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Abstract

The equations that govern the two-point velocity correlation tensor in three different
free-shear flows: a temporally developing wake, a spatially evolving axisymmetric jet,
and a spatially evolving plane jet, are examined in order to determine if these equa-
tions admit similarity solutions. Following the approach suggested by George (1989),
this investigation is carried out by allowing the different correlations in these equa-
tions to have their own similarity scales. The allowable choices for these scales are
then determined by examining the equations of motion. It is demonstrated that the
full equations that govern the two-point velocity correlation tensor in the tempo-
rally developing wake and the spatially developing axisymmetric jet admit similarity
solutions for idealized virtual sources. In these solutions, the scales for all of the mem-
bers in the two-point velocity correlation tensor and the turbulent transfer terms are
proportional, consistent with the traditional self-preservation (similarity) approach
(v. Townsend 1956). The equations that govern the similarity profiles are depen-
dent on the growth rates of the flows, though, indicating that the solutions for these
profiles depend on the source conditions of the flows, in contrast to the traditional

self-preservation arguments.

The governing equations for the two-point velocity correlation in the spatially
evolving plane jet do not admit similarity solutions because this is not a constant-
Reynolds-number flow. The Reynolds number of the jet approaches infinity, however,
as the flow evolves downstream. In this limit, it is possible to demonstrate that the
first order equations that govern the evolution of the two-point velocity correlation
tensor for large separation distances (which emphasize the large-scale motions) and

the equations governing the second-order structure functions (which emphasize the

i



small-scale motions) each admit similarity solutions. The similarity solutions for the

small-scale motions are consistent with the solution proposed by Kolmogorov (1941).
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Chapter 1

Introduction

The complex nature of turbulent flows seems to preclude the possibility of finding an
analytical solution to its governing equations, even for an incompressible flow of a
Newtonian, single component fluid in simple geometries, such as simple jets or wakes.
Recent advances in computational capabilities, however, have allowed the simulation
of some simple flows for all the relevant scales of motion. At present these simulations
can only be carried out for moderate Reynolds numbers. Of course, as the computer
technology advances the quality of the simulations will improve. Even so, these sim-
ulations, themselves, can only answer the question ‘what happens?’ and not ‘why
does it happen?’. In order to understand the ‘why’ it is necessary to construct sim-

plified models of the turbulence that exhibit the features one suspects to be important.

The analysis of turbulence is complicated by the fact that the non-linear nature
of the equations of motion amplifies any uncertainty in the initial and boundary con-
ditions as the flow evolves, so eventually the instantaneous velocity at any point in

the flow cannot be predicted with any certainty. Thus, it is conventional to average
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the governing equations to generate a set of equations for statistical measures of the
flow. These equations, unfortunately, do not form a closed set (c.f. Batchelor, 1953)
so they cannot be solved without a closure model, which is essentially an assumption
about how the flow evolves. Hence, it is useful to gain insight into how the turbulent

flows evolve in order to construct better closure models.

One hypothesis, which has been examined extensively is that the turbulence in
many free-shear flows asymptotically approaches an ‘equilibrium’ or ‘similarity’ state.
In a similarity analysis it is hypothesized that a solution exists to the governing equa-
tions in which the statistical moments of the velocity can be written as the product
of a scale that is dependent on the downstream position of the point and a similarity
function that is dependent on the cross-stream position of the point normalized by
a characteristic length scale. Hence, it is assumed that the profiles of the velocity
moments have a similar shape at different downstream positions and, in fact, can
be collapsed to a single profile. It can be shown that the governing equations for
the single-point moments admit similarity solutions when the flow evolves such that
all of the terms in the governing equation make the same relative contribution; i.e.,
the flow evolves such that the terms in the governing equations are in equilibrium.
Of course, the similarity solution is at best an approximate model of an actual flow
because it requires that the profiles at all streamwise positions in the flow collapse.
This cannot be true for profiles near the origin of most (if not all) turbulent flows.

Thus, the similarity solution is, at most, an asymptotic solution for the flow.

For non-homogeneous shear flows, the similarity analysis has traditionally only
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been carried out for the equations which govern the evolution of the single-point mo-
ments; ¢.e., moments where all of the variables are evaluated at a single point in space
and time. A question to be resolved (eg., Townsend, 1956 or Bonnet et al., 1986) is
whether the structure of the turbulence itself is in an ‘equilibrium’ or ‘similarity’ state
when the flow evolves such that the single-point moments are in agreement with a
similarity hypothesis. In other words, does the flow evolve such that the structures
of the turbulence and the probability density functions describing their occurrence at
one point in the flow are related to those at another point in the flow by a similarity

transformation?

One technique which can be utilized to address this question is to demonstrate
that equations that govern the evolution of more complex statistical moments, such as
the two-point velocity correlation tensor, admit similarity solutions. It is important
to note that the two-point velocity correlation tensor cannot be utilized to uniquely
determine the structure of the turbulence. Thus, demonstrating that the governing
equations for the two-point velocity correlation tensor admit similarity solutions does
not imply that the turbulent structure is similar. However, it can be argued that the
similarity hypothesis for the turbulent structure is consistent with the equations of

motion, at least to the level of the two-point velocity correlation tensor.

1.1 Review of Similarity Analysis

Similarity analysis has been utilized extensively in laminar fluid dynamics and heat

transfer (v. Batchelor 1967 and Burmeister 1983) since the early work on laminar
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boundary layer theory carried out by Blasius (v. Batchelor, 1967). Similarity analysis
can be utilized to transform one dependent variable from the differential equations
governing the flow, thereby simplifying the mathematical description of the problem.
Unlike laminar flows, the application of the similarity analysis to single-point equa-
tions in turbulent flows, by itself, cannot be used to elicit solutions because of the
closure problem. However, the analysis is still useful because it offers insight into the

evolution of these flows; i.e., that they evolve towards an ‘equilibrium’ state.

1.1.1 Single-Point Similarity Analysis

There are essentially two different approaches to find if the governing equations solu-
tions for non-homogeneous free-shear flows admit similarity solutions. The traditional
approach to the similarity analysis (c.f. Townsend, 1956 and Tennekes and Lumley,
1972) is to choose the similarity scales for all of the moments in the equations which
are being analyzed. These scales are chosen by making a ‘self-preservation’ hypothe-
sis, in which case it is assumed that the profiles of the statistical moment in the flow
can be rescaled using a single length and velocity scale. For instance; the scales for
Reynolds stresses are chosen equal to the square of the scale for the mean velocity
profile. It is then determined if these hypothesized similarity solutions are consistent
with the equations of motion. Further, in the traditional approach it is usually argued
that the asymptotic similarity solution for each type of flow (such as all plane wakes)

is universal or unique, independent of the initial (or source) conditions of the flow.

The second approach, suggested by George (1989), is to carry out the similar-

ity analysis using arbitrary scales for all of the statistical moments in the transport
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equations. The allowable choices for these scales are then determined by examining
the constraints that must be imposed so the transport equations admit similarity
solutions. Consequently, the scales for all of the velocity moments are not necessarily
powers of the scale used for the mean velocity. This second approach can yield the
solutions derived using the traditional approach, and is thus more general. Further,
in this second approach the equations of motion are used to determine whether the

all flows of a certain type evolve to universal or unique similarity solution.

An example of the difference in the two approaches can be seen in the analysis
of the spatially evolving plane wake flow (v. fig. 1.1). The experimental results of
Wygnanski et al. (1986) demonstrate that the Reynolds stresses measured in the
plane wake generated behind several different types of bodies do not collapse when
they are scaled with the traditional similarity variables (nor were the spreading rates
of the wakes the same) despite the fact that the mean velocity profile in the different
wakes do collapse. These differences occurred in both the normal Reynolds stresses,

in particular wyuy, and the Reynolds shear-stress, w ;.

In the traditional approach to the similarity analysis (Townsend 1956), it is as-
sumed that the governing equations admit similarity solutions where the mean veloc-

ity profile, U, can be written as

Use = Ur = Us(21) f(n), (1.1)

while the similarity solution for the Reynolds stress, Uiz, is chosen (arbitrarily) as

uit; = Uy (z1)g(n), (1.2)
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where
)

== (1.3)

Substituting the hypothesized similarity solutions into the first-order differential and

mean momentum equations (Wygnanski et al. 1986) yields
UU0) [ fG7)di = My (1.4)

and

_dnf(n) _ [QMO
dn LUy

where M, is the momentum deficit of the wake. Thus, the traditional similarity

solutions are consistent with the mean momentum equation only when

dé?
— 1.
e x const (1.6)

Further, if the functional forms of the mean velocity and the Reynolds stress similar-
ity profiles are to be independent of the wake generator, then so must be the growth
rate of the wake. As Wygnanski et al. (1986) point out, the growth rates in the
data they reported were not the same for all wakes. Thus, their results are either
inconsistent with the hypothesis that all flows reach an universal equilibrium state or

the experiments have not gone far enough to reach this state.

In contrast, following the approach suggested by George (1989) it is hypothesized
that the mean momentum equations in the wake admit similarity solutions where the
mean velocity profile is given by equation 1.1 and the Reynolds shear-stress is given
by

urtz = Ry(21)9(n). (1.7)
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In this case the differential mean momentum equation can be reduced to

_dnf(n) _ dg(n)

1.8
i an (1.8)
when the scale for the Reynolds stress s is chosen as
dd
R, =U U;—. 1.9
. (1.9)

George illustrated that the similarity profiles for Reynolds shear-stress in wakes with
different growth rates do collapse when this scale is utilized for the data reported by

Wygnanski et al. (1986).

One key difference between this approach and the traditional approach is that the
growth rate of the similarity length scale, d, is not determined from the analysis of
the mean momentum equation since the scale for the Reynolds stress is arbitrary at
this point in the analysis. George (1989) suggested that the growth rate of the wake
could be determined by examining the governing equation for the turbulent kinetic
energy and using physical scaling arguments to choose the similarity scale for the rate
of dissipation of turbulent kinetic energy. George found that this equation admits a
similarity solution only when

52

pr const, (1.10)

which is the same constraint derived from the traditional approach. In fact, on
the surface, the similarity solution outlined by George (1989) is consistent with the
similarity solution derived using the traditional approach except for one important
difference. George found that the equation for the similarity profile of the turbulent
kinetic energy is dependent on the growth rate of the wake. From this, George con-

cluded that the functional forms of the similarity profiles for the normal stresses may
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not be unique or independent of the source conditions. Such is, indeed, the case for
the wu; Reynolds stress measurements reported by Wygnanski et al. (1986). George
did argue though that since the mean momentum equation is independent of this the
growth rate factor when the Reynolds stress, uius, is scaled as in equation 1.9 then
the similarity solution of the properly scaled mean velocity and the Reynolds stress,
uius, should be independent of the source conditions, consistent with observations

(George 1989).

Later analyses (George 1994 or Ewing and George 1994) demonstrated that the
growth rate of the similarity length scale in several free-shear flows can be deter-
mined by applying the similarity analysis to the equations that govern the individual
Reynolds stresses, %;u;, without requiring physical scaling arguments for the rate of
dissipation of the kinetic energy. In this case, the scale for the dissipation rate is
a predicted outcome of the analysis. A comparison of the scale derived for the rate
of dissipation using the similarity analysis and that derived from physical arguments
led George (1994) to conclude that similarity solutions are only possible for constant-
Reynolds-number, free-shear, flows or free-shear flows in the infinite-Reynolds-number

limit.

In summary, the approach to similarity analysis suggested by George introduces
two modifications of the traditional similarity analysis. Firstly, it uses the equations of
motion to determine the appropriate choice for the similarity scales. This emphasizes
one of the key physical characteristics of the similarity solution; namely that the
equations governing the statistical moments evolve in an ‘equilibrium’ manner when

the evolution of the flow is consistent with a similarity hypothesis (i.e., the ratios of
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the terms in the equations are independent of the downstream position in the flow).
The second idea introduced by George (1989) is the possibility that the similarity
states of the turbulence may depend on the source conditions of the flow.! This
dependence can occur in two different places in the solution: First, the appropriate
scale for the statistical moments may be a function of the initial conditions. And
second, the functional form of the similarity solutions may depend on the source

conditions.

1.1.2 Similarity Analysis of Two-Point Information

Previously, there have been a few attempts to find two-point similarity solutions in
turbulent flows. These include similarity analyses of decaying isotropic turbulence
(e.g., von Karman and Howarth 1938, Batchelor 1948, Speziale and Bernard 1992,
and George 1992), homogeneous shear flow (v. George and Gibson 1992), and the

spatially evolving, axisymmetric jet (Ewing and George 1994). 2

For decaying isotropic turbulence, von Karmen and Howarth (1938) found that

the governing equation for the two-point longitudinal correlation is given by

(where F'(r) and K(r) are u?>f(r) and u®k(r) in the notation of von Karman and

Howarth 1938). They then hypothesized that a similarity solution existed for this

'Tt is important to note that the approach suggested by George does not exclude the possibility
that all flows of a certain type settle into the same similarity state. It simply argues that the
governing equations for each flow admit similarity solutions (of the hypothesized kind). These
solutions may or may not all be the same.

2The similarity hypothesis for the small scale motion in an infinite Reynolds number turbulence
proposed by Kolmogorov is considered separately.
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equation where

F(r,t) =U;f(n) (1.12)

and

K(r,t) = Uk(n). (1.13)

Substituting these hypothesized solutions into equation 1.11, it is straightforward

to demonstrate that this equation admits a similarity solution of this type only when

Usd
Res = — = const. (1.14)

This condition is not normally satisfied in experimental measurements of decaying
isotropic turbulence at finite Reynolds numbers. Batchelor (1948) carried out a sim-
ilarity analysis of this problem in Fourier space and argued that a similarity solution
could be found during the final period of decay when the nonlinear terms become

negligible.

On the other hand, George (1992) argued that a similarity solution could exist
for the full equation (at least during the early period of decay) if it is not assumed
a priori that the scale for the turbulent transfer terms is U?. For example, if the

hypothesized similarity solutions for equation 1.11 are given by

F(r,t) = F(t)f(n) (1.15)

and

K(r,t) = K)k(n), (1.16)
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it is straightforward to demonstrate that the solutions are consistent with the equa-

tion 1.11 if

ds?

T o const (1.17)
and .

- F

K(t) = DT (1.18)

It is conventional to define F' such that
F=U2 (1.19)

where U? is the scale for the turbulent kinetic energy, in which case the scale for the

turbulent transfer term can be written as

K(t) = g;é. (1.20)

Thus, instead of requiring the Reynolds number to be constant, this approach has
absorbed the Reynolds number dependence into the scale for the turbulent transfer

terms.

It is important to note that this similarity solution is fundamentally different from
the tradition solution, except for the special case where the Reynolds number is con-
stant during the decay.? In order to fully appreciate the difference between these two
similarity solutions it is useful to examine the differences in the physical model which

may have motivated the two approaches. Probably the simplest physical model that

3George (1989) argued that the similarity solution derived using the two methods are consistent
in the limit of infinite Reynolds number since in this case the Reynolds number of the turbulence
remains constant.
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would lead to the traditional similarity solution is one in which the turbulent struc-
tures in the flow and the probability density functions that describe their occurrences
at different points in the flow evolution are similar. That is, the turbulence at one
time is simply bigger (or smaller) and less (or more) energetic than at another point
in time, so the differences in the statistical measures be removed by normalizing the
measures by a single length and velocity scale. Although this may not be the only
type of flow that yields correlation functions consistent with the traditional similarity
solution, it is a useful model to contrast to the similarity solution derived by George
(1992). In that solution the skewness of the fluctuating velocity components and the
skewness of the velocity derivatives (George, 1992) in physical variables vary inversely
with the Reynolds number of the flow, based on the Taylor microscale, as the flow

evolves. For example,

"3
u; . K(rt) 1 k(n)
= lim = = , 1.21
u—l23/2 r—0 F(T, t)3/2 Re,, f 77)3/2 ( )

where v, is the longitudinal velocity component and A (the Taylor microscale) is the
similarity length scale (George 1989). Thus, either the turbulence structures and/or
the probability distribution function describing their occurrences (or more formally
the probability distribution functions of the velocity field) are varying continuously as
the flow evolves so that the velocity skewness and velocity derivative skewness vary
continuously as the flow evolves. This model of the turbulent flow is significantly
different from any self-preserving model which would produce statistical measures
consistent with the traditional similarity solution. Thus, for decaying isotropic tur-
bulence the more general similarity approach suggested by George leads to a solution
which is significantly different from the solution generated using the traditional ap-
proach. Note, George also suggested (but could not prove) that the region of appli-

cability of this solution was limited by an upper bound on the derivative skewness.
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George and Gibson (1992) illustrated that an analogous similarity solution exists
for homogeneous shear turbulence, although in this case the turbulent kinetic energy
of the flow and the Reynolds number increase exponentially as the flow evolves, while
the the similarity length (the Taylor microscale) is a constant. In this solution, the

scale for the turbulent transfer terms is again u3/Re .

Hence, the discussion re-
garding the nature of George’s similarity solution for isotropic turbulence is equally
applicable to the similarity solution for this flow. However, George and Gibson (1992)

argue there is no bound on the validity of the solution for this flow since the derivative

skewness decreases as the energy and Reynolds number increase.

Although the similarity analyses outlined by George (1992) and George and Gib-
son (1992) are by no means universally accepted, the experimental evidence illustrated
in both papers appears to be in agreement with the theories. Whether the theory is
true or not, they do seem to make an important point. It may not be appropriate
to simply assume a priori that all of the velocity moments in the turbulence scale as
a simple power of a single velocity scale and are independent of Reynolds number,
without recognizing the inherent limitations this assumption imposes on the evolution

of the turbulent flow being considered.

1.1.3 Kolmogorov’s Hypothesis

Kolmogorov (1941, 1963) outlined a series of similarity hypotheses about the nature

of small-scale turbulence in the infinite-Reynolds-number limit. The essence of these
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hypotheses is that probability density function for the small-scale motions is depen-
dent only on two flow dependent parameters: the rate of dissipation of kinetic energy
per unit mass and the viscosity of the fluid. Hence, the statistical measures of the

small-scale turbulence are universal and can be characterized by a single length and

M = (V—?’)M (1.22)

€

velocity scale given by

and

u, = (ve)'/*. (1.23)

Thus, Kolmogorov’s hypotheses fall very much in line with the classical self-
preservation ideas (or wvice versa). Kolmogorov’s hypotheses have been well docu-
mented elsewhere (v. Monin and Yaglom 1975 or Batchelor 1947), so the reader is

referred to these sources for any further introduction.

It is important to note that Kolmogorov’s hypotheses assume that the Reynolds
number of the turbulence is very large and are only formally exact in the infinite
Reynolds number limit (Batchelor, 1953). There are a significant number of spectral
measurements that appear to be in agreement with the predictions of the theories (v.
Monin and Yaglom, 1975), but careful experimental investigation of the higher-order
moments and spectra, such as those carried out by Champagne (1978), illustrate that
there is a residual Reynolds number dependence even for fairly large Reynolds number

flows.
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1.2 Objective of This Research

The objective of the present analysis is to determine whether the equations that
govern the evolution of the two-point velocity correlation tensor in several turbulent
free-shear flows admit to similarity solutions. Following the methodology outlined by
George (1989), this is accomplished by hypothesizing that the relevant equations ad-
mit similarity solutions where the two-point velocity correlation tensor can be written
as the product of a scale that indicates how the moment varies as the flow evolves and
a similarity function. The scales for these similarity solutions are then determined by

examining the governing equations.

The flows examined here fall in three categories: First, a constant-Reynolds-
number, temporally developing flow. Second, a constant-Reynolds-number, spatially
developing flow with a constant growth rate. Finally, a varying-Reynolds-number,
spatially developing flow with a constant growth rate. The flows examined in each
of these groups should be considered as representative flows, so the analyses applied
to these flows can easily be extended to other flows that are in the same group. It
is not possible to directly extend the similarity analysis of the two-point equations
in spatially evolving flows with a constant growth rates to those with non-constant
growth rates, as is the case for the temporally evolving flows. Spatially developing
flows with a non-constant growth rates (eg., the spatially developing plane and ax-

isymmetric wakes) will be considered in later analyses.

In the case of the temporally evolving wake, the equation that governs the two-
point scalar correlation is also examined for two different sets of initial/boundary

conditions. The first is a two-stream mixing field in which the mean value of the
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scalar differs on the two sides of the wake, while the second is a scalar field with a

mean deficit or surplus in the wake.

