the Reynolds number is reduced
below this value, the wake begins to disappear, and is completely gone by Ry = 500 or
so. This phenomenon was noted in Figures 3.9, and has also been observed by others
using the “log” formulation (eg. Murlis and Bradshaw 1982). It is due to the effects
of viscosity on the outer flow discussed in section 2.8, and particularly the failure of
the dissipation to achieve a ¢®/L form at these Reynolds numbers.

The bottommost plot of Figure 3.12 shows that simply dividing the data plotted
above by the factor 1 — C, collapses all the profiles for all Reynolds numbers between

Re = 465 and Re = 48,292 on a single curve, at least for all values 7 < 1 (to within
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the scatter of the data). The large scatter for the lowest Reynolds number data is
because both the wake and the factor 1 — C, are very close to zero. There is no
theoretical justification for this factor, although its use can be motivated by noting
that it provides exactly the amount necessary to adjust the contribution of the power
law to unity at ¥ = 1. The previously noted increase toward unity of C, for small
values of Ry insures that the wake vanishes in this limit.

The success of the simple scaling factor above in collapsing the wake to a single
curve means that a single empirical expression to describe this region is possible.
Ideally a closed form solution to the outer similarity equation for the mean flow would
be available, say one based on an eddy viscosity, for example. In the absence of that,
a simple (and easily integrable) expression for the wake function which accounts for

the observed behavior is given by
w(y) = (1 — C,)ysin By (3.16)

The parameter B and the upper limit of applicability of this relation, say y,, can even
be chosen to insure that U/Us = 1 and dU/dy = 0 at § = y,,. The disadvantage of
this choice is that B depends on Reynolds number. An excellent compromise choice
for all Reynolds numbers and 7 < 1 is B = 2.03. The wake profile of equation 3.16
with this value for B is plotted together with the data in the bottom figure of Figure
3.12.

Substitution of equation 3.16 yields the complete outer velocity profile as

U
U— = OgV + (1 — C’O)ysin Bg (317)
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3.9 The Composite Velocity Profile

The profiles from the inner flow and outer flow from previous sections can be used
to construct an analytical function for the entire velocity profile which captures the

Reynolds number dependence of the flow. The result is (in outer variables)

U
i = Fu(T; 5*) = (1—-C,)ysin By

ot g e~ + (O + ) )

(1 — exp{—d(Fs*)"} — Ciy™"} (3.18)

where u,. /Uy is given by the friction law.
Note that d = ¢4/Cyyi = 2.0E — 05 and C,,; = —37. Thus the entire velocity
profile is described from 0 <7 < 1, or for all values of y out to y = dgg.

Alternatively; the composite velocity can be written in inner variables as

v_ Fuly*;6%) = [Ciy*" + i—”j] [1—exp(—dy™)]

*

Uso . B
+y+exp(—dy+5) + u—(l — C’O)y+sm(5—+y+) (3.19)

*

Figures 3.13 through 3.16 show the velocity data of Purtell et al. and Smith/Walker
in outer variables, and the composite velocity of equation 3.18 using parameter values
obtained in the preceding section. Note that the roll-off for small values of 7 in the
Smith/Walker data (Figures 3.15 and 3.16) is due to their inability to measure close
to the wall, which for some data sets is outside where the buffer region and mesolayer
are located, hence the deviation from the composite solution for the first data point.
Also, there is a slight underestimate (about 5%) around y* = 10 which probably

represents a shortcoming of the exponential interpolation formula from the viscous
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sublayer to the the mesolayer. Figure 3.17 is the velocity data of Purtell et al. 1981
in inner variables using equation 3.19.

Overall, the agreement of the composite profile must be considered quite good over
the entire Reynolds number range, and throughout the entire boundary layer. And
this agreement was assumed in the final regression which determined the parameters.
It is rather remarkable that a theory with only four parameters and a single empirical
function (h) can describe the entire boundary layer, including the shear stress, over
more than two decades in Reynolds number. Recall that the old theory uses only
three parameters, BUT it did not include the mesolayer parameter, AND most im-
portantly, it treated both the shear stress and boundary layer thickness as variables
to be determined for the best fit to each profile. No such juggling is necessary here,
and the results would seem to provide a strong indication that both the theory and

empirical interpolations are consistent with the data.
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Figure 3.13: Purtell et al. (1981) data in outer variables with the theoretical profile.
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Figure 3.14: Purtell et al.(1981) data in outer variables with the theoretical profile.
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Figure 3.15: Smith/Walker (1959) data in outer variables with the theoretical profile.
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Figure 3.16: Smith/Walker (1959) data in outer variables with the theoretical profile.
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Figure 3.17: Purtell et al. (1981) data in inner variables with the theoretical profile.
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3.10 Integral Boundary Layer Parameters

Figure 3.18 shows 6./d, 6/6, and the shape factor ¢./6 versus both §* (leftmost)
and Ry (rightmost). The data are from Smith/Walker (1959), Purtell et al. (1981),
and Wieghardt (1943). The solid line indicates the theoretical values obtained by
integrating numerically the theoretical profiles shown in Figures 3.13 - 3.16. As
before, ¢ is taken to be dg9. Clearly the data and theory are in good agreement.
This is not surprising in view of the excellent agreement between the theoretical and
experimental velocity profiles. The consistency of the results should restore some
credibility to the much-maligned dg9 as a reasonable length scale. Note, however, the
failure of the data from different experiments to perfectly overlap, indicating perhaps
some residual effect of initial conditions which is also present in the c; data.

It is convenient to have analytical formulas for the integral thicknesses, and this
is possible. The empirical profiles given by equations 3.13 and 3.17 can be substi-
tuted directly into the integrals arising from the displacement and momentum integral
thicknesses, equations 2.102, 2.103, 2.110, 2.111, and 2.112. The major contribution

except for the lowest Reynolds number flows is due to the leading terms so that

ol | >

~ —I — Iy (3.21)

I; and I3 can easily be integrated analytically to obtain

Co

-, = 1— — (1 =01, 3.22
1 T ( ) s (3.22)
20 2
Ih = 1— 40 4+ (1-0C)% I —2I 3.23
; T (-Gl - 20 (3.23)
where
in B — BcosB
Iy — sin cos (3.24)

BQ
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1 sin2B cos2B . sin 2B

I = -
7 6 4B 4 B2 833

(3.25)

Using B = 2.03 implies that I = 0.436, I; = 0.289. Since the contribution of a finite
value of v to the last term of equation 3.21 is very small, an excellent approximation
can be obtained by setting v = 0 (but in this term only). These values and the last

approximation yield

Co
-IL = 1- 0.436(1 — C, 3.26
' 1+7+ ( ) (3.26)

20, C?
I+ 1+7v

Iy ~ [1—0582(1—C,)? (3.27)

from which ¢,/ and /6 can easily be computed for any value of 6. The results are
are in near perfect agreement with both the data and the theoretical curve shown
in Figure 16 for 67 > 2000 or Ry > 3000 approximately. Below these values, the
neglected terms from the inner region cause both d, and 6 to be underestimated.
The asymptotic values of I; and I3 can readily be estimated using the asymptotic
values for v and C, obtained above. The result is [1,o = —0.0894 and I3, = 0.0128.

It follows immediately that asymptotically

Ox
= = 0.0804 (3.28)
0
5~ 0.0767 (3.29)
H — 117 . (3.30)

The asymptotic values are well below those values of the data in Figure 3.18 indicating
again that the asymptotic boundary layer is reached only at much higher Reynolds
numbers than for which data is available. Interestingly, the asymptotic value of H is
very close to those obtained by Kempf (1932) (see also Smith and Walker 1959) at
Reynolds numbers more than an order of magnitude above that of the data utilized

here.
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One advantage of having analytical expressions for 9,/ and 6/§ (or I and I3) is
that % can be computed for given values of Rs, or Ry. This was done to produce
Figure 3.19 using equations 3.8, 3.20, 3.21 and the final approximate forms for I
and I3 derived above. Also shown for comparison are the results from the profile
integration. As expected the agreement is excellent above 6™ > 2000 and Ry = 3000.

Finally, Figure 3.20 shows Ry versus R, from a numerical integration of equa-
tion 2.118 using equation 2.70 with the constants determined earlier. Also shown in
the figure are the data of Smith and Walker. No attempt has been made to adjust
for virtual origin in = by choosing a non-zero value for R,. Obviously, the agreement
is excellent over the the entire range of the data. Thus, unlike in other theories,

momentum appears to be conserved.
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Figure 3.18: Variation of Rs, and Ry as function of §* using numerical integration
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3.11 The Turbulence Quantities

There have been numerous papers written on the failure of the classical scaling laws to
collapse the moments of fluctuating quantities in the wall region (by which is usually
meant the “log” region as well as the buffer layer between it and the linear layer).
Among the most troublesome quantities are the variances of the streamwise fluctuat-
ing velocities and the Reynolds stress (eg., Klewicki and Falco 1993, Bradshaw 1990,
Spalart 1988). More recently problems with the behavior of two-point correlations in

the wall region have been noted by Blackwelder 1993. Klewicki and Falco conclude:

e “In general, inner variable normalizations of statistical profiles derived from the
u and v fluctuations and the uv shear product do not produce invariant curves
in the inner and near-wall regions of the boundary layer over the given Ry range

(1000 < Ry < 5000).”

e “Both the peak value and the y* position of the peak value of the u'/u., v'/u.,

and < uv > /u? profiles increased with increasing Ry.”

e “The present measurements support the hypothesis that for y* less than about
50 and with inner variable normalization, the statistical characteristics of single

point spanwise vorticity measurements are invariant over the given Ry range.”

All of these observations for the single-point statistics are consistent with the
theory put forth here. The reason quite simply is that the mesolayer and overlap
layers can not be considered to be Reynolds number independent in either inner or
outer variables for any finite Reynolds number. As a consequence, any measurements
outside the viscous sublayer — roughly the linear region — and inside the deficit

region, should be expected to display Reynolds number dependencies, whatever the
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quantity measured. For some quantities, like the mean velocity and vorticity, the
Reynolds number dependence of the overlap range is hardly perceptible; for others,
like the Reynolds stresses it is obvious. Since the velocity scale ratio, u./Us, varies
more rapidly as the Reynolds number is reduced, these effects will be more pronounced
at lower Reynolds numbers.

The theory put forth here has suggested that similarity of the turbulence quantities
in the outer layer occurs only at Reynolds numbers high enough for the dissipation
and Reynolds stresses to be effectively inviscid. While it is difficult to quantify this, it
is generally assumed in turbulence that this occurs only when the turbulence Reynolds
number, ul /v, is on the order of 10* or larger (c.f. Batchelor 1953). Since u ~ u, and
[ ~ 0, this requires values of Ry of 10° or larger for these conditions to be met. This is
well beyond the range of any experiments to-date. The theory does suggest, however,
some alternatives which might work before this is reached. These different scalings
for the turbulence quantities in the outer layer follow directly from the transformed
equations and depend on both u, and U,,. The normal stresses, for example, scale as
U2, while the Reynolds shear stress scales (to first order) with u2. Note that nothing
should be expected to collapse in the overlap region since it depends on both u, and
Us. However the fact that u. /Uy varies more slowly with increasing Ry might lead
to the erroneous conclusion that an asymptote is being approached.

Figure 21 shows the rms streamwise fluctuating velocity measurements of Purtell
et al. 1981 normalized by U,. It is clear that the collapse is remarkable for 7 > 0.5
for all Reynolds numbers, and the region of collapse moves towards the wall with
increasing Reynolds numbers (just as for the mean velocity profiles above). The same
data normalized with u, appears in the paper of Purtell et al 1981 and there is little

evidence of even a trend toward collapse in the outer part of the flow. A similar
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Figure 3.21: Turbulence intensity scaled with Us, data of Purtell et al. (1981).
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failure of the wu, scaling for the normal Reynolds stresses in the outer part of the
flow was noted by Smith 1994. Even more significantly, Smith (1994) shows that the
production (— < uv > dU/dy) collapses in the outer region about the same when
normalized by either u2Us, /d or U2 /5. consistent with the fact that the outer layer
is governed by two velocity scales and similarity is possible only in the limit when
their ratio is constant.

Balint et al. 1991 show several attempts to collapse measurements of the mean
square vorticity components over the outer layer, none of which are very successful.
Most interesting though is that when the outer rms vorticity components were scaled
with u?/v the order of the curves was reversed from when they were scaled with
Uso/d. Thus the proper scaling (if there is one at all) is some combination of these.
If the assumption of locally homogeneous turbulence is made, then the mean square

vorticity is given by (v. George and Hussein 1991),
< ww; >=€/v (3.31)

where € is the rate of dissipation of turbulence energy. Thus the vorticity in the outer
layer should scale with the dissipation. From equations 2.29, 2.32 and 2.33 it follows

that the dissipation scales as
do
3 2
Thus the rms vorticity in the outer region should scale as

< wiw; >V (WU J16)M? (3.33)

Figure 22 shows a plot of the vorticity measurements of Klewicki and Falco 1990
using the outer scaling of equation 3.33. The values of wall shear stress used were

those provided in the paper, and were quite close to the values computed from the
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friction law determined herein. The lack of collapse of the lowest Reynolds number
data might be associated with the disappearance of the wake function noted above.
In particular, the Reynolds number dependent constant D, in equation 2.82 may be
sufficiently different from its asymptotic value at this low Reynolds number so that u?
alone is not the right parameter. Alternatively, it may represent a problem with the
flow or the measurements (background vorticity or noise) since a constant subtracted
from this data set yields curves much like those for the velocity deficit. Of course, u.
itself may simply be in error; or the proposed theory incorrect.

