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Abstract

Experimental data is presented from 138 channels of hot wire anemometry in a
unique investigation of the large scale, or coherent, structures in a high Reynolds num-
ber (Rep = 80,000) fully developed, turbulent axisymmetric shear layer. The dynam-
ics of the structures are obtained from instantaneous realizations of the streamwise
velocity field at a single plane, /D = 3, downstream of the jet nozzle. The Proper
Orthogonal Decomposition (POD) technique is applied to an ensemble of these real-
izations to determine optimal representations of the velocity field, in a mean square
sense, in terms of an orthogonal basis. The coefficients of the orthogonal functions,
which describe the temporal evolution of the POD eigenfunctions, are determined by
projecting instantaneous realizations of the velocity field onto the orthogonal basis.
The coherent structures are thus determined without having to resort to a dynamical
systems model of the layer (v. Glauser et al. (1992)).

The coherent structure dynamics are visualized by examining the time history
of the velocity field produced from the POD eigenfunction-coefficient (or PEA) ex-
pansion. Partial reconstructions of the velocity field using only the first PEA are
presented to visualize the large scale structures in the mixing layer. Combining a
time history of these reconstructions produces an animation of the large scale struc-
tures in the flow. It is possible to confirm that a model describing the interactions of
the large scale structures in the mixing layer from Glauser et al. (1995) is consistent

with the measurements using these animations.
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Chapter 1

Introduction

Large scale structures in turbulent flows have been known to exist for a number of
years but their contribution to the dynamics of turbulent motion has only recently
been investigated. In order to assess the influence of these structures on the turbulent
field it is first necessary to identify them unambiguously. In 1967 Lumley proposed
a method by which the most energetic structures of a turbulent flow field could be
objectively recovered. The method he introduced to the turbulence community was
based on the claim that the large scale, or coherent, structure occurs in an identifiable
manner in a given ensemble of random vector fields, and this structure, or structures,
contribute significantly to the total kinetic energy in the flow field. One turbulent
field in which the Proper Orthogonal Decomposition, or POD, has been applied is
the axisymmetric jet.

The integral eigenvalue equation resulting from the application of the POD to the
instantaneous velocity vector in the axisymmetric jet mixing layer, was solved in an
experimental investigation by Glauser (1987). The most energetic structure recovered

by the POD in this decomposition contained 40% of the turbulent kinetic energy in
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the flow. The second and third structures combined to contribute another 40% to the
energy with the second containing a larger portion. Since the large scale structures
in the flow were now known, it was possible to formulate a model describing the
evolution of turbulent structures in the axisymmetric mixing layer. The model, from
Glauser (1987), suggests that the mechanism for turbulence production in the mixing
layer is based on two interacting rings shed from the jet nozzle a short time apart.
Through induced velocity fields, the trailing ring is able to slow the convection of the
first which causes the trailing ring to “leapfrog” through the larger outer ring (v. fig.
1.1). The outside ring, driven unstable by the trailing inner ring, forms an unstable,
multilobed structure. Eventually, the outer ring breaks into small vortex rings which
in turn are broken into smaller and smaller scales. The instability of the outer ring
is driven by the stretching due to the induced velocity field from the following, inner
ring.

In another description of the axisymmetric mixing layer, Hussain (1986) presented
a model of the dynamics of the large scale structures in the layer. This model suggests
that the turbulence production mechanism in the axisymmtric mixing layer is initiated
by a cut-and-connect process. In this process, a single vortex ring is shed from the jet
nozzle, grows as it is convected with the flow, and becomes unstable. At this point,
the single, multi-lobed vortex cuts and reconnects to form a circular, center ring and
many outer rings (v. fig. 1.1).

While both models appeared consistent with the measurements, they could not
both be describing the same process because of the differences in the center of the
shear layer at the high speed side and the modal formation at the low speed side.
What was needed was a full field, simultaneous measurement of the instantaneous

velocity so that the temporal dynamics of the large scale structures in the mixing
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Figure 1.1: Two models for the motion of structures in the axisymmetric mixing layer.
Part (a) from Glauser et al. (1995) and Glauser (1987) and (b) from Hussain (1986)
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layer could be be visualized at all radial and azimuthal positions simultaneously.

Since the POD provides an objective technique by which energetic structures in a
turbulent velocity field can be objectively recovered, it can be utilized to investigate
the dynamics of structures in turbulent velocity fields, and specificly the axisymmetric
mixing layer. To perform the POD in this case, it is necessary to determine the
coefficients of the orthogonal expansion. These coefficients describe the temporal
evolution of the structures and are vital to understanding the interactions in the
mixing layer (George, 1988). The integral equation which must be solved to obtain
these coeflicients is not trivial because the velocity field downstream of the jet exit
must be measured at all radial and azimuthal positions simultaneously. Since it is
impossible to measure at every point in the flow field simultaneously, the field must
be discretized so that a finite number of velocity measurements can approximate the
integral equation.

These issues, and many others pertinent to the application of large field turbulent
velocity measurements, are presented in this thesis. Also, a hot wire anemometer
design which is uniquely adept at multiple channel, low frequency turbulent velocity
measurements is presented. The POD reconstruction, which is performed using the
velocity measurements made with this hot wire anemometer, and its ability to rep-
resent the true dynamics of the large scale structures in the velocity field is shown.
Finally, an assessment of the mixing layer models described previously can be made

based on the visualization of POD reconstructed velocity field.



Chapter 2

Proper Orthogonal Decomposition

2.1 Introduction

In 1967 Lumley introduced a mathematical technique based on the Karhunen-Loeve
expansion to the turbulence community which could be used to extract the most en-
ergetic motions in a turbulent flow. This technique, coined the Proper Orthogonal
Decomposition or POD, seeks to represent the velocity field into a series of optimal
orthogonal functions, optimal in this case referring to the method by which the or-
thogonal functions are chosen. The first orthogonal function in the POD expansion
is “optimized” such that it contains the largest amount of the kinetic energy in the
flow and successive functions contain decreasing amounts. By choosing a decom-
position of this form, the characteristics of the flow field associated with the mean
kinetic energy can be represented by the fewest possible terms. This is in contrast
to a Fourier type decomposition where the orthogonal functions are predetermined
and are not necessarily reflective of the field; thus, many orthogonal functions must

often be utilized to represent the field. Also, because of the nature of the Orthogonal
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Decomposition, localized phenomena in the turbulent field can be extracted from the
underlying chaotic motion in a way that is not possible by Fourier decompositions.
From the above discussion it is evident that the orthogonal decomposition is a
useful tool when one wishes to study the dynamics of large scale turbulent motion.
In the task at hand it will prove to be indispensable at reducing the dimensions of
the problem and is thus well suited to the task at hand. In this chapter the general
form of the POD will be presented as well as the form of the equations for the flow

field of interest to this experiment, the axisymmetric mixing layer.

2.2 General Decomposition

The Proper Orthogonal Decomposition seeks the most energetic fluctuations in a
random vector field and in the case of a turbulent flow of fluid the vector field of
interest is the instantaneous velocity w;(Z,t). The deterministic functions, ¥;(Z, 1)
are defined by the maximization of their normalized mean square projection on the
velocity vector (Lumley, 1970),

< Jui(@, )05 (7, 0)di [ [u; (@, )05, 1)] da'dt > \
[9,(Z, )05 (%, t)dZdt B

(2.1)

where the asterisk denotes complex conjugation and angle brackets denote ensemble
averaging. The normalization of the projection is done to eliminate amplitude depen-
dence on the resulting functions and instead emphasize the degree of the projection.

The maximization of A is performed via the calculus of variations and the result

is an integral eigenvalue equation of the Fredholm type (Lumley, 1970),

/ Rij(Z, 2, 6)9;(&, ) dZ'dt' = M () (2.2)
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where the symmetric kernel of this equation is the two point correlation tensor
Ri,]‘(f, fl,t, t’) =< Ul(f, t)Uj(f,,tl) > (23)

Since the correlation tensor for this application is Hermitian symmetric, * the
solution to the integral eigenvalue equation, eq., 2.2 for finite total energy fields is
given by the Hilbert Schmidt theory of linear integral equations. This theory provides
a number of useful properties for the set of solutions to eq. 2.2. The most crucial to

this application being,

1. There exists a denumerable set of discrete solutions to 2.2 (97 corresponding to
the eigenvalues A™) where the eigenvalues are real and ordered (A! > A% > A\3..))

and 2.2 may be written,
/R” (&2, )00 (& )dFdt = NN (F) (n=1,2,3,...)  (24)
where n = 1,2, 3... represents the discrete nature of the solution set.

2. The eigenfunctions are orthogonal and can be normalized so that

/ I (&, )0 (T, £)dTdt = G (2.5)

3. The velocity field can be expressed as a linear combination of the eigenfunctions

as
=Y 0,0} (@ 1) (2.6

n
where the random coefficients are obtained using the orthogonality of the or-

thonormal eigenfunctions

- / wi(Z, )0 (&, 1) d7dt 2.7)

!The correlation tensor is symmetric and real, thus it is Hermitian
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and coefficients of different orthogonal functions are uncorrelated i.e. aya; =

A"0, ) where 0§, , is the Kroneker delta.

4. The kernel of eq. 2.2 can be expressed using the eigenfunctions and eigenvalues,
Ri;(Z, @, t,t') =) X"0}(Z, )07 (&, t) (2.8)
5. The turbulent kinetic energy is the sum of the eigenvalues (v. 2.5 and 2.6), i.e.,

E= / < i@, us(3, 1) > didt = 3\ (2.9)

The eigenfunctions defined by 2.4 are referred to as characteristic eddies by Lumley
(1970) and they contain many of the features given to the so-called coherent struc-
tures of turbulence (George, 1988). Note that the eigenfunctions and eigenvalues as
determined by eq. 2.4 are deterministic whereas the velocity field and the coefficients,
given by eq. 2.7 are random. The significance of the eigenfunctions obtained via the
POD can be found in eq. 2.9 where the energy in the flow has been recovered in an
optimal manner, as expected. This implies that since the eigenvalues of the expansion
are ordered, the first eigenvalue can be identified as a “large eddy” (Townsend, 1956).
A summary of the relationship between the POD eigenfunctions and flow structure

is given by George (1988) and Moin and Moser (1989).

2.2.1 This Application

The eigenfunctions and eigenvalues of the POD have already been obtained by Glauser
(Glauser, 1987) for the axisymmetric mixing layer. The knowledge of the eigenfunc-
tions and eigenvalues for the mixing layer led to the development of a model describ-

ing the dynamics of the large scale structures in the mixing layer (v. Glauser et al.
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(1995)). However, the eigenfunctions and eigenvalues do not contain enough informa-
tion to describe the temporal dynamics of the structures because they are stationary
and deterministic. Also, since the magnitude of the eigenfunctions is unity (see eq.
2.5) the coefficients, the a,’s in eq. 2.6, contain all of the amplitude information in
the PEA’s (a PEA is defined as a Product of the Eigenfunctions and the A’s, or coef-
ficients, 7.e. an(ﬁ?) 2. The PEA’s then are the functions which describe the temporal
and spatial evolution of the velocity field in the mixing layer and the first few PEA’s
describe the evolution of the most energetic of the structures composing the velocity
field. It is the goal of this study to experimentally determine all of the functions in the
POD expansion for the streamwise component of the velocity field (the eigenfunctions

AND coefficients) in the mixing layer of an axisymmetric, turbulent jet.

2.3 Statistically Stationary Directions

The POD, as outlined in the previous section, is developed for vector fields of finite
total energy, i.e. statistically inhomogeneous fields. For homogeneous or stationary
fields the equations take on a somewhat more complicated form because the orthogo-
nal functions turn out to be harmonic functions of infinite extent. Consequently, the
structures defined in these directions are no longer local but rather spread over the
entire domain. In this case many terms must be kept in the resulting expansion in
order to preserve the nature of the field.

The POD applied in these directions will produce Fourier functions as the orthog-
onal functions. The most convenient way to decompose these directions is to a prior:

define the eigenfunctions in these directions to be the harmonic functions and allow

2The author wishes to give credit for the PEA anogram to his advisor upon whom the humor
intrinsic to the PEA-POD relation was not lost.
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the coefficients to be the familiar Fourier coefficients. This can be accomplished by
Fourier transforming the stationary and homogeneous directions in eq. 2.2. Then, the
POD can be applied to the coordinate directions which are of finite extent. In the case
of a field where the statistics are periodic in one or more directions, the eigenfunctions
are still the harmonic functions but are discrete functions of the independent variable.

Let the homogeneous and stationary directions in the flow field be represented by

y and the directions of inhomogeneity by x. With these definitions, eq. 2.2 becomes,

R i(z, 2",y — )07 (', y)dy'dx’ = \"97 (z, y 2.10
sJ J 7

Taking the Fourier transform of both sides of eq. 2.10 and using the convolution
property of integrals (Oppenheim and Willsky, 1983) to transform the inside integral
yields,

[ Sisto, o Byop(a, Byda' = A"(E) i, B) (2.11)
where

Sij = / Ry, 2, 7)e 2 D dy (2.12)
is the cross spectral tensor, p'= 4y’ — y, is the homogeneous separation vector and the
eigenvalue and eigenfunctions have become wave number, E, dependent. The original
eigenfunctions and eigenvalues can be recovered through the Fourier transformation
as shown by eq. 2.12,

A" = A™(E)
I (z,y) = 07 (z, k)

So the integral eigenvalue equation depends only on the direction of inhomogeneity.
The directions which are of infinite or periodic extent appear in only a parametric
form. This can be as either a continuous dependence for homogeneous directions or

discrete as for periodic ones.
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2.4 Axisymmetric Mixing Layer

The axisymmetric mixing layer is formed at the exit of a round jet as the high velocity
fluid exiting the jet creates a turbulent shear layer with the quiescent fluid outside of
the nozzle. A schematic of the axisymmetric mixing layer is shown in fig. 2.1 and the
coordinate definitions are (z1,x9,z3) = (z,7,6). The integral eigenvalue equation of

the POD for the axisymmetric mixing layer would be,
/ / / Rij(w, o', r, 1, 0,04, 0)0, (', ', 0, t)r'dr' dg'dt = N9, (z,7,0,¢)  (2.13)

For the present analysis, the streamwise coordinate is fixed at a position 3 di-
ameters downstream of the jet exit. Therefore, the streamwise, or x dependence in
the functionals of eq. 2.13 is dropped from the following analysis while continuing to
recognize its presence.

The velocity field in the mixing layer is statistically stationary in time. Thus,
based on the analysis of the previous section, time may be transformed out of the

equations. Fourier transforming both sides of eq. 2.13 in time yields,

/ / Sii(r, 1", 0,0, F)B;(r', 0, f)r'dr'dd’ = A(f)®;(r, 0, f) (2.14)

where,
Si,j(ra 7”’,9, 01 /RZ] T, r 0 91 ) ZQWfT)dT (215)
(.8, f / 9,(r', ¢, 7)e 2D g (2.16)

where 7 = ' — ¢. Since the time “direction” is of infinite extent, the transformed
variables are continuous functions of the frequency f.
The statistical properties of the velocity vector in the azimuthal direction of the

mixing layer are axisymmetric (Sreenivasan, 1984) and consequently periodic. The
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Figure 2.1: Schematic of the jet mixing layer

13
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orthogonal functions in this direction are then discrete Fourier modes as discussed in

the previous section. The kernel of eq. 2.14 may then be expanded in terms of these

functions,
Si,j(r’ Tla 0, 0’5 f) = Z Ti,j(r, 7'/: m, f)eim(elia) (2.17)
m=0
and
(r, 0, f) = Z W;(r,m, fem™O'= (2.18)

where m is the azimuthal mode number.
The coefficients in the azimuthal expansions, 7;; and 1); are obtained using the

orthogonality property of the azimuthal modes,

1 r2m .
- i — o 1 ! im(6’' —8) o
T j(r,r",m, f) —27T/0 Sij(r,r",0,0', fe d(@ —0) (2.19)
and
Wi(r,m, f) = L /%@v 0, f)e™=0d(e" — 6) (2.20)
J Y b 271' 0 7 s Vs .

Finally, the POD equation becomes,

/ (r, 7' ymy, ) (', my f)r'dr’ = X(my, f)vi(r,m, f) (2.21)

where A has remained as the symbol of the eigenvalue but is now an eigenspectra
decomposed into azimuthal Fourier modes.