The data from Direct Numerical Simulations of the temporally evolving wake
computed by Moser and Rogers (1994) are also examined as a test of the two-point
similarity hypothesis. It is, of course, not possible to simulate a flow that is infinite
in extent in the homogeneous directions, so instead the wake in an infinite environ-
ment is modeled using the flow in a box with periodic boundary conditions these
directions. It is argued that scales of motion which are somewhat smaller than the
dimensions of the box should evolve like a flow in an infinite environment. Hence,
it is not expected that the similarity solution for the infinite wake should be a good
model for the largest motions in the box, but it should accurately describe the the
moderate- and small-scale motions. Thus, the comparison of data and the predictions
of the theory can be viewed as a test of both the two-point similarity hypothesis and
the ability of the simulation to model a wake in an infinite environment. Agreement
between the theory and the data adds credence to both the similarity hypothesis and
to the idea that motions in the finite box evolve like those in an infinite environment

(in the sense that they both evolve in a ‘equilibrium’ manner).

In all of these cases information from the single-point analysis is utilized to facili-
tate the analysis of the two-point equations, but this does not imply that the similarity
solutions for the two-point moments follows from the single-point solutions. In fact,
the opposite is true. When the equation that govern the two-point velocity correla-
tion tensor admit similarity solutions, the Reynolds stresses can also be written in a

similarity form since these moments are a special case of the two-point correlations.
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Similarly, the two-point velocity correlation tensor is similar when the structure of

the turbulence is similar, but the opposite is not necessarily be true.
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Figure 1.1: Geometry of the spatially evolving plane wake

18



Chapter 2

A Constant-Reynolds-Number,
Non-Homogeneous, Temporally

Developing Flow: The Plane Wake

The temporally evolving wake flow illustrated in figure 2.1 is a non-homogeneous
shear flow in which a momentum deficit, which is infinite in extent in two homo-
geneous directions, evolves in time. Although this flow is not a naturally occurring
flow, it is useful in the sense that it is easier to carry out a Direct Numerical Sim-
ulation of this flow than its spatially evolving counterpart. The Direct Numerical
Simulations approach also has an advantage over experimental investigation since it
yields complete knowledge of the instantaneous field (at a somewhat lower Reynolds
number), so these data bases can be utilized to test theoretical hypotheses about the
turbulence. Thus, it is useful to query if the equations that govern the two-point

velocity correlation in this flow admit similarity solutions.

19
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The temporally developing plane wake can be thought of as a model of the spa-
tially developing wake in the asymptotic small-deficit limit. Therefore, although the
spatially developing wake is not considered here, it is useful first to briefly review the

literature for the spatially developing wake.

2.1 Review of Spatially Evolving Wake Literature

There has been a great deal of interest in the spatially evolving wake flow because it
appears in many engineering applications. The studies this flow can be separated into
three groups defined by the regions of the wake examined. These are: the near-wake
region, 0 < z/d < 10; the intermediate-wake region, 10 < z/d < 60; and the far-wake
region, z/d > 250.! These studies have included investigations of both the Reynolds

averaged statistics and the large-scale coherent structures in the turbulent flow.

Many of the recent investigations in the near and intermediate regions of the wake
have been primarily interested in the dynamics of the large-scale structures in these
regions. For example, in an investigation of the near-wake region behind a circular
cylinder, Cantwell and Coles (1983) found a periodic turbulent structure that closely
resembled a Karman vortex street. This organized structure contained approximately
half of the turbulent stresses in the near-wake region. In addition, they found that
the turbulent production and the entrainment of the non-vortical fluid in this region
was closely related to the saddle points that occurred in the these structures. In-
vestigations in the intermediate wake (v. Hayakawa and Hussain 1989 or Zhou and

Antonia 1993) found a similar vortical structure in this region of the wake, though

!The definitions do vary but these are nominally the defining values.
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Hayakawa and Hussain (1989) noted a significant amount of three dimensionality ex-
isted in the spanwise structures of the intermediate wake. They concluded that this
three dimensionality was primarily due to kinking of the spanwise vortices producing

horseshoe vortices that were inclined relative to the cross-stream coordinate direction.

There have also been numerous studies in the far-wake region (which are of pri-
mary interest here). The earlier work on the spatially evolving wake including the
classical similarity analysis of the single-point, Reynolds-averaged equations docu-
mented by Townsend (1956). The first two-point velocity correlations measurements
in the far field of the wake led investigators (v. Grant 1958 and Townsend 1970) to
conclude that a double-roller eddy structure existed in the far field of the wake. This
structure consisted of two parallel vortical motions of opposite sign inclined forward
relative to the non-homogeneous cross-stream direction in the far field of the wake.
Grant (1958) reported that the correlation of the velocity component u; was positive
when the probes were situated on opposite sides of the layer. This led Grant to con-
clude that the double-roller eddy structure was symmetric about the centerline of the
wake and it occurred on both side of the wake simultaneously. Payne and Lumley
(1967) found a similar structure in the far wake by applying the proper orthogonal de-
composition technique (v. Lumley 1970) to the correlation measurements reported by
Grant (1958). In order to investigate whether these types of structures actually exist
in the far field of the wake, Mumford (1983) applied a pattern recognition technique
to the instantaneous measured velocity field utilizing patterns analogous to those
identified by Grant and Townsend. Mumford did find evidence of the existence of
double roller structures in the far wake, although the structures were predominantly

confined to a single side of the wake unlike the model suggested by Grant (1958).
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Bonnet et al. (1986) also carried out measurements of the two-point velocity
correlation tensor in a turbulent wake behind a flat plate. They found that the cor-
relation of the u; component was negative when the probes were on opposite sides
of the wake, in contrast to the results reported by Grant (1958). They also noted
that the correlation of the u; component in the homogeneous spanwise direction was
always positive in their measurements, also in contrast to the correlation reported
by Grant (1958), which had several zero crossings over the same separation distance.
Consequently, Bonnet et al. argued that the double-roller eddy structure proposed by
Grant (1958) did not describe the structure in their flow. Bonnet et al. attributed the
differences in the measurements to the fact that the boundary layers on their plate
were turbulent before they left the end of the plate, while the previous investigations
including Grant’s, were carried out behind a body that had laminar boundary lay-
ers. They argued that the transition which occurs in the wake behind a body with
laminar boundary layers would create different structures than those that occur in
a wake when two independent turbulent boundary layers are joined at the back of
a body, such as a plate. This hypothesis was supported by a recent experimental
investigation of the wake behind a plate with both laminar and turbulent boundary
layers reported by Weygandt and Metha (1993). They found significantly more three
dimensionality in the time-averaged velocity field measured in near and intermediate
regions of a wake behind a flat plate with laminar boundary layers compared to the
wake formed behind the same plate with a boundary layers that are tripped to be
turbulent. Weygandt and Metha also reported that this three dimensionality appears
to influence the turbulence measurements in the far wake, although the time-averaged

velocity field is two dimensional in this region. Parsad and Williamson (1993,1993)
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also noted that the structure of the turbulence in the far wake could be related to
the turbulence in the near wake and the vortex shedding from the cylinder, although
their observations were in wakes of somewhat lower Reynolds number. In addition,
they noted that the transitional flow in the wake was highly sensitive to external
disturbances and these disturbances influenced the state of the turbulence in the far

wake.

Of course, the difference between the measurements reported by Bonnet et al.
and Grant may also be due to the fact that the bodies which produced the wakes
were different (i.e., a cylinder versus a flat plate). The measurement of the far behind
different wake generators reported by Wygnanski et al. (1986) demonstrate that even
the cross-stream distribution of the single-point moments depended on the type of
body that produced the wake, in agreement with the results of the similarity hypoth-
esis outlined by George (1989). Thus, it is not difficult to imagine that the coherent

structures in the wakes may also differ.

The plane wake literature also contains evidence that supports the general hy-
pothesis that the turbulent structure (or at least the two-point correlation tensor) in
this flow may be similar. Grant (1958) illustrated that the correlation of the stream-
wise component u; in spanwise direction at two different locations downstream of
the cylinder collapsed in similarity variables. In addition, Wygnanski et al. showed
that the shape of the spectra at different downstream positions in the wake collapsed
when the frequency was scaled by similarity-type variables. They did not scale the
magnitude of the spectra though, so a complete collapse of the data was not achieved.

In both cases these occurrences were commented on, but no attempt was made to
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demonstrate that this type of similarity solution was consistent with the governing
equations. It is this question that will be addressed here for the temporally evolving
plane wake (an approximate model of the asymptotic far field of the spatially evolving

wake, v. Moser and Rogers 1994).

2.2 Flow Geometry

The temporally evolving wake is non-homogeneous in one direction, x5, and homo-
geneous in two directions, z; and z3, which includes the mean flow direction, z; (v.
fig. 2.2). One consequence of the homogeneity in the mean flow direction is that
the mean convection terms in the Reynolds-averaged, single-point equations (that
dominate the spatially developing wake) are zero. Their role is, in part, picked up
by the unsteady terms, which are non-zero in this flow (and zero in the single-point
equations for the stationary, spatially developing flow). Another consequence of the
homogeneity is that the mean cross-stream velocity component (i.e., Us) is zero so
that the spread of the temporally evolving wake occurs only through turbulent (and
molecular) diffusion, in contrast to the spatially developing wake, which has a small

but finite entrainment velocity in the direction normal to the wake centerline.

The temporally developing wake also differs from the spatially evolving wake in
that different integral constraints are satisfied for the two flows. In the temporally
evolving wake the mass and momentum deficits of the wake are conserved. Thus,

both the displacement thickness of the wake, d4, given by

. +ffooo(Uoo — U1)d$2
B Uoo - Ucl(to) ’

dd (2.1)
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where Uy, is the mean free-stream velocity and Uy (t,) is the centerline velocity at the

initial time, and the momentum thickness of the layer, 6, given by

7 Uz

(2.2)

are constant as the wake evolves. In the case where the initial centerline velocity
is zero, the displacement thickness of the temporally evolving wake is equal to the
momentum thickness of the wake. In the spatially evolving wake the momentum
thickness is constant as the flow evolves, but the displacement thickness is not. The
displacement thickness of the spatially developing wake is only a constant in the limit

of zero velocity deficit (c.f. Wygnanski et al., 1986).

2.3 Similarity of the Single-Point Moments

It is conventional (c.f. Tennekes and Lumley 1972) to examine whether the govern-
ing equations for the single-point moments admit similarity solutions for high- (or
formally infinite-) Reynolds-number flows. That is, it is assumed that the molecular
diffusion terms are negligible relative to the turbulent diffusion or transport terms.

For example, in the mean momentum equation given by

8U1 8u1u2 4 y82U1
ot 0x4 03’

(2.3)

where v is the kinematic viscosity, this assumption implies that the viscous stresses
are negligible compared to the turbulent Reynolds stresses (Tennekes and Lumley,

1972).
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These assumptions can also be used to simplify the equation for the Reynolds

stress components given by

ou;u; _p <8ui N auj> . {8% du;  Oug 8uk|
p

ot dz; | O Oy, Oxy  Ox; O,
0 pu; pu;
_8—3;2 U2U; U5 + 7(5j2 + 7512 —2v {uiejg + ujezg}
oUy oUy
UJU28—@5i1 — Ui’lj,ga—@(sj'l — 4Veikejk7 (24)

where e;; is the fluctuating rate of strain tensor. In this case, the standard high-
Reynolds-number assumption includes neglecting the viscous transport terms relative
to the turbulent transport terms. It is also normally assumed that the small-scale mo-
tions in the flow are ‘locally’ isotropic, in which case the dissipations of the Reynolds
stresses other than the normal stresses are zero and the viscous redistribution terms

given by

—y 8u, an . auk 8’U,k
axk 8.Tk (%, aSEj

(2.5)

are zero.

As it will be shown later, it is possible to find a similarity solution without making
these assumptions for both the velocity and scalar field, but to do this formally it
is necessary to examine the equations that govern the two-point correlations in or-

der to gain enough information to evaluate the velocity gradient terms in equation 2.4.

2.3.1 Analysis of the Velocity Field

The similarity analysis of the temporally evolving flow differs from that of the spa-

tially evolving flow in that the length scales and velocity scales utilized in the analysis
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are functions of time instead of the streamwise coordinate. Thus, the objective of the
single-point similarity analysis is to determine if the governing equations allow solu-

tions that are the product of a time-dependent scale and a similarity function.

Utilizing the standard high-Reynolds-number assumption, the mean-momentum
equation (in deficit form) can be written as

6(Uoo — Ul) (3U1U,2
= 2.
ot T o (2:6)

Equation 2.6 can be integrated across the layer to yield an integral constraint for this
flow given by

—Uy)dzy = + wu 2.7

O U~ )z, = + T, (2.7)

Thus, if the free stream turbulence is negligible, the mass deficit and the momentum

deficit in the temporally wake are conserved; i.e.,

/°° (U — U )day = % (2.8)

-0 oo

where M, is the momentum deficit of the wake.

It is hypothesized that the mean momentum equations (eqn. 2.6 and 2.8) admit
similarity solutions in which the mean velocity profile and the Reynolds stress wius
are given by

Uso = Ur(w2,t) = Us(t) f(n) (2.9)
and
Uz (22, ) = Rs(t)g(n), (2.10)
where the similarity coordinate, 7, is given by

X2

=50 (2.11)
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Following George (1989), individual scales have been chosen for each of the moments
to avoid over-constraining the analysis. In particular, it has not been assumed a pri-

ort that the scale for the Reynolds stress wiu; is Uf.

Substituting the hypothesized similarity solutions into equations 2.6 and 2.8

yields
dU, U,dd) df  [R,]dg
ldt]f —[Fa] =5 (2.12)
and
00 Mo
vl [~ faan= |52 (213)

The time-dependent portion of each term in equations 2.12 and 2.13 is contained in

square brackets (a convention which will be utilized throughout this analysis).

Mathematically, the mean momentum equations admit similarity solutions if it
is possible to remove the explicit time dependence from equations 2.12 and 2.13.
Thus, the hypothesized similarity solutions are consistent with the equations if the

terms in square brackets are proportional; i.e.,

0.6] o [lﬂfi] (2.14)
and
ld;ﬂ N l%%} o [Rﬂ , (2.15)

Physically, this implies a solution exists to the mean momentum equation where all

of the terms in this equation make the same relative contribution as the flow evolves.

It is straightforward to demonstrate that the constraints in equations 2.14 and
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2.15 are satisfied when

U, 2.16
X5 (2.16)
and
do
S S 1,.° 2.1
R, x U, o (2.17)

At this point the growth rate of the layer is not yet determined because the scale for
the Reynolds stress wius is not yet defined. However, the constraint in equation 2.16
implies that the Reynolds number of this flow based on the similarity variables must
be a constant; i.e.,

Uso

Re = 75 = const. (2.18)

It will be shown later that this is an important constraint in the analysis of the two-

point equations.

Following the methodology outlined by George (1994), the growth rate of the layer
can be determined by extending the similarity analysis to the equations that govern
the individual Reynolds stresses. For example, using the standard high-Reynolds-

number assumptions the equation for the Reynolds stresses wiuy is given by

OF _plu . oU 0
ot " pox 0ry  0To

where p is the fluctuating pressure, p is the density, and €,,,, is given by

(U/%U/Q) — €ururs (2.19)

€uruy = AVETLEE- (2.20)

It is hypothesized that a similarity solution exists for this equation where the new

moments in equation 2.19 are given by

= Kul(t)km (77)7 (2'21)

S
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p Ouy
—-— =11, i (1), 2.22
o (07 () 222
uiuy = Tru, (H)tra, (n), (2.23)
and
€uru; = D, (t)dul(n)- (2-24)

The solutions for the other moments in this equation have already been defined.

Substituting these solutions into equation 2.19 yields

K, Ky, d5] dk,, RU,7 df
l dt ] “I_l 5 dt]ndn = 2[IL, ] m, +2 |7 ]gdn

B [Trul ] dtry,

—|D 2.2
| St~ (D] du, (225)

where again the time-dependent portion of each term is contained in square brackets.

It is evident that equation 2.19 admits a similarity solution (of the hypothesized
kind) when

4] (] e[S [

These constraints are only satisfied if the scale for the normal stress wiu; is chosen
such that

Ky, «< U?, (2.27)

the scale for the transport terms is given by

dé
Try, o Uf%’ (2.28)
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and the scales for the pressure-strain term and the dissipation term are chosen such

that
U?ds
I, o Dy, oc —=—. 2.29

The similarity analysis can also be extended the equations for the other Reynolds

stresses (UsUs, Uzuz, and Uits) in a high-Reynolds-number wake. These are given by

ouf  pouy 0 [(— . . P
— =2 - — 3 2— | — uU2U2 230
ot pOxy Oy Uzt Cuzuz (2.30)

P
a_u_g _ oPOus  Ousuz € (2.31)
ot N pal'g, 8(132 euss .
and
o, p (Our  Ouy 0 5 pur\ —oU
et L - ) == 2.32
ot P (83:2 + 3961) 0o <u1u2 + p Y2 oy (2.32)

In addition, for an incompressible flow, the pressure-strain terms in the normal stress

equations must satisfy

pOu; pOus pOus

L z =z = 2.
pOry  pOxy  pOzs ’ (2:33)

so the pressure-strain terms act to redistribute the turbulent kinetic energy amongst

the normal stresses.

Following the same approach as for the w;u; equation, it is hypothesized that the
equations that govern the other Reynolds stresses admit similarity solutions where

the solutions for the new single-point moments are given by

u_% = Kuz (t)kw (77)’ (234)
u_g = Kus (t)kus (n)’ (235)
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and

P Ouy

——— = 1L, (¢)my, (1),

o = L) )

p Ous

-5 = Hu u 5

b = Iy (1) 1)
p (Our  Ous
— | 5 a :Hu Uy uLU y
2 (%84 28 ~ MO0

— 0
(u% + 2%) = Try,(t)try,(n),
ugui = Try, (t)try, (1),
[ W
(08 + 72 = T (o),

= Dy, (t)du,(n),

Cusur

= Dy, (t)dus (1)

€ugus

32

(2.36)

(2.37)

(2.38)

(2.39)
(2.40)
(2.41)

(2.42)

(2.43)

Substituting these solutions into equations 2.30 - 2.32, it can be shown these

equations admit similarity solutions when

and

AR, R, dd
at | |78 de

KT
L dt -

K]
L dt -

K, d5
5 dt

o [Ty, ] o [%] X [Duy,]

Ko 40
o dt)

[ ¢ ] ox [Fr32] o [ 25

(2.44)

(2.45)

(2.46)
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In addition, substituting the solutions for the pressure-strain terms into equa-
tion 2.33 yields
[y ] Ty + [y ] Ty + [Hyg] 70y = 0. (2.47)

This equation admits a similarity solution if the flux of energy leaving the u_% equation
through the pressure-strain term is proportional to the flux entering the other two

equations through the pressure-strain terms; 7.e.,

[Ty, ] oc [Ty, ] oc [Thy,] . (2.48)
Hence,
K,, dé K., do Ky, do
— " — " — x I1I,,. 2.49
5 dt M Ty g e X Ty g X (2.49)

Therefore, the single-point equations only admit similarity solution when

Ky, x Ky, o< Ky, oc U2 (2.50)

The equation for the Reynolds stress @113 can be utilized to determine the growth

rate of the similarity length scale since this equation admits a similarity solution only

when
R,dd K,,Us
i 2.51
5dt < (2:51)
Substituting equations 2.50 and 2.15 into this equation yields
A

Therefore, the equations for the Reynolds stresses admit similarity solutions (of the

hypothesized kind) when
62
s const (2.53)
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or,

§ o< (t —to)Y?, (2.54)

where % is the virtual origin of the wake.

Once the scales for the Reynolds stresses have been determined, the scales for the
other moments in the governing equations for the Reynolds stresses can be determined

from equations 2.44, 2.45, and 2.46 ; i.e.,

dé

Try, < USZ%, (2.55)
U2 ds
I, < Dy, < —=—, 2.
uy O Dy 0~ =, (2.56)
do
Try, < Uf%’ (2.57)
U?dé
H'u3 XX DuS X TE, (258)
s\’
T uUi1uU2 Us 3. 9 259
Tugus X (dt) (2.59)
and
U, (d6)
IT D — = . 2.
UruU2 X U1U2 (0,8 6 (dt) ( 60)
When interpreting these results it is useful to recall that
do
s OC — 2.61
Us x 7 (2.61)

in this flow. Consequently, in the temporally evolving wake the similarity scale for all
of the Reynolds stresses are proportional to each other. The is also true for the turbu-

lent transport terms, the pressure strain terms, and the dissipation terms. However,
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the constants of proportionality for the members in each group may differ for different

wakes (e.g. forced or unforced) due to the persistence of initial (or source) conditions.