The two point velocity correlation measurements in the wall region of Black-
welder (1993) provide further substantiation for the ideas presented here. Briefly, it
is observed that for small values of separation in horizontal planes, the two point cor-
relations appear to collapse in wall variables, while for large separations they do not.
Moreover, at large separations the magnitudes of the correlations still show a strong
Reynolds number dependence, even when re-scaled with the usual outer variables, u,
and 0. In particular, the amount of correlation at large separations increases with
Reynolds number. This behavior can easily be understood in the context of the new
theory presented here. The large separations are primarily the “foot-print” of the
outer boundary layer motions and so should scale in outer variables. If both inner
and outer velocity scales were the same, then no Reynolds number dependence of the
amplitude would be possible and the shape of the correlation at large separations
should be Reynolds number independent. If, on the other hand, the outer velocity

scale for the energy is not u?2

, but U2 as suggested earlier, then the shape of the ve-
locity correlation functions at large separations should exhibit the Reynolds number

dependence observed.
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Figure 3.22: The rms of vorticity fluctuations scaled with €2, data of Klewicki (1988).
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The pressure fluctuations on the wall and near it have presented somewhat of a
dilemma for the conventional theories because they do not scale in inner parameters,
u, and v, alone. From the perspective of the theory presented here, these represent
interesting examples of single point statistics which should not be expected to scale
in local variables. This is because the pressure fluctuations are not governed by the
same equations as the quantities for which the scaling arguments were derived. In
fact, they are governed by a Poisson equation, the solution of which involves both an
integral over the entire flow, and one over the wall (Batchelor 1967). Both of these
integrals involve two points, the one under consideration, and the integration variable.
Thus, only a two-point similarity analysis will suffice, and the considerations above are
immediately applicable with the result that both inner and outer scales govern these
quantities. Bradshaw 1967 hypothesized the existence of “inactive turbulent motions”
and the “splat effect”, the former recognizing that large energetic scales from outside
the wall layer contribute to pressure fluctuations, and the latter accounting for the
effect of the wall through the kinematic boundary condition. The idea of inactive
motions is especially interesting because it anticipates the fact that the kinetic energy
and Reynolds stress scale differently in the outer flow than in the inner. All these
ideas follow naturally from the two point similarity considerations and the AIP, so
unlike the classical approach, no new hypotheses need to be invoked to explain them.

Finally, the two point statistics also provide evidence for the mesolayer arguments
put forth earlier. The one-dimensional velocity spectral measurements of Folz et al.
(1996) show clearly the emergence of the k~%/3 range for values of y* greater than a
few hundred. Similar observations at much lower Reynolds number have been made

by a number of investigators (eg., Perry et al. 1985, Smith 1994).



Chapter 4

PGBL: The Outer Region

The methodology utilized in chapter 2 will be applied to the outer boundary lay-
ers equations with pressure gradient in order to determine the length, velocity and
Reynolds stress scales in outer variables.! A new definition of the Equilibrium Bound-
ary Layer will be shown to fall naturally out of the equations. Many flows previously

not believed to be in equilibrium will be seen to be so according to the new definition.?

4.1  Full Similarity of the Outer Equations

In accordance with the Asymptotic Invariance Principle, solutions will be sought
which reduce to similarity solutions of the outer momentum equation and boundary
conditions in the limit of infinite Reynolds number. It is important to remember that
unlike the analysis of Clauser 1956 or Townsend 1956 (see also Tennekes and Lumley
1972), no scaling laws will be assumed at the outset. Rather scaling parameters will

be derived from the conditions for similarity of the equations thus insuring that the

!The similarity analysis for boundary layer with pressure gradient in inner variables will be given
in the next chapter.
2Chapters 4 and 5 extend the work of George and Castillo 1993.

133
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scaled profiles are invariant in the limit. The outer equations and boundary conditions
appropriate to a turbulent boundary layer at high Reynolds number with pressure

gradient are given by

ou ou 1dPy 0
Ua—l’+V8—y_  dz +a—y[

— <uv > (4.1)

where U — Uy and — < uv >— 0 as y — o0.

For the outer equations, solutions are sought which are of the form

U—Us = Usnla)fopeo(: A) (4.2)
—U0 = Reo(@)Topec(Ts A) (4.3)

where
7= y/s (4.4)

and Us,, Ry, and ¢ are functions only of x. The parameter A accounts for the free
stream pressure gradient and will be defined later. In the limit as T — oo the outer
boundary layer equations are independent of Reynolds number; therefore, the velocity
and Reynolds stress scales for the outer region must also be independent of Reynolds
number. This is the Asymptotic Invariance Principle (AIP). The velocity has been
written as a deficit to avoid the necessity of accounting for its variation across the
inner layer. This is, of course, not possible with the Reynolds stress since it vanishes
outside the boundary layer. The subscript opoo is used to distinguish the infinite
Reynolds number solutions from the finite Reynolds number profiles used later which
are scaled the same way.

Substitution into equation 4.1 and clearing terms yields
0 dUs L (Uoc) 0 dU,, Foot 0 dUsy | .9 1 Ux @ N
Uso da Use) Uso dz | " Uy da |70 Uso dz

0 dUg \ | _,, dé 0 dUs, . (7 o Ry
(Uso dl‘ >‘| yfooo - l(%) + (Uso dl‘ )] fooo/o fooo(y)dy = lU2 ] Tooc (45)
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where the term involving dP,, /dx has been cancelled by the U, dU,, /dz term arising
from the UOU/0x by using Euler’s equation for the external flow.
For a similarity solution to be possible, the bracketed terms must all have the

same x-dependence; i.e.,

0 dUs, 0 dUy (Uoo> 0 dUs,
U,, dx U,, dx U,/ Uy dx
do Ux\ d0 R,
~ e~ (@ a~ i (4.6)

It is clear that just as for the zero pressure gradient boundary layer, full similarity

is possible only if

Usy ~ Us (4.7)
do
Rgo ~ Ugoﬂ (48)

Thus, the outer equations do admit to full similarity solutions (in the limit of infinite
Reynolds number), but the velocity scale for the velocity deficit law must be U,,, and
not u, as used by previous investigators (e.g., Clauser 1954, Coles 1962).

There are several additional independent constraints given by

do b dUx

=~ = 4.9

dr Uy dx (4.9)
or, equivalently,

dé 0 dPsy

— ~ — 4.10

de  pUZ dx (4.10)
The first of these has the surprising consequence that

0~ U (4.11)

where n can, to this point at least, be any exponent. The second can be rewritten to

yield

J dPx
A= SUZdsdr da ~ constant (4.12)
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or equivalently

0 dUsx
A= ~Undojdz d ~ constant (4.13)

Since the outer and inner scaled Reynolds stress must yield the same value of
— < uv >, and since the inner Reynolds stress scales with u? (see Chapter 5); it

follows in the limit of infinite Reynolds numbers that,
R, ~ U2dS/dx ~ u? (4.14)

just as for the zero pressure gradient boundary layer. Therefore, the similarity con-

dition of equation 4.8 reduces as before to

s u?
oL (4.15)

from which it follows that,

0 1 dPy  § dPx
© pU2 ds/dx dx  pu? dx

(4.16)

Thus, asymptotically A ~ 3 where 3 = (d,/pu?)dPx /dx is the Clauser parameter
discussed in Chapter 1. In the old theory (Clauser 1954) 3 = constant was a necessary
condition for an equilibrium boundary layer. Since in the present theory ¢ ~ 6, ~ 6
asymptotically, Clauser’s criteria is an asymptotic limit of the condition 4.13. The
direct deduction here can be contrasted with the Clauser’s analysis which led to a
parameter based on o, but he was forced by his experiments to use d,. This is a
particularly serious problem for his analysis since he had earlier deduced that 4,/ ~
us/Us. All of these problems were a consequence of Clauser’s arbitrary selection
of a deficit law instead of letting the equations themselves dictate one. The Clauser
definition of an Equilibrium Boundary Layeris a natural consequence of the similarity

analysis presented here with no empirical input required. Of course to apply it, the
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wall shear stress must be correctly determined, a considerable problem as will be seen
later.
Since, for equilibrium flows A = const it follows that by integrating equation 4.9
that,
Us ~ 670 (4.17)

Thus, not only is there a power law relation between the boundary layer thicknesses
and the imposed free stream velocity, the power exponent is the parameter A! Since
it is the free stream velocity, Uy (or dPs /dx), which is usually specified, this is a
remarkably restrictive constraint on ¢, and as a consequence will provide a powerful
test and confirmation of the new theory. Note that the inverse relation, § ~ U4,
does not present a problem for A = 0 since it simply implies that the relationship is

undefined as it must be since U,, = constant in this case.

4.2 The Momentum Integral Equation

The momentum integral for a boundary layer with pressure gradient can be reduced

to

2
de 0 dPoc:<u*> (4.18)

(24 H L

dx 2+ )pUgo dx Uso
where H = 0,/60 is the shape factor. This can be rewritten for the equilibrium
boundary layers defined above as

do 04 0\ db/dx Uy \ 2
Tl-aG 2 G = () (419)

From the similarity conditions of the preceding section, the term in square brack-
ets on the left hand side is asymptotically constant since the ratios d./d, 6/ and
(do/dxz)/(df/dx) are (see chapter 2).
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4.3 Comparison of the new outer scaling with ex-
perimental data

As in boundary layer with zero pressure gradient, one of the greatest difficulties in
analyzing the data specially in inner variables is the friction velocity u,. As mentioned
before, most values from ¢y are from Clauser method, and very few flows reported in
Coles 1968 satisfy the momentum integral equation.

It was shown from the equation of motion that an equilibrium boundary layer is

one where
= p(iozo dé}dx dCZZO = const. (4.20)
and
U ~ 670 (4.21)

Also, § ~ §, ~ 6 asymptotically. Therefore, at least asymptotically

A~ Ag, ~ Ag (4.22)
where
O 1 dPs
As. = = t. 4.2
T QU2 do,jde dx (4.23)
Ay 0 L dbs const. (4.24)

" pUZ df/dx dx

Thus asymptotically at least,
O N N (4.25)

In addition to equilibrium flows it will be shown that the present theory works for
moving equilibrium flows which are flows at a given equilibrium condition, then the

flow is changed to new equilibrium.
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4.3.1 Favorable Pressure Gradient (FPG): A <0

Figure 4.1 shows a log-log of U (ft/sec) vs. 9, d., 6 (ft.) for the Moderate FPG
data of Ludweig and Tillmann 1949. The slope is constant and nearly the same for
all length scales. This data set has been considered a near equilibrium flow based on
Clauser’s definition (Coles 1968); however in terms of the new definition the flow is
actually in full equilibrium since A is constant, as are A5, and Ay.

The velocity profiles in outer variables for the above experiments are shown in
Figures 4.2 and 4.3. The first one is scaled with w, (using the Clauser method
explained earlier in this chapter) and the second one scaled with U,,. Even though
the friction velocity u, was chosen (by the authors) to collapse the data in the overlap
region in inner variables it fails to do so when plotted in old deficit form as in Figure
4.2. (Note that these curves look better when ¢ is treated as a variable as in Coles
1968 instead of as physical length scale.) In addition, note how the supposed constant
value for equilibrium boundary layer parameter, 3, (according to Clauser 1956) varies
for every given data set. On the other hand note the excellent collapse when the same
data is scaled with Uy in Figure 4.3, 4.4, and 4.5 with the length scales ¢, d, and 6

respectively.
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Similarity Condition: Outer Flow
Ludweig & Tillmann 1949: Moderate Neg. Pressure
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Figure 4.1: The log-log plot of Uy (ft/sec) vs. §, o, 0 for the Ludweig and Tillmann
1949 data at moderate negative pressure gradient
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Moderate Negative Pressure Gradient:
Ludwieg & Tillmann 1949: Near Equil. B.L.
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Figure 4.2: The velocity profiles in outer variables scaled with Uy, = u, using the
Clauser method) and ¢ for the Ludweig and Tillman 1949 data at moderate favorable
Pressure gradient.
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Moderate Negative Pressure Gradient:
Ludwieg & Tillmann 1949: Near Equil. B.L.
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Figure 4.3: The velocity profiles in outer variables scaled with Us, = Uy and ¢ for
the Ludweig and Tillman 1949 data at moderate favorable pressure gradient.
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Moderate Negative Pressure Gradient:
Ludwieg & Tillmann 1949: Near Equil. B.L.
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Figure 4.4: The velocity profiles in outer variables scaled with Uy, = Uy, and 0, for
the Ludweig and Tillman 1949 data at moderate favorable pressure gradient
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Moderate Negative Pressure Gradient:
Ludwieg & Tillmann 1949: Near Equil. B.L.
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Figure 4.5: The velocity profiles in outer variables scaled with Uy, = U, and 6 for
the Ludweig and Tillman 1949 data at moderate favorable pressure gradient.
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4.3.2 Adverse Pressure Gradient (APG): A >0

Figure 4.6 shows a log-log plot of U (ft/sec) vs. d, 6. and 0 (ft.) for the data of
Kline et al. 1967 in a Mild FPG flow. This figure illustrates the similarity condition
for equation 4.21. If an equilibrium boundary layer exists, the data for log U, versus
log 0 should be linear in a log-log plot with slope given by —A. Clearly there is a near
constant slope for all three plots. Moreover, As, Agx and Ay are nearly proportional

to each other. Obviously,
Ldp 1ds s,
Odx o6dx 9, dx

(4.26)

even though 0/6 and 0./d are far from their asymptotic values. This particular data
has not been previously considered to be an equilibrium flow in terms of Clauser’s
definition, but obviously is by the criteria applied here. Unfortunately the velocity
profile data for this fine experiment appear to have been lost (W.C. Reynolds, private
communication to W.K. George).