The solution to eq. 2.21 is not straightforward. At first glance it appears that
the form of the equation is the same as 2.2 and therefore the Hilbert Schmidt theory
should apply to this equation. However, this is not the case because the kernel in eq.
2.21 is not symmetric Hermitian due to the extra 7’ resulting from the Jacobian of the
transformation to polar coordinates. To utilize the Hilbert Schmidt theory the kernel
must be recast to make it Hermitian symmetric. This involves dividing the offending

metric into two parts, multiplying the entire equation by 7'/? and redefining the tensor



CHAPTER 2. PROPER ORTHOGONAL DECOMPOSITION 15

and orthogonal function. One can then show that the eigenfunctions obtained from
this projection are indeed orthogonal over the rdr plane (see appendix B).
To perform the POD as outlined above, the integral eigenvalue eq. 2.21 is first

rearranged to form,

/ (r,r',m, f) rzwj(r m, f)r' 2dr! = A(m, f)i(r,m, f) (2.22)

multiplying the entire equation by /2 produces,

/T%TM(T, ', m, f)TI%de(TI,m, f)r'%dr' = X(m, f)i(r,m, f)r% (2.23)

Now redefine the kernel and orthogonal functions to be,

Wi:j(r’ Tlﬂm’ f) = T%CTZ’,]'(T’ Tlama f)rlé (224)
and
¢i(ra m, f) = wi(ra m, f)T% (225)
thus eq. 2.21 becomes,
/VViyj (7’, T,, m, f)¢j(rla m, f)dT‘, = )\(m, f)(bz(r, m, f) (226)

Eq. 2.26 is now a homogeneous integral equation of the second kind. For fixed
limits of integration it is referred to as a Fredholm equation and the Hilbert Schmidt
theory is applicable. This again provides a series of useful properties of the eigenvalue

and eigenfunctions,

1. There exists a denumerable set of discrete solutions to eq. 2.26 (47 corre-
sponding to the eigenvalues A™) where the eigenvalues are real and ordered

(A1 (Mo, fo) > Xa(Mmo, fo) > A3(mi, f,) --.) and eq. 2.26 may be written,

/Wz’,j(ﬁ r'ym, £)eF(r',m, fdr' = X" (m, f)é7 (r,m, f)(n=1,2,3,...) (2.27)

where n =1, 2, 3... represents the discrete nature of the solution set.
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2. The eigenfunctions are orthogonal and can be normalized so that
[ trm, )6t m, fldr = b, (2.28)

3. The velocity field, decomposed into azimuthal modes m and frequency f, can be

expressed as a linear combination of the eigenfunctions as

@™ (r,m, ) =Y an(m, £)é} (r,m, f) (2.29)

where the random coefficients are obtained using the orthogonality of the eigen-

functions

an(m, £) = [ @™ (r,m, £)67" (r,m, f)dr (2:30)

4. The turbulent kinetic energy is the sum of the eigenvalues (v. eq. 2.28 and eq.

2.29)

E = / <ul™ (r,m, fuf™ (r,m, ) > dr = ZZ/f/\"(m, Hdf  (2.31)

2.4.1 This Application

The streamwise velocity component of the axisymmetric mixing layer will be measured
at various radial and azimuthal locations to perform the mathematical operations
defined in eqs. 2.27 and 2.30. Since only the streamwise velocity will be measured,

the equations simplify to,

[ Waalrr'm, @G m, fdr’ = X (m, ) (r,m, f) (2:32)
and
au(m, £) = [ @™ (r,m, £)61" (r,m, f)dr (2:33)

An important observation here is that unlike eq. 2.32, the kernel of eq. 2.33

is not a statistical quantity but rather an instantaneous realization of the velocity
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field which has been decomposed into azimuthal mode numbers. Whereas eq. 2.32
will allow sequential measurements of the velocity field in order to obtain a sufficient
statistical measure of the correlation tensor ®, in the recovery of the POD coefficients
the streamwise velocity must be measured at all positions of interest simultaneously to
retain the phase information in the coefficients of eq. 2.33. Therefore a method must
be devised to obtain instantaneous and simultaneous measurements of the turbulent
velocity field in the mixing layer so that the projection defined by eq. 2.33 can be

accomplished.

3This is a result of the stationary nature of the kernel in eq. 2.32.



Chapter 3

Experimental Design

3.1 Introduction

The purpose of this chapter is to introduce the numerical implementation of the POD
equations given in chapter 2. First, the numerical approximation of eqs. 2.32 and
2.33 is outlined and then the design considerations which are crucial to the proper
discretization of the coefficient projection equation (eq. 2.33) are presented. The
position of the hot wire probes in the flow field necessary to recover the pertinent
characteristics of the large scale structure dynamics is also discussed. Of particular
interest is the design of the hot wire anemometer probes which have long sensing

elements to aid in the reduction of spatial aliasing.

3.2 Numerical Approximation

Since the kernel in eq. 2.32 will only be known at discrete positions, the integral in the
equation must be replaced by an appropriate quadrature rule. For this application

Simpson’s 1/3 rule will be used. Discretizing this equation produces for each m,f

18
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combination,
Ny

> Wia(ri,r) ¢ (ri) Hi = A" 91 (r)) (3.1)
i=1
where N, is the number of radial measuring positions and H; is the quadrature weight-
ing.

Eq. 3.1 can be written in the form of a matrix eigenvalue equation (Baker, 1977),
WHf =Af (3.2)

where,

W1,1(7“1,7"1) W1,1(7“1;7”2) W1,1(7°1,7”Nr)
W1,1(7'2,7“1) W1,1(7"2,7"2) WI,I(TQ;TNT)

| Wia(rw,,m) Wia(rw,,r2) --- Wialrw,,7w,) |
H,y
H,
H=| m

Hy,

and

¢1(r1)
¢1(r2)
f= $1(r3)

¢1(Tn,.)

Baker (1977) shows that the numerical accuracy of the matrix eigenvalue solution

is improved when the coefficient matrix is Hermitian (X;; = X7;). The matrix W H
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is not Hermitian but if both sides of eq. 3.2 are operated on by H'/? the resulting

equation will have a Hermitian coefficient matrix, W, i.e.,

Wf=Af, (3.3)
where
W =H:WH? (3.4)
is now a Hermitian matrix and,
f=H3f (3.5)

Simpson’s one-third rule was used for this study and the corresponding H matrix

is,

A
H ="k, (3.6)
3
where
ar=e=10 (3.7)
r= N —1 .

is the grid spacing in r and k; = (1,4,2,4,2, 1) is the Simpson weighting vector.
Following a similar analysis, the equation for the coefficients of the POD eigen-

functions becomes

Ny
an(m, f) = ui(ri,m, )7 (ri,m, f)H; (3.8)
=1

where the equation is solved using numerical integration. Simpson’s one-third rule

was again used to define the quadrature weighting function.

3.3 Design Considerations

To solve the integral eigenvalue and coefficient equations (eq. 3.1 and 3.8) experi-

mentally, the instantaneous velocity must be measured at enough points in the flow
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field so that the approximation to these equations is optimal. What exactly “enough
points” means will become evident shortly, after an introduction to the flow field

under investigation is presented.

3.3.1 Flow Field - Azimuthal Direction

The axisymmetric mixing layer is created at the exit of a round jet and continues to
approximately 5 diameters downstream where the potential core of the jet disappears
and the fully turbulent jet begins. At 3 diameters downstream the mixing layer is
a fully developed, turbulent shear layer. In this analysis the extent of the mixing
layer at z/d = 3 will be defined as 0.15 < r/d < 0.9 where 7 is the radial position
in the flow and d the diameter of the jet at the exit (v. fig. 2.1). An analysis of the
statistical makeup of the axisymmetric mixing layer at x/d = 3 was performed by
Glauser et al. (1995) and his results will be used extensively throughout this section.

In fig. 3.1 (from Glauser et al. (1995)) the streamwise velocity correlation mea-

sured by Glauser at xz/d = 3 is broken into azimuthal Fourier modes,

1

Bi,j ('f', T,, 19) = %

2w i
/ Rij(r, 7', 9)e™ d9 (3.9)
0

where ¥ = 0’ —6 is the azimuthal separation. In fig. 3.1 r = 7' so that various B, ; can
be plotted for each radial position in the jet mixing layer. For : = j = 1, the above
decomposition describes the modal distribution of streamwise kinetic energy in the
azimuthal direction at z/d = 3. Looking at fig. 3.1 it is easy to see that the statistics
of the velocity vector in the high speed (or inner) side of the layer (r/d = 0.1) suggest
the presence of strongly correlated azimuthal structures. The low mode number peak
of the streamwise kinetic energy near the inner portion of the mixing layer is evidence

that a ring like structure exists in that area. As the mixing layer is traversed radially
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Figure 3.1: Azimuthal mode number decomposition of the streamwise velocity corre-
lation tensor for r = 7/, from Glauser et al. (1995)



CHAPTER 3. EXPERIMENTAL DESIGN 23

outward, the kinetic energy in the flow becomes more evenly distributed throughout
the azimuthal modes. By the outside of the mixing layer, /d = 0.8, energy is nearly
evenly distributed in all of the modes with modes 4, 5 and 6 containing a larger
amount. Up to 16 modes contain some amount of energy suggesting a multi-lobed

structure (or structures) exists in this region.

3.3.2 Design Implications

The data presented by Glauser (1995) can be used to determine the number of mea-
surement positions needed to properly resolve the velocity field in the azimuthal di-
rection for the application of the POD. Since this application of the POD seeks only
the most energetic of the structures in the flow field, it is not necessary to resolve all
of the azimuthal modes present in the flow; it is sufficient to recover only the modes
which contribute significantly to the streamwise kinetic energy. For instance, near
the potential core of the jet the first three azimuthal modes are sufficient to represent
the velocity field in this direction. In the outer portion of the mixing layer upwards
of 15 azimuthal modes must be resolved to sufficiently recover the statistics of the
velocity field.

A spatial sampling criteria developed by Glauser and George (1992) states that
the number of measurement positions necessary in a mode limited field must be at

least twice the highest mode present to minimize spatial aliasing, i.e.,
N > 2m

where N is the number of measuring positions and m is the highest mode number that
can be resolved. Using this criteria, only six measurement positions are necessary to
recover the first three modes at the high speed side of the mixing layer and at least

32 positions are required at the low speed side to recover 16 modes.
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3.3.3 Flow Field - Radial Direction

The radial direction does not lend itself to Fourier analysis because it is of finite
extent so the POD is used in this direction to determine the functions with which
to expand. In Glauser’s experiment (Glauser, 1987) the POD was performed in the
radial direction and his data can be used to determine how many POD modes are
necessary to recover the pertinent statistics in this direction. For the streamwise
application of the POD, Glauser found that the first eigenmode contained 40% of the
turbulent kinetic energy with the second and third eigenmodes contributing another
40%. Thus three eigenmodes recovered 80% of the turbulent kinetic energy. This
would certainly indicate that three eigenmodes are sufficient to represent the dynamics
of the large scale turbulent structures in the mixing layer. The spatial sampling
criteria of Glauser and George suggests 6 measurement positions are necessary in
the radial direction to recover these three eigenmodes. Actually, Glauser used seven
probes in the radial direction when he performed the POD but it was found that the
seventh probe contributed little to the decomposition. Therefore 6 radial positions

will be used in the radial direction.

3.4 Probe Array Design

The preceeding sections determined the number of probes needed to resolve the flow
field to a sufficient level of accuracy for this application. In fig. 3.2 the probe array
used in this experiment is shown. There are 6 radial positions and the azimuthal
distribution of probes at these radial positions is, starting at the center and proceeding
outward, 6, 12, 24, 32, 32, 32 thus providing 138 measurement, positions in the mixing

later. Each position in the array will contain a single-wire hot-wire anemometer probe
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and all will operate simultaneously.

3.4.1 Flow Blockage

Flow blockage was of primary concern with the probe array shown in fig. 3.2. With
the transducers used in this experiment however, the blockage was determined to
be less than 4% at the point of the probes main body. The interference at the
actual transducer position is considerably less because the probe sensing element is
extended forward of the probe body by 0.5 in. The concerns about flow interference
downstream of the measurement position due to boundary layer growth and probe
cable interference were addressed by utilizing flow visualization techniques to examine
the flow field before and after the probes were put into position. Using a smoke
wire to mark the fluid flow exiting the round jet, a series of videos were recorded to
qualitatively asses the effects of the probe array on the formation of the axisymmetric
mixing layer. Specifically, we searched for the instances of flow choking to determine
if the probe array impeded flow propagation. Choking was assumed to exist if bent
or irregular streamlines were seen entering the probe array. Over the entire range of
operation of the smoke wire (0.5 - 10 m/s) no instances of flow choking were observed
on the video. Streamlines in the potential core of the jet were straight and virtually
unaffected by the presence of the probe array. Therefore, flow blockage effects were

determined minimal.

3.4.2 Transducer Design

The transducer used in this experiment is the hot wire anemometer. It was chosen be-
cause of its high frequency response, manufacturability and the wealth of information

available on its operation. Also, no other technique of global velocity measurements
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Figure 3.2: Probe array showing location of 138 probes. Note that each circle repre-
sents a single-wire hot-wire probe
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can operate in the high Reynolds number range of this experiment. The anemometer
probes used in this experiment were especially designed for the task at hand and their
unique feature is their exaggerated sensing length which is used to reduce the effects
of spatial aliasing.

Glauser (1987) found the effects of spatial aliasing to be very misleading if not
properly understood. If the velocity field is not sampled at enough positions spatially
an aliasing, or folding, problem similar to that found during temporal sampling will
occur. A detailed discussion of the pitfalls of spatial aliasing is presented in (Glauser

and George, 1992) but an example to elucidate the point is presented here.

Aliasing

Suppose in an experiment there is a periodic signal of spatial frequency ff, that is,
X(t) = Acos(2m fix) (3.10)

The Nyquist sampling criteria states that to recover this signal with a digitized version

of eq. 3.10, the sampling rate in space must be at least twice ff. i.e.,

1

fe=5x (3.11)

where f? is the Nyquist frequency which represents the highest frequency recoverable
from data sampled at Az intervals. Suppose the data is sampled at a frequency less

than twice the Nyquist frequency, f{* = f¥ + f where f < fZ then
X (nAz) = Acos(2m finAz) = Acos(2n f7 + 2n f)nAx (3.12)
substituting in for the definition of the Nyquist frequency,

X(nAz) = Acos(fy — f)nAx = Acos(2n fJ)nAx (3.13)
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Figure 3.3: Aliasing example. In this figure f¥ = 4m™!, the data is sampled at 5 m™!

which records an aliased spatial frequency f* = 1m™'.

where f¥ = f¥ — f7, and the signal frequency, f, has become indistinguishable from
the original frequency, f¥. This phenomenon is called aliasing. Fig. 3.3 shows the
above result visually. In the figure, the sampling rate Az does not provide enough
information about cos 27 f{’t to recover it faithfully; instead, the sampled result is
cos 27 f¥t and all of the information in the original frequency is lost. Note that these
results are true for any band limited signal. The above results are easily extendable
to any “direction” in the field including temporal coordinates ! and since in any real
field there are not one but a large number of frequencies present, the problem of

aliasing can very easily corrupt spectral measurements.
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Figure 3.4: Modal decomposition in the jet mixing layer using a 30 point azimuthal
resolution,from Glauser (1987)
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Figure 3.5: Modal decomposition in the jet mixing layer using a 48 point azimuthal
resolution, from Glauser (1987)
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3.4.3 Aliasing Example in the Mixing Layer

In figs. 3.4 and 3.5 the streamwise azimuthal mode decomposition is shown for two
different € resolutions near the center of the mixing layer (from Glauser (1987)).
The first figure shows the decomposition performed using a 30 position resolution
and the second a grid of 48 probes. The two plots show a slightly different modal
distribution with the lower modes in the 30 point resolution containing more energy
and the higher modes less energy than the 48 point figure. This trend is consistent
with spatial aliasing phenomena where the higher modes cannot be resolved with a
coarse grid and the energy contained in these modes is aliased, or folded, into the
lower ones. Thus the modal energy content as shown in fig. 3.4, while close to the
actual value, is not quite correct.

The problem of spatial aliasing can be addressed in different ways. The grid
spacing can be refined to ensure that all of the modes that contain information are
resolved. Often the grid cannot be refined to the point that all important modes can
be resolved. In this case it is possible to employ spatial filtering techniques which
reduce energy in the higher unresolvable modes before sampling to reduce the amount
of spatial aliasing.