The similarity scales for the single-point moments outlined above are consistent
with the equations of motion, but there does not appear to be an unique choice
for the scales that will make the resulting similarity equations independent of flow

parameters. For example, if the scales for the moments are chosen such that

K, =K, =K, =U? (2.62)
and
dé
R, =U,—, 2.63

while the constants of proportionality in equations 2.27-2.29 and 2.55 - 2.60 are taken

to be unity, then it follows mean momentum equations reduce to

o0 M
| f0dn = 5 (2.64)
and
dnf _dg
= (2.65)
or,
g(m) =-nfn) + nf(M)l)=c - (2.66)

The equations for the similarity profiles of the higher-order moments are given by

2ky, — djul = 2™y, Qgg—f — dilrul — dy,, (2.67)
n n n
dk, dtr,
2ky, — 1 dnz = 21y, dn2 — dy,, (2.68)
dk dtr
O, — N—2 = 2m, L 2.69
3 77 dT] & 3 dn 3 ( )
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dg dtry, v 1 df
—29—n—— = uu_# 79 v 7~ Wujuss 2.
and
Tuy + Tuy + Tuy = 0, (2.71)

where the parameter ks is given by

o0

dé o d6? o\ g~
N (272

ko = —— = -
2T U dt T 2M, dt

This constant depends on both the initial mass deficit of the wake and the growth
rate of the square of the wake thickness. At this point it may appear that the length
and the velocity scales are free parameters that can be chosen to ensure that the value
of this constant, ks, is the same for all flows (in which can one might argue that the
resulting equation set may yield universal profiles). This is not true. If one wishes to
argue that the profiles are universal, it is necessary to choose the length scale, §, and
the velocity scale, Uy, so that the mean velocity profile from different wakes collapse.
If the constant &, is not the same for this choice of velocity and length scales, then
the solutions from the equation set are dependent on the source conditions of the
wake. It should be noted that the scale for the pressure-strain terms and the dissi-
pation terms have been chosen such that this equation set reduces to this simplified
form. Although the scales for these terms must be chosen proportional to the scales
outlined here, the constant of proportionality for these terms may also depend on the
source conditions of the wake. Thus, these terms may include an additional depen-

dence on the source conditions that can not be deduced from the single-point analysis.

The location of the term ky in the set of equations is not unique. A different
choice for the scales would have placed the constant in a different location in the set

of equations. It is also important to note that the equations for the similarity profiles
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form a coupled set of equations. Thus, the value of the constant k; will in general
influence the solution to all of the equations unless it can be demonstrated that the
equation set can be decoupled. Of course, this influence may be more significant for
some of the similarity profiles than for others. It is evident from equation 2.66 that
the similarity profile for the mean velocity and that for the Reynolds stress uius will
be similarly affected since they can be related algebraically to each other. Hence, if
the mean velocity profile is universal (as is the case for the spatially developing wake
Wygnanski et al., 1986), then the profile for the Reynolds stress Tiu; will also be
universal when the scale defined in equation 2.63 is used to normalize the profiles (as
it does in the spatially-evolving wake, v. George, 1989). However, the universality
of the mean velocity and the Reynolds stress w1u; similarity profiles is an allowable
outcome of the governing equations (if the profiles are properly scaled) not a predicted

outcome of the similarity analysis.

2.4 Analysis of the Two-Point Correlations

2.4.1 The Two-Point Velocity Correlation Tensor

Applying a similarity hypothesis to the single-point moments is useful because it
describes the evolution of the moments which are often of most interest in engineer-
ing problems. However, to gain more insight into the structure of the turbulence
in the flow it is necessary to examine more complex statistical measures, such as
the two-point velocity correlation tensor. The information in the two-point velocity
correlation tensor is, of course, not sufficient to uniquely determine the structure of

the turbulence in the flow, but it does provide some information about it. Thus,
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it is useful to examine whether the equations of motion that govern the two-point
velocity correlation tensor admit similarity solutions in order to demonstrate that the
hypothesis that a similarity solution exists for the turbulent structure is consistent

with the equations of motion up to the two-point equations.

In the temporally evolving wake, the governing equations for the correlation of the
velocity at two arbitrary points in space and at the same point in time (v. Hinze, 1975)

can be reduced to

ou;u'; ou;u'

J I J_
ot (U= 1h) oS
110 — opu; J op'u; 0 S
; la (pu 01 — p'ui5j1) s dio + o) ——0jo+ = 5 (pu i3 — pIUiéjg)]
0 - — Ousu;u’;  OuHu;u; 0 S—
_a—g <U,1UZ’U,J — ulu,uj) — 8x2 J _ 63,1_12 J a_ <U3uzu] U3U/1UJ)
—0U; ——0Uj] 82 0? 0? 0%\
—UUy— s 0i1 — uzuza I ( 57 &E% + 927 + 2872 U (2.73)
where
=z — I (2.74)
and
v =x3 — 3. (2.75)

The primed variables in equations 2.73-2.75 are evaluated at an arbitrary point in the

wake, while the unprimed variables are evaluated at a second point.

Following the methodology suggested by George (1989), it is hypothesized that

similarity solutions exist for these equations where the two-point correlations can
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be written as the product of a time dependent scale and a function dependent on

similarity variables; i.e.,

ui(w1, T2, 3, t)uf (@], 7h, o5, 1) = QY () qi; (€, m, 1, ¢, %), (2.76)
p($1, T2, X3, t)ug(xlla xIZa xéa t) = Pl,](t)p,lj(ga n, T/a Ca *)a (277)
pl(xlla xIQa xéa t)ui(xla Z2,Ts3, t) = P;’(t)pi(ga n, 77” Ca *)a (278)
ukuiug = lei’j(t)ttllci,j (§a U 77/7 Ca *)7 (279)
and
’LLZU;CU; = T;’Jk(t)tti]k (ga n, 77/7 Ca *)7 (280)
where
S _T—T
= = : 2.81
TR a0 (28
T2 / xIQ
= - = 2.82
and
™
(=0 _ T 7 (2.83)

OREE0)

The length scales used to define the similarity variables in the x;- and x3-directions
in equations 2.81 and 2.83 are arbitrary at this point. The length scale used for the
xo-direction is chosen equal to the to the length scale used in the single-point simi-
larity analysis since the solutions for the two-point correlations and the single-point
moments must be consistent in the limit when the separation distance between the
points is zero. The star is included in the definition of the similarity solution to indi-
cate that the functional form of these solutions may depend on the initial conditions
(or source conditions) of the wake, such as the Reynolds number or type of boundary

layers which initiate the flow.
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The allowable choices for the scales in the hypothesized similarity solutions and
the length scales in the definition of the similarity variables are determined by examin-
ing the governing equations. Substituting equations 2.76 - 2.80 and the hypothesized

similarity solution for the mean flow given in equation 2.9 into equation 2.73 yields

™| [QYdé, é.a%',j_ QWds| (0 LAV Q" dbs Cé‘qi,j
at |75, Ta | S oe 5 at| \"an T Moy ) BT sy Tar | 0 ac
U, (1) Q"™ , 0gi; 1 Py opY Pyl op}
# | FOL 0 - poin % = -3 (| 55] G - | 52| o
Py op} Pe op; Py ap’; P op?
+lﬂ TR R R o BTl P e
[T oty N TyH oty [TH9) Otty;  [T3%] 0ty
& | o & | o § | o | 0] oy
T oty | [To™) oty | [QYU,]  df QU] df
n=n - n=n
Qz‘,j 82 Qi,j 32 Qi,j 82 Qi,j 7 82
o (2[5 ga [ o+ |5 a2 5 o) o 090

The time-dependent portion of each term in equation 2.84 is contained in square

brackets.

The equations admit similarity solutions if the time dependent portions of all of

the terms in equation 2.84 are proportional; i.e.,
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247, i2(], ij ij ij
x lQT] di1 X lQ 5 ]6]-1 o ly%—%] x [V%Q ] x [chs% ] , (2.85)

which, again, implies that all of the terms in the governing equations make the same

relative contribution as the wake evolves.
For a finite-Reynolds-number flow, the viscous terms in equation 2.85 are only
proportional if the three length scales are proportional; i.e.,
67 o 6% o 02 o< (t — ). (2.86)
It is important to note that this also implies that the virtual origin of the three length

scales must occur at the same point.

In addition, the convective terms in equation 2.85 evolve in ‘equilibrium’ with the

viscous terms only if

Q9] [ @
l 5 ]ocly 52]. (2.87)

Therefore, the equations only admit similarity solutions when the Reynolds number

of the flow, based on similarity variables, is a constant; i.e.,

Usd

v

x const, (2.88)

which is the same as the constraint derived in the single-point similarity analysis. In
the context of the two-point correlation tensor this constraint also has an important
physical interpretation. In the definition of the similarity solution for the two-point
correlations, the similarity coordinates were defined using a single length scale that
was independent of the separation distance between the points. Thus, it was implic-
itly assumed that all of the relevant length scales in the flow grow in proportional as

the flow evolves, an assumption that is appropriate for a constant-Reynolds-number
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flow.

Since the similarity solution for the two-point velocity correlation tensor must be
consistent with the solution for the single-point moments, it follows that the scale for

the two-point velocity correlation tensor must satisfy
Q"™ o U2(t). (2.89)

Of course, the constants of proportionality in equation 2.89 may differ for the different

members of the correlation tensor and different initial (or source) conditions.

In addition, the scales for the other two-point correlations must satisfy
Py o Py o< U3 (2.90)

and

T & Tok o« QU (2.91)

where again the constants of proportionality in these equations may also differ for
the different components of each vector or tensor. (These scales are also consistent

with those determined in the single-point analysis.)

Thus, the equations that govern the evolution of the two-point correlation tensor
admit similarity solutions when the scales for the two-point correlations are consistent
with the constraints outlined in equations 2.89, 2.90, and 2.91. For example, if the
length scales for the three coordinate directions are chosen to be equal and the scales

for the two-point correlations are defined to be

2—b(ij)
i) 40

QY = U(8)"— , (2.92)
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Tk — ik = iy, (2.93)

and

Py =P/ =U? (2.94)

S

(where b(i, 7) is an exponent to allow for the fact that the scale for wu; is dependent
on the growth rate), then equations governing the similarity solutions for the two-

point correlations are given by

9 o  ,0 0 / 0g;.;
b (2 + [ ot + o ) + ) = ) 2 =

_%kg’(i’j)_ﬂ [% (p,ljéﬂ — p?’éjl) + %L?;lj&z + 21:722, dj2 + +32C (p,ljéifi - p?,(sj?»)]
_8%“ (ttzll,j - tt?,u) — atat%;’j — agtz?] — agg (ttz%,j - tt?,{ij)
-z, Z_{7 5 — KD 5_71; 5

where
B ] e

The equations for the similarity profiles are dependent on two constants which may
vary from flow to flow, Res and ky. It is expected that the similarity solution for
the full two-point correlation tensor is a function of Reynolds number, since the ratio
of the characteristic length scales of the energy containing range and the dissipation
range increases as the Reynolds number increases (v. Batchelor 1953). Consequently,
the functional form of the similarity profiles for the correlation functions that are
valid for all separation distances must vary as a function of the Reynolds number.

The second constant, ks, is the same that occurred in the equations for the similarity
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profiles of the single-point moments. This constant is the ratio of the scales for the
time-dependent terms and the scales for the convective terms in the transport equa-
tions for the two-point correlation tensor. Thus, ky can be interpreted as the ratio
of the mean convective time scale and a time scale which characterizes the spreading

rate of the wake in the non-homogeneous direction.

2.4.2 Pressure-Velocity Correlation

It is well known that the equation governing the static pressure field in an incom-

pressible fluid can be written as (c.f. Batchelor 1967)

1_,. Oy 0y
EV p=- 83:1 6xk’ (297)

where V? is the Laplacian operator and @, and p are the instantaneous velocity
vector and pressure. For free-shear flows, this equation can be integrated to yield (v.

Batchelor, 1967)

1 [ ouy ou) dz!dxydxl
p=—1 lkl f/ " . ?/ : 1/2° (2'98)
A ) Ox) Oz [(z!, — z) (2!, — )]V
where 2/ is a dummy variable of integration.
Thus, the instantaneous fluctuating pressure, given by
p_P_P (2.99)
pp P

can be written as

p_ _i/ [8U,’c' ouy N ou]' ouy, dxldzydzy
p

Am oxy Oz~ Oz} Ozl | [(2!, — ) (2, — )] M/?
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2
_ 1 0 "y i
A 6113”8 | Uk — Uy
k

1 n 1
dzidzgdry

) G = )ty — 2T

(2.100)

The equation for the two-point pressure-velocity correlation, W, can be obtained
by multiplying equation 2.100 by u’ and averaging. Substituting the hypothesized
similarity solutions for the mean velocity, the two-point velocity correlation, and the

turbulent transfer terms into the resulting equation yields

pu  [[U.()Q*] 2/ f(n") 0g2,;(§" + & n", ', ¢" + ()
P - A7 on' og"

d§”dn”d§”
[5"2 + (77// _ 77)2 + €u2] 1/2

Tk 0 0 0 0 0 0
- lUleQ,j] / léklaf" + 5k2 — + O3 aC"] [511 ¢ + 512 035, B

I—I

dgfldnlldgll
ti (€' +&n", 1, "+ Q) : (2.101)
[6"2 + (p" — 77)2 + QIIQ]
where
"o
§'= %, (2.102)
n
' = %2, (2.103)
and
n_
=2 5 - (2.104)
Note, the term
U.Q% (2.105)

is independent of time, but it may be a function of the source conditions of the wake.
Thus, the similarity profile of the pressure-velocity correlation (and hence the single-

point pressure-strain terms) may implicitly depend on the source conditions of the
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flow.

This solution for the pressure-velocity correlation is consistent the solution ob-
tained in the analysis of the governing equations for the two-point correlation tensor.
This is an useful result, but it is expected since the equation for the instantaneous

pressure is derived from the momentum equation and continuity equations.

2.4.3 Other Statistical Measures of The Flow

When a similarity solution exists for the two-point velocity correlation tensor, it is
reasonable to expect that similarity solutions should exist for other statistical mo-
ments which can be determined from it. One set of moments that are of particular
interest are the two-point velocity-gradient correlations since these moments can be
used to determine the vorticity correlations and the rate of dissipation of turbulent

kinetic energy per unit mass.

The two-point velocity gradient moments can, in general, be related to the two-

point velocity correlation tensor by

Ou; Ol 0Puzul

Oxy Ox)  Oz0x)

(2.106)

It is straightforward to demonstrate that the two-point velocity-gradient correlations
can be written in a similarity form when the two-point velocity correlation tensor has

a similarity form; i.e.,

Ou; Ou; b
8.Tk 8.TZ 8 l%] gi,k;j,l(ga m, 771, C) (2107)
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where g; x.;; is the similarity function for the two-point velocity gradient correlation

tensor.

Using equation 2.107, the two-point vorticity correlation tensor can be written as

wiw]

Ouy, Oul, [Qi’l

= €ijk€lmn 5 = |-z
IR Oy Ot 52

] h’i,l(ga m, 77,7 C? *) (2108)

where ¢ is the alternating unit tensor. In this case, it follows that the single point

vorticity correlation tensor given by

Ouy, Oun, Ouy, ou!
W] = €ik€lmn —— = lm €r€mm——0, 2.109
g} ijkCl arj al’m oh —a; ijkCl 396]- ax,m ( )
can also be written in a similarity form given by
auk 8un Qi’l
Wi €ijk€lmn a.Ij 8a:m [52 Z,l(n ) ( )

where w;; is equal to h;; in the limit of zero separation distance.

Analogously, the correlation of the fluctuating rate-of-strain tensor at two points

in the flow given by (Batchelor 1953)

€ij€Ckm = 4<3xj + 3:1%) <3x;n + 837;6) (2.111)
can be written as
ou; ou; ou) 814” Qi’j ,
<6x- - am]~> <axlk + 3%) x l 52 ]bia’,km(& m,1,¢, %) (2.112)
J % m

Therefore, when the equations governing the evolution of the two-point veloc-

ity correlation tensor admit similarity solutions, the dissipation of turbulent kinetic
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energy per unit mass given by

e = lim 2vege;; (2.113)
Tp—T],
can be written as
vU?

This similarity solution is consistent with that obtained in the single-point analysis.
This is expected, since the single-point equations are a subset of the more general
equations which govern the two-point correlations. Hence, the equations governing
the single-point Reynolds stresses must admit similarity solutions when the more gen-

eral two-point equations do.

2.4.4 One-Dimensional Spectra Of the Velocity Field

The information in the turbulent field can be represented using one-dimensional spec-
tra, which are Fourier transforms of the two-point velocity correlation tensor in the
x1- and z3-directions. These representations of the turbulence contain the same in-
formation about the flow as the two-point velocity correlation tensor, since they are a
Fourier transform pair. Consequently, the one-dimensional spectra of the turbulence
should have a similarity solution when the two-point velocity correlation tensor has

a similarity solution.

For example, the Fourier transform of the two point velocity correlation tensor in
the z; direction (in the sense of generalized functions, v. Lumley 1970), Fé, is given
by

1 oo )
Fjil,j(kla T2, xl27 7) = % / Ri,j(ga T2, xl2a 7)6_Zk1gd§, (2115)
—00
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where R;; is the two-point velocity correlation tensor and ¢ is the separation dis-
tance in the z; direction. Substituting the hypothesized similarity solution for R; ;

(equation 2.76) into equation 2.115 and transforming yields

1 o r
‘F;l,](kla T2, 1'2,, 7) = [QZ,](S] % / o qi, .7(57 n, 77/7 C)e k1§d§7 (2116)

where k;, the similarity wavenumber, is the given by

ky = k10, (2.117)

Therefore, when the two-point velocity correlation tensor has a similarity solution,

1

the one-dimensional spectral tensor F} . can be written in a similarity form given by

s

Fli(ky, 22, 7h, ) = [Qi0) F} 5 (ky,m, 1, €). (2.118)

Similarly, when the two-point velocity correlation has a similarity solution, the

Fourier transform in the x3-direction, F}%;, given by
Fiyj(ky, 2,35, 7) = % /_ o:o Rij(s, w2, wat,7)e ™" dy (2.119)
can be written as
Fjo,mnhoks) = Qudlo- [ aus(€mt, Qe
= @] E;(&m.n' k), (2.120)

where
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This can be extended to the Fourier transform of any arbitrary two-point corre-
lation that has a similarity solution. In general, the scale for the one-dimensional
transform is simply the product of the scale for the two-point correlation and the

length scale 4.

The similarity solutions for the one-dimensional spectra (eqn. 2.116 and 2.119)
illustrate one of the interesting consequences of the two-point similarity hypothesis.
The scaled one-dimensional spectra from different times in the evolution of the wake
collapse when the one-dimensional spectra are written as a function of the similarity
wavenumber k; or ks. Thus, the spectra in physical wavenumbers, k; or ks, must
continuously shift to lower wavenumbers as the wake evolves in time. For example, if
a peak occurs in the one-dimensional spectrum in similarity variables at k1, then this
feature will occur at a decreasing value of k; (larger scale motion) as the flow evolves,

since the shape of the spectrum in similarity variables is not a function of time.

2.5 Length and Velocity Scales

In the analysis of the equations that govern the two-point correlation tensor (v. sec-
tion 2.4.1), it was argued that all of the physical length and velocity scales grow in
proportion as the flow evolves. Using the information outlined in the previous sec-
tions, this assumption can be examined in detail; in particular, the integral length
scales, the Taylor microscales, and the Kolmogorov length and velocity scales can be
determined. It can easily be argued that the velocity scale for the energy containing

eddies must be proportional to the velocity scale U, from the similarity analysis of
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the single-point Reynolds stress equations in section 2.3.1.