The data of Bradshaw 1965 for U, versus 90, d. and 6 is shown in Figure 4.7.
This data is considered to be a Mild Adverse Pressure Gradient, and Ry varies from
10,061 to 22,578. The velocity profiles scaled with Uy and ¢, 6, and 0 as outer
length scales are shown in Figures 4.8 through 4.10. Figure 4.11 shows a similar
plot for the Moderate Adverse Pressure Gradient of the same author where Ry varies
from 14,492 to 36,669. The velocity profiles for the Moderate APG are shown in
Figures 4.12 to 4.14. Note the excellent collapse for both experiments in the new
outer variables, regardless of which outer length scale is used. The single exception is
most upstream profile of the Moderate FPG, which perhaps indicates that the flow

has not yet reached equilibrium.

Figure 4.15 presents Clauser’s own data for the Moderate APG showing U vs 6,

0. and 6 in a log-log plot. Clearly this flows has perfect linear behavior indicating that
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Similarity Condition: Outer Flow

Kline et al. 1967: Mild Positive Pressure Gradient
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Figure 4.6: The log-log plot of U (ft/sec) vs. 0, dx, 0 for the Kline et al. 1967 data
at mild adverse pressure gradient.
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Similarity Condition: Outer flow

Bradshaw 1965: Mild Positive Pressure Gradient:
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Figure 4.7: The log-log plot of Uy (ft/sec) vs. d, 0., 0 for the Bradshaw 1965 data
at mild adverse pressure gradient.
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Mild Adverse Pressure Gradient:
Bradshaw 1965: Velocity in Outer Variables
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Figure 4.8: The velocity profiles in outer variables scaled with Us, = Uy and ¢ for
the Bradshaw 1965 data at mild adverse pressure gradient.
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Mild Adverse Pressure Gradient:
Bradshaw 1965: Velocity in Outer Variables
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Figure 4.9: The velocity profiles in outer variables scaled with Uy, = U, and 0, for
the Bradshaw 1965 data a mild adverse pressure gradient.
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Mild Adverse Pressure Gradient:
Bradshaw 1965: Velocity in Outer Variables
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Figure 4.10: The velocity profiles in outer variables scaled with U, = Uy and 0 for

the Bradshaw 1965 data at mild adverse pressure gradient
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Equilibrium Flow:

Bradshaw 1965: Moderate Positive Pressure Gradient:
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Figure 4.11: The log-log plot of U (ft/sec) vs. §, dx, . for the Bradshaw 1965 data
at moderate adverse pressure gradient.
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Moderate Adverse Pressure Gradient
Bradshaw 1965: Velocity in Outer Variables
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Figure 4.12: The velocity profiles in outer variables scaled with Us, = Uy and ¢ for
Bradshaw 1965 data at moderate adverse pressure gradient.
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Moderate Adverse Pressure Gradient
Bradshaw 1965: Velocity in Outer Variables
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Figure 4.13: The velocity profiles in outer variables scaled with Uy, = U and ¢, for
the Bradshaw 1965 at moderate adverse pressure gradient.
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Moderate Adverse Pressure Gradient
Bradshaw 1965: Velocity in Outer Variables
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Figure 4.14: The velocity profiles in outer variables scaled with U, = Uy and 0 for

the Bradshaw 1965 data at moderate adverse pressure gradient.
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Equilibrium Flow:

Clauser 1954: Moderate Adverse Pressure Gradient:
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Figure 4.15: The log-log plot of Uy (ft/sec) vs. 6, 0, d. for the Clauser 1954 data at
moderate adverse pressure gradient.



CHAPTER 4. PGBL: THE OUTER REGION 156

the new similarity condition for equilibrium flows is satisfied. The velocity profile in
outer variables from Clauser data scaled with wu, (deficit law) is shown in Figure 4.16,
and the same data but scaled with U,, = U, and 9, d, and 6 are shown in Figures 4.16
to 4.19. The collapse for all three is is so good it is amazing that it has not been
previously noted, especially by the experimenters themself. Figure 4.20 shows that
the same is true for Clauser’s Mild APG as well. The velocity profiles have not been

plotted in this case, but the proposed scaling works as well for them as for the others.

According to Clauser’s definition for equilibrium flows, S=const and the velocity
deficit distribution in the the streamwise direction should be invariant with Reynolds
number; in other words all profiles should collapse as a single curve. Notice how the
values of § tabulated in the figures vary with Reynolds number. Clearly these flows
have chose not to satisfy Clauser’s definition of equilibrium flows, at least for the
values of shear stress determined by him. On the other hand, when the same data
is plotted using the new scale, not only do the data collapse better, but by the new
definition of equilibrium boundary layers (A = constant), Clauser’s data are found to
be in equilibrium. Moreover the proposed outer scaling is considerally more succesful
than the old, even though the stress was obtained to make the old work. This is the
same data set criticized by Rotta 1962 as mentioned in Chapter 1. Obviously no such
criticism is warranted.

An example of a very strong adverse pressure gradient proceeding toward sepa-
ration is given by the airfoil data of Newman 1951. The log U, versus log (0, d.
and 0) plot is shown in Figure 4.21 Because the lower points in the vertical axis are
reaching a new equilibrium, the slopes are not constant. Obviously, however,there is
a linear region and therefore this flow of Newman 1951 can also be considered to be

in equilibrium since A=constant (at least over most of it). The lines have been fitted
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Velocity Deficit:

Clauser 1954: Moderate Adverse Pressure Gradient: A=-0.21
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Figure 4.16: The velocity profiles in outer variables scaled with Uy, = U, and ¢ for
the Clauser 1954 data at moderate adverse pressure gradient.
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Velocity in Outer Variables:

158

Clauser 1954: Moderate Adverse Pressure Gradient: A=-0.2038
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Figure 4.17: The velocity profiles in outer variables scaled with Uy, = Uy and 0 for
the Clauser 1954 data at moderate adverse pressure gradient.
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Velocity in Outer Variables:
Clauser 1954: Moderate Adverse Pressure Gradient: A=-0.2038
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Figure 4.18: The velocity profiles in outer variables scaled with Uy, = U, and ¢, for
the Clauser 1954 data at moderate adverse pressure gradient.
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Velocity in Outer Variables:
Clauser 1954: Moderate Adverse Pressure Gradient: A=-0.2038
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Figure 4.19: The velocity profiles in outer variables scaled with U, = Uy and 0 for

the Clauser 1954 data at moderate adverse pressure gradient.
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Equilibrium Flow:
Clauser 1954: Mild Adverse Pressure Gradient:
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Figure 4.20: The log-log plot of Uy (ft/sec) vs. 6, dx, d. for the Clauser 1954 data at
mild adverse pressure gradient.



CHAPTER 4. PGBL: THE OUTER REGION 162

by ignoring the first data point and the last two, since the flow clearly seems to be
evolving in these regions. The data vary in Ry from 5,510 to 26,829 which is large
enough to observe a Reynolds number dependence in A/As, and A/Ay, unlike the
earlier data set in which the Reynolds number range was more limited. The value for
A = —0.22 does not vary with Reynolds number, by contrast with the cited values of
the Clauser parameter § (3.23 < 4 < 182.), which led to the previous (and obviously

erroneous) conclusion that this flow was not an equilibrium flow.

Figure 4.22 shows the velocity profile of Newman 1951 in outer variables using the
traditional scale (u, from Clauser method). Note that even though u, was determined
so that the data collapse in the “log” region in inner variables, it does not collapse
at all in these outer variables, except at the outermost part of the flow where it must
because of the boundary condition on U — U,,. The same data set of Newman 1951
is plotted in Figure 4.23, but scaled with U,,. Note how the region of collapse of the
profiles moves closer to the wall as the Reynolds number increases. This behavior
is very consistent with the new theory and the previous results for the zero pressure
gradient boundary layer. On the other hand, note how the region of collapse of
the u, scaled profiles moves away from the wall (opposite direction to Figure 4.23).
The reason is quite clear: since u, is decreasing in the adverse pressure gradient
(and vanishes at separation), the deficit law using the traditional scale continues to
increase without bound. No such problems occur in the present theory since the data

will move to an asymptotic state in which all data collapse as single curve.
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Equilibrium Flow: Near Separation Boundary Layer
Newman 1951: Very Strong Adverse Pressure Gradient:
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Figure 4.21: The log-log plot of U (ft/sec) vs. 6, d,, d, for the Newman 1951 data
at very strong adverse pressure gradient.
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Velocity in Outer Variables: Near Separation
Newman 1951: Very Strong Adverse Pressure Gradient: A=-0.22
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Figure 4.22: The velocity profiles in outer variables scaled with Us, = u, and ¢ for
the Newman 1951 data at very strong adverse pressure gradient.
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Velocity in Outer Variables: Near Separation
Newman 1951: Very Strong Adverse Pressure Gradient: A=-0.22
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Figure 4.23: The velocity profiles in outer variables scaled with U, = Uy and 0 for
the Newman 1951 data at very strong adverse pressure gradient.
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4.3.3 Moving Equilibrium Flows: A = A(x)

This is the category where most real flows with pressure gradient are classified since

o 1 dPx
= UL o dz da # constant (4.27)

As the name suggests these flows are equilibrium flows locally, but are in the process of
moving from one equilibrium state to another as the external conditions change. The
theory for equilibrium boundary layers set forth here applies to such cases. Several
examples will be given in this section.

The first data is from Schubauer and Klebanoff 1947 (1,412 < Ry < 76,711). This
data was acquired from a boundary layer on an large-airfoil like body, first with mild
favorable pressure gradient, then a strong adverse pressure gradient with eventual
separation. The log-log plot of Uy versus d,, 0 is shown in Figure 4.24. Clearly there
are three equilibrium regions where the A = const. is the same for both length scales
(0s, 0).

Another example where the flow is not in equilibrium is the boundary layer of a
diverging channel with eventual separation (Ludweig and Tillman 1945). The log-log
plot of Uy, versus 9, d, and 6 is shown in Figure 4.25. It is clear that the slope is not
constant for any of the length scales, which leads to the conclusion that this flow is
not in simple equilibrium. However, if the last two points of the data are considered
to be a separate region (although c; is still finite), then this flow has three regions
where A = const.: The first corresponds to the region with a strong adverse pressure;
the second is the transition toward separation; and for the third the flow is at a new
equilibrium near separation (c¢; — 0). This shows clearly that the flow is locally in
equilibrium, and as the external control imposed over the flow changes, the flow will

continue to change until a new equilibrium is reached.
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Non Equilibrium Flow: A=A(X)

Schubauer & Klebanoff 1947: Mild Neg, Strong Positive, eventual separation
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Figure 4.24: The log-log plot of Uy (ft/sec) vs. d,, d, for the Schubauer and Klebanoff

1947 data in mild favorable pressure gradient then with a strong adverse pressure
gradient with eventual separation.
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Non-equil. Flows

Ludwieg & Tillmann 1949: Strong Adverse Pressurwith event. Sepa. :
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Figure 4.25: The log-log plot of Uy, (ft/sec) vs. 4, 4, d, for the Ludweig and Tillmann
1949 data with a strong adverse pressure gradient with eventual separation.
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The velocity profile scaled with U, of the same experimental data is shown in
Figure 4.26. Note that as the Reynolds number increases the collapse of the profiles
moves closer to the wall toward what could be an asymptotic state, but since the
pressure gradient keeps increasing downstream, the profiles adjust to a new equilib-
rium. The range in Reynolds number based on Ry varies from 5,382, to 48,333. An
important point that can only be obtained when the profiles are scaled this way is
that as the adverse pressure gradient is increased in the flow, the wake or outer flow

becomes more pronounced, at least relative to the overlap region.
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Velocity in Outer Variables:

Ludweig & Tillmann (1950): Strong Adverse Pressure Gradient with Eventual Sep.
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Figure 4.26: Velocity in outer variables scaled with Uy and § for the Ludweig and
Tillmann 1949 data with a strong adverse pressure gradient with eventual separation.
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4.3.4 The Slow Approach to Equilibrium of the Inner Region

The objective of this section is to study how the boundary layer changes from one
equilibrium state to another. Surprisingly, it will be seen to be the inner part of
the boundary layer which lags the outer flow. The experimental data of Bradshaw
1965 and 1966 will be used to illustrate this effect on boundary layers with pressure
gradient.

The first flow considered is that of Bradshaw 1965 (24,984 < Ry < 30, 217) which
was in equilibrium at moderate adverse pressure gradient, then the pressure gradient
was abruptly decreased to zero. Figure 4.27 shows the equilibrium condition of U
versus 0 0, and 0. Note that the first three data points from top to bottom have the
same slope implying that the flow is in equilibrium in this region, then the next four
point from the bottom (left to right) have a zero slope which implies that A = 0 so
that there is no pressure gradient in this region. Now the following question can be
asked: Does this flow which is at zero pressure gradient behave in the same fashion
as other zero pressure gradient flows?