A spatial filtering technique which can be employed in turbulent velocity mea-
surements is to use the natural spatial filtering property of the hot wire anemometer
probe. The probe has a finite size sensing element and thus averages the fluid veloc-
ity along its length. This property can be exploited to reduce the effects of spatial
aliasing. The difficulty associated with the use of hot wire probes in this manner is
there sensing length must be lengthened to gain a noticeable difference in the spatial

filtering effect. However, the probes dynamical characteristics in a turbulent field

!By far the most understood type of aliasing
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depend on the flow, specifically, the element responds to shearing forces encountered
in a turbulent flow and the heat transfer characteristics can change significantly when
the sensing length is much larger than the turbulent scales in the flow. These issues
are discussed in the next chapter in which a numerical and experimental investigation

into the long sensing element hot wire probe is presented.



Chapter 4

Anemometer Probe Design

4.1 Introduction

The purpose of this chapter is to introduce the long sensing length anemometer probes
to be used in the experimental aspect of the present study. Also, a numerical and

experimental investigation of the probe characteristics is presented.

4.2 Long Hot Wire Probes

Transducers of any kind always filter the field they are measuring due to their finite
size. In the case of hot wire anemometer probes, the sensing element of the wire is
the filtering device. Typically when utilizing hot wires to measure turbulent fluid
statistics, one is interested in reducing the hot wire length so that all scales in the
turbulent fluid are resolved. In the case presented here however, the highest wave
numbers (smallest scales) in the turbulent flow do not contribute significantly to the
kinetic energy in the flow and are therefore not important. In fact, the information

in these scales is undesirable since a spatial grid cannot be employed here to resolve

33
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them. It would be better if they were filtered out before the field was sampled so that
the small amount of energy they do contain is not folded into the lower modes. This
can be accomplished by using long sensing length hot wire anemometer probes which

filter the velocity of the fluid over the length of the probe.

4.3 The Hot Wire as a Spatial Filter

The filtering property of hot wire probes was examined by Wyngaard (1968). In an
analytical study using one dimensional spectra, Wyngaard showed that energy in the
high wave numbers of isotropic turbulence is attenuated by hot wire probes for all
but the smallest sensing length probes. Wyngaard was interested in the effects of
the probes sensing length on the high wave number turbulent spectra. Since we are
interested in the low wave numbers, in the following analysis a model of the turbulent
spectrum is used which is representative of all wave numbers in the flow and the
effects of spatial aliasing can be studied.

The hot wire anemometer records a voltage signal which is proportional to the
velocity of the fluid along the length of the probe. The velocity vector measured by
a single hot wire probe of length [ may be written as,

e+1/2
" (F") = 5 / (27, 2, ) ds (4.1)
am—1/2

where 4™ is the velocity vector measured by the probe, @ is the true velocity vector
and 2™ is the position of the center of the hot wire probe (see fig 4.1). In eq. 4.1
the probe is oriented parallel to the x5 axis. Note that eq. 4.1 is just the convolution
of the velocity vector with the wire sampling window which in this case is a top

hat. Other wire sampling windows could be used such as parabolic or exponential
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Figure 4.1: Hot wire anemometer probe

distributions but they are not considered in this analysis.

Representing this integral in Fourier space and manipulating yields (Wyngaard,

1968),
1/2

i@ = [ 7 [ Ry expiF - 7) % | expliksms)ds | dF (4.2)

—1/2
where k = (ki ks, k3) is the wave number vector and @ is the Fourier transform of
the true velocity vector. It is assumed that the turbulence is homogeneous so that
the flow field can be represented using Fourier transforms in the sense of generalized
functions (Lighthill, 1956).
The solution to the integral within the brackets of 4.2 is straightforward and, after

evaluating the limits and using the Euler formula for sin z, gives,

5 (R) . sin(kql/2) | -
= | ] iS5 s
This is an interesting result because it shows that the velocity measured by the

probe is a product of the true velocity and attenuation factor shown in the brackets.

The factor in the brackets is the spatial filter which has been imposed by the finite
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length of the probe. This term is sometimes called the sink function and its magnitude
decreases as the argument, in this case kyl/2 increases. What this means in equation
4.3 is that the measured velocity vector contains less information in the higher wave
numbers than is truly present in the field.

Typically, one isn’t interested in the velocity but in its correlation and its Fourier

transform, the spectrum. The latter of these two can be defined by,
Fi (ki) / / D11 (K1, kg, k3)dkodks (4.4)

where F, is the one dimensional spectrum of the streamwise velocity field and ®;;
is the three dimensional spectrum. The notation used follows that of Tennekes and
Lumley (1972).

Using the analysis presented in eqs. 4.1 — 4.3, the corresponding one dimensional

spectrum as measured by the hot-wire is (Wyngaard, 1968),

m - | sin(kql/2
Fim(ky) / @, (F) l k212/2/ )] dkodks (4.5)

Equation 4.5 describes the effects of finite length hot wire probes on turbulent
velocity spectra. An experiment was undertaken to study the effectiveness of this
model and whether or not the sensing length of the probe attenuated higher wave
numbers in the manner outlined in equation 4.5. The results of the experiment
were surprising and a numerical investigation was initiated to explain the observed

phenomena.

4.4 Experiment

The purpose of the experimental study was to analyze the spatial filtering property

of the wire as given in equation 4.5. The experiment involved the measurement of a
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turbulent velocity field with an extraordinarily long sensing length hot-wire probe. A
long hot wire was placed in a turbulent flow field adjacent to three standard length hot
wire probes. The idea was to study the effects of the sensing length by determining the
spectra of the turbulence with the long wire and comparing that with the turbulent
spectra which is obtained with the three short wires which were adjacent and parallel
to the long wire; the short wires measuring the turbulent field to a much finer temporal

and spatial scale.

4.4.1 Flow field

The turbulent field to be utilized in this analysis is the nearly isotropic field generated
behind a wire mesh. A turbulent round jet of diameter 9.8 ¢cm was fitted with a wire
mesh which was fixed to the outlet of the jet with a screw clamp. The wire mesh
was constructed with 16 threads per inch of 0.0254 cm stainless steel wire. The flow
blockage of the mesh was approximately 25 percent. In the operating condition of
the jet, the velocity of the fluid immediately downstream of the wire mesh was 16.9
m/s producing a Reynolds number based on mesh thickness of 28,000. The probes

were positioned at the center of the jet nozzle to avoid edge effects.

4.4.2 Experimental hardware

The hot wires were made of unplated, 12.7 ym tungsten wire (Sigmund-Cohn, Mt.
Vernon, NY) which was welded to in-house probe holders using the DISA 55A12/13
welder and micromanipulator. The probe holders were made using an injection mold-
ing technique out of Ciba-Geigy Araldite epoxy in which two 0.05 cm steel music
wires were used as leads. In this technique, the steel leads were placed in the middle

of a negative mold and held in place with two end plates. The epoxy was injected



CHAPTER 4. ANEMOMETER PROBE DESIGN

Figure 4.2: Probe alignment in 4 wire experiment

38



CHAPTER 4. ANEMOMETER PROBE DESIGN 39

into holes drilled into the mold and allowed to cure overnight. After the mold was
separated, the probe was extracted and the steel wires were bent to the desired length.
The probes were designed to friction fit into standard brass tubing and connectors
were constructed out of coaxial cable and pressure connecters so that a tight connec-
tion was made between the probe leads and the anemometer cable.

The anemometers used in this study were also made in-house. The description
of them is provided elsewhere (v. (Citriniti et al., 1994)) but the essential features
of the new design for the present application will be provided. The design of the
anemometers follows that of Perry (1982) with some modifications. The characteris-
tics of the Buffalo anemometer are comparable to the DISA M systems with respect
to frequency response, signal to noise ratio and stability and are more than adequate
for the purposes of this experiment (v. Citriniti et al. (1994)).

The configuration of the hot wires in this experiment is shown in fig 4.2. There
were four wires used in all, three of the wires were of standard length (I/d ~ 200)
and one was long (I/d ~ 2,000). The long wire was situated directly above the short
wires approximately 1 mm away. The three short wires are used to determine the
true turbulent field so that a comparison between the turbulent fields as measured

by each length wire could be made.

4.4.3 Results of experiment

Figure 4.3 shows the spectra,F};, as measured by the four probes. The data have been
smoothed using a 20 % bandwidth filter to facilitate viewing. The data set with the
filled box shows the spectra as measured by the long sensing length hot-wire probe.
As can be seen by this figure, the energy contained in the higher frequencies has been

attenuated by the long sensing length probe. The energy reduction is upwards of
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50% in the high frequency region. However, in the low frequency region, the energy
in the turbulent spectrum is also reduced by the long wire. From eq. 4.5, the filtering
function approaches unity as the argument approaches zero. If the turbulent spectra
in figure 4.3 is assumed proportional to the wave number spectra of equation 4.5
then the effect of the filtering function should diminish as the frequency gets smaller.
However, the effect of the probe length is seen to attenuate the energy in the low
frequencies as well as the high frequencies. The energy in the lower frequencies is
attenuated by approximately 20 percent. To investigate this dilemma, a numerical

solution to equation 4.5 was initiated.

4.5 Numerical solution

A numerical solution to 4.5 can be formulated once a model for the three dimensional
spectrum is provided. If the turbulent field is assumed isotropic, the three dimensional

spectrum can be written as (Batchelor, 1953),

E(k)

s (k) = Amk?

where k is the magnitude of the wavenumber vector k and E(k) is the spectrum
function. For evaluation of the integrals in 4.4 and 4.5 the required spectrum is the

streamwise three dimensional spectrum given by (Batchelor, 1953),

&y, (k) = E(k) (1 k%) (4.7)

Arkt k2
and the only remaining closure is for E(k).
There are many models for the spectrum function E(k), most of which use the
assumption of isotropic turbulence. Pao (1965) developed a model for E(k) for use

in the high wave number region of the spectrum. Pao’s spectrum model contains the
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Figure 4.3: Spectra in 4 wire experiment

41
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exponential roll off characteristic of the high wave number portion of the spectrum.
Von Karman (1948) developed a model which is useful in the low wave number region
of the spectrum and Helland et al. (1977) combined these two to create a spectrum
which models both large and small wave number fluctuations. The model of Helland et
al. (1977) satisfies the spectral dissipation constraint of isotropic turbulence presented
by Batchelor (1953),

2 /0 T KE(k)dk = ¢ (4.8)

and also integrates to give the total turbulent kinetic energy,

/0 " E(k)dk = gqﬂ (4.9)

It is important for this analysis that the spectrum is properly modelled at all wave
numbers since it will be integrated over all wave numbers. A plot of the Helland et
al. (1977) spectrum function is presented in 4.4

The Helland et al. (1977) spectrum function, non-dimensionalized by the isotropic

dissipation, €, and the integral scale in the flow, £ !, is given by,

B(R) = a(Re)*/ (R)*[1 + ¥~17/8 exp( 23]1_‘;;1:;4/3) (4.10)

where k = k; /k is the non-dimensional wave number in the k; direction, R, = % is

the turbulent Reynolds number and the overbar denotes non-dimensional quantities.
The substitutions performed were required to transform the infinite limits in 4.4 and
4.5 to finite limits. The kolmogorov constant, o, was chosen to be 1.6.
The one dimensional spectrum can be non-dimensionalized in a similar manner to
yield,
21 1 B(R)
FL (k) //—]€ (1— k)dkdd (4.11)
00

! The parameter £ is not actually the integral scale in the flow but rather a function of it but for
the quantitative aspects of this study it is taken as the integral scale.
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Figure 4.4: Spectrum function, E(k), of Helland et al. (1977) with Reynolds number
dependence
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where 6 is a parameter created by the non-dimensionalization and k1 = k;£. The

non-dimensionalized 1-D spectra is given by,

1
Pl = D (4.12)
11 €2/3 )

The first integral in 4.11 can be integrated to obtain,

1 — —
_ 1 r Ek o
Flyk) =5 / %(1 — ?)dk (4.13)
0
and the corresponding equation for the filtered spectrum is,
o1 — - - (Rl 2
o E(k) _._|sin (5 cos 9) _
Fl’rn — // _ 1 _ 12 N 7 414
11 (K1) /) e (1—-%%) Flcos0)2 dkdo (4.14)

where | = [/L is the non-dimensional wire length.

4.5.1 Numerical solution method

Equations 4.13 and 4.14 were solved with the use of 4.10 using a Gauss-Legendre
quadrature method. Gauss quadrature is a very powerful and efficient technique
of numerical integration which employs unevenly spaced intervals, optimized by the
kernel of the integral. In this application 10 points were used to approximate each
integral and the results of the Gauss integration compared favorably with 100 points

in a Simpson 1/3 integration scheme but ran in about one tenth the time.

4.5.2 Numerical solution results

The unfiltered one-dimensional spectrum, corresponding to eq. 4.13, and the filtered,
or measured, one-dimensional spectrum, given by eq. 4.14, are shown in figure 4.5. As
expected, there is less energy in the measured (or filtered) one-dimensional spectrum

at the high wave numbers than is actually present in the turbulent field. This is
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a direct result of the attenuation factor in eq. 4.14. However, another interesting
feature in fig. 4.5 is the behavior of the measured spectrum in the low wave number
region. Figure 4.6 shows the low wave number region of the spectrum on a linear
scale. In it, the difference between the original and measured spectra at the low wave
numbers becomes evident. At these low wave numbers it was expected that the true
turbulent spectra would be recovered by the hot wire. This was anticipated because
the spatial attenuation factor (v. eq. 4.14) approaches unity as the wave number
approaches zero. However, it is obvious from fig. 4.5 that this is not the case. After
careful consideration it was determined that the answer to this dilemma lies not in
the attenuation factor but in the interpretation of the one-dimensional spectra.

The one dimensional spectrum is determined by integrating the three dimensional
spectrum, as illustrated by eq. 4.4, since the three dimensional spectrum contains
so much information (enough to completely describe the turbulent field). It is this
process which has caused the 1-D spectra to appear to contain less energy in the
low wave number region of the spectrum. This can be illustrated by examining how
the spatial averaging affects the three-dimensional spectrum and how this affect is
translated into the one-dimensional spectrum via eq. 4.4 To see this, it is necessary
to analyze the three-dimensional spectrum and the process used to create the one-

dimensional spectrum.

4.5.3 Three-dimensional spectrum

To facilitate the analysis of the three-dimensional spectrum and the associated one-
dimensional spectrum, the analysis presented here will focus on the streamwise three

dimensional spectrum ®;;(k). For isotropic turbulence, surfaces of constant energy

for this spectrum are shaped like toroids as shown in fig. 4.7. The gray surfaces
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Figure 4.5: Normalized, one dimensional spectra. log-log plot
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Figure 4.6: Normalized, one dimensional spectra. log-linear plot
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represent shells of constant energy in the filtered three dimensional spectrum (v. eq.
4.5). The light shading on the plane slicing through the shell represents energy in the
unfiltered three dimensional spectrum. When the slicing plane is at k3 = 0 there is no
light emanating from it indicating that the filtered and unfiltered three dimensional
spectra are equivalent at that wave number. As the plane moves down the x5 axis (the
direction aligned with the hot wire probe) the filtering function begins to attenuate
the three dimensional spectrum, thus more light is emitted by the slicing plane. Note
that in this figure the wire length is fixed at twice the integral scale of the flow.
As the plane moves further down the £y axis more light is emitted indicating more
attenuation by the probe.

The important point to be made by this figure is that at zero wave number the
true three dimensional spectrum is recovered by the transducer (v. fig. 4.7 and eq.
4.5). The question then is why does the 1-D spectrum show less energy in the low
wave numbers when the 3-D spectrum shows no loss of information in the same range?

To understand why the one dimensional spectra does not recover the true turbulent
field in the low wave numbers it is necessary to analyze the definition of the 1-D
spectrum. Recall that the 1-D spectrum, F};(k;), is defined by the integral in eq. 4.4
with that from a transducer in the same turbulent field by eq. 4.5. After analyzing
eqs. 4.13 and 4.14 it is easy to see that F}; is simply the integral of the 3-D spectrum
over planes perpendicular to the k; direction. In fig. 4.8 the light area on the slicing
plane is a visual representation of F! (k) and the area on the plane bounded by the
solid surface represents F/"(k1). In the first part of the figure the cutting plane is at
k1 = 0. The measured 1-D spectrum at this wave number is smaller (as indicated by

the light emitted by the cutting plane) because of the filtering in the &y direction by
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Figure 4.7: 3-D spectrum for fixed wire length. Gray surface is the filtered 3 dimen-
sional spectrum and shading on cutting plane the energy in the original 3 dimensional
spectrum
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the finite length hot wire probe 2. Thus even at k; = 0 there is a difference between
the measured and true 1-D spectrum. However, there is no difference between the
measured and true three dimensional spectrum, see fig. 4.9 where the effect of the
wire length has been added to the analysis.