The integral scale of the turbulence is given by

1

UqUpg

Lzﬁ = / Ra,ﬁ(xmax;n)dxka (2.122)
’ 0

where

T = T0, m#k . (2.123)

Substituting the hypothesized similarity solution for the two-point velocity correlation

tensor into the equation for the integral scale in the zi-direction yields

1

W /Ooo Qa,5(§’ 17, O)dg (2124)

L5 = [0]
8 ka,ﬁ

where k, g is the similarity solution for the single-point moment (which is equal to ¢ g

in the limit of zero separation). Similarly, the integral length scale in the z3-direction

can be written as
1

Ly 5= 10]
B ka,ﬂ

[ a0 m, e (2125)

and finally the integral scale in the xo-direction can be written as

1
ka.,p

Ly =[0] A %a,3(0,m,7',0)d(n" — n), (2.126)

The Taylor microscale of the turbulence can also be written in terms of the two-

point velocity correlation tensor; i.e.,

—1
2
()7 = —2; (aaR‘“’ﬂ ) (2,127
TR=x},
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Using the similarity solutions for the one-dimensional spectra in equations 2.118 and
2.120, the Taylor microscale in the z1- and z3-directions can be written as
~ -\ 1/2
® Fl.dk
Ao = [0] (—2% (2.128)
oo kT, gdk
and

o, B3 ydk \
w> ' (2.129)

Nog=10]| 2= —
P [ ] ( ffooo ngo%,ﬂdk
Further, substituting the similarity solution for the two point velocity correlation

tensor (eq. 2.76) into equation 2.127, the Taylor microscales in the zy-direction can

_1 0\ 1/2
) (2.130)
"I

n—=

be written as
-2 0%
Ng=1[o 20
5= (ka,ﬂ(n) on?

Finally, using the similarity solution for rate of dissipation of the kinetic energy
per unit mass reported in equation 2.114, it is straightforward to demonstrate that

the Kolmogorov length and velocity scale, n and ug, given by

3\ /4
M = (—) (2.131)
€
and
up = (ev)'* (2.132)

grow in proportion to the similarity length and velocity scales; i.e.,
me o< € /o (t—1)Y2 x b (2.133)

and

uy, o e/ o (t — )7V x U, (2.134)
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Therefore, when a similarity solution exists for the two-point velocity correlation
tensor in this (constant-Reynolds-number) flow, the integral scales, the Taylor mi-
croscales, and the Kolmogorov length scale all grow in proportion to the similarity
length scale ¢, while the Kolmogorov velocity scale grows in proportion with Uy, the
similarity velocity scale. The virtual origins of these length and velocity scales must,
of course, all occur at the same location in the flow as the similarity length and

velocity scale in order for them to be proportional.

2.6 Comparison of Theory to Data

The analysis outlined in the previous sections demonstrated that the two-point simi-
larity hypothesis, if realized in practice/experiments, has significant implications for
the statistical measurements in a temporally evolving wake; in particular, the one-
dimensional velocity spectra of the turbulence (or the correlation tensor) and the
length scales associated with the turbulence. In this section, the data bases from
Direct Numerical Simulations of temporally evolving wakes, computed by Moser and
Rogers (1994), are examined to determine if the simulated wakes evolve in a manner

consistent with the two-point similarity hypothesis.

2.6.1 Simulations

The objective of the simulations was to model the evolution of temporally evolving

wakes in an infinite environment which is statistically homogeneous in the x;- and
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x3- directions. It is, of course, not possible to carry out a simulation of a wake that is
infinite in extent, so it was necessary to approximate this flow by a flow in a box that
was periodic in the homogeneous directions. The length of the box in the z;- and
xg-directions is 5004 and 12.56, respectively (where ¢4 is the displacement thickness
eqn. 2.1). Only those scales of the turbulence that are ‘much’ smaller than the length
of the box in these directions should be an effective model in an infinite environment.
Of course, one of the important questions in these simulations is how much is ‘much’.
One reasonable technique to address this question is to compare the statistical mea-
sures of the wake with those one might expect to find in an infinite wake. In this sense
the two-point similarity hypothesis is useful because it provides predictions for the
possible functional form of the statistics in an infinite wake. Hence, the comparison
of the predictions of the theory and the data serves a dual purpose, since it tests
both the similarity hypothesis and the supposition that the simulation in a finite box
resembles the flow in an infinite environment. Agreement between the predictions of

the theory and the data from the simulations adds credence to both hypotheses.

The simulated portion of non-homogeneous zs-direction is also of bounded extent
in these simulations, but a mapping technique (Spalart et al. 1991) is used to expand
the grid in this direction over the infinite domain in the zo-direction This technique

concentrates most of the points near the middle of the grid where the wake is evolving.

The initial conditions for the simulation of the temporally evolving wake were
generated using two realizations from a turbulent boundary layer simulation (Spalart
1988) with a Reynolds number, based on momentum thickness, of 670. Two different

realizations of the boundary layer were utilized to form the initial conditions for the
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wakes in order to ensure that the simulations did not have an artificial symmetry
at the centerline of the wake. Thus, the initial conditions for the simulations are
analogous to the flow behind a flat plate of zero thickness at a zero angle of attack.
The initial Reynolds number of the wake based on the displacement thickness of the
wake, 04, given by

Re = - ffooo(U - Uoo)dy _ (Uoo - Uc(tO))éd7 (2'135)

14 14

is equal to 2000 for these simulations.

Moser and Rogers (1994) carried out simulations of temporally evolving wakes us-
ing three different sets of initial conditions. In the first case, the initial conditions gen-
erated from the turbulent boundary layer were used to simulate an ‘unforced’ wake.
In order to examine the influence of two-dimensional forcing and two-dimensional
roller structures in the wake on the evolution of the temporally evolving wake, two
other simulations were carried out with initial conditions that incorporated ‘forcing’
or amplification of the two-dimensional modes in the wake. In these cases, all of the
disturbances with the wavenumber k3 (the wavenumber in the z3 direction) equal
to zero were amplified. These two simulations are analogous to the forced wakes
studied by Wygnanski et al. (1986) which were forced using a flap at the end of a
plate. Note that Wygnanski et al. forced the wake using a single frequency, while
Moser and Rogers (1994) amplified all of the two-dimensional modes in the wakes,
thereby simulating a broad-band forcing. In the first ‘forced’ wake, Moser and Rogers
simulated a ‘midly forced’ wake by multiplying the amplitude of the two-dimensional
modes in the initial conditions by a factor of five. In the second, ‘strongly forced’
wake (that will not be considered here), the two-dimensional mode amplitudes are

multiplied by a factor of twenty. (Note, in both of these case the w velocity portion
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of these disturbances are not amplified so the amplification of the energy is less than
52 and 202.) Since only data from the ‘mildly forced’ wake is used in the comparison
of the prediction of the similarity theory and the data, the term ‘forced wake’ will be
utilized to refer to the ‘mildly forced’ wake, while the term ‘unforced wake’ will refer

to the simulation that was initiated without amplified initial conditions.

2.6.2 Evolution of the Reynolds Number and Similarity

Length Scale

The similarity analysis demonstrated that the Reynolds number of the flow based on

the similarity variables must be constant for a similarity solution to exist; i.e.,

U0
Res = — = const, (2.136)
v

The evolution of this Reynolds number, where U, is equal to the centerline mean
velocity deficit and ¢§ is the distance between the two half-deficit points in the wake
(both chosen to collapse the mean-velocity profiles), as a function of non-dimensional

time, 7, given by

T = — : (2.137)

is illustrated in figure 2.3 for both the unforced and forced wakes. It is evident that
both of the simulations evolve with an approximately constant Reynolds number for
a finite amount of time after an initial transient. The slight decrease of the Reynolds
number from the constant value near the end of both simulations is most likely due

to the finite box size.
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The similarity analysis also requires that

2
% X const. (2.138)

The variation of §? normalized by the square of the displacement thickness, 63, for
both simulations are illustrated in figure 2.4. In both cases, there is a region of ap-

proximately linear growth of the square of the length scale.

Note, the results for the ‘strongly’ forced wake simulation are not consistent with
either of these predictions for any extended period of time during the simulation.

Consequently, the results from this simulation are not considered here.

The similarity hypothesis for the two-point velocity correlation tensor is tested
using full-field realizations from each simulation at four different times. The loca-
tions of these times are shown in figures 2.3 and 2.4 by the diamonds on the curves.
All of these points fall in the region where the simulations approximately satisfy the

Reynolds-number and length-scale constraints imposed by the similarity analysis.

2.6.3 Single-Point Moments

For the unforced wake, the single-point moments reported by Moser and Rogers (1994)
are in good agreement with the single-point similarity hypothesis. The scaled nor-
mal Reynolds stresses are illustrated in figures 2.5 — 2.7. The data from the forced
wake (Moser and Rogers 1994) also exhibits fair agreement with the similarity hy-
pothesis, although there are trends in the scaled normal Reynolds stresses illustrated
in figures 2.8 — 2.10 which are inconsistent with the similarity hypothesis. In par-

ticular, the value the usu; decays more slowly than the similarity hypothesis predicts.
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Moser and Rogers (1994) were unable to find a set of scales for the Reynolds
stresses which would reduce the measured profiles in the unforced and forced to a
single set of profiles that is valid for both simulations, indicating that the two wakes
are not in the same universal state. This result is in agreement with the experimental
results reported by Wygnanski et al. (1986) for the spatially developing wake, and
the theoretical arguments of George (1989). Consequently, no attempt will be made
to find universal functions that describe the two-point information in both wakes.
Instead, the data from each simulation is examined to determine if the evolution of
the individual wakes is consistent with the predictions of the two-point similarity hy-

pothesis.

2.6.4 Computation of One-Dimensional Spectra

Since the simulations were carried out in a finite box, the Fourier spectra computed
from the wake data bases in both the z;- and z3-directions are discrete Fourier series
with a fixed set of wavenumbers. For example, the two-point velocity correlation can
be represented as a Fourier series given by
Rij(r1,22,0,t) Z FlM (25,0, t)etkim (2.139)
n=—oo
where the coefficients of the Fourier series are given by
Fé-"(xg, 0,t) = li /ljl/; Rij(r1, 19,0, t)e™ ™ " dp, (2.140)
ly

and the discrete wavenumbers, k7, are given by

2
r=""" nel (2.141)

ly,
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Clearly, the one-dimensional spectra determined from the simulations can not shift
continuously in wave number space as the flow evolves in time as required by the
two-point similarity hypothesis, so it is evident that the simulation of the wake in a
box cannot satisfy the two-point similarity hypothesis exactly. This is not unexpected
since the wake in the finite box does not exactly model a temporally evolving wake

in an infinite environment.

The definitions of the Fourier transform pair given in equations 2.139 and 2.140
are not consistent with the Fourier transform defined previously for the infinite do-
main; i.e., as [, — 0o0. Since it is argued that the flow in the box should resemble
the flow in an infinite environment, it is more appropriate to utilize a definition of
the Fourier series that is consistent with the Fourier transform in an infinite domain.

This Fourier transform pair is given by

Rll(’rla T, 0, t) = Z P’Z;melk’{nrlAk (2142)
and
w2 -
= ’L_] 7'1;$2a0 t) - 1T1d7°1, (2143)

Z] lwlAk lzl/

where Ak is the step size between the discrete wavenumbers given by

Ak = 2" (2.144)

Ly,
This definition of the Fourier transform pair is consistent with the definition for the
infinite domain in the limit [,, — oo in the sense of generalized functions (v. Lum-

ley 1970).

The one-dimensional spectra computed from the wake simulation data bases (used

to examine the two-point similarity hypothesis) are reported in the form defined in
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equation 2.143. These spectra are presented as half-line spectra so the areas under

the positive half of the spectra are equal to the corresponding single-point moments;

e.g.,
(N-1)/2

Ulul(.i?g,t) = R1,1(0,$2,0,t) = Z Fllln(k?,l‘Q,t)Akl, (2145)

n=0

where N is the number of discrete Fourier modes in the simulation.

In order to provide a better estimate of the average value of the spectra in the
flow, the one-dimensional spectra calculated from the simulation are spatially aver-
aged over the homogeneous direction that was not transformed (e.g., the computed
value of the one-dimensional spectra in the x; direction are spatially averaged in the
x3 direction). No other smoothing has been carried out on the one-dimensional spec-

tra.

Of course, the full-field realizations of the wake provide few independent realiza-
tions of the large-scale motions in the wake, so the one-dimensional spectra in the
low-wavenumber region may not be statistically accurate estimates of the ensemble
averaged spectra. The relative error that occurs in the spectra computed from an
single trace of data is unity, so the relative error which occurs in the averaged spectra
at any wavenumber is approximately 1/ V'N (George, 1978), where N is the number
of independent samples of the spectra used to compute the average. For the low-
wavenumber region of the spectra, only those spectra computed from positions which
are at least a distance of 3 integral length scales apart can be treated as approximately

independent (George 1978).

In both simulations, the box size in the zi-direction is approximately 10 times
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the integral length scale of the u;u} correlation in this direction at the center of the
wake, while the box size in the x3-direction is approximately 5 times the integral scale
of the u,u) correlation in this direction at the center of the wake. It is reasonable
to expect that the integral scales for the other components and other positions in
the wake are of the same order. Hence, the data bases from the simulations do not
provide a large number of independent realizations of the low-wavenumber spectra.
Of course, the small-scale motions will become approximately independent over a
much smaller distance, so the data bases should provide a much better estimate of

the high-wavenumber region of the spectra.

2.6.5 One-Dimensional Spectra of the Fluctuating Velocity

The unscaled one-dimensional spectra of the u;- and the uy-fluctuating velocity com-
ponents in the z-direction at the centerline of the unforced wake are illustrated in
figure 2.11; the same spectra for the forced wake are illustrated in figure 2.12. These
figures illustrate that the high-wavenumber regions of each set of spectra have the
same basic shape and shifts down and to the left in agreement with the predictions
of the similarity hypothesis. The individual spectra in each group are distinct in
this region and should provide a test for the scaling determined from the two-point
similarity analysis. In contrast, the low-wavenumber regions of the spectra exhibit
behavior that is inconsistent with the similarity hypothesis. This is particularly true
for the one-dimensional spectra in the forced wake. This is expected because the
forcing introduced into the initial conditions of the forced wake simulation creates
two-dimensional modes that are affected by the periodic boundary conditions in the

box. Figures 2.13 and 2.14 illustrate the spectra of the u;- and us-fluctuating velocity
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for various positions across the forced wake in the non-homogeneous xo-direction at
one time in the evolution of the wake. It is evident that peaks in the spectra occur at
the same wavenumber at different locations across the wake, indicating that forcing
has introduced motions that influence the development of the entire wake. Hence,
it is not expected that the similarity hypothesis will collapse the spectra in the low-
wavenumber region in the forced wake. In the unforced wake simulation, the spectra
F3, also exhibits peaks at the same wavenumber at different locations in the wake

(not shown here), but the effect is not as significant as in the forced wake.

The scaled one-dimensional spectra of the three normal stresses in the x; direc-
tion for the unforced wake are illustrated in figures 2.15, 2.16, and 2.17. These figures
include spectra from three different positions in the wake: the centerline of the wake,
n = 0.0; the half-deficit point, n = 0.5; and twice the distance to the half-deficit
point, 7 = 1.0. In these figures, the spectra at the centerline and at n = 1.0 have
been plotted on the same scale, while the spectra computed at n = 0.5 have been
shifted upward by an order of magnitude. The spectra of the normal stresses are
scaled by U2§, which is consistent with the scale predicted by the similarity anal-
ysis. The collapse in the low-wavenumber region of the spectra is not that good,
in particularly the peaks which occur in the Fj, spectra at the same wavenumber
in physical variables occur at different positions in similarity variables. In all cases,
there is excellent collapse of the data for wavenumbers 151 where 151 / Al%l is greater
than 15-20. In the largest wavenumber region of the spectra there is also some dis-
agreement in the spectra due to the ‘turn up’ of the spectra. This ‘turn up’ of the
spectra occurs because the computational grid is not fully capable of resolving the

smallest scales of motion, causing the energy to pile up in the highest wavenumbers.
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In these simulations all of the scales of motion in the flow grow as the flow evolves
so the effective resolution of the fixed computational grid increases in time. As a
result, the ‘turn up’ of the spectra is reduced as the simulation evolves. In cases
such as this, where the resolution of the grid increases with time, it is conventional
to modify the computational grid to a coarser grid during the simulation in order to
conserve computer resources. After a regrid, the resolution is significantly reduced so
the ‘turn up’ of the spectra in the high-wavenumber region increases. For the unforced
wake simulation the first three realizations used to examine the two-point similarity
hypothesis were computed on one grid, while the final realization was computed on
a second grid. Therefore, the ‘turn up’ in the spectra should reduce over the first

three spectra and jump up on the final spectra — as, in fact, it does in figures 2.15-2.17.

The corresponding spectra of the normal stresses in the z;-direction for the forced
wake are illustrated in figures 2.18, 2.19, and 2.20. In these figures, all but the
low-wavenumber region of the spectra also collapse, in good agreement with the pre-
dictions of the similarity hypothesis. In the forced wake simulation, the first two
realizations were computed on one grid, while the second two realizations were com-
puted on a second grid, leading to the decrease and increase of the ‘turn up’ in the
highest-wavenumber region of the spectra seen in the figures. The lack of collapse in
the low-wavenumber region of the spectra in these figures is expected because of the
poor statistical convergence and the influence of the two dimensional forcing which

was added to the initial conditions.

The one-dimensional spectra of the normal stresses in the x3-direction at the same

locations in the unforced wake are illustrated in figures 2.21, 2.22, and 2.23. The
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collapse of the data in these spectra is, for the most part, better than the collapse
that occurs in the one-dimensional spectra in the x;-direction because the computa-
tional domain is much longer in the x;-direction that the xs-direction providing more
independent realizations of the spectra. Note, the collapse of the data at the outer

position n = 1.0 is not quite as good as that for the inner positions.

The corresponding one-dimensional spectra of the turbulence in the forced wake
simulation are illustrated in figures 2.24, 2.25, and 2.26. The collapse of the data for
the forced wake is also good, except for the data at n = 1.0. There are several pos-
sible explanations for the poor collapse of the data: Firstly, the regrid that occurred
between the second and third realizations may have effected the high-wavenumber
region, since the the spectra from the two times collapse and the data from the sec-
ond two times collapse. This does not explain all of the lack of collapse, though,
since the spectra at the points closer to the centerline are not affected as signifi-
cantly. Secondly, the flow in the outer portion of the wake is highly intermittent.
Thus, the one-dimensional spectra in this region can effectively be thought of as a
weighted sum of the one-dimensional spectra from three different regimes: the tur-
bulent regime, the potential flow regime, and the interface regime. If the data base
does not provide enough realizations from all three of these regions in the right ratios
then the spectra in these regions may not collapse. Finally, this data could simply
be indicating that the small scale motions in the flow are not evolving in a man-
ner that is consistent with the similarity hypothesis, but the excellent agreement at

the inner positions in the wake suggests that other reasons are behind the discrepancy.

The one-dimensional spectra of the Reynolds stress @yu3 also provide an useful test
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of the two-point similarity theory. The unscaled magnitudes of the one-dimensional
spectra in the z;-direction at the centerline of the unforced wake are illustrated in
2.27. Each spectrum in this figure has been plotted twice. The lower set of curves are
the actual magnitudes of the different spectra at all wavenumbers while, the second
set of curves has the same information shifted upward including only every 7‘h or
8'h point from the data (the same symbols were used for each spectra in the two
groups). This second group shows that the higher wavenumber region of the spectra
shift downward and toward lower wavenumbers as the flow evolves, as predicted by
the similarity hypothesis. The scaled one-dimensional spectra of the Reynolds stress
in the z;-direction at the centerline of the unforced wake are illustrated in figure 2.28,
while these spectra for the forced wake are illustrated in figure 2.29. The spectra have
been plotted in two groups again as they were in figure 2.27. Although there is a sig-
nificant amount of variability in the magnitude of the one-dimensional spectra, |FJ,|,
it is apparent from figures 2.28 and 2.29 that the similarity scale determined from the
two point similarity hypothesis does collapse the magnitude of the one-dimensional
spectra at the centerline of the wake. The magnitude of the one-dimensional spectra
|F;| scaled by U26 at two other points in the unforced wake, n = 0.5 and n = 1.0,
are illustrated in figure 2.30, while the spectra from the forced wake are illustrated in
figure 2.31. It both cases the scaling determined from the similarity analysis collapses
the data at these two points, although again the collapse in the data is not as good at
1n = 1.0. The one-dimensional spectra of the Reynolds stress %175 in the z3-direction
of the unforced wake in figure 2.32 also collapse when plotted in the similarity vari-
ables. (Note, that the larger z;-domain used in the spatial average causes the k3

spectra to be smoother than the k; spectra.)
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Overall, the evolution of the one-dimensional spectra of the dominant Reynolds
stresses in the simulations of a temporally evolving, turbulent, plane wake are in good
agreement with the prediction of the two-point similarity hypothesis. There are some
discrepancies between the measured data and the predictions of the theory, particu-
larly in the low-wavenumber region and for the positions farther out in the wake. It
is likely that these discrepancies can be attributed to either the limited sample of the
large-scale eddies in the simulation or the impact of the artificially imposed periodic

boundary conditions, particularly in the forced wake.