To answer the question, the velocity profiles in outer variables scaled with U, o
are plotted in Figure 4.28. Note how as the Reynolds number increases, the point of
departure from the outer collapse moves outward, opposite to the expected behavior.
However, even though the outer part of the last three profiles of Bradhsaw’s data
is consistent with the zero pressure gradient profiles of Smith/Walker at the same
Reynolds number, the overlap and wall regions are not, although they are moving
toward them. Note that A = 0 for both sets of data and the Reynolds number are
about the same, so the profiles should be identical. Obviously the outer flow has
begun to adjust to the new zero pressure gradient but the inner and overlap regions

are lagging.
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Equilibrium Flow:
Bradshaw 1965: Mod. Adv. to Zero New Equil. Relax Flow :
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Figure 4.27: The log-log plot of U (ft/sec) vs. 9§, ds, d. for the Bradshaw 1965 data.
Equilibrium flow at moderate adverse pressure gradient, then the pressure gradient
abruptly decreases to zero.
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Velocity in Outer Variables:
Bradshaw 1965: Mod. Adv. to Zero New Equil.: Relax Flow
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Figure 4.28: Velocity in outer variables scaled with Uy and ¢ for the Bradshaw 1965
data. Equilibrium flow at moderate adverse pressure gradient, then the pressure
gradient abruptly decreases to zero.
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In the next example, the data from Bradshaw 1966 is considered. In this partic-
ular experiment the flow was originally at zero-pressure gradient; then a moderate
adverse pressure gradient was imposed on the flow. Figure 4.29 shows a log-log plot
of Uy versus 90, 0, 0. Obviously the flow is in equilibrium and A = constant. The
velocity profile data scaled with Uy and § are shown in Figure 4.30. Also shown is
the Clauser’s data for approximately the same conditions, but without the differing
upstream history. Clearly Bradshaw’s data is still changing toward a new equilib-
rium, even though the equilibrium condition is satisfied. Obviously the flow still has
some memory of its past which was at zero pressure gradient. As in previous case

considered, it is the inner flow which lags.

A question is raised by the observation above: How long does it take a flow to
reach a state independent of its initial conditions or history? It will be seen in the next
chapter that all of the effects of the pressure gradient show up in the outer parameter,
C, (or more properly C,,), at least as long as the flow is not near separation. The inner
flow is not affected directly, except by the value of u, which is removed by the scaling
in inner variables. And the value of u, is determined by the flux of momentum toward
the wall imposed by the Reynolds stress in the outer flow. By arguments like those
used for turbulence production in Chapter 2, it is possible to show that D,, ~ 1/C,,
(where D,, and C,, are the counterparts to C, and D,) since the inner parameters
C; and D; are unaffected by the pressure gradient (v. Chapter 5). Thus the pressure
gradient is reflected directly in the outer Reynolds stress scaling, but inversely to the
velocity. If one argues that the turbulence can only adjust over several eddy turnover
times to the new conditions, then the distance for this adjustment can be estimated

as Ax > Uy (0/u.) where Uy is the convection velocity and ¢ /u, is typical of the
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Equilibrium Flow:

Bradshaw 1966: Const. Pres., Dev. Equil Mod. Adverse Pressure Gradient:
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Figure 4.29: The log-log plot of Uy (ft/sec) vs. 4, d., J,. for the Bradshaw 1965

data. Flow at a zero pressure gradient then a moderate adverse pressure gradient is
imposed on the flow.
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Velocity in Outer Variables: a=0 to -0.255

Bradhaw 1966: Moderate Adverse Pressure Gradient:

1.4 - s
* R, =8592 to 22,582A\=0.236 (Bradshaw)

L H R, =8,031 to 31,017A=0.203 (Clauser Mod. APG) |

1.2 - s

1.0 s

Re increasing

g 0.8 s
=2

) - i

0.6 |- _

0.4 - s

0.2 - _

O.o L L Coo ol L L | L L | L L Lo

0.001 0.010 0.100 1.000 10.000

Figure 4.30: Velocity in outer variables scaled with Uy and ¢ for the Bradshaw 1965
data. Flow at a zero pressure gradient then a moderate adverse pressure gradient is
imposed on the flow.
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eddy turn over time. Obviously the outer flow responds more quickly because the

external condition is directly imposed on it.



Chapter 5

PGBL: Inner and Overlap Regions

The Asymptotic Invariance Principle (AIP) and Near-Asymptotics is applied in this
chapter to the inner boundary layer equations for pressure gradient boundary layers.

The flow near separation is also considered.

5.1 Full Similarity of the Inner Equations

In keeping with the Asymptotic Invariance Principle set in previous chapters, solutions
are sought which reduce to similarity solutions of the inner equations and boundary
conditions (e.g., equation 1.3 in Chapter 1) in the limit of infinite Reynolds number

(i.e., 07 — 00). Solutions will be sought of the form

U = Usi(x)fipoc(y+,/\) (51)

W = Ru(@)ripm(y™, A) (5.2)

where y* = y/n(z) and A is the pressure gradient parameter defined in Chapter 4,

i.e.,
0 dPs

A= 5.3
pU2.dd/dx dx (5:3)

178
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The length scale n = n(z) remains to be determined. Note that the subscript ipoo is
used to distinguish the scaled velocity and Reynolds stress profiles, f;,(y*, 0", A) and
Tip(y™, 07, A) which will be used later, from their limiting forms used here. Obviously
fip and 7, are dependent on 6% while fi,e and ;s are not. Note that these solutions
are less restrictive than the similarity forms used by Townsend 1956a,b, 1961 and
Rotta 1962 in which the scaled velocity and Reynolds stress are the same in inner
and outer variables (see Chapter 1).

Substitution into equation 1.4 and clearing terms yields to leading order in ¢,

uz Rsi 14 ’ 14 dpoo +
In the limit as 7 — oo, the pressure gradient vanishes in the inner equation as long

as A is finite (i.e., away from separation). Therefore, in this limit, the inner equation

(for finite A) is exactly the same as for the zero pressure gradient boundary layer;

u? R v /
[U—EZ] = lU—Ej Tipoo T l—nUsil fipoo (5-5)
Thus, the velocity and length scales are the same as for zero pressure gradient bound-

ary layer; i.e.,

n=v/Us (5.6)

Using these equations in equation 5.4, the inner equation (retaining the pressure

gradient for the moment) in similarity form reduces to,
L= Tice + froe = A" (5.9)

where
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As 07 — 0o, A — 0 (for finite A) and equation 5.9 reduces to the inner equation

for zero pressure gradient boundary layer, i.e.,
R (5.11)

For finite 6T, it will be necessary to include 4% and A as arguments in the scaled

inner profiles; obviously these should reduce to the zero pressure gradient results as

A — 0. Thus, as A — 0,

- = fip(y+75+aA)_)fi(y+75+) (512)

= Tip(y", 0T A) — 1i(y",0T) (5.13)

where f; and r; are the functions for the zero pressure gradient derived in Chapters

2 and 3.

5.2 The Overlap Layer: An Application of Near-
Asymptotics

It is obvious that (like the zero pressure gradient boundary layer discussed in Chapter
2) since both the outer and inner profiles are non-dimensional profiles with different
scales and the ratio of the scales is Reynolds number dependent, then any region
between the two similarity regimes cannot be Reynolds number independent, except
possibly in the limit. Therefore both scaled forms of this solution, f;,(y™;d%; A) and
Jop(T, 075 A) respectively, represent the velocity everywhere, at least as long as the
Reynolds number is finite. The following development is exactly analogous to the
zero pressure gradient case, except for the parameter A. (The reader familiar with

the analysis can skip the details and go directly to results, equations 5.24 and 5.25.)
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As before, f;, and f,, are quite unlike their limiting forms, fio, and f,, which are
infinite Reynolds number solutions only for the inner and outer equations respectively.
If f;, and f,, are considered instead of f; o and f,yoo (as is usually done), the problem
of determining whether an overlap region exists is quite different from the usual
asymptotic matching where infinite Reynolds number inner and outer solutions are
extended and matched in an overlap region if one exists. Therefore, the objective
here is not to see if f;, and f,, overlap and match them if they do. It is rather to
determine whether the fact that these scaled finite Reynolds number solutions (to the
whole flow) degenerate at infinite Reynolds number in different ways can be used to
determine their functional forms in the common region they describe in the limit.

There are several pieces of information about the two profiles which can be utilized

without further assumptions. They are:

e First, since both inner and outer forms of the velocity profile must describe
the flow everywhere as long as the ratio of length scales, 6 = §/n, is finite, it

follows that

1 +f0p(y7 5+aA) = 91(5+)fip(y+,5+,A) (514)
where g1 (07, A) = u,/Ux since Ux (1 + fop) = usfip everywhere,
e Second, for finite values of §%, the velocity derivatives from both inner and

outer forms of the velocity must also be the same everywhere. Differentiating

equation 5.14 with respect to y at fixed 0T it follows that

y dfop _ gdfzp
1 +fop dy fip dy*

(5.15)

for all values of 61 and v.



CHAPTER 5. PGBL: INNER AND OVERLAP REGIONS 182

e Third, in the limit, both f,, and f;, must become asymptotically independent
of 6%, Thus fo(7,07,A) = foso(F,A) only and fip(y™. 67 A) — fipeo(y™, A)
only as 07 — oo, or otherwise full similarity is not possible which means that

the velocity scales are not correct.

Now the problem is that in the limit as 6T —o0, the outer form fails to account for
the behavior close to the wall while the inner fails to describe the behavior away from
it. The question then is: In this limit (as well as for all finite values approaching it)
does there exist an “overlap” region where equation 5.14 is still valid? Since both ¢
and 7 are increasing with streamwise distance along the surface, this “overlap” region
will not only increase in extent when measured in either inner or outer coordinates,
it will move farther from the wall in actual physical variables.

As in Chapter 2, an intermediate variable § can be introduced. The matching

condition of equation 5.14 in terms of the intermediate variable, 7, becomes,
Lt fop(@07" 707 A) = g1 (07 A) fip (567", 6%, A) (5.16)

where ¢ remain fixed in the limit as 6*—o0 while 7—0 and y*—o00 and 0 < n < 1.
(The details can be found in chapter 2.)
Now equation 5.16 can be differentiated with respect to 0% for fired g, the result

1S

g 01+ f,
LA )~ 575, - 5. (.17
op
where v, S;, and S,, are given as,
+
A = - (5.18)

g1 ot
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1 8fip(y+7 5+7 A)

. St oyt = 1
S0 S e e 1)
and
_ 1 Ofop(F, 07, \)
(0T 7)) = LA AR 2
0D = G o 20
Now it is clear that if both
8| Sop| << W (5.21)
and
6F1Sil << v (5.22)

then «, dominates. If 7, — 0, then the inequalities are still satisfied as long as the
left hand side does so more rapidly than 7,. Note that a much weaker condition can
be applied which yields the same result, namely that both inner and outer scaled
profiles have the same dependence on 07, i.e., S;, = S,, in the overlap range so 7, is
the only term remaining.

If these inequalities are satisfied over some range in y, then to leading order,

equation 5.17 can be written as

y 3(1+f£§))’
L+ £y oy

The solution to equation 5.23 can be denoted as fo(;) since it represents a first

— (5%, 0) (5.23)

order approximation to f,,. It is not, however, simply the same as f,,o because of
the % dependence of 7,, but reduces to it in the limit. Thus, by regrouping into
the leading term all of the y-independent contributions, the method applied here has
yielded a more general result than the customary expansion about infinite Reynolds
number.

Equation 5.23 can be integrated analytically to yield,
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U
o = L 153,07 A) = Cop (07, Mg (5.24)
and
U +
=W A) = Oy (6T Ay (5.25)

Thus the velocity profiles in inner and outer variables are power law functions,
exactly as for the zero pressure gradient case except for the presence of
A. The velocity parameters C},, C,, and v, must be asymptotically independent of
Reynolds number, exactly as for zero pressure gradient boundary layer.

The relation between u, and U, can be obtained immediately from equation 5.14

as
Cop(0T,A)
in(5+7 A)

Thus the friction law is also a power law entirely determined by the velocity param-

Cf Uy +
> =L g(o™,A)

(61)"w@"A) (5.26)
eters for the overlap region. However, equation 5.18 must also be satisfied. Substi-

tuting equation 5.26 into equation 5.18 implies that ~,, C,,, and C;, are constrained

by

dr, d C
+% _ op
Ind 5 = d5+lnl ] (5.27)

for all 61 and A.

As in Chapter 2 it is convenient to write the solution to equation 5.27 as

Cop
C;

= exp|(Vp — Ypoo) M OT + By (5.28)

where h, = h,(6", A) remains to be determined, but must satisfy

edhy, b,

oy = — 5.29
T T a6+  dlno+ (5-29)

It is easy to show that the condition that both Cppse and Cjpee be finite and

non-zero requires that:
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o Lither C,,, Cy), and 7 remain constant always,
or
e (i) 7 — Ypeo faster than 1/Ind™, and
e (ii) hy(d") — hyeo = constant.
It follows immediately that
Copo

Cipoc
Note that condition (i) together with equation 5.29 requires that dh,/dIno* — 0

= exp|hpoo] (5.30)

faster than 1/Ino*.