In this figure, the gray surface is a contour of a constant energy in the true three
dimensional spectrum. The blue shading on the surface represents wave number
combinations in which the energy in the true three dimensional spectrum equals that
in the measured. Note that the probe is still aligned with the x5 direction. For a very
short sensing length (e.g. a probe length to integral scale ratio of 0.01) the measured
and true 3-D spectra are identical as is evident from the amount of blue shading in the
first of the surfaces. As the wire length gets larger (/L gets larger) the attenuation of
the 3-D spectrum increases along the zo direction, thus the amount of blue shading
decreases in that direction. Note, however, that no matter what the wire length,
the blue shading is always present at the lowest value of k5. This indicates that the
true 3-D spectrum is always recovered at the smallest wave numbers, independent
of the probe sensing length. In other words, the statistics of the turbulence are not
contaminated by the probe in the 3-D spectrum at the low wave numbers.

The conclusions to be drawn from this analysis are:

1. The 1-D spectrum is attenuated by the finite size of the sensing element at
virtually every frequency or wave-number. The alignment of the probe and the
1-D spectrum being measured determine how much, and if, attenuation will

occur.

2. The amount of attenuation produced by the probe increases with probe sensor

length.

2Recall that the probe is oriented in the x5 direction
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Figure 4.8: 3-D spectrum for fixed wire length. See fig. 4.7 for extended caption
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Figure 4.9: 3-D spectrum for various wire lengths. The gray surface is a contour of
the unfiltered 3-D spectrum. The shading represents points of equivalent energy in
the filtered 3-D spectrum
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3. The 1-D spectrum can be a very misleading investigative device for the turbu-
lence researcher due to the inability to assess where energy contained at various

frequencies or wave numbers comes from.

4. The 3-D spectrum will also be attenuated by the probe but the lowest frequen-
cies or wave numbers can be recovered unaffected for even extraordinarily long

sensing elements.

5. The proper energy spectrum is thus the 3-D spectrum even though its experi-

mental determination is somewhat difficult to obtain.

Finally, since the 3-D spectrum can be recovered faithfully, even for long sensing
elements, it is possible to use the finite length of the hot wire anemometer probe
to filter the high wave number scales in the turbulent field without fear of losing
information in the smallest wave numbers (largest spatial scales). Thus the long
sensing element probe can be used to filter out high wave number scales in order to

aid in the reduction of spatial aliasing.

4.6 Application to this Experiment

If the hot wire probes used in this experiment are oriented in the azimuthal direction,
their filtering property will attenuate energy in the higher azimuthal Fourier mode
numbers, as discussed in section 4.3. This property will be exploited later to reduce
energy in azimuthal modes which can not be resolved due to the limited number of
measuring positions in this direction. The filtering function derived in the section 4.3

will for this alignment be,
_ sin(ksl/2)

B2 (4.15)
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where k3 is the wave number in the azimuthal direction. Note that subsequent anal-
yses will focus on the modal energy distribution in the instantaneous velocity field,
therefore the term in brackets of 4.15 is raised to unity power. If the circumference
of the circle into which the probes are placed is 277 then for each azimuthal Fourier
mode, m,

mA = 2nr (4.16)

where A is the wave length of mode m. The wave number in the azimuthal direction

is defined by,

2 m
ks = —=— 4.1
3 A r (4.17)

substituting this into eq. 4.15 provides a relationship between the attenuation factor

and the azimuthal mode number,
sin (2
K= [7( ) (4.18)

As the wire length and radial position in the mixing layer change, so does the at-
tenuation factor, k. A plot of these variations is shown in fig. 4.10 for a number
of [/r ratios. At any fixed radial position in the mixing layer, increasing the probe
sensing length will increase the amount of attenuation in the higher modes, i.e. k gets
smaller. However, if the sensing length of the probe is fixed at 0.4 in. the following

values can be determined,

e Near the potential core (I/r ~ 0.85), kK = 0.75 when m = 3 indicating that the

coefficient multiplying mode 3 is reduced by 25%.
e Near the outer edge of the mixing layer (I/r ~ 0.15) k = 0.75 when m = 16.

Fixing the wire length at 0.4 in. will then reduce information in modes which cannot

be resolved by the probe distribution shown in fig. 3.2. Specifically, information in
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modes higher than 3 near the potential core and modes higher than 17 in the outer
portion of the layer are reduced by more than 25 % thus reducing the amount of
information folded or aliased. Therefore, the long sensing element hot wire probes

can be used to reduce spatial aliaing and have been incorporated in this study.

4.6.1 Heat Transfer Considerations

There are some important concerns when using wires of extended length. The trans-
ducer is assumed to be a linear measure of the velocity vector over its length, therefore
non-linear effects are not incorporated into its use. In the case of long hot wires, the
question of thermal wave propagation in the axial direction of the cylindrical sensing
region must be addressed.

Thermal waves are generated by increased heat transfer rates along sections of the
sensing region. They can be formed by pockets of shear in the velocity field which
occur over a smaller length scale than the sensing element. Since the temperature
of the sensing element is assumed to be uniform for proper operation, these effects
may render the device ineffective. In a detailed analysis of hot wire probe operation,
Corrsin (1963) demonstrated that for probes with an [/d < 1,000 the time scale for
axial conduction in a typical hot wire element is substantially higher than the passage
of velocity gradients in a subsonic, turbulent shear flow. Since the [/d = 800 here,
the effects of shear on the operation of the elements used will be minimal.

Another related concern is the effect of the non-uniform temperature distribution
on the operation of the wire. It is known that the temperature distribution along
the wire is never uniform since the probe support prongs do not become heated®. If

the induced conduction of heat on the wire is substantial, the heat transfer relations

3The prong to element diameter in this experiment is 40:1 so the prongs can be assumed to be
at ambient temperature
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Figure 4.10: Azimuthal mode number filtering caused by hot wire probes oriented in
the azimuthal direction
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developed for the proper operation of the sensor are invalid. Specifically, it is as-
sumed that conduction along the wire is negligible compared with heat transfer in
the radial direction in the wire. If the wires are too short, edge effects could cause
this assumption to be suspect. Champagne et al. (1967) have shown that for wires
with {/d > 200 the end conduction effects are negligibly small. With the wires used
here, these concerns can again be neglected.

To determine whether the wires used in this experiment are responsive to the
turbulent fluctuations of interest in this experiment, a time scale argument similar to
that used by Corrsin (1963) can be made. The time scales important to the operation

of the hot wire element are,

d
T = —
T U
d2
To = —
14
d2
T3 = —
(6]

where d is the element diameter, U is the mean velocity in the flow at the position
of the sensor, v is the kinematic viscosity of the fluid and « is the thermal diffusivity
of the fluid. The first time scale represents the time for the flow to sweep past the
wire, the second is the time for viscous shear disturbances to diffuse a distance on
order of the probe element diameter (i.e., the time for disturbances to diffuse through
the wire) and the third time constant is the thermal field response time. To properly
operate a hot wire anemometer in a constant temperature mode wherein the probe
is calibrated using a steady state method, all three of these time constants must be
much smaller than the time scale of the structures convected past the probe (Corrsin,
1963).

Representative structures which are appropriate to this application are large scale
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structures and a representative time scale for their convection, assuming these struc-

tures are convected with the flow (Townsend, 1956), is given by,

L
UCO’IL?]

Tf:

where L is the integral scale of the flow. In the experimental setup at hand the

following properties are known:

d | 12.7210 %m.

U|12m/s

v | 15.92107%m? /s

a | 22.52107%m?/s

substituting these values into the various time constants yields,
7 = 1.062107%s.

75 = 1.012107 %s.

T3 = 7.172107%s.

0.098m.

" =8.17x1073
12m/s v

Tf:

where the integral scale is assumed on order of the jet diameter. It is apparent from
this order of magnitude study that the hot wire responds in a sufficiently fast manner
(17 > 1,4 =1,2,3). Also, these numbers suggest that a steady state calibration of
mean velocity and voltage will be sufficient to recover the statistics of the velocity

field.



Chapter 5

Experiment

5.1 Introduction

The purpose of this chapter is to introduce the facility which will create the axisym-
metric mixing layer as well as the experimental apparatus used to make the velocity
measurements. Of particular interest is the hot wire anemometer circuitry which
was specifically designed to handle the multiple simultaneous measurements in this

experiment.

5.2 Facility

The turbulent mixing layer used in this experiment is generated by an isothermal, non-
reacting, incompressible, single-phase axisymmetric jet, which is shown schematically
in 5.1. The details of the design are given in (Khwaja, 1981) and (Glauser, 1987).
The blower is a Dayton model No. 4C108 with a 10% in. wheel which contains
6 impellers. Driving the blower is a 1 HP 3 phase AC motor which is controlled
with a Graham A.C. motor controller model #1540-AFC5. The diffuser and settling

99
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Figure 5.1: Experimental jet facility, from Glauser (1987)
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chamber contain 7-20 mesh 25% solidity screens and 1-30 mesh 35% solidity screen
and two sections of honeycombs, made of drinking straws, to eliminate any large scale
disturbances created by the impeller. At the end of the settling chamber is a fifth
order polynomial contraction nozzle. The area ratio between the settling chamber
and exit plane is 10:1 providing an exit diameter of 0.098 m.

The jet facility can create exit velocities from 0.5 m/s to 40 m/s. For this ex-
periment, the exit velocity is 12.5m/s which translates to a Reynolds number based
on exit diameter of 80,000. The turbulence intensity at the jet exit is 0.35% and
the boundary layer at the jet exit was turbulent with an approximate thickness of
0.0012 m. The mean velocity profile is flat to within 0.1%. The measurements will be
made at a position 3 diameters downstream of the jet exit. This position was chosen
because it is representative of the fully developed mixing layer but it is by no means
special. The range of 1 < x/d < 5 is approximately self-preserving and the transition

to turbulence occurs before z/d = 1.

5.3 Instrumentation

The single-wire probes used for this study were constructed in-house using an injection
molding technique with Ciba-Geigy Archery Bow epoxy. Tempered steel music wires
with a diameter of 0.020 in. were used as the support prongs and were held securely
between two halves of a plexiglass mold using aluminum guides. The molds had a
cylindrical probe shape machined into them so that when connected the probe body
formed inside (v. fig. 5.2). The probe manufacturing process began with the cleaning
of the plexiglass molds with isopropyl alcohol and then waxing with three coats of

Carnauba Cream boat wax. Carnauba wax was used because it did not contain silicon
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Figure 5.2: Hot wire probe mold, (mating plexiglass piece not shown)

which was found to foster attachment of the epoxy to the plexiglass. After cleaning
and waxing the mold the Poly-Vinyl Alcohol was appled to facilitate the removal of
the epoxy from the mold upon curing. The two halves of the mold were fastened
together and the epoxy was injected using a 10 cc syringe through the injection hole
until the bleeder hole was nearly filled. A total of 6 cc. of the epoxy was necessary
for the 6 probe molds used. The molds were then placed in a 70° C water bath to
reduce curing time from 24 hours to 1 hour. After the epoxy cured the molds were
extracted and separated and the probe was removed and cleaned. The steel support
prongs were then cleaned and bent to 0.4 in. separation distance using an aluminum
chuck which ensured that all probes were bent to the same specifications.

The probe body is comprised of two sections. The section closest to the sensing
element was 0.1 in. in diameter which is the same thickness as the brass tubing (0.1
in. OD x 0.007 in. wall x 12 in. long) which is used as the probe support. This
eliminated aerodynamic disturbances which could be generated by the seam between
the probe and the support tube. The second section of the probe body has a diameter
of 0.81 in. and fits snugly into the support tube. The two steel support prongs are

deliberately set off center in this section such that one prong passed directly down
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the center of the cylinder and the other protrudes slightly out of the cylinder to make
contact with the brass tubing. This is done so that the brass tubing could be used as
the return lead for the anemometer probe operation. Typically, there are two separate
leads entering a probe support tube but it was necessary to minimize the probes cross
sectional area to reduce the effects of flow blockage.

The single lead exiting the center of the probe body was pressure fitted into a gold
plated surface mount socket (Samtec SC-2SI-GT) which was in turn soldered to the
center lead of RG-174/U coaxial cable. The shield on the coaxial cable was secured
to the outside of the brass support tube using shrink wrap thus completing the line-
return circuit for the probe. Five meter cables were used to connect the probes to
the anemometers.

The probes sensing element was 0.4 in. long and made of unplated 12.7 pym.
tungsten wire (Sigmund-Cohn, Mt. Vernon, NY) thus producing a length to diam-
eter ratio of approximately 800. The wire was welded to the probe support prongs
described in the previous section using the Dantec 55A12/13 micromanipulator and
welder. The probes were operated in the constant temperature mode using a custom

hot wire anemometer circuit at an overheat of 7:;—“) = 1.8.
a

5.3.1 Sampling overview
Turbulent Field

Before statistics of the velocity field can be measured it is important to know the
statistical range of the field of interest as well as the capabilities of the measuring
device. The spatial sampling criteria necessary for the proper discretization of the
velocity field were laid out in chapter 3 and in this section the temporal characteristics

of the velocity field will be examined. The maximum frequency of interest in a
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turbulent field is best estimated by the Kolmogorov scale, 7,

Ue

fe= g

(5.1)

For the parameters in this experiment the maximum frequency as given by eq. 5.1
would be approximately 6450 Hz. The sampling rate necessary to avoid aliasing of
the digitized signal (v. Hardin (1986)) would be twice this number or 12,900 Hz. This
value is representative of the turbulent velocity field alone and does not consider the

attenuation effects of the measuring device.

Measuring Device

The hot wire transducer can respond to fluctuating velocities only if the period of the
fluctuations is greater than twice the probe length. This is a result of the fact that
the probe averages the velocity field along its length (see section 4.3). Using this fact,

a maximum resolvable frequency can be estimated for the hot wire probe as,

U

fo

where [, is the probe wire length. For the parameters in this experiment, f, = 600
Hz. This upper frequency bound may appear at first glance to be very limiting, es-
pecially when the maximum frequency in the flow was estimated to be near 13 kHz.
but because the intent of this experiment is to study the energy containing portion
of the flow, the maximum frequency of interest is much smaller than 13 kHz. To elu-
cidate this point a spectrum was measured in the middle of the axisymmetric mixing
layer with a probe with an I/d = 200 using a Dantec 55M10 constant temperature
anemometer. The result is shown in fig. 5.3. As the figure shows, the energy con-

tent in the flow has decreased by over one decade at a frequency of 500 Hz. This
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Figure 5.3: Spectrum from the mixing layer of the axisymmetric jet at Rep = 80, 000
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frequency is well into the k%2 range of the spectrum and therefore contributes little
to the mean kinetic energy of the flow.

It would be unproductive to resolve frequencies in the spectrum greater than
about 800 Hz. so low pass, anti-aliasing filters were used in the experiment to filter
fluctuations higher than 800 Hz. Accordingly, the sampling rate of the individual
anemometers must be greater than 1600 Hz. to avoid temporal aliasing. The actual
sampling rate of the individual anemometer channels was set at 2,048 Hz. and the
record length of each block of data was 1024 samples giving a bandwidth of 2 Hz. and
a length of 0.5 sec. To reduce the variability of the statistics in this experiment there
were 300 such blocks measured and this reduced the variability to approximately 5
percent *. The blocks of data were separated by at least one integral scale to insure

that they each make an independent contribution to the statistical measure (George

et al., 1978).

5.3.2 Calibration

Calibration of single wire probes consists of measuring the output voltage of the
anemometer over a range of known velocities normal to the wire. The voltage data is
then converted to velocity units by fitting a polynomial (George et al., 1987) function
to the raw voltage data. The response equation has the form,
N
Uly =Y a,B" (5.3)
n=0
where U,y is the effective velocity measured by the probe and N determines the
order of the fit. The advantage of using a calibration such as this over a King’s Law

approach is that least squares optimization can be directly applied to eq. 5.3 and the

!The variability in a random system goes approximately as € ~ 1//n where n is the number of
independent realizations (George et al., 1978)
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principle uncertainty in the fit lies with U. Also, since the desired quantity is the
velocity, U, it can be easily obtained from eq. 5.3 by simple multiplication; ¢.e. no
inversion techniques are necessary which divide the uncertainty in the quantities to
all terms.