2.6.6 Taylor Microscales

Although the one-dimensional spectra collapse when they are scaled in the manner
determined from the similarity analysis, it is also useful to examine if the characteris-
tic length scales determined from the one-dimensional spectra are proportional to the
the similarity length scale ¢ as required by the similarity analysis (v. section 2.5). In
this regard, the integral scale of the turbulence is not useful because it is inherently
biased to the largest scales of motions which may be affected by the finite dimensions
of the box. (Note, the same is true in isotropic and homogeneous shear turbulence,
v. George 1992 and George and Gibson 1992). In contrast, the Taylor microscale,
which can also be computed from the one-dimensional velocity spectra (eqn. 2.128
or 2.129), is characteristic of smaller motions in the flow and should evolve like those

in an infinite wake.

The ratios of the Taylor microscales in the ;- and x3-directions and the similarity

length scale § at several different positions in the unforced wake flow are illustrated in



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 67

figures 2.33 and 2.34. There is some variability in the ratios of the Taylor microscales
and the similarity length scale, but overall the ratios are approximately constant as
predicted in the similarity analysis. Some of the data, such as the Taylor microscale
for w3z in the z;-direction at the centerline (> in fig. 2.33), exhibit downward trends
suggesting that the virtual origin for these Taylor microscale may be different than

the virtual origin of the similarity length scale 6.

The ratios of the Taylor microscales and the similarity length scale in the forced
wake are illustrated in figures 2.35 and 2.36. There are several cases, particularly
the length scales in the z;-direction, where the Taylor microscale grows slower than
that of the similarity length scale, but for the most part the ratios are approximately

constant.

The variations of the ratios from a constant value, if statistically true, indicate
that the evolution of the simulations are not exactly compatible with the predictions
of the two-point similarity hypothesis at this point in the simulations. It is not clear
whether this phenomenon is be caused by the finite dimensions of the periodic box or
an incomplete evolution towards the asymptotic solution. The trends in the data do
not seem to be due to the ‘turn up’ of the spectra at the highest wavenumbers since

there is not a consistent trend exhibited in all of the microscales.

The Taylor microscales farther out in both wakes (particularly the forced wake)
flows (e.g., n = 1.0) grow slower than the similarity length scale and in several cases

the Taylor microscales are approximately constant. The lack of agreement between
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the data at these position and the predictions of the theory may be due to the inter-

mittent character of the turbulence far from the wake centerline.

2.6.7 Velocity Correlation in the Non-Homogeneous Direc-
tion

The correlations of the velocity between two points separated in the z,-direction (but
not in the - or zs-directions) were computed for both wake simulations. These
correlations were obtained by spatially averaging in both the x;- and z3-directions.
(Note, the computed correlations have statistical convergence problems similar to
those outlined for the spectra, particularly for the large-scale motions.) In order to
compare the predictions of the similarity hypothesis with the data, the two-point
correlation functions have been normalized by U? and written as a function of the

similarity variable 7.

The scaled auto-correlation of u; about the centerline of the unforced wake are
illustrated in figure 2.37, while the scaled auto-correlations about the points n = 0.5
are illustrated in figure 2.38. The collapse of the data is fairly good over most of the
separation distance, although it is clear that the estimates of the correlations suffer
from a limited statistical sample because they are not symmetrical about the center-
line of the wake. Much of the discrepancy between the data and the prediction of the
theory occurs around the peak of the auto-correlation, the value of the single point

moment at the position of the fixed probe.
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One difficulty with examining the two-point velocity correlation is that the large-
scale motions (for which there are few realizations that may be affected by the periodic
boundary conditions) influence the value of the correlation for all separation distances.
Thus, it is more useful to examine a statistical measures, such as the second-order

structure functions given by
(Uq — u};)Q = Tqllq + Uy — 2Uqlj, (2.146)

that are better measures of the motions whose size is on the order of the separation
distance between the points. These structure functions can be written as a similarity
solution when the two-point velocity correlation tensor has a similarity solution, so
this moment can be utilized to compare the predictions of the similarity hypothesis
and the data from the small-scale motions in the simulations. Figures 2.39 and 2.40
show the u; component of this moment at the centerline and the half-deficit points,
n = £0.5, of the unforced wake. In both cases, the collapse of the data is good except

for large separation distances, as expected.

The scaled structure functions for the u, velocity component about the points
n = 0.0 and n = £0.5 in the unforced wake are illustrated in figures 2.41 and 2.42,
while the structure functions for the u3 component about the same points are illus-
trated in figures 2.43 and 2.44. There is good agreement with prediction of the theory
for all but the large separation distances (where there is significant scatter in the data

due to the insufficient statistical sample).

The structure function is not an effective tool for examining the cross-correlation
of the u; and us fluctuating velocities because the single point moments that appear in

the expanded definition of the structure function are not the same as in the two-point
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correlation. For example,
(w1 — uh)? = Tty + ubuh — 2uquh. (2.147)

Consequently, this function is biased by any discrepancy the in the single-point mo-
ments, so here the two-point correlation are examined, recognizing that there may be

an inherent discrepancies due to the influence of the large-scale motions.

The cross-correlations of the u; and us fluctuating velocities about n = 0 and
n = £0.5 are illustrated in figures 2.45, 2.46, 2.47, and 2.48. In figures 2.45 and 2.46
the velocity component u; is being measured at the fixed position and us is measured
at the moving position, while in figures 2.47 and 2.48 the opposite is true. The col-
lapse in the data is better for the u;u} correlation than for the uju, correlation. The
scatter in the value of u}jus at the centerline of the wake is due to poor statistical con-
vergence of a moment which is nearly (or is) zero. The curves at the points, n = £0.5,
indicate that the magnitude of the correlation in the wake is decreasing slower than
predicted in the similarity hypothesis. This discrepancy is not unexpected because
the large-scale motions are the primary contributors to the cross-correlations u}usy

!
and uqus.

The structure functions for the fluctuating velocity components at the centerline,
n = 0, and the half-deficit points, n = +0.5, in the forced wake are illustrated in
figures 2.49- 2.54. There is good agreement between the predictions of the theory
and the data from the forced wake for the smaller separation distances, although it
is evident that the statistics are not fully converged. The scatter in the data and the
discrepancies between the theory and the data (particularly in the uy component) for

large separation distances are greater than in the unforced wake. The large scatter in
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the data is to be expected since the asymmetries in the initial conditions that were
amplified by the forcing propagate through the simulation can not be averaged out

with the limited sample provided by the data base.

2.7 Analysis of the Two-Point, Two-Time Corre-
lations

Although there is not sufficient data to examine the two-point, two-time correla-
tion, it is interesting to examine if the similarity analysis can be extended to the
governing equations for these correlations (i.e., the correlation of u;(x1, z2, x3,t) and
ui (7}, Ty, 73,1')). The governing equations for these correlations in the temporally

evolving wake are given by

ou;u’; ouu’; 10pu;  Ouupy; —— 90U,
J jo_ _ LYPY Jo_ il
ot +U ox,  p Oz Oz, Uyt 0o dat
0? 0? 0?
and L o
u;u; N , Ouiul; _ _10p'u;  Ouujuf _WG_U{(S_2
ot! b ox} p Oz’ o', "2 9,
62 62 62 .
+v (8—,62 + @ + 8—§2> u,-uj . (2.149)

These equations have been simplified by noting that the only non-zero mean velocity

component, Uy, is a function of x5 and ¢ only.

The objective of the similarity analysis is to determine if these equations admit

solutions in which the two-point, two-time correlation tensor can be written as a
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product of a scale function and a similarity function that is independent of the two
times relative to the virtual origin of the flow. Since the flow is non-stationary in the
present time coordinate system, this requires the definition of a new time coordinate
system. Thus, it is hypothesized that there is a transformed time coordinate, ¢, in
which the scaled two-point, two-time correlations are only a function of the separation
time, 7, given by

Tt t) =1 1. (2.150)

The allowable choices for this transformed coordinate system are determined by ex-

amining the equations of motion.

The similarity coordinates in the zo-direction are given by

=50 (2.151)
and
i = 52:2')’ (2.152)

which are consistent with the definitions in the previous analyses.

It is not as straightforward to define the similarity coordinates in the homogeneous
x1- and z3-directions. In the previous analysis of the two-point, single-time correla-
tion, the similarity coordinates were determined by scaling the separation distances

in these coordinate directions by the single similarity length scale, 6(t); i.e.,

g=21 . 'y (2.153)

It is not immediately evident how to extend this definition of the similarity variable

to the present case where there are two different similarity length scales, §(¢) and
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d(t"), that can be used to scale the separation distance. One choice might be to scale

the homogeneous coordinate by the similarity length scale; i.e.,
B == (2.154)

This choice of scaling, however, does not appear to be consistent with the requirement
that the flow is homogeneous in the physical system, since it imposes an origin onto
the statistical measures in this coordinate direction. Consequently, the solution will

be non-homogeneous in this new coordinate system, since

This definition offers no advantage because it increases the number of independent
variables necessary to define the solution (i.e., the correlation would be a function of

both z; and Z}).

Another choice is to scale the separation distances in the homogeneous directions

by some product of the similarity length scales, such as

Ty — T
_ 2.156
Sy (2:150)
This choice of similarity variables is included in a more general choice of similarity
variables; that being the definition of two similarity variables for each homogeneous

direction given by

o

g="11""0 (2.157)
5

g =" ; ! (2.158)

(=1 g 3 (2.159)
!

(=113 (2.160)

5[
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where the notation ¢’ is used as a short hand notation for 6(¢'). This definition of
the similarity variables also appears to increase the number of independent variables
required to define the similarity solution, but, as it will be shown later, this is not
the case because the two similarity variables used for each direction can be related

by the separation distance in the similarity time coordinate, 7.

Thus, it is hypothesized that equations 2.148 and 2.149 admit to similarity

solutions where the two point correlations are given by

wiy; = QY (t,1)qi (6, € m,m', ¢, ¢, 7), (2.161)
puly = I (t,t)m} (&,€' m, 0, ¢, ¢, 7), (2.162)
wiwgdy = T (8, )ty 5 (6,6 ', ¢, ¢ ), (2.163)
plu; = T (¢, )7 (€, €m0, ¢, ¢, 7), (2.164)
and
wupul; = Ty (6, 0)47,5(6, € m, ', ¢, ¢, 7). (2.165)

The use of the mixed coordinate system ¢, ¢/, and 7 is included to facilitate compari-

son with the solutions for the two-point, single-time correlation.

Equations 2.148 and 2.149 do not admit similarity solutions of the hypothesized
kind as the equations are presently written because there are two different mean
convection velocity scales in the equations, U, and U, that are not proportional.?
These equation may admit similarity solution if it is possible to eliminate one of these

velocity scales from the problem. This can be accomplished by examining the flow

2These two convection velocity introduce two time scales into the problem which are not
proportional.
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in a reference frame translating at the freestream velocity Uy, in which the mean
velocity, Uy, is given by
U=U,—Uyx = Us(t) f (n). (2.166)

In this case the mean velocity only introduces one velocity scale.?

Substituting the hypothesized similarity solutions into the governing equations

(eqn. 2.148 and 2.149) yields

8Qi,j E @d_é 6%,] 8(],,] QZ,J ”87' %
lat]qm lédtKgaf oy tac ) 19 e o

U,Q g, U,Q dgij 1 Y] on} or;
[5G+ |55 1“")@7-—;([7%—5*[ %)

U] on, 1 (W) on | ] on, [T onh, [T o,
ol o | o™ o\| 6| ac ag' i 5 | o¢ 5| o

Tz2 J 6tt,}2 J_ TZ3 J attzlg, g TZ3 J attzll J QQ,j U, | ﬁ s
2 B/ A A N P 5|y O
v (02 0* 9 vQ (02 52 .
" [ 52 ] (3—52 o2 + aCQ) qi’j + [ 5/2 8512 + a<—,2 qi; J (2167)

and

aQi’j Qi’j dd’ aqi] aQZ] aq” ”67- aQZ]
[ o ]q’ﬂ [ 5 dt’] (5 o oy a0 ) |9 ) or

U@ n06i;  [UQY n0ai; 1 ([ orf  [I] om
1 [M] or? 1 ([ME] on2  [I03] On? TP attflj TyV ott?y;
5 aoe s (5] %+ [5) ) o |55 ] e+ | oo

B T2 Bt . To% ott? 5, N TP Ott? 5, B QU] .Qﬁ
5 By 5 ac 5 oc! Y "% dn

5j1

/

n=n

3The flow in this coordinate system is effectively the temporal version of a plane jet going the
opposite direction, which is one of the interesting features of temporally evolving flows.
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Qi [ 92 0? vQi [ 8 Py 52
+ [ 02 ] (a—g? + 8—4.2> qi,j + [ 52 85,2 + 37’}'2 + aC’Z Qi g (2-168)

where the portion of each term that is a function of the position of the two points in

time is included in square brackets.

In order to demonstrate that these equations admit similarity solutions, it is nec-
essary to demonstrate that they reduce to a form that is a function of the similarity
variables only. Therefore, the ratio of the terms in square brackets must be a function

of 7 only.

Initially, it is useful to obtain the allowable choices for the variable 7. Since the
ratio of the second and third terms in each equation must be a function of 7 only, it

follows that

0T i ds\
QZ’]E <Q6 %> x gl(T) (2169)
and
0T (QHds\ T
Q”@( 5 a) 90 0

These conditions are satisfied if

1 or 1dé 1
I 5 2 2.171
nor S sa ™! (2.171)

and
L _or o 1do° ot
go(T) Ot & dt’ ’

(2.172)

where the origin of the time coordinate system has been placed at the virtual origin

of the wake. These conditions are satisfied if

7 o< In(t) + 1 (¢) (2.173)
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and

7 oc In(t') + co(t) (2.174)

where g;(7) and go(7) are constant. Thus, one choice for the transformed time coor-

dinate system that satisfies these conditions is given by
t = In(t/t,) (2.175)

(ts is included for dimensional reasons), in which case the separation distance in the

transformed coordinate system is given by

T=1—1 =1In(t/t). (2.176)

This definition of the similarity time scale can also be obtained using physical
arguments. The similarity analysis of the equations that govern the single-time cor-
relations illustrated that there are at least three characteristic time scales in this

problem; a convection time scale given by
6/ Us, (2.177)

a time scale which characterizes the growth of the layer due to the turbulent diffusion

1ds\
oy o

and a viscous diffusion time scale given by

given by

5. (2.179)

All of these time scales are proportional to the location of the point in time relative

to the virtual origin; i.e., t (where the virtual origin of the wake is, again, chosen to
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coincide with the origin of the time coordinate system). Evidently, the characteristic

time scales of the physical mechanisms in the wake increase as the flow evolves.

If the statistics of events separated by a small distance in time at one point in the
wakes evolution are to be compared to the statistics between two points at a later
point in the evolution, it is important to recognize that the events are occurring more
slowly at the later point in time. Thus, it is reasonable to choose the sets of points
so that the separation distances between the points at the two different times are the
same when they are normalized by the local time scale. In the limit of zero separation

distance, these are given by

- dt
dt = e (2.180)
Integrating this yields
t—1 =In(t/t), (2.181)

which is the time scale derived from the similarity analysis. Thus, the transformed
time scale is one where each incremental change in time is normalized by the local
physical time scale of the flow, yielding a time scale that is effectively synchronous

with the flow dynamics.

It also follows that

a=e (2.182)
or
) t 1/2
5 = (E) =e"/?, (2.183)

Thus, for this choice of 7, £ and £ are related by

vy —a2y  wp— 2y 6(t)

50 - @ 0 = (2.184)

&=




CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 79

and ( is related to ¢’ by

w3 —ay 3 — x5 6(t)

¢= sty  8(t) (b

=(le7/2, (2.185)

Therefore, the two different similarity variables utilized to represent the information
in each homogeneous direction are not independent, but are related by the indepen-

dent similarity variable 7, as previously suggested.

The scales for the two-point velocity correlation tensor can also be deduced from
the constraints in equations 2.167 and 2.168. One choice for the scales can be

determined by requiring

2 t,J
agt x Qt , (2.186)
so that
QY = cy(t)th. (2.187)
Similarly, requiring
oQ» Qv
5 < g (2.188)
implies that
Q" = cy(t)t'™. (2.189)

Further, in the limit when the separation distance between the two points is zero the
scale must be consistent with the scale for the single-time correlation. Thus, it follows

that a choice for Q%7 is given by
QY o UMt)UZ™(t). (2.190)

A reasonable choice is to set n = 1, so that the scale is equally weighted on the



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 80

velocity scale at each point.*

It is straightforward to demonstrate that equations 2.148 and 2.149 reduce to
equations that are functions of similarity variables if the scales for the other two-

point correlations are given by

I o U,Q™ « UU!, (2.191)
I o UQ™ oc UU, (2.192)
T o« U,Q% « U, (2.193)
and
T o U,Q™ o UZUL, (2.194)

which are consistent with the scales for the two-point, single-time similarity solutions.

Therefore, the similarity analysis can be extended to governing equations for the
two-point, two-time velocity correlation tensor. The governing equations for the sim-
ilarity profiles of the two-point, two-time correlations are dependent on the ratio of
the viscous, convection, and spreading rate time scales, so the functional form of these
profiles may also depend on the source conditions of the wake (if the ratio of these
time scales vary for different source conditions). The analysis can also be extended
to demonstrate that the two-point, two-time velocity-gradient correlation tensor can

be expressed in similarity form when the two-point, two-time velocity correlation can.

4Note, that this choice for the similarity scale is not unique since this scale could be multiplied
by any function of 7 and still satisfy the requirement that the ratio of the terms in square brackets
in equations 2.167 and 2.168 are only a function of 7. Of course, the functions would then appear
in the governing equations for the similarity solutions.
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2.8 Analysis of a Scalar Field

The similarity analysis of the governing equations can also be extended to other
phenomena in the flow, such as the evolution of a passive scalar field. In this analysis,
the evolution of two different types of passive scalar fields in the wake are considered:
First, a two-stream (or binary) passive scalar field; i.e., a field in which the mean
value of the passive scalar field on the two sides of the wake differ. Physically, this
corresponds to the wake behind a splitter plate separating two, equal-velocity streams,
each containing a different amount of a scalar (v. figure 2.55). The second is a scalar
field where the mean value of the passive scalar on both sides of the wake is equal, but
a surplus or deficit of the scalar exists in the wake (v. figure 2.56). Physically, this
corresponds to a wake produced behind a hot/cold plane body or the wake produced

by a plane body injecting a scalar into the wake.

2.8.1 Single-Point Moments: The Two-Stream Field

In this section, the similarity analysis is applied to a two-stream (or binary) passive
scalar field in a temporally developing, high-Peclet-number wake. Following this, the

similarity analysis is extended to the scalar-deficit field.

Using the standard high-Peclet-number assumptions, the equation governing the

mean value of the passive scalar in the temporally evolving wake reduces to

T
81& - (9.%‘2’

(2.195)

where O is the mean value of a passive scalar and 6 is the instantaneous fluctuating

value of this passive scalar.



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 82

For the two-stream geometry, it is hypothesized that this equation has a similarity

solution where

O — 01 = S.(t)sc(ng), (2.196)

u20 = Rug@(t)ruze(nﬂ)a (2197)

7g, the similarity coordinate for the passive scalar field is given by

== 2.1
Mo 50 ; ( 98)

and ©; is the mean value of the passive scalar in the flow as o — —o0. The solution
for the mean value of the scalar must also satisfy the boundary condition as x5 — 00

in this two-stream geometry, namely

wli_r)noo@(xg) =0, (2.199)
Therefore,
Se(t) x O — ©1 = const. (2.200)
It is conventional to choose
Se(t) =0y — O (2.201)

0 S.(np) is a function bounded by 0 and 1.

Substituting the hypothesized similarity solutions into equation 2.195 yields

_[Sedin) | ds.
0g dt

Ul = —
dnyg

R“?"] Arusp (2.202)

dg 1 dng

Thus, equation 2.195 admits a similarity solution when

lsc d_ﬂ . [Rve] (2.203)

5y dt 5o
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or,

ddy ddy
R,y SCE x A@E (2.204)

Note, the growth rate of the scalar field is not yet determined. The equations for
the higher-order moments must be examined to determine the growth rate of the

similarity length scale for the scalar field.