As A — 0, the zero pressure gradient results must be recovered. Therefore, as

A —0,
Cop(67,A) — Cp(6™) (5.31)
Cip(67,N) — Ci(67) (5.32)
(6, A) = (37 (5.33)
hy(6F, A) — h(5™) (5.34)

5.3 Boundary Layer Not Near Separation (A << 1)

It was shown earlier that as 67 — oo, A — 0 if A is finite. Therefore, in this limit,
the inner boundary layer is exactly the same as the zero pressure gradient boundary
layer.

Figure 5.1 shows A versus Ry for most of the data which was considered in Chapter

4. ' Note that X is typically of order 1072, even for the relatively low Reynolds number

!The values for u, were those cited by Coles 1968 using the Clauser method. These values will
be challenged later, but the difference does not change the point being made here.
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experiments.

Thus the inner solution for all pressure gradients is effectively the zero pressure
gradient solution, at least away from separation. The reason for this is that A ~ A /6"
in the limit as 6* — oo. The absolute value of A is typically less than 0.3, at least
as long as the flow is not near separation. On the other hand, 6 > 10% always for
turbulent boundary layers.

Thus it will appear that for flows not near separation, there is no influence at all
of the externally imposed pressure gradient on the inner flow, even for finite Reynolds
number. This can be seen another way by rewritting equation 5.9 so that the pressure

gradient term 1is in outer variables; the result is,
121 + fin — AT (5.35)

Since this equation is valid only for 7 < 0.1 (due to the emergence of the convection
terms in the outer flow), the last term is never greater than 0.1A. As long as the
boundary layer is not near separation, |A| is typically less than unity, so the direct
pressure gradient contribution to the inner flow is negligible.

Therefore for all Reynolds number of interest, the inner boundary layer is effec-
tively independent of A (or A), and the zero pressure gradient results apply. As a
consequence,

Cip(6F,A) = Ci(67) (5.36)

(67, A) =2 y(67) (5.37)

as long as A is finite and 0T is large. Therefore, in this limit, only the outer parameter,
C\p changes due to the effect of pressure gradient in the outer boundary layer.

So the only problem for the pressure gradient away from separation is to find

Cop. But there is a constraint among C,,, C;, and =, which using equation 5.36 and
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equation 5.37 reduces to,

dy d C
+ — op

Thus, whatever the dependence of C,, on A, it must not affect v or C; since they are
independent of A in the limit as 67 — oo for finite A. Therefore, from equation 5.28.

5.29, 5.36, 5.37 and 5.38 it follows that

ln%'p = (7 Yso)IndT + Ay, (5.39)

and
dh,,
=) = = Gns)

(5.40)

Since v and C; cannot be modified by h,, it follows from equation 5.40 that the
only way the pressure effect can enter in the solution for C,, is through an additive

function of A only, say, Ah,. Therefore,
h, = h + Ah,, (5.41)

where h = h(07) only is the zero pressure gradient function and Ah, = Ah,(A) only
contains all the dependence on A.

It follows inmediately from equation 5.39 that,

dh
dlnot

Cop - Coo Ahy +
o - @e 61‘]9[(—[715 )

+ (h = hoo)] (5.42)

since Coao /Cino = €xp(hy). Note that the argument of the exponential depends only
on the h — hy for the zero pressure gradient turbulent boundary layer.

This equation can be written more conveniently as,

%ip = gjoo [1 + H} ea:p[(—ln5+

y (;i ) (h = hoo)] (5.43)
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where

IT = [e2 — 1]. (5.44)

Thus all of the the A dependence is contained in IT(A). Equation 5.43 can be rewritten

as,
gf’ = %:[1 +11] (5.45)

where C, and C; are the zero pressure gradient parameters for the same value of §7.

Thus, for finite A and large 0T, the entire effect of the pressure gradient on the
overlap region is reduced to a new additive parameter?, II, which is only a function
of A. Therefore, all the results for the coefficients in the zero pressure gradient case
can be used for the pressure gradient boundary layer with only one new unknown
function of A, namely II(A).

The function h — hy was determined empirically in Chapter 2 to be given by

h — hoo = A/(Ind")*. Substituting the function for h into equation 5.43 it follows,

g—jp = gjoo [1 + H]ea:p[(l +a)

o 5+)a} (5.46)

The skin friction coefficient for pressure gradient boundary layer can inmediately, be

obtained as
U Cox

]
Us G Ind+
It was determined in Chapter 3 that C,o, = 0.897, Cjoo = 55, 7 = 0.0362, A = 2.90

1+ H}e‘"’f"’exp[(l + ) (5.47)

and a = 0.46. Thus only IT needs to be determined as function of A to predict the

skin friction in boundary layers with pressure gradient.

2This is not the same as Coles 1956 II-parameter, although both atempt to account for pressure
gradient effects
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5.4 The Wake and Composite Velocity Profiles

It is possible to use the same composite velocity form proposed for the zero pressure
gradient theory in the pressure gradient boundary layer. First, C,, must be substi-
tuted for C,. And second, the linear term must be modified to account for the fact
that the second derivative at the wall is non-zero because of the pressure gradient.
In outer variables,

_ i R W [t Ly e —¢4\5
o = (1= Coygsin By + {767 + SA@6")*Jeap[—d(m5™)’] +

[Ci(@6*) + Cori(@0™) 1[1 — eap{—d@ )"} - Cy™ ) (5.48)

where the only difference from zero pressure gradient® case is that C,, = C, + II is
used instead of C,. Note that C, = C,(6") only while IT = II(A) only. Thus both 6"
and A must be known. The latter can be determined by iteration using the friction

law (equation 5.47) with
Ue O

+ _
o = gt (5.49)

where Ry and /6 are known from the data.

The composite velocity in inner variables can be written as,

U—U; = [Oiy+7+%] [1— eap(—dy™)]
b o+ g empl-dr™) + [)( - ) Ksin(BL) (550)

3Recall that for zero pressure gradient; B = 2.03, Cyn; = —37 and d = 2.0E — 05. These values
apply also for the pressure gradient boundary layer.
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5.5 The Inner Boundary Layer Near Separation

It was shown in Chapter 4 that at separation A = 1/(2 + H) is the condition for
equilibrium boundary layers at separation Thus, from the perspective of the scaling,
at least, there is nothing particularly interesting for the outer flow. The inner flow,
however, is much more interesting since the condition for negligibility of pressure
gradient effects (i.e., A << 1) is no longer satisfied. This situation was originally
analyzed by Stratford 1959a,b and the scaling variables he proposed can be seen to
fall nicely out of the similarity approach used here.

It is immediately obvious from equation 1.4 that u, can not be a parameter in the
separation limit since u, it is zero in this limit (since 7,,/p = u? = 0). Therefore, the
viscous stress must be balanced by the pressure gradient alone. It follows inmediately
from the similarity of the inner equations at separation that the velocity and length

scales are given as,
v dP,

e == .51
Unl) = 2 (5.51)
and
1 dPy
e == .H2
() = (5.52)

These, are of course, Stratford’s variables.

Thus the velocity profile in the inner region is given by

Ulr,y) = Usep(x)fsep(y/nsep75+a/\) (5.53)

As before, A is the pressure gradient parameter. (Note that in the limit as the

Reynolds number goes to infinity the above equation is independent of 67.)



Chapter 6

Turbulent Pipe and Channel Flows

In this chapter the scales and functions governing turbulent pipe and channel flows
will be determined by employing similar ideas as in previous chapters . It should be
noted that because these flows are homogeneous in the z-direction the exact procedure
applied to boundary layers to get the velocity scales can not be applied. But the
equations of motion for the inner and outer flow can still be used to determine the

velocity scales in inner and outer variables.

6.1 The Scaling Laws and the AIP

The streamwise momentum equation for a fully developed two-dimensional channel

flow at high Reynolds number reduces to

oL@
- pdx Oy

- <uv> +yg—ly]] (6.1)

Like the boundary layer, the viscous term is negligible everywhere but very near

the wall, so that the core (or outer) flow in the limit of infinite Reynolds number is

!This chapter closely parallels George and Castillo 1996.

191
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governed by

1dP 0
.2
0= 7 +fy < uv > (6.2)

In the limit of infinite Reynolds number, the inner layer is governed by

0 oU
0= —|—<uv>+v— 6.3
By uv > +v ay] (6.3)
This can be integrated from the wall to obtain
ul=— <uv > +V3_U (6.4)
dy

where u, is the friction velocity. It is obvious that the inner profile must scale with
u, and v since these are the only parameters in the inner equations and boundary
conditions. Hence, the only length scale is 7 = v/u,, and there must be a law of the

wall in which

Y few®) (6.5)

Uy
where y* = y/n.

Because there is no imposed condition on the velocity, except at the wall, an outer
scaling velocity must be sought from the parameters in the outer equation itself. Since
there are only two, —(1/p)dP/dz, the externally imposed pressure gradient, and R
the channel half-width, only a single velocity can be formed; namely,

1/2
U, — (-%%) (6.6)

Unlike the developing boundary layer, the channel flow is homogeneous in the
streamwise direction, so there is an exact balance between the wall shear stress acting
on the walls, and the net pressure force acting across the flow. This equilibrium
requires that

9 RdP
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which is just the square of equation 6.6 above ; thus, U, = u,. Therefore, the outer
scale velocity is also u,, and the outer and inner velocity scales are the same. Since
the only length scale is R, the velocity deficit relative to the centerline velocity, U,,

must be given by
U-U.

Usx

= foco (g) (68)

where 7 = y/R. Thus channel and pipe flows are fundamentally different from bound-
ary layer flows where asymptotic Reynolds number independence demands that the
inner and outer scales for the mean velocity be different (see Chapter 2).

It is obvious that since the length scales governing the inner and outer equations
are different, no single scaling law should be able to collapse data for the entire flow.
Moreover, since the neglected terms in both the inner and outer equations above
depend on the ratio of length scales (v. Tennekes and Lumley 1972), then neither
set of scaling parameters will be able to perfectly collapse the data in either region
at finite values of Rt = Ru,/v. The Asymptotic Invariance Principle of George
1995 states that the appropriate choices for scaling are those which lead to similarity
solutions of the inner and outer equations separately in the limit for which those
equations themselves are valid, namely R™ — oco. Thus the appropriate inner and

outer scaling laws for the velocity profile are

U R (6.9)

and

2 n@r (6.10)

*

where the outer velocity has been referenced to the velocity at the centerline, U., to
avoid the necessity of accounting for the change over the inner layer. The only other

difference from the boundary layer is that the outer length scale is some measure of the
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width of the channel, say the half-width (or pipe radius), R. Note that both of these
describe the entire velocity profile as long as R = u,R/v, the ratio of outer to inner
length scales, is retained. This is because they represent the same solutions to the
complete governing equations for given R™, but have been simply scaled differently.

If the scaled profiles above are indeed proper scaling laws, then they should by the
Asymptotic Invariance Principle (AIP) become asymptotically independent of R in

the limit of infinite Reynolds number; i.e.,

lim f;(y*, RY) — fi(y")

im fo (@, R+) - fooo (g)

as Rt — oo. In fact, these limiting profiles should be solutions to the inner and
outer equations respectively, which are themselves valid only in the infinite Reynolds
number limit.

Figures 6.1 and 6.2 show the mean velocity profile data from the superpipe ex-
periment (Zagarola 1996, see also Zagarola and Smits 1996) in both inner and outer
variables. Note the excellent collapse very close to the wall (y™ < 100) in inner
variables and over the core region (7 > 0.3). Note also that the region of approxi-
mate collapse in inner variables (Figure 6.1) increases from the wall with increasing
Reynolds number, as does the inward extent of the outer variable collapse (Figure 6.2).
Finally note that the inner scaling does not collapse the data at all where the outer
scaling collapses it best, and vice versa. Both the region of only approximate collapse
and the region of no collapse at all are manifestations of the dependence of the scaled
profiles on Rt as argued above.

Unlike boundary layer measurements, the shear stress for the superpipe data can

be independently determined from the pressure gradient alone. The close proximity
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of the data near the wall to the exact solution valid there (u™ = y™) gives consid-
erable credibility to the velocity measurements, even without correction. The direct
determination of the shear stress from the pressure drop down the pipe (without
choosing it to collapse the ‘log’ layer which can only be assumed to collapse) is espe-
cially important since there is evidence of a lack of complete collapse of the data in
Figure 6.1 outside of y* = 10, especially for the lowest Reynolds numbers. The lack
of collapse is even more apparent for the outer scaling in Figure 6.2 inside of 7 = 0.3

which includes all of the overlap region discussed below.

6.2 The Overlap Layer: Another Application of
Near-Asymptotics

It is obvious that since the outer and inner profiles scale differently and the ratio
of length scales is in fact the Reynolds number, then the region between the two
similarity regimes cannot be Reynolds number independent, except possibly in the
limit of infinite Reynolds number. The actual mean velocity profile at any finite
Reynolds number, however, is the average of the instantaneous solutions to the Navier-
Stokes equations and boundary conditions. And this profile, whether determined
from a real flow by measurement, a DNS simulation, or not at all, exists, at least in
principle, and is valid everywhere regardless of how it is scaled. Therefore both scaled
forms of this solution, f;(y*, R") and f,(y, R") (equations 6.9 and 6.10 respectively),
represent the velocity everywhere, at least as long as the Reynolds number is finite.
In fact, the parameter R uniquely labels the fanning out of the inner scaled profiles
in the outer region and the outer scaled profiles near the wall in Figures 6.1 and 6.2.