The velocity of the fluid at the jet exit was inferred from the plenum pressure us-
ing Bernoulli’s equation. The pressure was recorded in a digitized form by a Validyne
DP103-14 pressure transducer and model CD23 Carrier Demodulator. The pressure
transducer was calibrated against a Meriam Instrument Co. Model 34FB2 micro-
manometer which had an accuracy of 0.001 in. of water. The jet was allowed to run
for at least one hour before calibration so that an isothermal environment was estab-
lished. The voltages were digitized using a Phoenix Data Inc. simultaneous sample
and hold, 15 bit analog to digital computer (A/D) and the data was stored in a SUN
Microsystems SUN4/60 computer via DMA routines. The maximum sampling rate
of the A/D is 325 KHz which when divided by the number of channels of anemometry
yields the maximum sampling rate of each channel. The sampling rate used for this
experiment was 2,048 Hz.

The procedure for calibrating the probes was as follows. The hot wire probe array
(refer to fig. 3.2) was placed in the flow 4 mm downstream of the jet exit plane
described in section 5.2. The velocity of the fluid at the jet exit is flat to within 0.1%
and the boundary layer was small enough so that the jet was assumed to provide
a constant, laminar flow for calibration. Since the exit diameter of the round jet is
smaller than the diameter of the probe array, a series of 5 calibrations was necessary.
The array was positioned so that the maximum number of probes could be calibrated
at each of the 5 positions. By varying the exit velocity of the jet and recording the

voltage output by each anemometer, a series of data points were obtained and the
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coefficients in eq. 5.3 were calculated. Typical errors between the calibrated and
measured velocities were less than 0.2%. For this experiment, p = 0.5 and N = 3. A

set, of calibration curves using this polynomial fit is given in fig. 5.4.

5.4 Anemometry

Because of the large number of hot wire probes needed in this experiment (138),
commercial anemometers were deemed cost prohibitive (upwards of $20,000 for 16
channels). So a team at SUNY Buffalo designed, manufactured and tested a less ex-
pensive but equally effective hot wire anemometer circuit. The anemometer that was
produced was a compact (16 of them fit on a 9 in. x 11 in. circuit board) inexpensive
(less than $50 per anemometer including all hardware costs) and effective (typical
circuit performance equals that of the Dantec M systems) anemometer system.

The design goals for the circuit were relatively modest. The maximum frequency
of interest in the flow is at 800 Hz. and thus the sampling rate necessary for each
anemometer channel is only about 1600 Hz. Therefore, the extra circuitry found in
most commercial anemometer systems which boosts frequency response into the 50-
60 kHz. range is unnecessary for this application. This relaxation of the frequency
response requirement for the circuit allowed for a number of innovative ideas which
proved useful for the gathering of large amounts of data.

The anemometer circuit was built around the feedback loop discussed in Perry
(1982). It was chosen because of its simplicity and extensive documentation. It
requires only two operational amplifiers and a Wheatstone bridge, lends itself readily
to the numerous anemometers required, and possesses a frequency response which far

exceeds the requirements of this study.
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Figure 5.4: Sample of calibration data (shown as symbols) and the corresponding
polynomial fit (solid lines)
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5.4.1 Feedback loop

The principal component in the circuit is a Wheatstone bridge with a bridge resistance
ratio of 10:1 (v. fig. 5.5). Two low noise, wide bandwidth operational amplifiers
(National LF347 Quad JFET) are used to amplify the bridge unbalance voltage. The
second of the two has an adjustable offset voltage which starts the feedback operation
and controls the tuning of the frequency response in the feedback loop. The open-
loop voltage gain for both op-amps is 10°. A Darlington transistor, which follows
the second op-amp, is used to boost the current in the feedback loop in order to
drive enough current to heat the long sensing element hot wires to their overheat
state. The hot wires, operating at their overheat value drew 200mA per anemometer
channel from the power supply driving the bridge. The bridge is driven off balance by
a Clarostat 200 €2 adjustable potentiometer. The voltages used to power the op-amps
and transistor were +15 V and -15V and the +15 V was also used to power the bridge
through the transistor.

There are no adjustments available in the feedback loop to compensate for cable
inductance or capacitance because these effects were found insignificant during pre-
liminary testing. In particular, during the initial design phase cable compensation was
included and the increased frequency response attained with the cable compensation
was less than 3% based on overshoot estimates using a square wave test. Also, the
stability of the circuit was not affected by the presence of the cable compensation to
a sufficient degree as to warrant their inclusion in the circuit. The numerous channels
of anemometry would require individual tuning of the compensating devices and this
would not only be tedious but the phase differences induced between channels would
be detrimental to the simultaneous acquisition of data. The frequency response can

be improved by adjustment of the offset voltage on the second operational amplifier,
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Figure 5.5: Anemometer circuit diagram
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and this provided sufficient adjustment for the frequency response tuning.

5.4.2 Output stage

The bridge-top voltage is fed into an 8" order, low pass Bessel filter (MAXIM -
MAX296) to prevent aliasing of temporal signals due to the low overall sampling rate
of the each anemometer channel. The corner frequency of the filter is set with an
external function generator and has a range of 0.1 to 25 kHz. The filters have a 48
dB per octave roll off and their phase angle is linear in frequency. This last property
is critical to the operation at hand because all 138 anemometers must sample the
velocity field simultaneously. Other filters, (e.g. Butterworth filters) have non-linear
phase shift properties making it difficult to insure that all measurements are made
simultaneously. With a linear phase shift the effect of the filter on the velocity
measurement is simply to impose a phase lag and all anemometers experience the
same lag. This property is best explained with an example.

If the low pass filter is imagined to be a black box with the velocity (or voltage)
signal entering, the signal leaving the box will be a phase shifted and amplitude

modified version of the input,

i(f) - — A(f)e Vi f) (5.4)

where 4(f) is the Fourier transformed velocity vector, A(f) is the amplitude mod-

ulation, @(f) is the phase shift introduced by the filter and 7 is v/—1. Let 4;(f) =
e 4(f) be the output of the black box. Using the definition of the Fourier trans-

form,
o

us(t) = / e 2ty (F)df (5.5)

—00
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and substituting for 4 ,(f) yields

o

us(t) = / e~ 25Tt id) () df. (5.6)

—0o0

The linear phase shift property of the Bessel filter implies

¢ =2mqf (5.7)

where ¢ is the slope of the phase shift. Combining eqs. 5.6 and 5.7 gives,

o

up(t) = [ DAy (f)df (5.8)

The presence of the (t — ¢) term in 5.8 shows that the linear phase shift of the
Bessel filter merely adds a constant time lag to all velocity measurements. Thus, if
all filters are phase matched, the net effect of the Bessel filters is to delay all signals

by the same time constant. In fact if A(f) =1,

r(t) = u(t —q) (5.9)

After the Bessel filter stage, the voltage is passed into an output control section,
the purpose of which is to adjust the output voltage range and level so that it can be
read by the A/D in the lab at SUNY Buffalo which has a maximum input range of
-10V to +10V. Adjusting the output control voltage (Voc) and the trim potentiometer
in the output control stage of the circuit provides a way to maximize sensitivity of
the analog to digital conversion. The sensitivity of the A/D is determined by the
input voltage range and the number of bits available for conversions (15 for the A/D
at SUNY Buffalo). For the 20V range and 15 bit resolution the sensitivity for the
A/D s, S = AV/2" = 20V/2" = 6.10352107*V/bit. The smaller S gets the more

effect quantization noise influences the output signal. To maximize the sensitivity,
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the full voltage range of the A/D should be utilized. For this experiment, the typical
operating range was only 4V, but this provided enough range to minimize the effect
of quantization noise while avoiding clipping (Tan-atichat and George, 1985).

The final components on the output stage of the anemometer circuit are the
sample and hold and multiplexer. Both devices are normally found on the A/D and
not the anemometer. Because we were interested in 138 simultaneous measurements
and A/D channels are not cheap, it was desirable to reduce the required number of
A/D channels by multiplexing all anemometers on a board through a single A/D
channel. By placing the sample and hold on the anemometer, it was possible to
simultaneously sample all probes and then multiplex all the anemometer channels on
a single board to one A/D channel. The A/D scanned the boards at a high rate,
taking one sample from each board per pass. When the A/D had completed a scan
of its channels, it could increment the multiplexer on each anemometer board to the
next anemometer channel. In this way, all channels on all boards could be digitized.
This great reduction in hardware was possible because the throughput rate of the
Phoenix A/D (325 kHz) was much greater than the sampling rate of the individual
channels (2 kHz).

It was decided, because of typical micro-chip construction, that 16 anemometers
would be placed on a single circuit board. The duty of the multiplexer is to select a
single anemometer signal out of 16 to be sent to the A/D. The 16 channel differential
analog multiplexers (Analog Devices - MUX16FP) are fabricated with Bipolar-JFET
technology and the channel addressing is controlled by a 4 bit binary switch. With
16 anemometers per board a total of nine full boards were required. This provided a
total of 144 anemometers, but only 138 were utilized.

To ensure simultaneous acquisition of velocity measurements, each anemometer
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required a sample and hold. The sample and hold is a circuit device which, when
directed, will hold the current value of the input voltage for a finite length of time 2.
The sample and holds circuits used here are Burr Brown 12 bit DIP design (SHC298)
with less than 10us. acquisition time, a low droop rate (ImV/ms) and an aperture

time of 200 ns.

5.4.3 Construction and assembly

The 16 anemometers are arranged on the circuit board in three rows of five with one
channel in the lower left section of the board (see fig. 5.6). The multiplexer, input
power connections and lines to a digital control board are located on the bottom of
the board. The circuit photo-plot artwork was performed by Circuit Design Services
in Buffalo, NY and the board manufacturing and component population by Buffalo
Circuits also located in Buffalo. The boards are 22.86 cm. (9 in.) wide and 27.94
cm. (1lin.) long and are composed of three layers. The first layer is the solder layer
(bottom) of the board is the side which is placed in the solder tank for component
soldering. The second layer (top) contains the horizontal circuit traces and is the
side of the board containing all of the circuit components. The third layer is the silk
screen layer which marks all of the components on the top side of the board. There
is a solder barrier covering both sides of the board which prevents cold soldering of
any lines not meant to be connected. Two of the photo plots are presented in figs.

5.7 and 5.8 which show the top and bottom layers of the board.
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Figure 5.6: Picture of 16 channel anemometer board
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Figure 5.7: Photo plot of board layer 1
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Figure 5.8: Photo plot of board layer 2
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Figure 5.9: Picture of anemometer board housing
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Figure 5.10: Circuit diagram of digital control board
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Figure 5.11: Timing diagram for digital control board and A/D
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5.4.4 Anemometer Board Housing

The 9 boards of 16 anemometers are attached to aluminum front plates which are
mounted on a vertical rack (v. fig. 5.9). The aluminum plates have holes drilled in
them so that the two trim pots controlling overheat adjustment and output control
can be reached. Also, there are two more holes per channel on the front panels for
access to the bridge top and wire top voltages. The boards are arranged two per
plate with the top plate containing only one board. The other half of the top plate
contains the power switch, the communication lines to the A/D, the manual override
switch for the sample and hold and a hard-wired binary addressing system for the
multiplexer to allow for manual testing of individual channels.

One additional component is necessary to control the timing of the circuit, the
digital control board (v. fig. 5.10). The digital control board (DCB) is the brains of
the anemometer operation, it controls the timing of the MUX, the sample and hold’s
and the A/D. The timing for the circuit is critical to its operation so a description
of the timing process is presented. When the user is ready to begin sampling data
a GO pulse is issued from the A/D (v. fig. 5.11). The GO pulse resets the entire
system such that each MUX sets its analog switch to the first anemometer channel
on each of the 9 boards of 16 channels 2. The sample and hold on each anemometer is
then instructed to hold the current value in its register (which is the output voltage
of the anemometer it is connected to). The digital control board then sends a pulse
to the A/D to begin sampling all of its 9 connections. After reading all 9 channels
the A/D sends an EOS (end of scan) pulse to the DCB and the DCB instructs the

MUX’s to switch to channel 2 on each board. The sampling process is repeated until

2In a typical application the sample and hold will hold the input value with a accuracy of up to
5mV /minute
3 All boards are set up in parallel so that when one board receives a signal, all receive it.
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the voltages from all 16 anemometers on all 9 boards are read.

During the data acquisition phase the sample and holds maintain their value and
since all sample and hold chips are strobed simultaneously, all channels of anemom-
etry record the voltage measurement at the same instant. Therefore all measure the
velocity at the same instant. In summary, all channels are sampled simultaneously,
then held and read by the A/D when convenient. This is possible because the low
overall sampling rate for each anemometer (2,048 Hz) is less than the maximum at-
tainable frequency of the A/D (325 kHz. + 144 channels = 2257 Hz. maximum per

channel).

5.4.5 Operation

The process of setting up and operating each channel of anemometry proceeded as
follows: The probes were inserted into their positions on the probe array 3.2 and
connected to the BNC connectors on the aluminum front plates of the cabinet. Once
the probe is connected it is ready for operation. There is no way to compensate for
the probe cable resistance so the overheat can not be adjusted as on most commercial
systems. The cold resistance of the cables, R, must be measured and subtracted off
the wire resistance as the final step in calculating the wires hot resistance. In this
configuration the bridge is never really “zero-balanced”.

The hot resistance of the wire, necessary to calculate the overheat ratio, is mea-
sured while the wire is in operation. This is accomplished by measuring the bridge
top voltage, V;, the wire top voltage, V,,, and using Ohm’s Law to calculate the hot

resistance, R, of the wire (v. fig. 5.12),

Vi,
= 1
Ry =" (5.10)
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Figure 5.12: Sketch of Wheatstone bridge

where [, is the current in the probe arm of the bridge. The current through the hot

wire is calculated using the bridge top current,

V;f - Vw
I, = 5.11
i (511)

Once the hot resistance of the wire is calculated, the cable resistance R, is subtracted

off and the overheat ratio can be calculated,

_ (Rw — RC)

=1.8 5.12
Rcold ( )

where R.,q is the cold resistance of the probe. All information is now available to
calculate the overheat ratio via 5.12. The overheat ratio is calculated and if it is not

1.8 the bridge resistance, R3 in fig.5.12, is adjusted until it reaches 1.8. Typical values
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for the parameters listed are given below.

Rega 4.889Q
R, 8.79Q
R, 1.920
(5.13)
V,  1.90V
V,  6.35V
Ve —.AT5V.

5.4.6 Circuit performance

The individual anemometers were tested in the lab at SUNY Buffalo to determine
their performance characteristics. The frequency response of the anemometers was
determined using a square wave test with a hot wire probe in a uniform laminar flow
field. The frequency response was calculated using Freymuth’s equation (Freymuth,

1977),
1

fi= 1.37

(5.14)

where 7 is the time for the anemometer to respond to the rising or falling edge of the

square wave (Freymuth, 1977). The test parameters were,

l/d =200
@ = bum. (5.15)
Uezit = 10m/s
feorner = 20kHz
The laminar flow field used was the potential core of an axisymmetric jet. A square
wave was fed into the bridge circuit at the wire top and ground points of the Wheat-

stone bridge (v. fig.5.12), in parallel with the hot wire probe as discussed in Freymuth

(1977). The principle behind the test is an electronic pulse produced by the square
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Figure 5.13: Spectra in mixing layer of jet using the Buffalo and Dantec anemometers
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wave generator is indistinguishable from a real velocity pulse by the bridge and the
frequency response of the bridge can be measured without a true velocity pulse in
the flow. The square wave test for the Buffalo anemometers produced a frequency
response of about 12 kHz. This value may appear low but it can be increased by
using a smaller wire and placing the probe in a higher mean flow. For the purposes
of the measurements at hand* this frequency response is more than sufficient.

To insure that the anemometers were working correctly, a test was devised wherein
the Buffalo anemometer was compared with an industry benchmark, the Dantec 55M
anemometer. A spectrum of the turbulence in the axisymmetric mixing layer was
made with the two anemometers and the results are shown in fig. 5.13. The spec-
tra recovered by the two anemometers are identical up until about 2 kHz. At this
point the Dantec unit appears to extend the frequency range of the spectrum while
the Buffalo anemometer attenuates the spectrum past this frequency. However, the
apparent gain in frequency response by the Dantec system is a result of a frequency
compensation circut which Dantec adds to their systems. The Dantec units add an
amplification section to their output conditioners which causes the output to be am-
plified by a +6 dB per octave ramp function. This compensation assumes the roll
off in the frequency domain is due to inadequate temporal resolution which is a -6dB
per octave, but only for hot wires. The compensation unit cancels out this roll off
and increases the effective frequency response of the anemometer. This effect can be
easily demonstrated by operating the anemometer in the hot film mode where the
compensating circuit corrects for a -3dB/octave roll off (since hot films roll off at
-3dB per octave). In this case the effective frequency response is again extended but

because the hot wire does not roll off at the same rate as the hot film, the Dantec

4In fact many of todays experiments would be suited by these anemometers
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circuit over compensates for the thermal lag induced roll off (see fig. 5.13). Now, in
fact, in many applications, the spectral roll-off is not due to thermal lag, but due to
spatial resolution of the wire. And it is not a -6dB roll-off but an unknown amount
determined by the turbulence being measured (v. Wyngaard (1968)). Thus, the roll
off in the spectrum after 2 kHz. is due to the length of the probe because it is unable
to resolve the turbulent scales at these frequencies. The frequency at which the probe

can no longer resolve the scales of the turbulence is,

Ue

fe=5

(5.16)

using the parameters of the test, the probe roll off should be near 1600 Hz. This is
approximately where the Buffalo anemometer begins rolling off. Therefore, it appears
that the Buffalo anemometer provides a more accurate measure of the true turbulent
field, and the apparently greater frequency response of the Dantec anemometer is

simply the anemometer compensating for the wrong thing.