Using the standard high-Peclet-number assumptions, the equation for the fluctu-

ating scalar variance can be reduced to

002 Ouo6? — 00
— = — — 2u9)— — 2.2
ot Bzy P or, (2:205)
where €49 is given by
00 00
=2a—— 2.2
€99 a’axk axk ( 06)

and « is the molecular diffusivity of the scalar.

The hypothesized similarity solutions for the new moments in equation 2.205 are

given by
02 = Voo (t)voo (110, (2.207)
ug02 = Tro(t)tre(np), (2.208)

and
€gg = Dy(t)dg(n0)- (2.209)

Substituting these solutions into the equation for the scalar variance yields

ldVga] [%9 dég] dvgg TTg dtT‘g
-5

dt Gp dt | "dny L0 | dny
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9 [R’”"SC] 45c _1Dy)dy. (2.210)

Tusp—— —

oo 1" dng
The first term in the equation is included to allow for the possibility that the scale
for the scalar variance is a function of time. If this scale is not a function of time,

then this term is zero and does not provide a constraint in the similarity analysis.

Equation 2.205 admits a similarity solution (of the hypothesized kind) when

l@] x l@d_éa] oc [T70] o [FutSe

Dyl. 2.211
dt 5y dt 59 5 ]0([ o (2.211)

The second and fourth terms in equation 2.211 can be utilized to deduce the scale

for the variance since these terms are proportional only when
Vag o< (Sc)? o (AO)2. (2.212)

Therefore, the scale for the scalar variance is independent of time. Consequently, the

first term in equation 2.211 is not included in the rest of the analysis for this geometry.

It can be shown that the other constraints in equation 2.211 are satisfied when

Try chdd_ia x (AO)

ddg
2= 2.21
dt (2.213)

and
Sc2dsy  (AO)? d_69

D, oc 2520 .
0 5t s, dt

(2.214)
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It is also instructive to examine the transport equation for the turbulent scalar flux,
uof. Using the standard high-Reynolds/Peclet-number assumptions, the governing

equation reduces to

agie = +%§—i - mg—z - ai@ (@ + p—0> (2.215)
The hypothesized similarity solutions for the new moments in equation 2.215 are
given by o
(u—§0+ %9> = T'rugs(t)truze(ne) (2.216)
and -
],_;;—91 = M () uz0 (10)- (2.217)

Substituting these solutions into equation 2.215 yields
ldRu29‘| lRuQa d59] dT‘mg
u260 — —

dt 59 dt Ul dno =+ [Hu20] Tus8
Tru29] dtry,e [KUQSC] ds,
— — ky,(n) =, 2.218
[ O dng g (77) dng ( )

where the similarity solution for the turbulent stress u2 from the analysis of the
velocity field (eqn. 2.34) has been substituted into equation 2.215. The equation for

the turbulent scalar flux admits a similarity solution only when

[dRUQO] x [Rma@

2.21
dt dp dt ( 9)

TTU29:| ~ [KU2SC:|

] < [Mugo] o« [ 5% 5

The second and fifth terms in equation 2.219 are proportional only when

2
(%) o U2 o (t—1t)7 . (2.220)
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Therefore,

Sp o (t —t,)2, (2.221)

where £, is the location of the virtual origin of the velocity field in the wake. Thus, the
equations for the passive scalar field admit similarity solutions only when the growth
rate of the similarity length scale for the scalar field is proportional to the similarity
length scale for the velocity field. This is a reasonable outcome since the turbulent
velocity field is the primary transport mechanism for the scalar field in a high-Peclet-
number flow. Further, the equations governing the scalar field only admit similarity
solutions when the virtual origin of the scalar field occurs at the same location as the

wvirtual origin of the velocity field.

It can be shown that the other constraints in equation 2.219 are satisfied when

dse\’
T, — 2.222
ugf X Sc ( dt > ( )
and
S. (dés\’
I1, — =] . .
,0 OX 5 <dt> (2.223)

Thus, the equations that governing the mean scalar field, the scalar variance, and
the turbulent flux, u,#, for the two-stream scalar field in the temporally developing
wake admit similarity solutions. For example, if the constants of proportionality in
the definition of the similarity scales in equations 2.204, 2.212 - 2.214, 2.222, and 2.223
are taken as unity, it follows that the governing equation for the similarity solutions

are given by
ds, dry.e
—Te = - )
dng dne

(2.224)



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 87

dvae dtT‘g dSc
- = ——— — 2Ty g—— — dp, 2.225
7 dng dnyg " dny ( )
and
dryme ditry,y 1 ds.
Ty — = Ty,0 — — —k, —, 2.226
Tus9 — o dny Tus0 dny k2 (1) 1o ( )
where

, 1ds, Uy 6d6 T

ky = is% = 2—1\4()5_(;%_{0 f(m)dn (2.227)

is a constant that may depend on the source conditions of the flow. Thus, the similar-
ity profiles for the single-point measures of the scalar field, in general, depend on the
initial conditions of the disturbances in the scalar field. The solution for the scalar
field is also coupled to the similarity solution for the velocity field, so the similarity
solution for the scalar field may also be dependent on the source conditions of the

velocity field.

2.8.2 Analysis of Scalar-Deficit Flow

This analysis of the scalar field in a temporally evolving plane wake can easily be ex-
tended to a second geometry in which there is a scalar-deficit or surplus in the wake.
The analysis for all of the higher-order moments is the same as the analysis laid out
for the previous geometry. The only difference between the two problems is the scale
for the mean value of the scalar. Thus, all that is necessary to extend the analysis
to this second geometry is to carry out the similarity analysis for the equations that

governs the mean scalar field in this geometry.

Using the standard high-Peclet-number assumptions, the equation for the mean
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value of the scalar (in deficit or surplus form) can be reduced to

8(600 - 6) _ a@

> 9o, (2.228)

where O is the value of the scalar in the free stream.

When there is negligible free-stream turbulence, this equation can be integrated
to yield
0 ()
= / (Oue — ©) dry = 0 (2.229)

It is hypothesized that these equations for the scalar-deficit field admit similarity
solutions where

O — © = Sc(t)sc(1) (2.230)

and
U0 = Ry (t)Tur0(n)- (2.231)

These solutions are consistent with the equations for the mean scalar field if

dSc Sc d59 Ruz@
ldt] = lde dt] x [ 5 ] (2.282)
and
S0 ox const, (2.233)
or
1
Scox — (2.234)
dp
and
Ruyp g, %00 (2.235)
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which are analogous to the conditions derived for the velocity field.

This similarity analysis can also be extended to the higher-order moments, al-
though, of course, the scale for the mean scalar field S, is now time dependent, so
that all of the other moments which depend on this scale (including the scale for the

scalar variance) are time dependent.

2.9 Analysis of the Two-Point Scalar Correlation

The analysis of the scalar field can be extended to the two-point correlation of the
passive scalar field. In the previous sections examined two different scalar fields. A
two-stream mixing field and a scalar field with a mean deficit (or surplus). The anal-
yses of the governing equation for the two-point scalar correlation for these two cases

are very similar, so it is convenient to examine them simultaneously.

For the temporally evolving wake, the governing equation for the two-point scalar

correlation reduces to

000" .. 000"
5 (u:00" — ui06") — P =~ (us00" — us00")
__ 00 90 0? 2 2 0%\
—0"ug—— — Oul, 2— + — 2— | 60’ 2.2
u28ac2 2 4 ta ( 0¢? * 03 + or% + 87) ’ (2.236)

where the primed and unprimed variables have the same meaning as in the previous

sections.
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The similarity analysis of the two-point scalar correlation is carried out in exactly
the same manner as the analysis of the two-point velocity correlation tensor. In this
case, it is hypothesized that a similarity solution exists for this equation where the

two-point correlations are given by

00" = x(t) (&6, 10, M5 o) (2.237)
Outy, = R ()74 (€9, m0, M Co), (2.238)
'uz = Ry (t)r5 (€9, s s o) (2:239)
w80 = ST* (1) 594 (€65 110, M Co), (2.240)
and
u 00" = S3*(t) s, (€0 Mo, My Co). (2.241)
where
o = xlé;xll, (2.242)
o
o ?—Z /) ZCS_;Q (2.243)
and
Co = 5635;% (2.244)
o

Substituting these solutions for the two-point correlations, the mean scalar field
for the two-stream geometry (eqn. 2.196), and the mean velocity field (eqn. 2.9) into

equation 2.236 yields

d N AN o 0 9
ldt]gp [(50 dt]<§08§5+n98775+7708ng+€98§9)(p
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Usx ' 890 [R%Sc] 1d50 leSc] 2d5c
+ [ ] — _— = — Ty—— — Th—
50 {f(n) f(n) 669 69 [/ dnl 50 [/ d77'
_lifl]%+li31]%_ [S_ﬂ%_ [5_292]38_52_ ls_ﬂ%%s_ﬂ%
dg | 0% dg | 0% dg | Ong dg | Omy dg | 9o dg | 9o
1%% 0? 0? 0? 0?
12—+ — + — + — 2.24
+l53]<3€3+8775+8%2+3@2 v (2:245)

(where the time dependent portion of each term in this equation is contained in square
brackets). The first term in the equation is present only when the scale x is a function
of time. The equation for the scalar-deficit geometry is the same as this except the

sign in front of the last two terms on the second line are positive instead of negative.

Thus, for both the two-stream and the scalar-deficit fields, the governing equation

for the two-point scalar correlation admits a similarity solution when

d—Xoczd—(saoc USXOCRéScOCRgSC
dt ~ 6y dt 59 g dg

X — X —— X —5. (2.246)

It is evident from the relationships in equation 2.246 that the convective terms

are only proportional to the diffusive terms if

USX a’x U359
5 8 a

= const, (2.247)

analogous to the constant-Reynolds-number constraint derived in the analysis of the
velocity field. This is a reasonable result since similarity solutions for the scalar field

were formulated with the implicit assumption that all of the characteristic length
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scales of the flow grow in proportion, an idea that is consistent with a constant-

Peclet-number flow.

In the limit when the separation distance between the points approaches zero, the
two-point, correlation tensor must be equal to the variance of the fluctuating scalar
field. Thus, for both geometries the scales for the two-point correlations must be

chosen such that

X o< 52, (2.248)
R2 x Ry o X, (2.249)

and
SOk o SOk o xUs. (2.250)

Of course, the constants of proportionality in these equations may be dependent on

the source conditions of the flow.

Thus, the equation that governs the evolution of the two-point scalar correlation
for both the mean scalar-deficit and the two-stream scalar field in the temporally
evolving wake flow admits a similarity solution. It is also straightforward to demon-
strate that the two-point scalar gradient moments can also be written in a similarity
form when the two-point scalar correlation can. In this case, the scalar dissipation
can be written in a similarity form that is consistent with the solution required by

the single point similarity analysis.

Following the methodology outlined for the two-point velocity correlation, it can
also be demonstrated that the one-dimensional spectra of the scalar field in the homo-

geneous directions have a similarity form when the two-point scalar correlation tensor
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has a similarity solution. Further, the length scales determined from these spectra (or
the two-point correlation tensor), such as the integral scale and the Taylor microscale,

are proportional to the similarity length scale, dy or 4.

2.10 Comparison of Theory to Data: Scalar Field

2.10.1 Simulation: Scalar Field

The evolution of a two-stream scalar field in the temporally-developing wake was also
computed by Moser and Rogers (1994) in their simulations of the wake. The mean
value of the scalar was unity on one side of the wake, while the value of the scalar
field was zero on the other side of the wake. The Prandtl number of the simulations
was equal to 0.7. The initial conditions for the scalar field were generated using a

hyberbolic tangent curve for the mean value of the scalar.

2.10.2 One-Dimensional Spectra of the Scalar Field

The one-dimensional spectra of the scalar field in the temporally-evolving wake simu-
lation can be utilized to test predictions of the similarity hypothesis for the two-stream
geometry. The one-dimensional spectra computed from simulations are presented as
approximations to the one-dimensional spectra of a flow, in an infinite field, analogous

to the one-dimensional spectra for the velocity field (v. sec. 2.6.4).

The unscaled one-dimensional scalar spectrum in the-z; direction at the centerline

of the unforced wake is illustrated in figure 2.57. The one-dimensional spectra have a
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similar shape in the high-wave-number region and shift down and to the left with time
as predicted by the similarity hypothesis, indicating that the spectra may collapse
when they are scaled with similarity variables. The difference in the unscaled one-
dimensional spectra of the scalar field is not as large as the difference that occurred
in the unscaled velocity spectra because the scale for the one-dimensional spectra is
smaller. Hence, collapse of these spectra may not provide as rigorous a test of the

similarity hypothesis as the velocity spectra.

The scaled one-dimensional spectra in the z; direction of the scalar field at the
centerline of the wake, 7 = 0, and the half-deficit point in the unforced wake, n = 0.5,
are shown in figure 2.58, while the one-dimensional spectra in the x3 directions are
illustrated in figure 2.59. (Data from points farther out in the flow are not considered
because the fluctuating scalar field becomes highly intermittent in this region and the
data base does not provide sufficient realizations.) The similarity length scale for the
velocity field has been used to scale the one-dimensional spectra in this case. This is
appropriate, since the similarity length scale for the scalar field must be proportional
with the similarity length scale for the velocity field when the governing equation for
two-point correlation of the scalar admits a similarity solution. The spectra in these
figures indicate that the data from the centerline of the wake and the half-deficit point
for all but the lowest wavenumbers (the large-scale motions) are in agreement with
the predictions of the similarity hypothesis. A similar result can also be seen in the

one-dimensional scalar spectra in the forced wake illustrated in figures 2.60 and 2.61.
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2.10.3 Taylor Microscales of the Scalar Field

The Taylor microscales of the scalar field in the x; and x3 can also be used to test
whether the similarity hypothesis accurately predicts the evolution of the scalar field
in the wake. The hypothesis predicts that these length scale grow in proportion to

the similarity length scale.

The ratios of the Taylor microscales and the similarity length scale in the unforced
wake are illustrated in figures 2.62 and 2.63, while the ratios in the forced wake are
shown in figures 2.64 and 2.65. All of these figures show the ratios for three different
positions in the wake; n = 0.0, n = 0.25 , and n = 0.5. The ratios are approximately
constant, as predicted by the similarity theory although the data is not in perfect
agreement with the theory. This is not unexpected since the data from the velocity

field that mixes the scalar field are not in perfect agreement with the theory.
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Figure 2.1: Instantaneous realization of the temporally evolving wake simulation —
vorticity contours
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Figure 2.2: Geometry of the temporally evolving wake flow
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Figure 2.3: Evolution of Reynolds number in the temporally developing wake simula-
tions — diamonds indicate points where the data is utilized to examine the two point
similarity hypothesis
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Figure 2.4: Evolution of the similarity length scale in the temporally evolving wake
simulations — ¢ is the distance between the half-deficit points in the wake
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Figure 2.5: Scaled value of @yu; in the unforced wake.
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Figure 2.6: Scaled value of @3us in the unforced wake.
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Figure 2.7: Scaled value of @zuz in the unforced wake.
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Figure 2.8: Scaled value of @yu; in the forced wake.
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Figure 2.9: Scaled value of @3us in the forced wake.
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Figure 2.10: Scaled value of uzu3 in the forced wake.
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Figure 2.11: One-dimensional spectra in the unforced wake at z5/6 = 0.
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Figure 2.12: One-dimensional spectra in the forced wake at z5/0 = 0.
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Figure 2.13: One-dimensional spectra of wu; at different x9-positions in the forced
wake.
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Figure 2.14: One-dimensional spectra of wyu; at different x9-positions in the forced
wake.
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Figure 2.15: Scaled one-dimensional spectra F}; in the unforced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.16: Scaled one-dimensional spectra Fj, in the unforced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 112

Figure 2.17: Scaled one-dimensional spectra Fy; in the unforced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.18: Scaled one-dimensional spectra F}; in the forced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.19: Scaled one-dimensional spectra F}, in the forced wake— at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 115

Figure 2.20: Scaled one-dimensional spectra Fy; in the forced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.21: Scaled one-dimensional spectra FJ in the unforced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.22: Scaled one-dimensional spectra Fj, in the unforced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.23: Scaled one-dimensional spectra Fj; in the unforced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.24: Scaled one-dimensional spectra F in the forced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.25: Scaled one-dimensional spectra Fj, in the forced wake— at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.26: Scaled one-dimensional spectra F3; in the forced wake — at n = 0.0,
n = 0.5, and n = 1.0. Spectra from 7 = 0.5 are shifted up by an order of magnitude.
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Figure 2.27: Magnitude of one-dimensional spectra F, at n=0.0 in the unforced wake.
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Figure 2.28: Scaled magnitude of the spectra Fy, at n = 0.0 in the unforced wake.
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Figure 2.29: Scaled magnitude of the spectra F}, at n = 0.0 in the forced wake.
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Figure 2.30: Scaled magnitude of the spectra F}, at = 0.5 and n = 1.0 in the
unforced wake.



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 126

Figure 2.31: Scaled magnitude of the spectra F}, at n = 0.5 and n = 1.0 in the forced
wake.
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Figure 2.32: Scaled magnitude of the spectra F, at n = 0.0 and n = 0.5 in the
unforced wake.
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Figure 2.33: Taylor microscales in the x;-direction in the unforced wake.
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Figure 2.34: Taylor microscales in the x3-direction in the unforced wake.
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Figure 2.35: Taylor microscales in the x;-direction in the forced wake.
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Figure 2.36: Taylor microscales in the x3-direction in the forced wake.
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Figure 2.37: Scaled autocorrelation of u,u)} about n = 0.0; unforced wake.
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Figure 2.38: Scaled autocorrelation of u;u)} about 7 = 40.5; unforced wake.
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Figure 2.39: Structure function of the u; component at n = 0.0 in the unforced wake.
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Figure 2.40: Structure function of the u; component at n = £0.5 in the unforced
wake.
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Figure 2.41: Structure function of the uy component at n = 0.0 in the unforced wake.
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Figure 2.42: Structure function of the uy component at n = £0.5 in the unforced
wake.
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Figure 2.43: Structure function of the uz component at n = 0.0 in the unforced wake.
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Figure 2.44: Structure function of the uz component at n = £0.5 in the unforced
wake.



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 140

Figure 2.45: Scaled autocorrelation of u;u) about n = 0.0 in the unforced wake.
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Figure 2.46: Scaled autocorrelation of uju) about n = +0.5 in the unforced wake.
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Figure 2.47: Scaled autocorrelation of usu)} about n = 0.0 in the unforced wake.
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Figure 2.48: Scaled autocorrelation of usu} about n = +0.5 in the unforced wake.
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Figure 2.49: Structure function of the u; component at n = 0.0 in the forced wake.
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Figure 2.50: Structure function of the u; component at n = £0.5 in the forced wake.



CHAPTER 2. THE TEMPORALLY DEVELOPING PLANE WAKE 146

Figure 2.51: Structure function of the us component at n = 0.0 in the forced wake.
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Figure 2.52: Structure function of the us component at n = £0.5 in the forced wake.
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Figure 2.53: Structure function of the uz component at n = 0.0 in the forced wake.
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Figure 2.54: Structure function of the u3 component at n = £0.5 in the forced wake.
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Figure 2.55: Geometry of the two-stream scalar field in the temporally developing
wake.
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Figure 2.56: Geometry of the scalar-deficit field in the temporally developing wake.
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Figure 2.57: One-dimensional scalar spectra Fjj, at n=0.0 in the unforced wake.
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Figure 2.58: Scaled one-dimensional spectra Fj, at n=0.0 and  =0.5 in the unforced
wake.
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Figure 2.59: Scaled one-dimensional spectra Fj, at n=0.0 and  =0.5 in the unforced
wake.
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Figure 2.60: Scaled one-dimensional spectra Fj, at n=0.0 and  =0.5 in the forced
wake.
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Figure 2.61: Scaled one-dimensional spectra Fj3, at n=0.0 and 7 =0.5 in the forced
wake.
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Figure 2.62: Taylor microscales of the scalar field in the z;-direction in the unforced
wake.
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Figure 2.63: Taylor microscales of the scalar field in the z3-direction in the unforced
wake.
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Figure 2.64: Taylor microscales of the scalar field in the x;-direction in the forced
wake.
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Figure 2.65: Taylor microscales of the scalar field in the x3-direction in the forced
wake.