Thus, f; and f, are quite unlike their limiting forms, f;o and f,o., which are only



CHAPTER 6. TURBULENT PIPE AND CHANNEL FLOWS 197

infinite Reynolds number solutions for the inner and outer equations respectively. If
fi and f, are considered instead of fi» and f,o (as is usually done), the problem
of determining whether an overlap region exists is quite different from the usual
asymptotic matching where infinite Reynolds number inner and outer solutions are
extended and matched in an overlap region if one exists. Therefore, the objective
here is not to see if f; and f, overlap and match them if they do. Rather, it is
rather to determine whether the fact that these scaled finite Reynolds number solutions
(to the whole flow) degenerate at infinite Reynolds number in different ways can be
used to determine their functional forms in the common region they describe in the
limit. The methodology outlined below (termed Near-Asymptotics) is an extension
of Intermediate Asymptotics (v. Barenblatt 1978), and is necessary because the
traditional approach cannot account for the possibility of the matching parameter
tending to zero, as might be the case.

The fact that analytical forms for these Reynolds number dependent solutions are
not available, and they are only known in principal turns out not to be a significant
handicap. There are several pieces of information about the two profiles which can

be utilized without further assumptions. They are:

e First, since both inner and outer forms of the velocity profile must describe the
flow everywhere as long as the ratio of length scales, RT = R/, is finite, it

follows from equations 6.9 and 6.10 that

1
g(R*)

+ fo(7. R") = fily™, R") (6.11)

where g(R™) is defined by
g(RY) = u, /U, (6.12)

e Second, for finite values of R™, the velocity derivatives from both inner and
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outer forms of the velocity must also be the same everywhere. It is easy to

show that this implies that
yaf o _ y_|_ 8f i
oy oy*

(6.13)

for all values of R* and .

e Third, as noted above, in the limit both f, and f; must become asymptotically
independent of R*; i.e., fo(y, R") — fox(¥) and fi(yT, R") — fi(y™) as

Rt — oo.

Now the problem is that in the limit as RT — oo, the outer form fails to account
for the behavior close to the wall while the inner fails to describe the behavior away
from it. The question then is: In this limit (as well as for all finite values approaching
it) does there exist an “overlap” region where equation 6.11 is still valid? (Note that
boundary layer flows are quite different from pipe and channel flows since the overlap
layer in the latter remains at fixed distance from the wall for all x because of the
streamwise homogeneity, as long as the external parameters are fixed, while in the
former it moves away from the wall with increasing x.)

The question of whether there is a common region of validity can be investigated
by examining how rapidly f, and f; are changing with R*. The relative variation of
fi and f, with Reynolds number can be related to their Taylor expansions about a
fixed value of R*; i.e.,

filyh BT+ ARY) — filyh RY) 1 0filyt;R") ’
ART fi(y*t, RT) T filyt RY) ORY

SZ'(R+, y+) (6 14)

and

o RY +ARY) — fo(; RY) 1 0fo(y; RY) ‘

AR*fo(7, BY) " fo(@.RY)  ORY So(R*9)  (6.15)
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Thus S; and S, are measures of the Reynolds number dependences of f; and f,
respectively. Both vanish identically in the limit as R — oo. If yT, .. denotes a
location where outer flow effects begin to be strongly felt on the inner scaled profile,
then for y* < y*,,.., Si should be much less than unity (or else the inner scaling is
not very useful). Similarly, if 7,,,, measures the location where viscous effects begin
to be strongly felt (e.g., as the linear velocity region near the wall is approached),
then S, should be small for § > 7,,,,. Obviously either S; or S, should increase as
these limits are approached. Outside these limits, one or the other should increase
dramatically.

The quantities S; and S, can, in fact, be used to provide a formal definition of an
“overlap” region where both scaling laws are valid. Since S; will increase drastically
for large values of y for given Rt and S, will increase for small values of y, an
“overlap” region exists only if there exists a region for which both S; and S, remain
small simultaneously. In the following paragraphs, this condition will be used in
conjunction with equation 6.11 to derive the functional form of the velocity in the
overlap region at finite Reynolds number, hence the term ‘Near-Asymptotics’. This
is, of course, Intermediate Asymptotics, but at finite Reynolds numbers.

Because of the movement of the matched layer toward the wall with increasing
R*, it is convenient and necessary to introduce an intermediate variable ¢ which can
be fixed in the overlap region all the way to the limit, regardless of what is happening
in physical space (v. Cole and Kevorkian 1981). A definition of § which accomplishes
this is given by

g=y " R"" (6.16)

or

y* =gRr™" (6.17)
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Since ¥ = y* /R, it follows that
y=gR™"" (6.18)

For all values of n satisfying 0 < n < 1, § can remain fixed in the limit as R — oo
while 7 — 0 and y™ — oo. Substituting these into equation 6.11 yields the matching

condition on the velocity in terms of the intermediate variable as

1
g(R")

+ f(RT'g,RY) = fi(RT"g. RY) (6.19)

Now equation 6.19 can be differentiated with respect to Rt for fived § to yield

equations which explicitly include S; and S,. The result after some manipulation is

y <%§)>R+ N % — RT[Si(y™, RY) fi(y™, RT) = So(7, B7) fo(7, RT))] (6.20)

where
1 Rt d d(1
K(RT) g?> dR* dInR*

Note that the first term on the right hand side of equation 6.20 is at most a function
of R™ alone, while the second term contains all of the residual y-dependence.

Now it is clear that if both
RY|Solfo << 1/K (6.22)

and

then the first term on the right-hand side of equation 6.20 dominates. Evenif 1/x — 0,
the inequalities are still satisfied as long as the left hand side does so more rapidly
than 1/k. Note that a much weaker condition can be applied which yields the same

result; namely that both inner and outer scaled profiles have the same dependence
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on RT, ie., S;fi = S,f, in the overlap range so 1/k is the only term remaining. If
these inequalities are satisfied over some range in y, then to leading order, equation

6.20 can be written as
_0f,
Yy B

1
= (6.24)

The solution to equation 6.24 can be denoted as fél) since it represents a first
order approximations to f,. It is not, however, simply the same as f,, because of
the RT dependence of 1/k, but reduces to it in the limit. Thus, by regrouping into
the leading term all of the y-independent contributions, the method applied here has
yielded a more general result than the customary expansion about infinite Reynolds
number. (It is also easy to see why the usual matching of infinite Reynolds number
inner and outer solutions will not work if the limiting value of 1/x is zero.)

From equations 6.13 and 6.24, it follows that

+— = —
= n (6.25)

An interesting feature of these first order solutions is that the inequalities given by
equations 6.22 and 6.23 determine the limits of validity of both equations 6.24 and
6.25 since either S, or S; will be large outside the overlap region. Clearly the extent
of this region will increase as the Reynolds number (or R") increases.

Equations 6.24 and 6.25 can be readily integrated to yield (to leading order)

1@ R =

K(R+)lny+ Bo(R"Y) (6.26)

and

Oy, RY) =

(R Iny™ + B;(R") (6.27)

In the remainder of this Chapter, the superscript (1) will be dropped; however it is

these first order solutions that are being referred to unless otherwise stated. Thus
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the velocity profiles in the overlap are logarithmic, but with parameters which are
Reynolds number dependent.

The parameters 1/, B; and B, must themselves be asymptotically constant since
the equations to which they are solutions are themselves Reynolds number indepen-
dent in the limit (the AIP). Moreover, the limiting values, ks, Biso, and B,y cannot
all be zero, or else the solutions themselves are trivial. In fact, in the limit of infi-
nite Reynolds number the energy balance in the overlap range reduces to production
equals dissipation; i.e.,

_du” 1

KGR (62

et
Also the local energy dissipation rate e, must be finite and non-zero (v. Frisch 1995).
It follows that 1/k., must be finite and non-zero, consistent with the Millikan 1938
assumption. It will be shown below that these conditions severely restrict the possible

Reynolds number dependencies for the parameters.

The relation between u, and U, follows immediately from equation 6.11; i.e.,

1 1 . P N
o(BF) ~ rey T IBART) = Bo(R)] (6.29)

Thus the friction law is entirely determined by the velocity parameters for the

overlap region. However, equation 6.21 must also be satisfied. Substituting equation

6.29 into equation 6.21 implies that x, B;, and B, are constrained by

d(l//{) d(BZ- — Bo)
l + _ i
nR IR IR (6.30)

Equation 6.30 is exactly the criterion for the neglected terms in equation 6.20
to vanish identically (i.e., S;fi — S,f, = 0). Therefore the solution represented by
equations 6.26 — 6.30 is, indeed, the first order solution for the velocity profile in the

overlap layer at finite, but large, Reynolds number. Clearly when y* is too big or 7
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is too small for a given value of R™, the inequalities of equation 6.22 and 6.23 cannot
be satisfied. Since all the derivatives with respect to R™ must vanish as Rt — oo
(the A.LP.), the inner range of the outer overlap solution is unbounded in the limit,
as is the outer range of the inner.

Thus the velocity profile in the overlap layer is logarithmic, but with parameters
which depend on Reynolds number, R*. The functions x(R"), B;(R") and B,(R")
must be determined either empirically or from a closure model for the turbulence.
Regardless of how they are determined, the results must be consistent with equation

6.30.

6.3 A Solution for the Reynolds Number Depen-
dence

It is convenient to transform equation 6.30 using

HRY = (2 = LRt 4+ (B, - B) (6.31)

K Keo

where H = H(R") remains to be determined. It is easy to show that if H(R™)

satisfies
1 1 dH
S 6.32
K Ke dInRt ( )
then equation 6.30 is satisfied. It follows immediately that
1 U 1
—=—"=—MmR"+ H(R") (6.33)

g  Us Koo
Thus the Reynolds number dependence of H(R') determines that of both s and
B, — B,.

It is easy to show that the condition that both B, and B, be finite and non-zero

requires that:
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e Kither B;, B, and k remain constant always;
or
e (i) 1/k — 1/ke faster than 1/In RT, and
e (ii) H(R") — Ho = constant.
Obviously from equation 6.31,
Hoo = Bisw — Boxo (6.34)

An empirical choice for H(R") — H satisfying these conditions is suggested by

the boundary layer results of Chapter 3; it is,

A

H —Ho = ———— 6.35
(F+) [ln R*]e (6:35)
Note that conditions (i) and (ii) above imply that a > 0.
Using this in equation 6.33 yields
U 1 A
¢ = — InR" 4 [Bjx — Bose 6.36
Us Koo nR I+ [In RT|® (6.36)

As R™ — 00 this reduces to the classical solution of Millikan 1938.
The Reynolds number variation of 1/k and B; — B, can be immediately obtained

from equations 6.31, 6.32 and 6.35 as

1 1 —aA

P a = W (6.37)
and
(Bz - Bo) - (Bzoo - Booo) - % (638)

Figures 6.3 and 6.4 show the friction data of the superpipe experiment of Zagarola

and Smits (1996). Careful scrutiny reveals that the data do not fall on a straight line,
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so a simple logarithmic friction law with constant coefficients does not describe all
the data. Figure 6.4 also shows two curves: The first represents a regression fit of
equation 6.36 (also shown on Figure 6.3), while the second shows only the asymptotic
log form of equation 6.36.

The former provides an excellent fit to the data for all Reynolds numbers and
asymptotes exactly to the latter, but only at much higher Reynolds numbers. The
differences although slight are very important since they entirely determine (or reflect)
the Reynolds number dependence of the parameters 1/k, B; and B,. The latter will
be seen later to be especially sensitive to this dependence.

Since, the data U, /u, is known with excellent accuracy for the superpipe experi-
ment, it is possible to use this information to determine 1/kq0, Biso — Boso, A and a.

The optimization problem is given below as:

e Objective Function:
26

§ Huwe (6.39)

i=1 Cfinr

where ¢y = 2u?/U2.
e Design Variables: 1/keo, (Bico — Box)s A,

The goal is to determine the design variables to minimize the objective function.
The values obtained for the friction law parameters are koo = 0.447, Bjso — Boso =
8.45, while those describing the Reynolds number dependence are A = —0.668 and
a = 0.441. Note that the values of B;,. and B, cannot be determined individually
from the friction data, only their difference. The values of ko, and B, — B, differ
only slightly from the values determined by Zagarola (1996) (0.44 and 7.8 respectively)

using the velocity profiles alone and assuming that the asymptotic state had been
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reached. All the parameters are remarkably independent of the particular range of
data utilized.

For the boundary layer the friction data were not as reliable as those reported
here, so that the functional form of H had to be inferred after a variety of attempts
to describe the variation of the exponent in a power law description of the velocity
profile in the overlap region. Interestingly, the value for a obtained here is almost
exactly the value obtained for the boundary layer data (0.461 versus 0.44). In view
of the differing definitions of the length scales, the physical significance of this, if any,

is not yet clear.

6.4 1Is the Superpipe Rough?