5.4.7 Circuit noise properties

Considerable effort was made to keep the noise in the circuit to a minimum. The
circuit board design provides a clean connection for all components. A large ground
plane was absolutely essential to eliminate external noise and cross talk. This is
because the large number of channels and the high current draw from each long hot
wire could create voltage differences in the ground with its small, but finite, resistivity.

The cabinet which houses the anemometer boards was grounded to a building
ground which was separate from the analog ground of the anemometers. The power
supplies in the cabinet were shielded from the boards with a section of aluminum

flashing which was connected to the cabinet ground. Each anemometer board had its
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Figure 5.14: Coherence in mixing layer of jet using the Buffalo anemometer
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own analog ground connection using 10 gauge wire so there were no internal ground
loops between boards. A careful ground network was installed, including a brass
strip which acted as the trunk of the grounding tree. The triax cables connecting the
output of the MUX to the A /D ® were used so that the outside shield could protect the
twisted pair leads from external noise. The shield was grounded at the anemometer
cabinet so that no ground loops existed between the cabinet and the A/D. The A/D
inputs are differential and the analog ground is separate from the power ground so
there were no ground loops through the building either.

To test the anemometer noise properties the Dantec 55M system was again em-
ployed. The two anemometers were connected to the same probe which was placed
in a laminar flow field (the potential core of the jet) of 10 m/s. The output rms
voltage of each anemometer was calculated using a Dantec 55D35 rms voltmeter and

the results show a reduction in noise level for the Buffalo anemometer.

Vims = 12.15mV  Buffalo anemometer

Vims = 19.10mV  Dantec anemometer

Since part of the difference in the rms measurements could be attributed to the lin-
ear bandwidth of the Buffalo anemometer, the spectral level of the noise was further
examined. This can be determined by analyzing the value of the spectrum in the
highest frequency. Since there is no energy in the spectrum at the very high frequen-
cies the energy content there must be noise. Fig. 5.13 shows the difference between
the Buffalo and Dantec spectral noise levels. The higher noise level in the Dan-

tec anemometer can be attributed to the compensation unit discussed earlier which

SThese cables were about 20m. long because the A /D was in a separate room from the experiment.
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amplifies any signal it encounters including noise.

5.4.8 Multiple channel testing

To examine whether cross-talk existed between anemometers on a board, two adjacent
anemometer channels on a single board were chosen for a test. The test involved the
simultaneous measure of the spectrum in two different jets at two different Reynolds
numbers. The coherence function of the two spectra was analyzed to see if there was
any relation between the two channels. Zero coherence represents two independent
random processes and unity coherence represents 2 linearly correlated signals. Fig.
5.14 shows the coherence function as well as the two original spectra. The coherence
function is practically zero (0.02) over the entire range of the spectrum indicating no

correlation or cross talk between channels.

5.5 Summary

These tests display the attributes of the Buffalo multi-channel anemometer. The de-
sign is optimized to perform many channel measurements with only a few channels of
analog to digital conversion. The circuit has been shown to capture the true statistics
of the turbulent velocity field when compared to an industry standard anemometer
circuit. The noise level is lower in the Buffalo anemometer than in anemometers com-
mercially available and there is no cross-talk between anemometers on a board. The
design is well suited for the experiment at hand which requires simultaneous velocity
measurements at a large numbers of points and does so at about one tenth the cost

of commercial units.



Chapter 6

Preliminary Results

6.1 Introduction

In the first section of this chapter the flow field under investigation is examined.
The mean flow field is presented through a series of contour plots and iso-surface
renderings. The fluctuating velocity field is also studied in a similar manner. The
spectral character of the turbulent velocity field is investigated via a series plots of
data at different positions in the mixing layer.

The efficiency of the POD reconstruction is examined by comparing a velocity
trace recovered from the hot wire anemometer and that obtained via the POD eigen-
functions and coefficients (v. 2.29). The POD results are also tested through a
comparison of spectra calculated from the original velocity field and from the POD’s
eigenfunctions and coefficients. Comparison with the data of Glauser (1987) will be

made throughout this section.
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6.2 Numerical Implementation

Before proceeding to the results of the POD, a look at the implementation of the
numerical code might be helpful. Typically, in the implementation of the POD, as in
Glauser (1987), the kernel of the integral equation, the two point correlation tensor
v. eq. 2.32, is formed from the velocity measurements made at each of the points
in the field. A tremendous reduction in computational time can be had if instead of
working with the two point correlation, the cross spectra between points is used. In
this case the instantaneous velocity is first transformed into Fourier space and the two
point cross spectrum is formed from the resulting Fourier coefficients by the ensemble
averaging the blocks of data to ensure statistical convergence. The cross spectra can
then be azimuthally decomposed via eq. 2.17. into azimuthal Fourier modes, as
discussed in section 2.4, to form the kernel. The integral eigenvalue equation can
then be solved for the eigenfunctions and eigenvalues.

This application of the POD, however, requires the double transformed instanta-
neous velocity, 4, (r, m, f), for the determination of the random coefficients, a,(m, f)
(v. eq. 2.33). So it is advantageous to first transform the original velocity in time and
azimuthal Fourier modes before forming the cross spectra since it will be necessary
to do this later anyway. This reduces the computational time. Also, it is necessary
to perform the projection in this manner because the non-uniform azimuthal distri-
bution of probes at the 6 different radii (v. fig. 3.2) precludes a single azimuthal
decomposition.

The idea of the technique is to first Fourier transform in time each velocity trace

measured at all 138 positions,

a(r,0, f) = F.T. {u(r,0,1)} = / 2Ty (9. 1) dt (6.1)

—00
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The numerical implementation of the transform is performed with a standard FFT
algorithm, in this case the IMSL routine FFTRF. The result is a set of velocity
spectra, ug(r,0) = a(r, 0, kAt), which are not continuous in frequency but rather
discretely evaluated at each of the k frequencies where f = kAf and Af =1/T, (T
being the record length = 0.5 sec)

A series of arrays composed of the transformed velocities at each radius were
formed, one for each radius, and subsequently transformed into azimuthal modes.
This decomposition was performed using a discrete Fourier transform given by,

o0
W(r,0,f) = > c(r,m, f) exp(imh) (6.2)
m=0
The coefficients of the transform, the azimuthal “modes”, are determined using the

orthogonality of the Fourier functions,

cp(r,m) = = /ﬂ Uy (r, 0) exp(imb)df (6.3)

mwJ—7

where m is the azimuthal mode number denoting the wavelength of the particular
mode. This equation represents the decomposition of the streamwise velocity Fourier
coefficients into azimuthal modes at each of the frequencies. The discrete form of eq.

6.3 which was utilized in the numerical code is gven by,

1 Ne
ci(r) ~ — Z (r,0) exp(il(n — 1) AG)AH (6.4)

:]

where [ is the counter representing the discrete azimuthal mode number, Ny is the
number of azimuthal positions at which the velocity is measured (v. section 3.4) and
Af = 27 /Ny is the azimuthal spacing. Substituting in for the azimuthal spacing

produces,
2mil(n — 1)]

N (6.5)

cp(r) = — > G(r,0)exp [
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The summation given in 6.5 could be solved using a slow discrete summation
technique, however it is often advantageous to use the much more efficient FFT
algorithms. Typical FFT algorithms reduce the number of computations from N? to
Nlog N where N is the number of points in the transform. The FFT does not quite

perform the operations suggested by eq. 6.5 but rather the following,

b= 3 {aos [ FH O g 2D DN o

N N

The two equations can be equated however if [ = m — 1 and the FFT coefficients,
by, are scaled by the quantity 2/Ny. The IMSL subroutine used for the azimuthal
decomposition is FFTCF, which calculates the Fourier coefficients for a complex array,
and the above manipulations were performed on the coefficients returned by the
routine.

Now that the double Fourier transformed velocity has been formed, the kernel of
the POD integral eigenvalue equation is constructed. The procedure is to take the
double transformed velocity at each mode number-frequency combination and form
an estimator of the kernel in a similar manner as the spectral estimator is utilized in
a numerical computation of the velocity spectrum. The details of this derivation are
left to appendix A but the result is an ensemble average of the decomposed velocity
multiplied by its complex conjugate and normalized by the individual block length,

1.€.,
<y (r) g (r') >
T

Wfl(r, r',m, f) = (67)

where the F superscript signifies an estimator of the real POD kernel and T is the
length of each individual block used in the ensemble average of eq. 6.7. This estimator
was then utilized in the numerical approximation to the integral eigenvalue equation

as outlined in section 3.2.
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6.3 Preliminary Results

6.3.1 Flow Field
Mean and RMS

The velocity measurements made using the probe array described in section 3.4 are
presented in this section. There were 300 blocks of 1024 discrete velocity measure-
ments recorded for this experiment. There were 10 blocks of data which were deter-
mined to be faulty due to a mismatch between the A/D timing and that of the digital
control board (v. section 5.4.3). These 10 blocks of data were excluded in the data
processing.

The 290 remaining data blocks were ensemble averaged and integrated over time
to obtain estimates of the mean and rms velocities at each of the probe locations.
Contours of mean velocity are presented in fig. 6.1 and are found to be circular,
confirming that an axisymmetric shear layer has been formed. The mean velocity
near the high speed side of the layer is approximately 12 m/s and decreases to about
2 m/s at the low speed side of the layer.

In fig. 6.2 a slice of the mean velocity field is shown. The mean velocity at each
point along a line perpendicular to the flow axis has been normalized by the exit
velocity (Uezir = 12.5m/s). The data points in the figure are taken from the average
velocity calculated at probe numbers 131, 99, 67, 37, 16, 5, 2, 10, 25, 51, 83, 115 (see
fig. 3.2). The plot shows that much of the velocity field in the mixing layer at z/d = 3
is within the bounds of the probe array. The normalized mean velocity is 0.987 at

z/d = 0.15 and decreases to 0.200 at z/d = 0.8 !. In fig. 6.2 the axial component of

! The z coordinate is used here to describe the position along the horizontal line through the r = 0
coinciding with z =0
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Figure 6.1: Mean contours in the axisymmetric mixing layer
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Figure 6.2: Mean and rms values of the streamwise velocity along a line in the mixing
layer. (a) Normalized mean velocity (b) Normalized rms velocity.
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the Reynolds stress normalized by the exit velocity, Vu? /Uy, is presented. A double
peak in RMS velocity is shown with a slightly higher peak along the line to the left of
the center. These measurements are consistent with a turbulent axisymmetric mixing

layer as discussed in Hussein et al. (1994) and Glauser et al. (1995).

Spectra

The spectral makeup of the velocity field in the mixing layer can be seen in fig. 6.3.
The spectra near the high speed side of the mixing layer, r/d < 0.41 peak away from
the origin which is consistent with other researchers (v. Bradshaw et al. (1964) and
the references therein). As the mixing layer is traversed radially, the peak in the spec-
tra shifts to the low frequencies as is consistent with the measurements of Bradshaw
et al. (1964) and Glauser et al. (1995) and they show at least one full decade of
k=5/3 range denoting high Reynolds number turbulent flow. Note that the frequency
of the preferred mode in the axisymmetric mixing layer corresponds to the peak in
the spectra near the high speed side in fig. 6.3 as discussed in Hussain and Zaman
(1981) and Hussain (1983). The frequency at which this occurs is approximately 100
Hz which corresponds to a Strouhal number (Stp = fD/Uey;) of about 0.8.

It is important to note that the spectra presented in fig. 6.3 have been post pro-
cessed to remove a DC offset that was found to pervade the inner radii measurements.
The noise is believed to be a post-anemometer influence caused by some sort of spike
initiated by the high current draw of the inner radii anemometers. Since any high
frequency disturbances would have been eliminated by the Bessel filters if they had
been due to the anemometer, the noise must have come from an instability on the

board ground or, more likely the, cable ground 2. Since the Fourier transform of a

2Since the cables connecting the A/D were triax, a separate ground was available to shield the
anemometer output. It is possible that this ground caused the problem.
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Figure 6.3: Spectra at each of the 6 radii in the mixing layer
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Figure 6.4: Spectra at r/D=.15 for the original and filtered Fourier coefficients

spike is an infinite band DC shift, the spectral levels at all frequencies will have a
constant added to them. Note that since the spike is uncorrelated with the velocity
it will be filtered out by the POD but, to ensure that this effect is not included in the
reconstruction of the original signal it has been filered out of the Fourier coefficients.

The DC offset which was found in the spectra was removed by operating on the

frequency transfer of the velocity with a simple digital filter of the form,

1

SR ey

(6.8)
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where i = v/—1 and f, = 200 the corner frequency. The filter is a simple single-pole
which reduces energy in the high frequencies while having little effect on the low ones.
The function was used to filter the Fourier coefficients in the determination of the
1-D spectra and in the transforms necessary in the POD. In fig. 6.4, the original
and filtered spectra are shown and the effect of the filtering function is obvious. The
white noise has been eliminated and the energy containing region of the spectrum is
maintained to a sufficient degree. The difference between the whole line integral of
the original and filtered spectra (integrated from 2-200 Hz) was about 11%.

The spectra at each of the positions in the mixing layer are presented in figs.
6.5, 6.6 and 6.7. The spectra are presented in individual plots each representing a
separate radius in the probe array (v. fig. 3.2). To within experimental error, the
spectral nature of the data set conforms to an axisymmetric mixing layer, i.e. the

distribution of kinetic energy for each frequency at each radius is equal.

6.3.2 POD Decomposition

The effectiveness of the Proper Orthogonal Decomposition at decomposing a field into
an optimal set of functions has been shown by many researchers (v. Herzog (1986),
Moin and Moser (1989), Ukeiley et al. (1991) among others). In the present analysis
the effectiveness of the POD will be illustrated with a plot of a spectra in the mixing
layer as determined from the original velocity field and one formed from the first few
POD eigenfunctions. The streamwise spectrum in the turbulent field, Si;(f), can be

recovered from the eigenfunctions in the following manner,

< a(r,m, f)ai(r,m, f) >
T

where T is the record length. The above equation is the definition of the spectral

511(7“; m, f) = (6-9)

estimator (v. A.1) but we can substitute in the POD representation of the streamwise
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Figure 6.5: Spectra at (a) r/D=0.15 and (b) 0.28 for all azimuthal positions
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Figure 6.6: Spectra at (a) r/D=0.41 and (b) 0.54 for all azimuthal positions
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Figure 6.7: Spectra at (a) r/D=0.67 and (b) 0.80 for all azimuthal positions
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velocity,
i (r,m, f) = an(m, )} (r,m, f) (6.10)
n=1
yielding
< Yon 2ont On Gy OF n'x
Sll(r, m, .f) = T ¢1¢1 (611)
and using the uncorrelated property of the coefficients (eq. 1.32)
Sll(ra m, f) = J?IQSI (6]‘2)
but since the flow is stationary
S (7", m, f) = ZAn¢?¢?* (6-13)

This result provides a check on the POD decomposition. A plot of a spectrum
calculated in the mixing layer and its POD representation for the first few POD modes
is presented in fig. 6.8. As this figure shows, the majority of the energy in the flow
is contained in the first POD mode. The second mode is also quite important but
does not nearly contain the amount in the first and higher POD modes contain less
information. After 5 POD modes, the original spectra is nearly completely recovered.
If the spectrum is integrated over frequency, 90% of the area under the spectrum of
the original data is covered by the first 3 POD modes. The portion of each POD
mode is presented in table 6.1 where the integral of the original signal is 0.210857.