Chapter 3

A Constant-Reynolds-Number,
Spatially Developing Flow With a
Constant Growth Rate: The

Axisymmetric Jet

The spatially evolving, axisymmetric jet is an important flow in fluid mechanics be-
cause it is prevalent in many applications. Much of the research on this flow has been
carried out in the near field of the jet (e.g., Glauser et al. 1995, Cohen and Wygnanski
1987, Sreenivasan 1983, or Zaman and Hussain 1980) since this is the region of the
jet where much of the gross mixing and the production of aerodynamic noise occurs.
The evolution of the flow in this region is highly dependent on the initial conditions
of the jet as the velocity profile makes the transition from a velocity profile at the jet

exit to the velocity profile for the fully developed jet.

161
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As the flow evolves downstream, the jet reaches a region where the velocity pro-
files become similar. George (1989) demonstrated that the equations that govern the
evolution of the mean velocity and the turbulent kinetic energy admit similarity solu-
tions that are dependent on the initial conditions of the jet. (The similarity analysis
applied to the individual Reynolds stress equations is included in appendix A.) The
experimental measurements of Hussein et al. (1994) and Panchepakesan and Lumley
(1993) are in excellent agreement prediction of the similarity hypothesis. In this sec-
tion, the similarity analysis is extended to the equations that govern the evolution of

the two-point velocity correlation tensor.

3.1 Similarity Analysis of the Two-Point Velocity
Correlation Tensor

The equations that govern the evolution of the velocity correlation at two arbitrary
points in space and a single time for an axisymmetric jet are given by (the analogous

equation in Cartesian coordinates is reported in Hinze 1975)

1 au, 1 Ougu;  Upugu) s, Uéuiug(s

Uk s Bk Oz, + Uy Wk 9z, 7o 7 i3 =
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» <u3uj B zaugu]) 50— v (uzu?, 2 8uzu2> b, (3.1)

x2  zi Ows 2 2 Ozl
where the prime and unprimed variables in in equation 3.1 have the same meaning
as in the previous sections (v. figure 3.1), while b/ = (1,1, ) is the metric of the
coordinate system. The value of the superscript on the metric, j, has the same value

as the index of the differential coordinate next to the metric.

The objective of this analysis is to determine whether these equations admit sim-
ilarity solutions for an arbitrary choice of the two points in this non-homogeneous
flow. In order to answer this question, the two-point correlations in equation 3.1
are written in a form where the functional dependence is the product of two parts
(analogous to the similarity solutions for the single-point equations). The first part
is a scale function that depends on the position of the two points relative to the
origin of the jet, while the second part is a function of the separation vector between
the points and independent of the position of the two points relative to the origin of
the jet. This hypothesized set of solutions are then substituted into equation 3.1 to

determine if they are in fact consistent with this equation.

In this case, the scale for the similarity solution is a function of the position both
points downstream of the jet origin. It must, of course, reduce to the appropriate
scale for the single-point moments in the limit when the separation distance between

the point is zero.

When considering the second portion of the similarity solution that is a function
of the separation distance between the two points, it is important to note that the

characteristic length scales of the turbulent field in the jet grow as the jet evolves
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downstream. In analysis of the single-point equations this is accounted for by scaling
the distance in radial direction by the length scale 6. The analysis of the single-point
moments also indicates that the Reynolds number of the jet based on similarity vari-
ables, Re = Uy0/v, is constant for the axisymmetric jet. Thus, it is reasonable to
expect that all of the physical length scales of the flow, such as the integral length
scales and the Kolmogorov length scale, grow in proportion as the flow evolves down-
stream. In this case, all of the length scales in the problem can be normalized by a
single length scale. Of course, the solution for all of the statistical moments in the jet
may depend on the ratio of the other length scales and the single length scale chosen to

normalize the problem, but these ratios should remain constant for any particular jet.

In order to rescale the separation distances and remove the influence of the length
scale growth, a new coordinate system is defined by normalizing the differential

lengths of the physical coordinate system by the local length scale; i.e.,

d.Il
d€ , 3.2
d.TQ
dn , 3.3
n o S (3.3)
and
d $2d$3 (3 4)
ndxs 5z .

The transformed coordinate system in the zo-direction is 7, the same coordinate used
in the single-point analysis. In addition, since the length in the azimuthal direction
is contained in the metric x5y, the coordinate x3 is the same in both the physical and
the transformed coordinate system. When the growth of the length scale § is linear,

the transformed coordinate in the mean flow direction is given by

£=1In (ml . ﬂl}) , (3.5)
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where [ is a constant with units of length (included for dimensional reasons) and
xY is the location of the virtual origin of the jet. This transformation converts the
streamwise coordinate in the jet from a semi-infinite coordinate, x;, into a coordinate

¢ that is infinite in extent.

For functions that depend on two different positions in this new coordinate, say &

and &', it is useful to define two new coordinates given by

w=£&+¢& (3.6)
and
u=§—g'=1n<x}_x§). (3.7)
T —

Since the second portion of the hypothesized similarity solution must be independent
of the position of the two points relative to the jet origin in the transformed coordi-
nate (by definition), it follows that this portion of the similarity solution must be a

function of the variable v.

Thus, the hypothesized solutions for the two-point correlations are given by

wiu = QY (x1, 21) g5 (v, m, 7, 6), (3.8)
wpuul; = T (z1, 24 )ty (v, .17, 6), (3.9)
whug; = T3 (@1, 7)1t 45 (v, .1, ), (3.10)

pul; = T (a1, )7} (v, m, 7, 6), (3.11)

and

pl—ui = H;(mla xll)ﬂ-iZ(Uﬁ m, 77,7 9) (312)
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The mixed coordinate notation in these equations (i.e. 1, , and v) is included
to facilitate the comparison between the scales for the two-point correlation and the
relevant scales for the single-point moments (since Q*, le 1 and TQi’kj must reduce
to the scale for the appropriate single-point moments in the limit of zero separation

distance).

Substituting these solutions, the similarity solution for the mean velocity profile
given by
Ur(z1, x2) = Us(21) f(n), (3.13)

and the solution for Us(x1,z2) (v. App. A) into the equations for the two-point
correlation tensor (eqn. 3.1) yields
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(3.14)

This expression has been simplified by defining the origin of the coordinate system

in physical space to be at the virtual origin of the jet and using the relationships

1 do 1
— 3.15
5d$1 Ty ( )
and
1dU, -1
— = — 3.16
Us dﬂ’)l i ’ ( )

which are valid for this flow (since the growth rate and Reynolds number are constant).
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The portion of each term in equation 3.14 that is dependent on the position of
the two points relative to the virtual origin of the flow is included in square brackets.
Equation 3.14 can be reduced to an equations in terms of the similarity variables if
it is possible to choose the scale functions (Q™ etc.) so the ratio of the terms in the
square brackets are only a function of v, the separation distance between the points

in the transformed coordinate system.

A close examination of equation 3.14 reveals that the functions in the square
brackets can be easily divided into two groups. The terms in each of these groups are
proportional if the terms satisfy constraints analogous to the constraints outlined for

the single-point equations. The constraints for the first group are given by

i3] o[58 [0« 2]

0xy T 3—331 Z1
It [Ty [T [TEY T3
o [sgag) oo T o ] [ = [ =
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and the constraints for the second group are given by
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Examining the first two terms in equations 3.17 and 3.18 (and the consistency
condition for zero separation) leads to the choice of the scale for the two-point velocity

correlation tensor, Q*7, given by

ds b6d)
dry

QY = Uy(x1)U,(z)) (3.19)

where b(7,j) is a numerical power which may be a function of the value of ¢ and
j. The function b(7, j) must be chosen so the scales for the two-point velocity cor-
relation tensor are consistent with the scales chosen for the single-point moments.
However, neither the two-point nor the single-point analyses yield sufficient informa-

tion to uniquely determine the values of b(i, 7).

Once the scale Q% is chosen, all of the other scales can be determined. These are

given by
T oc Uy(21)Q%, (3.20)
2i, 3,5 ij 40
77 o« T7Y o Ug(1) Q" —, (3.21)
d.’L’1
Ty o Uy(2))Q™, (3.22)
i,2 i\3j 1\ yid 90
Ty o Ty o Ug(7) Q" e (3.23)
I o Us(z1)Q™, (3.24)
and

IT; o< Uy (2)Q", (3.25)
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where growth rate terms are included in the scales when the equations indicate they

are appropriate.

The scales for the viscous terms in equation 3.14 are only proportional to each
other if the growth rate of the jet is constant (for the current choice of transformed
streamwise coordinate)! In addition, the viscous terms in each group of constraints
are only proportional to the convective terms if

Us(z)QY QY
xX v

) x?

(3.26)

or
[8 Z € [’Sa

x const (3.27)

since the growth rate of the jet is a constant. Thus, the Reynolds number of the jet
based on the similarity variables must be a constant in order for the full equations to

admit similarity solutions.

It is straightforward to demonstrate that both groups of constraints in equa-
tions 3.17 and 3.18 are satisfied when the scales are chosen as defined in equations
3.19-3.25. In addition, the ratio of the terms from the two groups in equation 3.17
and 3.18 is given by

Qi’jUS(xl) T :c'12 2
_ T e 3.98
o QU@ “ @ ¢ (3.28)

which is a function of only v, as required. Therefore, when the scales are chosen as in

equations 3.19-3.25, it follows that the governing equations for the two-point velocity

!The transformed coordinate in the z; direction could have been chosen differently, say v =
(dé/dz) " In(z1 /=), which would have made all of the viscous terms proportional, but all of the
convective terms in this formulation would only be proportional if the growth rate of the jet were
constant. Thus, for either coordinate system the growth rate of the jet would need to be constant.
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correlation tensor admit similarity solutions.
For example, if the scales for Q%' are defined as
s\’ s\’
33 _ 22 _ Ll 9} _ [ @9
Q Q Q (dxl) Us(z1)Us(2}) <d$1> 5 (3.
3,2 2,3 ! do ’
Q" = Q™ =Us(z)Us(2y) | —— | (3.
dl‘l
and
1,2 2,1 3,1 1,3 N
RT=Q" =Q" =Q" = Us($1)Us($1)d—m> (3.

the constants of proportionality in equations 3.20-3.23 are taken as unity, and

scales for the pressure-velocity correlations are defined as

I = U; (21)Us(a4) (3.

and

Iy, = Uy(z1)UZ(2}), (3.

then it follows that equation 3.14 can be rewritten as
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(3.34)

If this equation has a non-trivial solution, then the equations for the two-point veloc-

ity correlation tensor admit similarity solutions.

With some additional effort it can be shown that these solutions maintain two

important properties: First the correlation is Hermitian; i.e.,

¥

% __

(3.35)
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Second, the solution has the appropriate reflective properties in the azimuthal direc-

tion; ¢.e.,
1,J / / 1,J ! ! ¢ ﬂj 76 3
Q ! (xla $1)Qi,j(77a m, 05 U) - Q ’ (,’1')1, 371)%’,]’(77, n, _0, U) (336)
1Ng = 3
and
o o 1tUj=3
QZ,] (xla xll)ql,J (77’ 77p7”a 05 U) - _QZJ (',171, mll)q’t,J (77, 77,, _05 U) (337)

but not both.

The similarity analysis of the two-point equations was carried out using a virtual
origin to replace the flow exit, so the similarity solution defined by equation 3.34 must
be viewed as a possible asymptotic state of the turbulence in a jet. However, this
does not necessarily imply that an unique asymptotic state exists for all axisymmetric
jets. Some of the coefficients in equation 3.34 have an explicit dependence on both
the growth rate and the Reynolds number of the jet. There is no obvious technique
to eliminate both of these factors from the equations for the similarity profiles,? so
the solutions may be dependent on source conditions of the jet, to the extent that
the source conditions affect the value of Reynolds number and the growth rate of the

jet.

2Tt is important to note that the choice for the length and velocity scale are not totally arbitrary if
one wishes to demonstrate that the similarity state for the jet is universal. It is necessary to choose
the length and velocity scale such that they collapse mean velocity profile for different jets. For
example, the length scale of the jet can be interpreted as the growth rate of the half-mean velocity
point in the jet.
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3.2 The Pressure Field

Since the two-point velocity information is now available in similarity form, it is also
possible to examine the pressure field generated in the self-similar region to verify
if it yields a pressure-velocity correlation consistent with the hypothesized similarity
solution. For an incompressible free-shear flow, it is possible to demonstrate that
the instantaneous fluctuating pressure field (i.e., the instantaneous pressure minus
the mean pressure) is related to the velocity field (excluding the singularity at the
virtual origin of the flow) by the expression (v., Townsend, 1956 for the expression in

Cartesian coordinates)

p 1 2 QU 1 0w Ubub U Oul
;__E/// H oxt a2 2 ol
xh dzfy doly dx

{23 + 2 — 2a92 cos(z3 — zt) + (x1 — 2)2}?

1 a a n_n
/// {hl// hk” amu axu (ukul - ;cluil)

2 1 0 — 1 0 —
+— (u"u" — u’g’u”) - (u"u" — ug'ug)
! hk”a ;cl 2%k k .’L’" ax/é 393
xh dxfy dxyy do’f

{23 + 24? — 2291 cos(xs — z4) + (21 — ac’l’)Q}l/Z’

(3.38)

where the integration is carried out over the domain excluding the virtual origin (for
example, using a cut along the —z; axis). The fluctuating pressure field also includes

a contribution from the surface around the singularity.

The contribution of the pressure determined from the flow in the volume in equa-

tion 3.38 to the pressure velocity correlation is given by

_i/// i@U,Q 1 au' ”+2 "u’u’2’+2 ”au’ i
T hlll 61'2/ hk// axk .1'1212 .1'1212 a "
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xh dxfy dxf da
{23 + 2% — 23:230’2’ cos(zz — %) + (1 — ac’l')Q}l/2
0 21 0 ———
in = {h“' oal h’“" D SR e
xh dry dxh dx!
7s dy doy o (3.39)
— 2x91y cos(xy — ) + (x1 — 217)?}

where the integration is again carrled out over a volume excluding the singularity at

the virtual origin. This domain can be split into two regions: The region described

by the similarity variables which includes the flow on the positive side of the z;-axis

(taking the virtual origin at the origin of the coordinate system with the jet flowing

in the positive direction). And, the region behind the virtual origin that cannot be

described by the similarity coordinate system because it becomes singular at the vir-

tual origin of the jet.

The contribution of the self-similar region to the pressure-velocity correlation can

be determined by substituting the hypothesized solution for the two-point correlation

tensor defined in equation 3.19 into equation 3.39 . For example, the similarity form

of u’  given by

ol
uiuy =

can be rewritten as

Qjk(xy, 21) gk (', n", x5 —

95,k (77,7 77”7 $3 $3, 6 §,,) = qj, k( 77”: T3 — T
Thus, defining
U” — é— _ é—li
and
0" = x3 — 13,

—[zs — 28], €= ¢" =

23,8 — &) (3.40)

[£—¢). (341)

(3.42)

(3.43)
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it follows that g; can be written as
Qj,k(nla 7)”; .’133 .’1'3,5 5”) - qy,k(nla 77”a 0" — Ha V" — U) (344)

The new function ¢j, is defined for convenience to emphasize the new manner of

writing the arguments of the functions. It is also useful to define the function

tilllcl( ' 9// 0’ o' — U) _ t?,kl(n,’ 77//’ 33% o l_g’ fl _ 5//) (3'45)

Using these definitions and the scales for the similarity solutions defined in equa-
tions 3.19, 3.22, and 3.23, the contribution of the flow in the similarity region to

the pressure-velocity correlation can be written as

oL~

df " aq;!ﬂ " 8%!,2 " "en " de " aql'lal
_an// <0U" +n 877” +qj,2 -2 n f +n dn//Q 877”
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,'711 de" d’l]” dv' }
[ + 2" — 2ev" 1" cos 0" + (d/day)2(1 — e2")]'/2 [

where a(k) is equal to 0 when k£ is 1 and it has a value of 1 when & is 2 or 3, while

(3.46)

F" is given by

nll B ~ ~
F'= [ af )i (3.47)
In this equation the singularity at the virtual origin is mapped to the line —o0 is the

v" coordinate system.

In this form, equation 3.46 is now a product of a scale, given by

ds > 1+a(k)

— A4
. (3.48)

Utevitel)

that is consistent with that required by the previous similarity analysis and an ex-
pression that is only a function of the similarity variables v, n, ', and 6. Thus, the
similarity hypothesis is internally consistent in the sense that if the motion in the jet
is consistent with a two point-similarity hypothesis, then the pressure field generated
by the motion in the jet yields a pressure-velocity correlation that also satisfies the

similarity hypothesis.

The essence of what has been accomplished in this analysis can be seen by looking
at the velocity field in the incompressible jet kinematically as the sum of a rotational
solenoidal velocity field due to the vorticity distribution in the flow and an irrotational
and solenoidal field (or a potential flow) which is included to satisfy the boundary
conditions (c.f. pg. 87 Batchelor 1967). (Note, in general it is also necessary to
incorporate an irrotational portion due to fluid expansion.) The analysis herein ex-
amined the dynamics of the flow caused by the thin vortical region in the jet. It

was demonstrated that the equations that govern the evolution of this motion admit
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to an internally self-consistent similarity solution. In general, this motion may not
satisfy the boundary conditions imposed on the flow, so there is an addition potential
velocity field that must be added to the velocity field ‘induced’ by the vorticity field
in order to satisfy the kinematic boundary conditions® of the flow. In this analysis
the contribution of this portion has not been considered. The non-linear terms in
the Navier Stokes equations will cause coupling between these two velocity fields (in
both the velocity and the pressure terms), so that, in general, the flow in the jet will
not evolve self-similarly unless the potential flow necessary to satisfy the boundary
conditions also evolves in accordance with a similarity solution.* For the temporally
evolving wake, where the similarity coordinate system covers the entire flow domain,
it is evident that a fluid of infinite extent is sufficient to satisfy this condition. The
same can not be proven here because the similarity coordinate system does not de-
scribe the entire flow domain. It is reasonable to argue that in theory some set of
boundary conditions (probably free boundary conditions) exist that yields a flow be-
hind the jet, whose contribution to the integral for the pressure-velocity correlation
(eqn. 3.39) is consistent with the similarity hypothesis. If this is in fact true, then the
equations that govern the evolution of the two-point correlation in the axisymmetric

jet flow admit to a similarity solution.

This discussion also illustrates the important role that the boundary conditions

of a flow play in the evolution of the flow, a point which must be considered when

3There would also need to be an adjustment of the vorticity field if the boundary condition was
a no-slip condition since a potential field cannot satisfy the no-slip condition (Batchelor 1967).

4Note, if this coupling does not play a role in the evolution of the flow, then it would be possible
to carry out a similarity analysis of the vorticity equations and argue that the evolution of the
purely vortical motions in the jet were consistent with the similarity solution. This is, in general,
not possible since the velocity field introduced by the boundary conditions convects the vortical
motions.
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comparing experimental or numerical data to theory or each other (v. Batchelor
1953, George 1990, or Grinstein 1994 for further discussion). In the present context,
if the boundary conditions of the flow are not consistent with those required by the
similarity theory, then the flow (particularly the large scale motions) would not be
expected to evolve in accordance the similarity hypothesis. Of course, the similar-
ity solution may still be a good approximation of the solution for the flow. This is,
in fact, evident in the data from the simulations of the temporally developing wake
examined in section 2.6. In these simulations of the flow, the boundary conditions
are not consistent with the similarity hypothesis, yet the statistical measures of the
moderate- and small-scale motions are in fairly good agreement with the prediction

of the two-point similarity hypothesis.

3.3 Similarity of the Velocity-Gradient Moments

It is, again, reasonable to anticipate that other moments which are directly related
to the two-point correlation tensor, such as the two-point, velocity-gradient moments
have a similarity form in this case. The velocity-gradient moments are particularly

important because they can be related to the dissipation of kinetic energy.