Barenblatt 1996 claimed that the data by Zagarola and Smit (1996) does not ac-
curately represent a smooth pipe, and claimed that there was evidence of surface
roughness present in the last fifteen profiles. The primary reason for this contention
is that the superpipe data were not in agreement with his theory (Barenblatt 1993).
The fact is that even dropping last fifteen points in the data does not change the
coefficients for the present theory. This suggests strongly that the data are in fact
a smooth curve, uncontaminated by roughness, and that the proposed form of H
properly captures the shape of the Reynolds number dependence. Table 6.1

shows how little the coefficients change as the higher Reynolds number data points
are successively omitted from the regression analysis.

Barenblatts’s claim was based on the failure of the superpipe data to agree in
his power law theory. Obviously the analysis presented here does not accept the

applicability of power laws to pipe and channel flows. Moreover, it was pointed out
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Number of points | 1/kec | Bico — Booo | A o

26 2.235 | 8.454 —0.668 | 0.441
24 2.235 | 8.453 —0.668 | 0.441
21 2.235 | 8.454 —0.668 | 0.441
16 2.232 | 8.464 —0.627 | 0.449
11 2.230 | 8.482 —0.653 | 0.456

Table 6.1: Effect of dropping the highest Reynolds number data on determination
of parameters. The number of data points retained beginning from the lowest Re is
given in the leftmost column.

in Chapter 2 that Barenblatt’s theory is inconsistent with asymptotic similarity of
the inner and outer equations for boundary layers. The same is true for pipe and
channel flows since the parameters must also be asymptotically constant and finite,
whether power law or log law. Hence it is not surprising that there is a problem when
Barenblatt attempts to describe data at higher Reynolds numbers than at which the

parameters were originally determined (i.e., the data of Nikuradse 1932).

6.5 The Effect of Reynolds Number on the Over-
lap Range

The parameters established for the friction law will be used below to calculate the
values of k, B; and B, for each Reynolds number of the superpipe data. Only either
of the B’s need be established from the experiments since their difference is known
from equation 6.31. Before carrying out a detailed comparison with the velocity
data, however, it is is useful to first consider exactly which region of the flow is being
described by the overlap profiles. Also of interest is the question of how large the
Reynolds number must be before the flow begins to show the characteristics of the

asymptotic state. Much of this section parallels the boundary layer discussions of
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Chapter 2, but is included here for completeness.

The overlap layer identified in the preceding sections can be related directly to the
averaged equations for the mean flow and the Reynolds stresses. From about y* > 10
to 20 approximately, out to about the center of the flow, the averaged momentum

equation is given approximately by

0 1dP
_fsw > 1ol (6.40)

0:
dy p dx

It has no explicit Reynolds number dependence; and the Reynolds shear stress is
drops linearly all the way to the center of the flow. Inside about 7 = 0.1, however,
the Reynolds shear stress is nearly constant. In fact, at infinite Reynolds number
the pressure gradient term vanishes identically and the mean momentum equation

reduces to
0 < uv >

0= By

(6.41)

At finite (but large) Reynolds numbers this region is similar to the developing bound-
ary layer where the Reynolds stress is effectively constant. Obviously it is reasonable
to expect the overlap region to more or less correspond to this constant stress layer.

Even when there is a region of reasonably constant Reynolds stress, however, this
is not the entire story because of the Reynolds number dependence of — < uwv >
itself. And it is this weak Reynolds number dependence which is the reason that
k, B;, and B, are only asymptotically constant. The origin of this weak Reynolds
number dependence (which is well-known to turbulence modelers) can be seen by
considering the Reynolds transport equations. For the same region, y* > 10 to 20,

the viscous diffusion terms are negligible (as in the mean momentum equation), so
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the equations reduce approximately to (Tennekes and Lumley 1972),

ou; o< ouy,

8Uk 8UZ 0< U;UR U >
>)—=|< ugug > m—+ < upug > - —€ik
81‘2 81'2 81'2

(6.42)

0=—(<p

where U; = Ud;;. Thus viscosity does not appear directly in any of the single point
equations governing this region, nor does it appear in those governing the outer
boundary layer.

In spite of the above, however, viscosity can be shown to play a crucial role in
at least a portion of the constant stress layer, even at infinite Reynolds number.
The reason is that the scales of motion at which the dissipation, €;;, actually takes
place depend on the local turbulence Reynolds number, R; = ¢*/ve. For R; > 1000
approximately, the energy dissipation is nearly completely controlled by the large
energetic scales of motion. These are effectively inviscid, but control the energy
transfer through non-linear interactions (the energy cascade) to the much smaller
viscous scales where the actual dissipation occurs (v. Tennekes and Lumley 1972).
When this is the case, the dissipation is nearly isotropic so €;, &~ 2¢d;z. Moreover, €
can be approximated by the infinite Reynolds number relation: € ~ ¢*/L where L
is a scale characteristic of the energy-containing eddies. The coefficient has a weak
Reynolds number dependence, but is asymptotically constant. Thus, the Reynolds
stress equations are effectively inviscid, but only exactly so in the limit. Note that in
this limit the Reynolds shear stress has no dissipation at all, i.e., €15 = 0.

At very low turbulence Reynolds number, however, the dissipative and energy-
containing ranges nearly overlap, and so the latter (which also produce the Reynolds
shear stress) feels directly the influence of viscosity. In this limit, the energy and
dissipative scales are about the same, so the dissipation is more reasonably estimated

by € ~ vq?/L?, where the constant of proportionality is of order 10. The dissipation
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tensor, €, is anisotropic and €9, in particular, is non-zero (Launder 1993). (Hanjalic
and Launder 1972, for example, take €15 = (— < ujus > /q¢°)e.)

For turbulence Reynolds numbers between these two limits, the dissipation will
show characteristics of both limits, gradually making a transition from e ~ vq?/L?
to € ~ ¢*/L as R; increases. Thus the Reynolds stresses themselves will feel directly
this, and will show a strong Reynolds number dependence. Obviously, in order to
establish when (if at all) parts of the flow become Reynolds number independent, it is
necessary to determine how the local turbulence Reynolds number varies downstream
and across flow.

Over the outer boundary layer (which is most of it), L ~ R/2 and ¢ ~ 3u,. So
when R™ > 7,000, the dissipation in the outer flow is effectively inviscid. Above this
value the mean and turbulence quantities in the core region of the flow should show
little Reynolds number dependence, This is indeed the case as illustrated by Figure
2. The outer region can, of course, not be entirely Reynolds number independent,
except in the limit, and this residual dependence manifests itself in the overlap layer
in the slow variations of k and B,, for example.

The near wall region is considerably more interesting since in it the scales govern-
ing the energy-containing eddies are constrained by the proximity of the wall. Hence,
the turbulence Reynolds number, R;, depends on the distance from the wall, y. In
fact, Ry ~ y™ with a coefficient of about 3; so, in effect, y* is the turbulence Reynolds

number. Because of this, two things are immediately obvious:

e First, as the Reynolds number increases more and more of the pipe (in outer
variables) will become effectively inviscid and will be governed by the inviscid
dissipation relation. And correspondingly, the mean and turbulence quanti-

ties in the overlap layer will become Reynolds number independent, albeit very
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slowly. Clearly these limiting values cannot be reached until the entire over-
lap layer is governed by the infinite Reynolds number dissipation relation and
its coefficient has reached the limiting value. Obviously this can happen only
when there is a substantial range satisfying y* > 300 and for which the mean
convection terms are negligible, typically 7 < 0.1. Thus the asymptotic limits
are realized only when 300r/u, << 0.1R or R™ >> 3000. Therefore the over-
lap layer below approximately Rt = 30,000 should display a Reynolds number
dependence, not only in k, B, and Bj, but correspondingly in the behavior of

<u? >, < uv >, etc.

e Second, there will always be a MESOLAYER 2, below about y* ~ 300 in which
the dissipation can never assume the character of a high Reynolds number flow,
no matter how high the Reynolds number becomes. This is because the dissi-
pation (and Reynolds stress as well) can never become independent of viscosity
— even though the mean momentum equation itself is inviscid above y™ = 20!
This fact is well-known to turbulence modelers (v. Hanjalic and Launder 1972),
but the consequences for similarity theory and asymptotic analyses do not seem
to have been noticed previously. It is particularly important for experimental-
ists who have routinely tried to apply asymptotic formulas to data from to this

region, wrongly believing the mesolayer to be the overlap region.

Thus the constant stress layer is really four separate regions, each having their own
unique character. The overlap layer (y* > 300, 7 < 0.1) obtained in the preceding
section which is nearly inviscid; an ‘in-between layer’ or mesolayer (10 < y™ < 300)

in which the viscous stresses are negligible, but in which viscosity acts directly on the

2This appropriates a term from Long 1976 (see also Long and Chen 1982) who argued strongly
for its existence, but from entirely different physical and scaling arguments which we find untenable.
Nonetheless, despite the skepticism which greeted his ideas, Long’s instincts were correct.
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turbulence scales producing the Reynolds stresses; a buffer layer (5 < y* < 10) where
the Reynolds stress and viscous stress both act directly on the mean flow; and the real
viscous sublayer, the linear region near the wall (y* < 5) where the viscous stresses
dominate. And of these four regions, the overlap layer will be the last to appear as
the flow develops or as the Reynolds number is increased. Thus, the overlap layer will
be the most difficult to identify at the modest Reynolds numbers of most laboratory
experiments. Identification will be easier if the properties of the mesolayer are known,

and accordingly a model for it is presented in the next section.

6.6 The Mesolayer

Using the same ideas as for the zero pressure gradient mesolayer it is possible to

construct a mesolayer model for the pipe and channel flows. It follows that,

du™ c q\ 4+-1 C2\ -2
(Y (L —~ 6.43
dy*t (03> (u*> 4 + (03> 4 ( )

Note that it is the factor q/u, which determines whether the first term on the right
hand side integrates to a logarithm or a power law (or something else). For boundary
layer flows this was shown have shown to depend on a power of y*, consistent with
the power law velocity profile. Pipe and channel flows, however, show a logarithmic
dependence for all quantities. If the additive constant in the logarithm dominates so
that q/u. itself is nearly constant, then the first term yields the logarithmic overlap
profile derived earlier plus an additional term due to the low local Reynolds number;

i.e.,

1

1 _
ut = [E In+B;] + Criy™ (6.44)
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where the parameters ¢1, ¢o and c3 have been collected into 1/k, B; and C,,;. Note
that the second term is unaffected by the behavior of ¢/u.; hence there is reason to
hope that it may be the same for all wall-bounded flows. (Note that equation 6.44
can also be derived using only the overlap characteristics without reference to an eddy
viscosity model.)

Thus the additional contribution of the mesolayer to the velocity profile (in inner
variables) is C’miy+_1. The parameter C,,; must be negative and should be nearly
constant. For the boundary layer profiles it appears that this is indeed the case
and C,,; ~ —37. This value will be used in the next section without any attempt
to optimize it for the pipe flow data. It is important to note that because of the
relative values of B; and C),;, there is no region where the second term dominates, at
least where the assumptions are valid. Therefore there will be no y+_1—layer, only a
modified log region. Moreover, because of this, the first term in equation 6.44 will be
clearly visible only when the second is negligible. Since this is not the case for many
of the low and moderate Reynolds number experiments, it will not be possible to even
identify the parameters B;, B,, and s for most of the data without first accounting

for the mesolayer contribution.

Equation 6.44 can be expressed in outer variables as

- Ve 1 mo
U-0 :—lnR++BO+C

Us, K

(6.45)

where

Omo = OmiR_{—il (646)

Obviously if C,,; is constant, C),, is not.
Before leaving this section it might be noted that it should be possible to calculate

values for the parameters using the values for ¢;, ¢s and c3 from the many turbulence
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models which have determined them. Unfortunately, all have been chosen to conform
to the old log law, and at distances from the wall which are well inside the mesolayer
defined here (e.g., Reynolds 1976). If the above arguments are indeed correct, then

these model constants should be re-evaluated.

6.7 The Velocity Data

Now that the approximate region of validity of the overlap solution has been estab-
lished as 300 < y* < 0.1RT it is possible to test the theoretical profiles and the
proposed model for the Reynolds number dependence. If they are correct, only an
independent determination of either B; or B, is necessary to completely specify the
profile, the rest of the parameters having been determined from the friction data.
Also it should be possible to determine whether the proposed mesolayer model is
reasonable, at least for those data sets where data are available below y* = 300.

For all of the data sets it appears B; = 6.50 is nearly optimal (at least for values
of Rt < 850, the lowest available from the superpipe experiment), so that for the
remainder of this paper it will be assumed that B; = B;,.. This value is very close
to the value of 6.3 determined by Zagarola and Smits (1996) by assuming s fixed at
0.44. Since the difference, B;oo — Boso = 8.45, was established from the friction data,
it follows immediately that B,o, = —1.95. The constancy of B; implies that it is B,
which shows all the Reynolds number dependence of the difference given by equation
6.38.

Figures 6.5 and 6.6 show the theoretical variation of 1/k and B, with Reynolds
number (equations 6.31 and 6.32). Clearly both converge very slowly to their asymp-

totic values. This slow approach has far more relative effect on B, than it does on
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1/k, however, since B, has achieved only 85% of its asymptotic value at RT = 10°.
The observed variation of 1/k and B, and the constancy of B; can be contrasted
with the boundary layer results of Chapter 3 in which C,, the outer coefficient was
nearly constant while the power exponent v and the inner coefficient C; varied over

the entire range of Reynolds numbers available.
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Figure 6.5: Variation of 1/k — 1/ky with R, ko = 0.447

The relative behavior of B, and B; means that the outer profile scaling shows
more variation with Reynolds number in the overlap region than does the inner where
only k varies. This undoubtedly explains a great deal of the problems historically in
establishing what B, is and in determining whether the outer scaling is correct. And

it might also explain the conclusion of Zagarola and Smits (1996) that a different scale
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Figure 6.6: Variation of B, — B,y with R*, B,o = 8.50

for the outer flow is required, especially if attention is focussed on the overlap region

instead of the core region of the flow.