Another interesting check on the POD eigenfunction representation of the velocity
field lies in the reconstruction of the instantaneous signal by the POD modes. The
velocity field, in this instance, can be recovered using the expansion presented in eq.
2.29. The coefficients, a,(m, f), in the expansion are obtained via a projection of the

POD eigenfunctions onto the instantaneous signal (v. eq. 2.33). The coefficients can
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Figure 6.8: Pod reconstruction of spectrum in mixing layer for the first 5 POD modes
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Integral
POD mode(s) | Value | Percent
1 0.144453 | 68.5%
142 0.174869 | 82.9%

14243 0.196600 | 93.2%
1+2+3+4 0.202498 | 96.0%
142434445 | 0.210553 | 99.6%

Table 6.1: Portion of area under spectra contained in the POD modes

then be used to represent the original signal, but in this case only the parts of the
signal which are representative of the large scale structure are recovered. This can
be seen in fig. 6.9 where a trace of the original velocity is presented along with the
reconstructed signal from the first few POD modes. In part (a) of the figure the first
PEA is presented 3. As expected the first PEA recovers a large portion of the velocity
trace. As more PEA’s are added (part (b) combines the first 2 PEA’s) more of the
signal is recovered. By part (c) nearly all of the trace is recovered.

The ability of the of the first POD mode to represent a large portion of the field
is not new to this investigation, but the fact the it is such a tremendous contributing
factor is unique. The spectral reconstruction by the first POD mode in fig. 6.8
and the recovery of the velocity trace to such a high degree by the first PEA show
the outstanding effectiveness of the first POD in organizing the flow field into a few
modes. As we will see later, much of the large scale structure in the flow is contained
in the first POD mode and it will be this factor which will allow a unique perspective

on the structure of the turbulence in the mixing layer.

3recall a PEA is defined as the product of a coefficient and its corresponding eigenfunction



CHAPTER 6. PRELIMINARY RESULTS 109

Figure 6.9: Pod reconstruction of instantaneous velocity in mixing layer for (a) first
PEA, (b) first 2 PEA’s and (c) first 3 PEA’s



Chapter 7

Results

7.1 Introduction

This chapter is concerned with the representation of the velocity field as given by the
Proper Orthogonal Decomposition. The POD provides an optimal representation of
the velocity field; optimal implying that only the minimum number of functions in
the transform are necessary to represent the energy of random vector field. In this
chapter, the velocity field is reconstructed using various numbers of POD functions
to demonstrate the ability of the POD to represent the large scale dynamics of the
turbulent velocity field. The dynamics of the structures in the mixing layer are then
studied using a reconstruction of the field using only the first POD mode together

with various combinations of the azimuthal and temporal Fourier modes.

110
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7.2 POD Velocity Reconstruction

The reconstruction of the double Fourier transformed ! velocity field, 4™ (r,m, f)

was shown in chapter 2 to be

W™ (r,m, f) =Y an(m, )¢} (r,m, f) (7.1)

where the coefficients, a,(m, f) are in turn given by

an(m, f) = / @™ (r,m, f)o (r,m, f)rdr (7.2)

The most interesting form of 7.1, at least from a visual standpoint, is the inverse

Fourier transform in time of a’fmf ,

ay™(r,m,t) = /e’QWf“"mf(r m, f)df (7.3)

since it is the time dependent contribution of from each n—m pair. This quantity and
various partial sums (i.e. N =1,2,3... and/or m = 0,1,2,3...) will be examined
in detail, along with its inverse transform in the azimuthal direction, u"(r#f,t), given

by,
N

uf(r,6,t) =) i e~ MO0y (1 m, 1) (7.4)

n=1m=0

7.3 Numerical Implementation

The numerical implementation of equation 7.2 was performed using Simpson’s 1/3
rule and eq. 7.1 with a straightforward sum. The details on the use of Simpson’s
1/3 rule for this experiment are provided in section 3.2. The velocity obtained from

the PEA’s, eq. 7.1, is inverse transformed in azimuthal modes and time to obtain

Tn time and azimuthal modes
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the velocity reconstruction of each channel in the measurement grid (v. fig. 3.2) for
whichever POD modes and azimuthal modes desired. For instance, the reconstructed
velocity field could include only the first PEA or only 1 or 2 azimuthal modes or any
combination of them. It is easy to accomplish this by simply setting the appropriate
Fourier coefficients in 4™ equal to zero. Thus, any imaginable reconstruction of the

velocity field is possible.

7.4 Energy Distribution in Mixing Layer

In the previous chapter, it was determined that the first POD mode made a significant
contribution to the spectra in the mixing layer. In this section, a more quantitative
measure of the importance of the first POD mode is presented. Recall from chapter
2 that the total kinetic energy in the flow, as recovered in the POD modes, is equal
to the sum of the POD eigenvalues, \,(m, f) (v. eq. 2.9). This fact provides a useful
way to study the distribution of energy in the flow for the different POD modes.
Also, since the eigenvalues are already azimuthal mode number, m, dependent, it is
useful to look at the distribution of energy for each azimuthal mode comprising each
eigenvalue. If the energy in each azimuthal mode for each POD mode is normalized

by the total energy in the flow, the parameter, £ can be determined, where
> XM (m, f)
220 2 A(m, f)
f

n m

3 (7.5)

The results of this distribution are presented in figure 7.1. The first POD mode
is found to contain nearly 67% of the kinetic energy in the flow. This agrees well
with the value of 68% which was determined previously at a single position in the

mixing layer and again stresses the effectiveness of the POD. The interesting feature
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Figure 7.1: Azimuthal-mode energy distribution in the first 5 POD eigenvalues
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of fig. 7.1 is the energy content at each azimuthal mode within each POD mode. In
the first eigenvalue, there is a definite predominance of the zero azimuthal mode. It
is interesting, however, that the next largest azimuthal mode is m = 4 with modes
3, 5 and 6 not much smaller. Also interesting is that this trend continues for all of
the eigenvalues. This would tend to imply that although the zero, or ring, mode is
dominant, it is also important to consider the effect of these higher azimuthal modes.
For instance, nearly 15% of the total energy in the flow is found in mode 0 of the first
eigenvalue but almost 25% is found in modes 3, 4, 5 and 6. So 40% of the kinetic
energy in the flow is found in those 5 modes. The POD has done an excellent job at
reducing a nearly infinite dimensional problem to one involving only 5 parameters.
The results of this distribution will be used in the next section to investigate the
spatial structure in the mixing layer.

The eigenspectra, A" (m, f), are presented as a function of frequency for the first 10
azimuthal modes in figs. 7.2 - 7.6. They show the progression of the energy containing
region of the spectra to the low frequencies for higher azimuthal modes. This suggests
one of two things; the dominant higher azimuthal modes occur in the outer portion
mixing layer (m=3,4,5,6) (v. Glauser (1987)) where the convection velocity is lower
so they appear at a lower frequency, or azimuthal mode number aliasing has appeared
to make the frequency distribution shift. Now since a good deal of the preparation in
this experiment focused on the elimination of azimuthal aliasing (v. chapter 3), the
latter is not likely so the higher azimuthal modes can indeed be associated with only
the outside of the flow as suggested by Glauser et al. (1995).

If the interaction between the inner and outer radii behaves like a 2 ring leap frog
effect the dominant modes at the inner radii would tend to slow the convection of the

modes at the outer radii. This is just like the interaction between two rings where
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m Al A? A3 Al S

0 | 0.14699E400 | 0.20192E-01 | 0.10220E-01 | 0.53688E-02 | 0.31942E-02
1 0.34754E-01 | 0.13498E-01 | 0.70824E-02 | 0.42293E-02 | 0.26098E-02
2 0.44416E-01 | 0.13615E-01 | 0.84099E-02 | 0.50862E-02 | 0.35658E-02
3 0.64448E-01 | 0.20748E-01 | 0.12471E-01 | 0.68928E-02 | 0.27021E-02
4 0.74914E-01 | 0.24522E-01 | 0.12653E-01 | 0.67353E-02 | 0.26648E-02
3 0.62810E-01 | 0.13140E-01 | 0.80876E-02 | 0.43501E-02 | 0.23953E-02
6 0.56385E-01 | 0.12881E-01 | 0.69537E-02 | 0.24473E-02 | 0.57095E-08
7 0.45118E-01 | 0.11649E-01 | 0.63502E-02 | 0.22333E-02 | 0.46394E-08
8 0.34995E-01 | 0.92133E-02 | 0.47121E-02 | 0.20356E-02 | 0.40232E-08
9 0.25998E-01 | 0.84217E-02 | 0.43730E-02 | 0.19125E-02 | 0.25930E-08
10 | 0.19795E-01 | 0.64195E-02 | 0.27688E-02 | 0.15937E-02 | 0.19117E-08
11 0.17427E-01 | 0.60642E-02 | 0.24923E-02 | 0.14397E-02 | 0.17019E-08
12 | 0.14022E-01 | 0.50064E-02 | 0.15172E-02 | 0.14904E-08 | 0.74520E-09
13 | 0.11901E-01 | 0.43410E-02 | 0.14233E-02 | 0.12537E-08 | 0.62686E-09
14 | 0.89735E-02 | 0.38086E-02 | 0.13779E-02 | 0.95364E-09 | 0.47682E-09
15 | 0.64362E-02 | 0.34234E-02 | 0.13454E-02 | 0.67696E-09 | 0.33848E-09

| total | 0.66938E+00 | 0.17695E-+00 | 0.92238E-01 | 0.44325E-01 | 0.17132E-01

Table 7.1: Kinetic energy distributed in azimuthal modes for each POD mode
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Figure 7.2: Eigenspectra for the first 3 POD modes and for azimuthal modes: (a)
m=0 and (b) m=1
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Figure 7.3: Eigenspectra for the first 3 POD modes and for azimuthal modes: (a)
m=2 and (b) m=3
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Figure 7.4: Eigenspectra for the first 3 POD modes and for azimuthal modes: (a)
m=4 and (b) m=5
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Figure 7.5: Eigenspectra for the first 3 POD modes and for azimuthal modes: (a)
m=6 and (b) m=7
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Figure 7.6: Eigenspectra for the first 3 POD modes and for azimuthal modes: (a)
m=8 and (b) m=9
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one is blown through another created just before it. The second ring will impede the
motion of the first as it projects itself through the inside of the first, thereby slowing
the outside ring and causing it to become unstable. This type of interaction could
indeed cause the shift in the peak of the eigenspectra of figs. 7.2- 7.6. To be sure of
this, the temporal dynamics of the POD modes, contained in the POD coefficients,
must be known because they provide the timing of the PEAs’, i.e. they determine
when each PEA increases in value (turns on) or decreases. This synchronization of

events in the mixing layer is contained in the POD coefficients.

7.5 Temporal Resolution of Spatial Structures

The goal of this experiment was to gain an understanding of the dynamics of the
large scale turbulent structures in the axisymmetric mixing layer and compare and
contrast two competing models of the structure dynamics. The most effective way to
do this is to visualize the flow field at each instant in time and view the structures
which are there. In the present experiment, the entire velocity field is captured at
every At = 0.5 sec + 1024 samples = 4.88281x10%sec. The integral scale in the flow

can be estimated to be

l

L =
Uconv

(7.6)

where [ is a representative scale of the turbulent structures and U,,,, the convection
velocity of this scale. If the large scales in the mixing layer are assumed on order of
the jet diameter, D, and the longitudinal integral scale grows at a rate proportional

to 0.1z in the streamwise, z, direction (Khwaja, 1981) then at an x/D =3

03D

T 0.6U,° (7.7)
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where the convection velocity is assumed to be 60% of the centerline velocity, U
(Khwaja, 1981). For an exit velocity of 12.5 m/s and a jet diameter of 0.098 m, the
integral scale is 0.004 sec. In the present experiment, this means there are about 8 time
samples per integral scale. Over the entire 1/2 second record there are approximately

125 integral scales and consequently about 125 large scale eddies.

7.5.1 Animation

The magnitude of the streamwise velocity at each of the 138 channels of anemometry
is known at x/D = 3 for each time step, ¢t = t,At 2. Each of the n “slice’s” of
the flow is then imported into a graphics package (pv-wave) which grids the data
onto a 40x40 grid. Each grid point can then be colored according to the value of the
velocity. If consecutive time steps are processed in this manner, an animation showing
the evolution of the velocity field is produced; in essence, a high speed video of the
streamwise velocity field at /D = 3. The animation process can also be performed
on the velocity signals reconstructed from the PEA’s (v. eq. 7.3). The velocity field
recovered by the POD can then be compared with the original field to see how the
energetic structures in the flow behave.

A number of time steps (50 typically) have been selected from a section of
one of the blocks of data and plotted as discussed above. Since the author could
not get a CD-ROM to send with each copy of the dissertation he has decided to
place the video images, in mpeg form, on the internet at the following address:
http://www.eng.buffalo.edu/research.html. Anyone who wishes to see the animation
in color can download the mpeg’s and play them on their system. In the following

analysis the data from the 138 anemometer channels will be presented in single image

2The absolute time for each block of data will be indexed by ¢, where 1 < ¢,, < 1024.
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form. However, the true power of the presentation is in the full motion animation.
The author has chosen a few select images which best capture the important events

in the life cycle of the eddies in the flow.

7.6 Structure in the Axisymmetric Mixing Layer

The difficulty in visualizing the structure in the flow is the tremendous number of
scales present. The large scale structure is often masked by short duration pulses.
However, we have already seen how effective the POD is at organizing energy into
a few or even one mode so it is natural to select this method in representing the
field in a visual manner. In effect, the POD has objectively filtered out the small
scale structure which tends to cloud the view of the large scales. To see the POD’s
effectiveness, look at fig. 7.7 which shows a slice of the streamwise velocity in the
mixing layer at z/D = 3 from the original velocity data at ¢, = 524. Each color on
the plot corresponds to a particular value of the velocity magnitude with the lighter
images (the bright yellow) indicating the highest velocity (approximately 12 m/s).
The dark areas, near the outside of the image represent low velocities (the blue is
about 2 m/s).

As this image shows, there is a quite complicated motion at this particular instant
in the flows evolution. The middle of the mixing layer exhibits a complicated, multiple
mode shape with almost ejection-like events at 8 o’clock and 1 o’clock. It is difficult
in this case to determine what events in this figure are short duration events and
which control the the main features of the turbulence. However, if the same time
step is presented with the velocity recovered from the PEA’s, a more ordered pattern

is exhibited. Figure 7.8 shows the same time step with the PEA velocity using only
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the first mode (i.e. n =1 in 7.3). The structure exhibited in this figure is similar to
that in fig. 7.7; the lobes seen at 1 o’clock and 8 o’clock are still evident as well as
one at 5 o’clock but many of the smaller events have been filtered out by the POD.
Undoubtedly, these events were not significant contributing factors to the kinetic
energy of the flow. The POD has filtered them out and left us with a substantially
more ordered view of the field.

The flow field can be broken into even fewer parts if the results of section 7.4 are
utilized. The POD eigenvalue decomposition in this section indicated that much of
the energy in the first POD mode was contained in azimuthal modes 0, 1, 3, 4, and
5. If these modes can be included and the others left out, a further filtering of the
small scale structure can be accomplished. To insure that the features of the flow are
not lost, a comparison between the original velocity and the PEA reconstruction can
be performed.

The original velocity color contour plot at ¢, = 584 is presented in fig 7.9. The
PEA velocity from the first POD mode and including all azimuthal modes is presented
in fig. 7.10. Again, the salient features of the flow are recovered without the small
scales obscuring the underlying structure. If only azimuthal modes 0, 1, 3, 4 and 5
are included in the PEA reconstruction the field is even further reduced in complexity
but the salient features of the flow are still evident in fig. 7.11. Also, it is important
to note that even with these few azimuthal modes, the multi-lobed structure in the
outer portion of the mixing layer dominates this region.

This process of reducing the information in the reconstruction can obviously con-
tinue until all that remains is the mean velocity. However, the view afforded to us
by the POD has shown that instead of an infinitely dimensional problem, we can

successfully describe the large scale features of the flow with only 5 parameters. This
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Figure 7.7: Color contour plot of velocity field - Original velocity, t, = 524
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Figure 7.8: Color contour plot of velocity field - PEA Reconstruction, ¢, = 524



CHAPTER 7. RESULTS 127

Figure 7.9: Color contour plot of velocity field - Original Velocity, ¢, = 584
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Figure 7.10: Color contour plot of velocity field - PEA reconstruction, first POD
mode and all azimuthal modes included, ¢, = 584
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Figure 7.11: Color contour plot of velocity field - PEA reconstruction,first POD mode
and azimuthal modes 0,1,3.4,5, t, = 584
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tremendous reduction in effort will be of immediate practical importance to anyone
trying to model the dynamics of the turbulent structures in jet mixing layers (v.
Miller et al. (1995), Grinstein et al. (1986) and the references therein) and for those

interested in the structure of the turbulence in the mixing layer.

7.6.1 Single Azimuthal Mode Representation

In the preceding figures it is evident that the dominant azimuthal mode in the inner
portion of the mixing layer is the zeroeth mode. Therefore, a series of plots were
constructed which showed the color contour of the field from the first PEA and only
azimuthal mode zero. The structure in the flow is obviously being forced at this point
into a circular mode but what can be gleaned from this is the temporal dynamics
between the inner and outer portion of the mixing layer. In fig. 7.12 the result of this
reconstruction of the field is presented using a slightly different color scheme 3. It is
important to study the innermost ring (light purple) and the second most outer ring
(light yellow). In this figure the inner ring is small and the outer ring quite large. In
the next figure 7.13, the inner ring is seen to grow in size while the outer ring lessens
in its extent. If the next step in the series was presented it would look very similar to
the structure in fig. 7.12 which suggests that a repeatable pattern of phase lag exists
between the inner and outer portion of the mixing layer. Finally, it is evident from
the results of this section and those of sec. 7.6 that a ring like structure exists in
the inner portion of the mixing layer and a multi-lobed, out of phase with the inner
radius, structure exists at the outer portion of the layer. These two structures are

also seen to interact in a repeatable pattern of phase-lagged interaction.

3This color scheme was chosen because it better highlighted the interaction between the inner
and outer portions of the mixing layer.
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Figure 7.12: Color contour plot of velocity field - PEA reconstruction, first POD
mode and azimuthal mode 0 included, ¢, = 506



CHAPTER 7. RESULTS 132

Figure 7.13: Color contour plot of velocity field - PEA reconstruction, first POD
mode and azimuthal mode 0 included, ¢, = 514
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7.7 Four Azimuthal Mode Representation

To better bring out the structure in the layer the previous set of plots have recon-
structed the velocity field using fewer and fewer azimuthal modes, for the first PEA,
in order to filter out the small scale structure and reveal the hidden large scale struc-
ture within. In this way we have been able to summize that two ring-structures, one
circular near the potential core and one multi-lobed near the outside of the layer, are
formed due to the instabilities arising from the turbulence production near the edge
of the layer. To show with convincing evidence that the two ring structure exists,
another series of plots is presented. These plots present the velocity reconstruction
from the first PEA using azimuthal modes 0, 4, 5, 6. The difference between this and
previous presentations is that the mean velocity is now excluded from the plots so
that the structure which has been hidden due to the small variance and large mean
velocity can be revealed. The results of this reconstruction are presented in figs. 7.14,
7.15 and 7.16.

The velocities represented by colors below the square shading plane in fig. 7.14
are negative, indicating a value less than the mean, while those above the plane are
positive, or a fluctuation larger than the mean. The time index for this figure is
t, = 584. The striking aspect of the image is the multi-lobed structure near the
outside of the mixing layer and the large “negative” velocities near the center. The
same imaging, applied to a time step slightly after this one (¢, = 589), illuminates
a highly correlated ring structure piercing the cutting plane®. This ring then breaks
down and another multi-lobed structure appears near the outside of the mixing layer,

as seen in figure 7.16 where in this figure ¢, = 593. In this figure, the potential

4The ring is not quite circular at its peak because of the gridding routine used in pv-wave.
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Figure 7.14: Color contour plot of velocity field: NO MEAN VELOCITY, first PEA
and azimuthal modes 0,4,5,6 included. ¢, = 584
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Figure 7.15: Color contour plot of velocity field: NO MEAN VELOCITY, first PEA
and azimuthal modes 0,4,5,6 included. ¢, = 589
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Figure 7.16: Color contour plot of velocity field: NO MEAN VELOCITY, first PEA
and azimuthal modes 0,4,5,6. ¢, = 593
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core ring of fig. 7.15 has passed through the measurement plane and another multi-
lobed structure has arrived to dominate the layer. This sequence, consisting of a ring
passing through the measurement plane at the potential core followed immediately
by a multi-lobed structure, is found, in a repeatable pattern, throughout the entire
time history of the data. This indicates that the event is not unique and that it must
be instigated by the flow field.

The velocity pattern in fig. 7.15 shows, without question, that the dominant tur-
bulent structure in the layer near the potential core is a circular ring. The sequence
of events which surrounds this figure provides the most striking evidence that two
distinct structures interact in the mixing layer. Although, it is hard to say, unequiv-
ocally, what the order of the interaction is, i.e. does the structure near the outside
of the layer lag or lead the highly correlated inner ring. The sequencing of the inner

and outer structures will be examined further in future investigations of the data set.
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Conclusions

8.1 Turbulent Production Mechanism

At the outset of this thesis, two competing models for the production of turbulence
in the axisymmetric mixing layer were presented. One model from Hussain (1986)
suggests that the turbulence production mechanism in the axisymmtric mixing layer
is initiated by a cut-and-connect process. In this process, a single vortex ring is shed
from the jet nozzle, grows as it is convected with the flow, and becomes unstable.
At this point the single, multi-lobed vortex cuts and reconnects to form a circular,
center ring and many outer rings (v. fig. 1.1). The other model (Glauser (1987))
suggests that the mechanism is more like two inviscid rings, leapfrogging through
one another. The outside ring, driven unstable by the trailing inner ring, forms an
unstable, multilobed structure near the outer edge of the mixing layer. Eventually,
the outer ring breaks apart into a multitude of small vortex rings which in turn feed
energy into the dissipation scales in the so called energy cascade. The instability of

the outer ring is driven by the stretching due to the induced velocity field from the

138
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following, inner ring.

From the measurements presented in the previous sections it seems clear that the
two vortex ring model of Glauser (1987) more closely matches the structure interaction
seen in the velocity reconstruction data of secs. 7.6 and 7.6.1. It becomes even more
evident when the animation of the flow field is played and the temporal dynamics
of the structures can be seen. In the video, and this can also be seen in figs. 7.12
and 7.13, the pulsing of the inner and outer rings in the mixing layer is evident and
this seems like unmistakable evidence for the existence of two vortex rings interacting
in the mixing layer. Further evidence is apparent in section 7.7 in which a ring like
structure is observed near the potential core with multi-lobed structures appearing
just before and after the ring in our temporal reconstruction of the velocity field.

Therefore, the vortex ring interaction, as suggested by Glauser (1987), can be

found consistent with the data and the following conclusions can be drawn:

e The shifting of energy toward the lower frequencies in the higher azimuthal
modes of the POD eigenspectra (v. sec. 7.4) implies that the structures asso-
ciated with these azimuthal modes must be convecting at a speed less than the
mean convection velocity in the layer. This implies that the structure in the

outside of the layer is multi-lobed.

e The ring-like behavior of the field in the outside portion of the mixing layer (as
shown in the PEA reconstruction of fig. 7.8), suggests that a single, multi-lobed

structure exists in near the outside portion of the layer.

e Finally, the distinctive interaction between the ring-like structure in the inner
portion of the mixing layer and the multi-lobed one in the outer layer, v. sec.

7.7, would suggest that the two structures interact and, based on these facts,
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the leap frog effect would explain this interaction.

8.2 Recommendation for Further Study

It should be obvious that the flow visualization alone can not describe all of the
interactions of the structures in the mixing layer. Therefore, the data recovered in
the experimental aspect of this study can be used to develop more sophisticated tech-
niques for recovering analytical or “hard” data on the existence of the 2 ring structure
in the mixing layer. In particular, conditional sampling or wavelet techniques based
on the PEA reconstruction can be performed to better extract patterns in the in-
stantaneous signals. Also, further work on the flow visualization can be employed to
extract other structure in the layer which is not seen using the modal reconstruction
presented. Finally, investigation of the instantaneous coefficients produced by the
POD will produce statistical characterization of the structures described by the POD
eigenfunctions.

The data set recovered in this experiment is unique. A simultaneous measure of
the streamwise velocity field at 138 positions is known at /D = 3, and the avenues

for future investigation seem endless.
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Appendix A

Kernel Formulation

The kernel of the POD integral eigenvalue equation is given by2.32,
Wia(r,r',m, f) = FT,{FT{R;;(r,7',0 — 0',t —t'}} (A1)

where F'T represents the Fourier transform and the subscripts denote the azimuthal
mode number (m) and temporal (¢) versions. Typically, the kernel is formed from the
process described in A.1 i.e. the correlation tensor is formed by first transforming the
velocity measurements in time, forming the kernel and then transforming the kernel
in the azimuthal direction. The kernel for this application can not be formed in this
manner because of the unequal spacing in the azimuthal direction. So a new method
had to be established.

If the streamwise velocity were to be Fourier transformed in time and the az-
imuthal direction, an estimator for the POD could be derived. This process is out-
lined below and follows the form of the general spectral estimator common in real

data analysis (George et al., 1978).
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A.1 Spectral analysis

A real data set, say the velocity vector u(t), can be represented in Fourier space via

the transform

u(t) = 70 a(f)el® It gt (A.2)

where 7 is v/—1. Another quantity of interest is the correlation of the velocity
(Rij (@, 7,1, 1) =< (T, t)uj(@",t) >). If eq. A.2 is substituted into this defini-

tion the result is,
Ri (& / / < W@, HEE, f) > e U=Iargp (A3

If the random field is stationary, the correlation no longer is a function of ¢ and ' but
only their difference, 7 = ¢’ — ¢. The left hand side of eq. A.3 is no longer an explicit
funtion of time and therefore neither must the right hand side. If the right hand side

is written in terms of a delta function,

i (Z, [)a5 (7, f') = 8i,(2, 7, [)O(f' = f) (A.4)

then the conflict in eq. A.3 can be cleared. This implies that the correlation tensor

and the spectrum of a random vector field are a Fourier transform pair,
Rig(@,7,7) = [ Si,@,2, e s (A.5)

In a set of real data the vector field is never known at all values of the independent
variables so a finite length transform must be defined. In the case of the spectrum

the result is,
+T/2 )
S; (7,4, f) = lim R, (%, 7, 7)e 2T qr (A.6)

T—ooJ-T/2 b
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where 7' is the record length of the data. The convolution property of Fourier trans-
forms (Hardin, 1986) is applied to A.6 after a change of variables and the resulting
equation is,

+T/2

Sig(@, 7, )= Jim [ 1 -

T—oo -T/2

%] Ri;(# @, 7)e 2y (A7)
where a biasing window has been formed due to the finite length of the transform.

The infinite limit in eq. A.18 prohibits evaluation of the spectrum but the equation

suggests a form of a spectral estimator (George et al., 1978),

- <4 (&, fag(a, 1) >
SLE.7, ) = 4 =/

-T/2

e 1= 2] Bug@ 2,0 dr (A8)
where the 7" superscript signifies that term is an estimator based on the finite record
length and the angle brackets represent ensemble averaging. The estimator of the
spectrum given in eq. A.8 will approach the true spectrum as long as the record
length, T, is long enough .

The numerical discretization of the Forier transform is implemented via a Discrete

Fourier Transform (DFT) of the form,

AtN—]. .
XT(f) ~ T X (nAt)el-i2ninAt (A.9)

where At = T/(N — 1). The evaluation of eq. A.9 is typically performed using
the Fast Fourier Transform (FFT) which is an efficient representation of the DFT.
The FFT gains a computational advantage because it splits the calculation into two
parts as long as N is not a prime integer. This allows a reduction in the number of
mathematical computations from N2 for a direct evaluation of A.9 to approximately

N log N depending on the number of points in the original data set.

LAs T gets larger the biasing window (1 — 7/T') approaches unity
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A.2 POD kernel Formulation

A derivation similar to that above can be developed to find an estimator for the POD
kernel Wy 1(r, 7', m, f). If the estimator is assumed to take the form,

< ay(r,m, f)ai(r',m, f) >

Wl,l(’ra Tl,m, .f) = T

(A.10)

then we need only show that this approaches the true kernel as the record length
increases.
The double transformed velocities in A.10 (over frequency and azimuthal mode

number) are given as,

N/2

ay(r,m, f)= / e~ 1@mItEmO)y (19, 1) dt (A.11)

m=——ny27 T2
where m is the azimuthal Fourier mode number, N is the number of azimuthal modes

and 4 is the transformed velocity. The estimator for the POD kernel then becomes,

N/2

T/2 140
<ty (r,m, f)ai(r',m, f) > = / / o i2n(ft—f't)
:—N/2m N/2 T/27=T/2
e—Z(ma m'ﬂ’)B(,r.’ TI, 9’ 91’ t, tl)dtdt, (A12)

where B(r,r",0,0' t,t") =< 4(r,0,t)0;(r',m, f) > is the correlation tensor. Rewrit-

ing A.12 produces,

N/2 N/2

<dan(rm, Na(rm, f)> = 3 3 et /T/Q /T/2

m=—N/2 m’:fN/2 /2 )-1/2
efiQW(ftffltl)B(,r’ 7",, 9’ 0/, t, t’)dtdtl (A13)

For homogeneous variables in # and t the term in square brackets of eq. A.13

becomes (after a change of variables £ = 0 — 0 and 7 = ¢t — t' and a mapping of

coordinate systems),

1 g e
=3 e M U=LIB(r, 1" &, T)dx + 5/ e mU-LB(r ' &, 7)dx  (A.14)
—7-T 7T
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and using the symmetry of the autocorrelation tensor, B(r,r'.&,7) = B(r,r',&, —7)

one obtains,
T+T i ,
= B(r,r',¢, T)/ e U dy (A.15)
—7-T
which can be integrated. The final result is,

N/2 N/2

. 100 T . 7
— Z Z e—z(mﬂ—m 0") / 6—z7r7(f+f )B(T, ’f", g’ 7_)
=T

m=—N/2m/=—N/2
1 : ) . ,
= (i (THT) _ gim(f—f )T T)
{m(f—f’) (e e )}dT (A.16)
The term in the parentheses of eq. A.16 is the Euler formula for sin z and its Taylor

expansion produces,
N/2 N/2

. Iy T . ,
< ’111(7‘, m, f)’lf{ (TI, m, f) > = E E e*l(mafm 0" / 671#7(f+f )
=T

m=—N/2m'=—N/2

By, & 1T (14 7) dr (A17)
The interest here is on single point statistics so as m — m' and § — 0’ eq. A.17
becomes,
T )
< 111(7’, m, f)ﬁ{(rl’m’ f) >= / e—erfB(’f‘, r"f,T)T (1 + %) dr (A18)
-7

but since the right hand side is the spectrum of the original POD kernel this suggests

an estimator for the POD kernel of the form,

< by (r,m, f)ai(r',m, f) >

Wf:l(r, r'm,f) =

T
+T/2 _
- /_ o [1 - %] B(r, ', &, 7)e "2 dr (A.19)

Equation A.19 provides an estimator of the POD kernel given in A.1. This repre-
sentation was utilized in a numerical solution of the POD integral eigenvalue equation.
The spectral estimator was calculated using many integral scale time blocks so that
the lag window did not influence the results (Tan-atichat and George, 1985). The

numerical implementation of the kernel estimator is discussed in chapter 6.



Appendix B

Orthogonal Eigenfunction Proof

The POD eigenfunctions are orthogonal over the rdr plane by the following proof.
The equation defining the eigenfunctions is the integral eigenvalue equation of section

2.4,

/Wi,j(r, r'ym, £)o3 (', m, f)r'dr’ = X'(m, f)éi (r,m, f)(n=1,2,3,...)  (B.1)

Both sides of eq. B.1 are multiplied by the conjugate eigenfunction ¢¢*(r, m, f) and

the weighting function rdr which produces,

[ [ Wastrttsm, £)85 m, £)68 (rm, £ty =
N'(m, f) [ 62 (r,m, £)8(rm, fyrr (B.2)

Using the Hermitian nature of the kernel, W; ;(r,r') = W/, (r',r), yields,

/{/Wj,i(r, r' m, f)or (r, m, f)T‘dr} qb?(r',m, fr'dr' =
Xt(m, f) [ 62 (r,m, £ (rm, fyrdr (B.3)
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but the term in curly brackets is the left hand side of eq. B.1 which when replaced

by the term on the right hand side becomes,

[ X0, 187, g, e’ = N, ) [ 62 rm, £)8 (7, m, frdr

(B.4)
which becomes,
(V(m, £) = N"(m, £)) [ & (r,m, )&} (r,m, Prdr (B.5)
or more succinctly,
. Kk if AP = \"
/qﬁf (r,m, £)¢5 (r,m, f)rdr = { (B.6)
0 if AP £\

So the eigenfunctions are orthogonal on an r weighted basis.