Figures 6.7 and 6.8 show representation of the velocity profiles of the superpipe
data in inner and outer variables respectively, together with the overlap solution
using equations 6.26 and 6.27 and the model equations 6.37 and 6.38. The
vertical lines on each profile show the suggested bounds for the mesolayer model
(30 <yt < 300 or 30/RT <7 < 300/R*") and the overlap region (300 < y* < 0.1R*
or 300/R" <7 < 0.1). Note that because of the varying Reynolds number, the limits
depending on R™ are different for each profile. As noted above, the boundary layer
value for the mesolayer parameter of C,,; = —37 was used.

The overlap plus mesolayer solution provides an excellent fit to the data from

70 < y™ < 0.1R* for the entire range of Reynolds numbers available. The mesolayer
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term captures well the point of departure from the overlap solution, as well as the
deviations from it below y* = 300, even for the lowest Reynolds number where there is
no overlap region at all. It does not, however, describe the profile down to y* = 30 as
expected, since the velocity data bend away from the overlap plus mesolayer solution
back to the overlap solution alone below about y* = 80 — 90. This may indicate
that the lower limit on the proposed mesolayer model is higher than believed, or it
may simply represent a problem with the data used here which were not corrected for
the various sources of error near the peak in the turbulence intensity (Smits, private
communication). The corrections which were applied by Zagarola (1996) to some of
the data were primarily important below y* = 100 and move the data close to the
mesolayer /overlap result. The excellent agreement for 100 < y* < 300, however,
suggests that both the form of the mesolayer model and the boundary layer value
for C,,; are essentially correct. The agreement between experiment and theory is
particularly gratifying in view of the fact that the velocity data were only used to
establish B;, the remaining parameters having been entirely determined by the friction
data.

It is easy to see how the deviations from the log law due to the mesolayer could
be viewed as a separate and distinct region. For example, Zagarola and Smits (1996)
argue that the region 50 < y* < 500 is described by a 1/7 power law with a coefficient
of 8.7, and not the logarithmic profile (with constant coefficients) which fits the inner
solution between 500 < y* < 0.1R*". If a power law is fitted to data generated by
the overlap plus mesolayer profile proposed herein using the constants determined
above, it produces almost exactly the same 1/7-power and 8.7 coefficient over the

same range. Thus it is clear that the same phenomenon is being described.
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6.8 Summary

In summary, the streamwise homogeneity of pipe and channel flows has been seen
to dictate logarithmic profiles. Thus these flows are fundamentally different from
boundary layer flows which exhibit power law behavior. Near-Asymptotics has also
been applied to these flows, and yields results which are in excellent agreement with
the superpipe experiment over the entire range of Reynolds numbers.

The theory of Millikan 1938 was found to be essentially correct, and is obtained as
a limiting condition. The experiments, however, do not reach this limit, not even the
Princeton Superpipe experiment for which 10° < Rt < 5x10°. As a consequence, the
finite Reynolds number aspects of the theory proposed here are essential to under-
standing the experiments, and to determining from them what the limiting values of
the parameters k, B, and B; might be. The data show that B; is constant at 6.50 to
within the experimental error. The values of k and B,, and especially the latter, con-
tinue to vary for all Reynolds numbers of the experiments. Their asymptotic values

have been estimated as 0.447 and —1.95 respectively.



Chapter 7

Summary and Conclusions

A new theory has been set forth for boundary layers (with and without pressure
gradient) and for channel and pipe flows using an Asymptotic Invariance Principle
and Near—Asymptotics. The equations of motion for these flows in the inner and
outer regions become asymptotically independent of the Reynolds number in the
limit of infinite Reynolds number. In this limit (and only in this limit), these inner
and outer equations admit to similarity solutions. These similarity solutions are used
to determine the profiles for boundary layers and channel and pipe flows at finite
Reynolds number. The fact that similarity solutions are strictly valid only for infinite
Reynolds number means that no scaling ‘law’ can work perfectly at finite Reynolds
numbers. Moreover, only the proposed scaling can be Reynolds number invariant in
the limit.

The outer boundary layer is found to be governed by a different scaling law in
the case of boundary layers with zero and non-zero pressure gradient than has been
commonly believed. In particular, the velocity deficit in the outer layer scales as

(U —=Ux)/Usx . (To satisfy Galilean invariance, Uy, can be replaced by the difference

222
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between the free stream velocity and the velocity at the surface.) The Reynolds shear

stress in the outer layer, on the other hand, scales with U2 dd/dz which to first order

2

*)

is uZ, so that the outer layer is governed by two velocity scales. The classical inner
scaling laws using u, and v were found to be consistent with the similarity analysis,
except that their region of applicability is less than previously believed.

In addition for boundary layers with pressure gradient it was found that an equi-
librium flow is one with A = (6/pUZ2)(1/dd/dx)dPs /dx = constant from which it
follows that the boundary layer thickness (¢) follows the imposed pressure gradient
over the boundary layer (i.e., § ~ UX). The new definition for equilibrium boundary
layers proves to be more satisfactory than the old definition of Clauser. In par-
ticular, most flows that were believed not to be equilibrium flows according to the
Clauser definition were in equilibrium when the new definition is used. In addition
the new theory for boundary layers with pressure gradient also applies locally for
non-equilibrium flows.

Near-Asymptotics was used to examine how the inner and outer scaled velocity
profiles in the overlap region behave for finite Reynolds number. The velocity in the
overlap layer for boundary layers was shown to exhibit power law behavior, i.e., for
zero pressure gradient: U/u, = Cyy*™" and U/U,, = C,y". The parameters C,, C;
and v are Reynolds number dependent, and only asymptotically constant. For the
pressure gradient case: U/u. = Cypy*) and U/Usx = C,p). Thus, unlike earlier
theories, the overlap region is not Reynolds number invariant in either inner or outer
variables, except in the infinite Reynolds number limit. The friction law was also
shown to be of power law form; in particular, u./Usx = (C,p/Cip)(RT) . It was
found that the velocity parameters in inner variables for the pressure gradient case are

the same as those for the zero pressure gradient case even at finite Reynolds number
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(i.e., Cyp = C;, v, = 7y) as long as the flow is not near separation. Therefore, only one
new parameter [IT = II(A) only] is needed for the pressure gradient boundary layer to
determine the skin friction, the mean velocity profile for the entire boundary layer at
finite Reynolds number, the boundary layer parameters and even the Reynolds shear
stress at finite Reynolds number.

For the cases of channel and pipe flows, the velocity profiles are logarithmic as
in the traditional theory, but with coefficients that are Reynolds number dependent
contrary to the classical theory. Again, these velocity parameters are independent of
Reynolds number only in the limit as Reynolds number goes to infinity.

New scaling laws for some of the turbulence moments were derived from similarity
considerations of the turbulence Reynolds stress equations for boundary layers. For
the turbulence quantities in the outer boundary layer to be asymptotically indepen-
dent of Reynolds number, it was shown to be necessary that the asymptotic growth
rate of the boundary layer be constant (i.e., dd/dx = constant). A consequence of this
is that the friction coefficient must be asymptotically constant. It was not clear from
the theory or the data available whether zero was an acceptable value of this constant,
or whether the power exponent was itself asymptotically zero. The requirement for a
finite energy dissipation rate in the limit appears to resolve this question by requiring
that the power exponent be asymptotically non-zero, so then the friction coefficient
must be asymptotically zero. (Similar arguments were presented for channel and
pipe flows). Regardless, arguments were presented that these limits are reached well
beyond the Reynolds number range of existing experiments, i.e., Ry > 10°.

By considering the role of viscosity in the single point and two point Reynolds
stress equations, it was argued that there exists a Mesolayer in the region approxi-

mately defined by 10 < y* < 300. In this region the overlap solutions alone do not



CHAPTER 7. SUMMARY AND CONCLUSIONS 225

apply because the local turbulence Reynolds number is too low. A simple turbulence
model, valid in the range approximately 30 < y* < 0.16", was used to derive a correc-
tion to the overlap velocity profile given in inner variables by C,,; /y™ (where, from the
data, C,; = —37). This term only modifies the power law (or the log law in the case
of channel and pipe flows) but never dominates it, so there is no separate y=! layer.
Even so, because of the mesolayer, the overlap region does not even begin to evolve
as a distinct region until Ry ~ 10* since, below this value there is no region satisfying
300 < yT < 0.16", a necessary condition for an overlap to exists. The model was
also applied to boundary layer with pressure gradient and channel and pipe flows. In
both cases the same constant as in zero pressure gradient case was obtained. In view
of the simplicity of the model, better approximations to the mesolayer contribution
are probably possible.

The theory was shown to be in general agreement with the bulk of the experimental
data. From a single empirical relationship, h = A/(In R")®, determined from the
data, both the power, v and the ratio C,/C; could be calculated analytically from a
constraint relationship between v and C,/C;. The asymptotic value of C, = 0.897 is
achieved in the experiments at about Ry ~ 3 x 103, so beyond this, the variation of
C; is known, to within the accuracy and extent of the data. Thus the variation with
Reynolds number of all the boundary layer parameters are known, and the shear
stress as well. The asymptotic values of v, = 0.0362 and C;,, = 55 are achieved
at Reynolds numbers well beyond the range of the data. It is likely that the precise
values for these parameters will change as better experiments become available. These
results also applied for the pressure gradient boundary layer except that C,, needs to
be determined as function of A, the similarity parameter. Equations for the Reynolds

number dependence of B;, B, and x are also obtained for pipe and channel flows. The
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asymptotic values of these are: B, = 6.5, Booo = —1.95, koo = 0.447. For channel
and pipe flows the same functions for H applies, but the coefficient for A is different.
The value for « is the same for boundary layers and pipe flows.

The introduction of empiricism for the Reynolds number dependence of v or k,
the function h(6") or H(R™"), at the very end of the analysis must be contrasted with
the traditional theory where the empiricism appears at the very first step with the
assumption of a velocity deficit law on which all subsequent arguments depend. It
seems likely that even this relationship can be determined from symmetry considera-
tions in the future. It is clear, however, that the proposed form for A(6") can not be
exactly right since the constants A and o depend on the definition of 4. An intriguing
and invariant possibility is the h = A’/(In§*/6+)* where 6 is determined in some
way by the initial (or upstream) conditions. There is some evidence from the bound-
ary layer experiments for such a weak dependence on upstream conditions (e.g., the
imperfect overlap of the skin friction, the integral boundary layer parameters, and
even the values of v, C, and C; between the Smith/Walker and Purtell experiments),
but it was not possible to quantify it in the present study.

The power law dependence of the matched region derived here (for boundary
layers only) was suggested by Barenblatt (1978, 1993) from very different consider-
ations. Unlike Barenblatt’s inferences, however, the theory here suggests that pipe
and channel flows will not show this behavior, and in fact the new theory allows a
clear distinction to be made between the pipe or channel flows, and boundary layers
(Chapter 6). Since the former must satisfy the homogeneous integral momentum
equation, the pressure gradient and wall shear stress are not independent, and thus
only one can enter the scaling (contrary to the assumption of Tennekes 1968, see also

Tennekes and Lumley 1972). As a consequence, u, is the correct scaling velocity for
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the core region and Millikan’s analysis of it is correct. Thus the pipe is governed by a
log law, while the zero pressure-gradient boundary layer is governed by a power law.

It appears that the streamwise homogeneity of the pipe or channel flows dictates
log layers, while the inhomogeneity of the boundary layer dictates power laws. More-
over, the Reynolds number of the flow does not change with downstream distance
for the pipe/channel, but it evolves continuously in the boundary layer. As a conse-
quence, the overlap and mesolayer regions for the boundary layer are slowly moving
away from the wall in physical variables, and the distance from the wall alone cannot
characterize variations within it as for the pipe/channel. Prandtl’s hypothesis that v,
the distance from the wall, is the only length scale in the matched layer is thus only
an approximation for boundary layers, while it is an exact asymptotic limit for pipe
and channel flows.

That the boundary layer is only weakly inhomogeneous accounts for the fact that
the log results have been close enough to be rationalized as correct. It is clear from
the above that the wall layers of boundary layers and pipe/channel flows must be
fundamentally different, however close they might be in practice. Because of the
long period of time (more than 60 years) the log law theory has been believed to
apply to turbulent boundary layers, it is natural to expect some resistance to any
new theory which challenges it, no matter how well reasoned or argued. Part of the
reason for acceptance of the old theory is that it has been believed to have been
more or less consistent with the experimental velocity data which seemed to exhibit
a logarithmic region. (Other philosophical reasons have arisen to justify it, like the
principle of Reynolds number invariance, but it is the data itself which has been at
the root of the faith.) It is, therefore, incumbent on any new theory to not only be

internally consistent, but to explain how so many could have been so wrong for so
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long in believing the old. The dissertation has attempted to do both. At the very
least, it is hoped that a strong motivation has been provided for a new generation of

experiments over the entire range of Reynolds numbers.
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