The dissipation of the kinetic energy per unit mass, € , can be written as

e= lim 2ve;e; (3.49)
wk—mk

where the e;; is the rate-of-strain tensor. For a cylindrical coordinate system, the

rate-of-strain tensor is given by (v. Batchelor 1967)

N 1 1 auz 1 Buj U9 1U3
AN (ﬁ dz; Eax) T30 gy, et bsle) (3:30)
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Therefore, the dissipation of kinetic energy can be written as

2 hi ' Ox;0x; 2 h' W' Ox;0x;

€= lim 2v
Tp—T),

{lii PRy 111 &Ry

1 <8(R3,2 — Ry3/2) N O(Ra3 — R3,2/2))

XToT, 0r3 oxt
1/10R 1 OR R 1R
N ?;,3 — 3,3 + 2,3 4= 371;’ : (3_51)
2 \xy Oxh Th 0z Toxh 2 Toxh
where R, ; is the two-point velocity correlation tensor; i.e.,
Rij = ui(w1, m9, 13, t)uf (2}, x5, 15, 1) (3.52)

Substituting the similarity solution for the components of the two-point velocity cor-

relation tensor (i.e., equation 3.8) into the terms in equation 3.51 yields
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0’ Ry QF" 0 0? 0?
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1 0*Ry kom 1Pqn
1 Phyn _|_€Q : L0%as, (3.60)
Zo Ox30Th d(z1)d(zh) | non'o
1 0°Ryp P11 P
i . (3.61)
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Toxly Ol Ls ]n_ (3.63)
1 OBy, an 19
Ty Orhy LS ] n o (3:64)
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xh 0xg |0(z1)0(2h) | ' On
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Rkn [ Qk’n ] Akn
= —. 3.66
raty  |8(e)a(a5) | (3.0

Thus, when the two-point velocity correlation tensor can be written as a similarity
solution, all of the two-point velocity-gradient correlations in the equation 3.51 can
be written as the product of a scale (which is proportional for all of the moments)
and a function that is dependent on the similarity variables. Thus, it follows that the

dissipation of kinetic energy per unit mass can be written as

€= lim
Ty,

l%] D(n,n',0,v) = l2u gj ((;”11))] D(n), (3.67)

which is consistent with the similarity solution for the dissipation required in the

similarity analysis of the equations for single-point moments (v. App. A).

It is also straightforward to demonstrate that the two-point vorticity correlation
tensor can be written in a similarity form when the two-point velocity correlation

tensor has a similarity form. In a cylindrical coordinate system the components of
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the fluctuating vorticity are given by (v. Batchelor 1967)

1 (1 Ooup  us
ijk

W; = <€ — —
h? Oxj i)

9 5j25k3> (368)

where €, is the alternating tensor. Thus, the two-point vorticity correlation tensor

can be written as
— _ 1 [ 1 PRy 11 0Rs,
i 47IREm pipm g ozt xy b Bzl

11 ang, R33
— 0,302 + —-0430205,30.,
zhhi Ox; 30m2 + ToTh k37527 n3%m2

Ok30jo+ (3.69)

Utilizing the similarity solution for the velocity-gradient moments outlined previously

and the following additional moments

1 8ka Qk’m 1 / 0 0
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P lé(xl):rﬁ] 77{ +17 g + 5[ 0 (3.70)
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L O0Rym _ [ Q%" 11 0gum (3.73)
zh Oy d(z1)o(zh) | " On .

it is straightforward to demonstrate that the two-point vorticity correlation tensor

can be written as

wiw, =

Uy(z)Us(2) ( 6\ , ds
5($1)5($’1) dl’l hl,l 777 TI I 97 ,U7 dxl (374)

The power e(i,7) is included to account for any differences in the scaling of the

members of the vorticity correlation tensor. It also follows that the single-point

vorticity moments can be written as

2( g, e(t.i)] _
[5]255('1)2) (%) ] h(n) (3.75)

Wiy =

when the two-point velocity correlation tensor has a similarity form.
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Figure 3.1: Geometry of the spatially developing axisymmetric wake.



Chapter 4

A Varying-Reynolds-Number,
Spatially Developing Flow With a
Constant Growth Rate: The Plane
Jet

The analysis in the previous chapter illustrated that the governing equations for the
two-point, velocity correlations in far field of the spatially-developing axisymmetric
jet admit similarity solutions, since the the Reynolds number of the flow based on
the similarity variable is a constant. In the plane jet (illustrated in figure 4.1), the
Reynolds number based on the similarity variables increases as the flow evolves down-
stream (v. George, 1994) and approaches infinity. In this case, the traditional theory
put forth by Kolmogorov (v. Monin and Yaglom, 1975) argues that the smallest
scales of the turbulence reach an universal equilibrium state whose two-point statis-

tical description is a function of only the dissipation of kinetic energy per unit mass

184
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¢ (which occurs at the smallest scales but is determined by the large scales) and the

kinematic viscosity of the fluid.

It will be shown later, that it is not possible to find a similarity solution for the
two-point velocity correlations tensor that is valid for all separation distances in this
flow because the Reynolds number of the flow based on the similarity variables is not a
constant. Instead, the equations that govern the correlation tensor for large separation
distances (which emphasize the large-scale motions) and the governing equations for
the second-order structure functions (which emphasize the small-scale motions) are
examined separately to determine whether they admit similarity solutions. It is shown
that these equations admit similarity solutions in the limit of an infinite Reynolds
number, when terms in each set of equations are negligible. The similarity solutions
for the small-scale motions are also compared to the similarity solution proposed by

Kolmogorov to determine if the solutions are consistent.

4.1 Review of the Results of the Single-Point Sim-
ilarity Analysis

The similarity analysis of the equations governing the single-point moments, including
the equations for the individual Reynolds stresses, was reported by George (1994).
George (1994) found that a similarity solution was only possible for these equations
when

do

dr, x const (4.1)

and
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where, § and U, are the similarity length and velocity scales for the mean-velocity

profile and M is the initial moment added at the source of the jet.

Thus, choosing the origin of the coordinate system at the virtual origin of the
asymptotic jet, it follows that
0 o 1 (4.3)

and
U, o 27 2. (4.4)
Therefore, the Reynolds number of the jet based on the similarity variables,
Uso
Res = —— o z1/2, (4.5)
v

increases to infinity as the flow evolves downstream.

4.2 Similarity Analysis of the Two-Point Velocity
Correlation Tensor

The equations that govern the two-point (single-time) velocity correlation tensor in

this flow are given by (Hinze, 1975)

U Ouu L Ouiu; _ _18@ B lap’—uZ
" oz k ox, p Ox;  p Ox;
Ooupuu’  Oujuu ou; —_0U;
_ TR klzj—u;-uk—z—uiujc n
Oxy, oxy, O0xy, O0x},

0? 0?
. I,
+v {axkaxk + RN } uus, (4.6)
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where the prime and unprimed variables are evaluated at the two arbitrary points in

the flow.

It is straightforward to demonstrate that these equations do not admit similarity
solutions of the type outlined previously when the Reynolds number, Res is not
a constant. For instance, if the hypothesized similarity solution for the two point

correlation tensor is given by
iy = QY (x1,21) i3 (v, m,7', ) (4.7)

(where ¢ and v are as yet undefined similarity variables in the z1- and z3-directions),
then it follows that the ratio of the convective and viscous terms at one of the points

in space is given by

Uz

— — -1
Ouu <V32u,~u;-> . U,o (48)

8332 83:% v
This ratio is a function of the position of only one of the points downstream of the
virtual origin, so it can not be written as a function of the separation distance be-

tween the points in a transformed streamwise coordinate. Thus, the full governing

equations do not admit similarity solutions.

In the infinite-Reynolds-numbers limit, however, it is generally argued that the
viscous transport terms have a negligible effect on the large-scale motions. It is also
argued that the convective terms play a negligible role in the equations for the small-
scale motions. Thus, the obvious question to ask is whether the governing equations
for the correlations that characterize the large- and small-scale motions individu-
ally admit similarity solutions in the infinite-Reynolds-number limit. This is really

a formal statement of the usually assumed ‘local’ similarity for the small-scales, and
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analogous to the inner/outer similarity solution George et al. (1995) applied to the

turbulent boundary layer.

4.2.1 The Large-Scale Motions

The large-scale motions of the turbulence are correlated over much larger separation
distances than the small-scale motions in the flow. In non-homogeneous shear flows,
such as the plane jet, the sizes of the large-scale motions are typically on the same
order as the half-width of the jet. For these large-separation distances the ratios of

the convective terms and the viscous terms in equation 4.6 are on the order of

Uk, U ~ O(Rey), (4.9)

v Ui U
8xkaxk J

aW( 0 ,)‘1 U,Cy 47

0xy, z, Cyv

where C; is an appropriate scale for the two-point correlation tensor. Similarly, the

ratio of the turbulent transfer and the viscous terms is given by

Oy, o B A T,
) ~ ~ . 41
Oz (” Oz 0Ty “J) 5@ G~ (Re‘s CSUS) (4.10)

Thus, if the convective terms and the turbulent transfer terms are of the same order;

i.e.,

T,
li ‘01 411
O (1), (4.11)

as is generally argued (v. Hinze 1975), it follows that in the infinite-Reynolds-number
limit the viscous diffusion terms play are negligible in the equation for the correlation

at large separation distances.

In this case, the equations that govern the evolution of the correlation tensor for
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large-separation distances are given by

U Ou;u; ey Ou;u; _ _18@ B 18p’—uZ
s  oxh p 0x;  p Ox}
Ouguu;  Ouju;u) oU; oU;
— ax; J _ ax;: J _ U‘;uk%’: —uzukaxi (4.12)

It follows from the previous analysis of the axisymmetric jet that the similarity
coordinate in the non-homogeneous z;-direction must be a transformed coordinate.
It is straightforward to demonstrate that a transformed coordinate that is compatible

with the equations is the same one used in the analysis of the axisymmetric jet; ¢.e.,

v =1In(z1/). (4.13)

The large-scale, energy-containing motions make a significant contribution to the
single-point Reynolds stresses, so the similarity solution for the large-scale motions
must be consistent with the similarity solution for these moments. Consequently, the

similarity coordinate in the x5 direction is chosen to be

n=5 (4.14)

The similarity variable in the homogeneous x3 direction is defined as for the homo-
geneous directions in the two-point, two-time similarity solution for the temporally

evolving wake. The similarity variable in the x3-direction is given by

T3 —
(= 520 (4.15)
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where the length scale 03 is not yet defined. The variable ¢’ given by

T3 — T4

5 (4.16)

¢ =

could also be used in the similarity solution (similar to what was done for the tem-
porally evolving wake), but it is not included here because it is not independent of

zeta and v.

It is hypothesized that the equations for the two-point velocity correlations admit

similarity solutions where

uily = Q¥ (z1, 24)qi 5 (v, m, 1, €), (4.17)
Upuu; = T (21, mll)tllci,j(va 1,1, ), (4.18)
ujuguf = T3 (xy, x’l)t?,kj(va n,1, ), (4.19)

puf; = T (21, 24 ) (v, 1,7, ), (4.20)
pu; = (w1, 23)m} (v, 1,7, €). (4.21)

Note, the scales for these functions must be compatible with the relevant scales for

the single-point moments.

Substituting the hypothesized similarity solution into equation 4.12 yields

Q% Us (1) 0q; QYU,(x1) dis 0
L) G | SO0 0] 1)l

a5 s+ |

~{lou |+ [£ ]} O / san+ v 52 rona

Ty 1

- [ g2 - foute] 4+ | LTS 17 pgpa

x xh

T
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B o] , [ or} O} ] do;| om;
—“{[axI]” *M( "an T 0 ) T s dn o 00

__[ L ]%5. _ll I ]3_7@.
pl6(z)] o plos(@)] ¢
1 ([os] , [ ,0m2  Or? 1 5 1 on? 1[I ] on]
p{[axa]“[xa]( Tor o ) 5( 5 o 5 |5 | 3
_[oml [ ddy
63; Li,j el 53 LEl diEl 6( (5(.’L‘1) 87]

(_ ot 8th ]> [Tf” d<53] Otli; le”] ot; ;

] e 5] (- )
x1) ot ov o(xh)| onf
Ty% | 0t} QYU (, f Q*U(x,)]  df
Laten) w0 o (3 d—HW |
U, Li ds d Y
- { [ﬂd—] . (né waf - f f(n)dn)

_ [Us(ﬂﬁl)QQ’j] 4 <1f(77) _1_77;1_{7)

X1 2

QU (z)) 1., , df QU (z)) df
{5 ) [25]

Us ! %,1 d(s , ' ~\ ]~
+{[L,)Q@]Qi,1 (772 i +0f(n) - i 077 f(n)d77>

!
T 1 dn

_ [M] T%ip (%f(n ) +7 jj;) } 5j2 (4.22)

T

This expression has been simplified by defining the origin of the coordinate to be at

the virtual origin of the jet and using the relationships

1 dé 1
— 4.2
5 dﬂ?l I ( 3)

and
1 dU, -1

— = — 4.24
US dl‘l 2%1’ ( )
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which are valid for this flow.

The portion of each term that is dependent on the position of the two points
relative to the virtual origin in equation 4.22 is included in square brackets. As in the
analysis of the axisymmetric jet flow, there is not a choice of the similarity scales that
makes the terms in square brackets proportional. Hence, it is necessary to choose the

similarity scales so that the ratios of the terms are only a function of v.

The allowable choices for the length scale in the homogeneous z3-direction can be

determined by examining the terms in the transport equation for the usu4 correlation

given by
_1 H?. a7-‘-:13 _ T132’3 6t%2,3 (4 25)
p6(x1)] On  [d3(z1)] OC .
and the terms in the usu} transport equation given by
1[I Jord  [T7°] Oty (4.26)

The governing equations for usu and uzub only admit similarity solutions if the ratios
g g 3 3 O1ly y

of the terms in square brackets in equations 4.25 and 4.26 are a function of v only, so

that
H?(Sg(Il) 1
—a——| = hy(v 4.27
lT132’3(5(a:1)_ 1( ) ( )
and
36(z1) ]
| = ho(v). 4.28
lT123’353($1)_ (0] (428
Noting that T2 = 7233 (since u;upu; = ugu;uf), it follows that both of these ratios

can be a function of v only if

d3(x1) o< §(z1). (4.29)
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The scale for the two-point correlation tensor can also be determined from equa-
tion 4.22. One choice for the scales is to require the convective terms at each point

to be proportional; i.e.,

aQi,j Qi,j
4.30
8.’1,'1 x T ( )
and
BQH Qb
: 4.31
ox . x} (431)
in which case it follows that
QY o 2’ (4.32)

In order to ensure that the similarity solution for the two-point velocity correla-
tion tensor is consistent with the hypothesized similarity solution for the single-point
Reynolds stresses, the scale for the two-point correlation tensor is chosen such that!

ds €d)

QY x Uf(xl)Uf_"(x'l)d—xl

(4.33)

The reasonable choice is n = 1, so the scale for the correlation is equally weighted by

the velocity scale at each point; i.e.,

ds €(id)

Q" x U, (xl)Us(xll)d—xl

(4.34)

'Tn general, this could be multiplied by an arbitrary function of v such as Uy () /Us(z}) = e~v/?
or §(z1)/d(x}) = e¥ and the equations of motion would still admit similarity solutions. Of course,
in this case these factors would appear in the governing equation for the similarity solution. The
choices outlined here were made because they appeared to be the most appropriate.
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It is straightforward to demonstrate that the ratio of all of the terms in square

brackets will be only a function of v if the scales for the other moments are chosen

such that
I o Q%Us(z), (4.35)
I oc QU (), (4.36)
T o QWU (2y), (4.37)
TyY o QU (), (4.38)
i2,j i3,j irj dd
1777 o< T7 o QW Ug(21) —, (4.39)
dSEl
and

dé

157 o 3™ o QWU (1) o, (4.40)
1

which are consistent with the scales for the hypothesized similarity solutions.

Thus, the equations that govern the two-point velocity correlation function for
large-separation distances (which emphasize the large-scale motions) admit similar-
ity solutions in the infinite-Reynolds-number limit. Note, the discussion regarding
boundary conditions in the previous chapter is equally applicable here and may in
many ways be important since this is a planar flow. For example, even the mean
velocity Us must be finite in a theoretical plane flow as xo — oo in order to satisfy

mass conservation as a result of entrainment.

4.2.2 The Small-Scale Motions

In the infinite-Reynolds-number limit, Kolmogorov (1941) hypothesized that the

probability density function of the small-scale motions achieved an universal form
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that is characterized by only the dissipation of the kinetic energy and the viscosity
of the fluid. The objective of this section is to derive a similarity solution for statis-
tical measures characteristic of the small-scale motions using the techniques outlined
previously. This similarity solution can then be compared to the similarity solution

proposed by Kolmogorov to determine if the solutions are consistent.

It is not possible to directly examine the evolution of the small-scale motions
using the velocity correlation function because the correlation function at all sepa-
ration distances is biased by information from the large-scale motions. Instead, it is
conventional (e.g. Kolmogorov 1941 or Batchelor 1947) to examine the statistics of
the velocity difference between points separated by a small distance (or the structure
function), such as

(0 — )", (4.41)
which is a measure of motions on the order of the separation distance between the
points, particularly when « equal 3. Following the approach outline by Batchelor
(1947) for isotropic turbulence, the equation for the evolution of the second-order
structure function can be written as (v. appendix B)

P Oy, N gi’ 8u'ﬂ
p 0z, p Oz

Ukai:vk(ua — u’ﬁ)2 + U'%(ua — u’ﬁ)2 =2

S peap o) = S ) — g (o )~ gk (o)

pox pox 0 oz},
L —, ) — | )
7 B 7 & 7 T VB a
—2(uq — ! — 2(ug — AL Y — 2(ug — ua
2(u04 ua)uk ) ;C (Uﬁ uﬁ)uk a.Tk (uﬁ ua)uk 8.73;6 (Uﬂ u )Uk amk
0? 0? 2
—uly) — — 4.42
v {axkaxk + aa:kaack } (Ua uﬂ) Caa “op ( )

where the index convention is only used for the variable k£ (i.e., no summation over

a and f3).
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This equation can be simplified by noting that the functional dependence of the
structure functions can be written in terms of a variable that is related to the sepa-

ration distance between the points, given by

o
F ::3?1?5i§&, (4.43)

and a variable dependent on the average location of the two points, given by

!
~ _xk+xk

Tp=—5" (4.44)
Therefore,

Tk =Tk + Tg (4.45)
and

Ty, = Tp — Ty, (4.46)

In the limit of infinite Reynolds number, it is generally argued (v. Tennekes and
Lumley 1972) that the dissipation of kinetic energy occurs in motions with a charac-
teristic length scale, [, which is negligible relative to the characteristic length scale
of the large scale motions in the jet. Further, it is argued that the structure function
are measures of the small-scale motions and thus, vary significantly for changes in
the separation distance on the order of the length scale I;. However, the structure
functions only varies significantly when the average location of the two points, Z,
changes by a distance on the order of the characteristic length scale of the large-scale
motions, . In other words,

0t — )" | 01— )" NOCﬁ’ (4.47)

0y, 0%,
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so the motions on the order of the length scale [, are locally homogeneous in the

infinite-Reynolds-number limit, since

lim 2=, (4.48)

Regs—00 (5 o

In this case, the governing equations for the second-order structure functions can

be written as

(U + UL) -2 (1t — )" + (Us = U)o (1t — ) + 22 200 pP 00

Dy k) Oy, s pOz,  pozg
—%%p (10 — uf) ; 3‘?, P (s — ua) 5 (= 1) (ta u'ﬁ)Q
AT e O AT S et
+2V88—§:2,2C (“a - u,ﬂ)2 — €aa — €4p (4.49)

Note, at this point the non-homogeneous convective terms have not been neglected
because, as it is shown later, these terms are approximately the same order as the
homogeneous convection terms. (It is also shown later that both are negligible in the

infinite-Reynolds-number limit.)

This equation can be further simplified by neglecting terms in this equation that
are negligible in the infinite-Reynolds-number limit. In particular, the convective
terms and the production terms are examined. In order to neglect these terms it
is necessary to demonstrate that these terms are higher-order terms compared to at

least two terms that are being retained in the equation.
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For the small-scale motions, it is assumed that the the viscous terms and the
turbulent transfer terms are of the same order since it is assumed that the turbulent

transfer terms move the energy to the small scales where it is dissipated (Monin and

Yaglom 1975); i.e

a(z« (s = ) (ta “'ﬂ)Z (2”3822 W) ) ~ 0 (?;%) ~O0(1),  (4.50)

where Tsd is the scale for the turbulent transfer term and Bf is the scale for the two

point velocity correlation tensor. (Note, no assumptions have been made about the
value of the scales B¢ and T'% it has only been assumed that the ratio of the two

terms is of order 1).

The ratio of the convective terms and the viscous terms can be approximated as

Y Bl (U, e U4,
(U —Uy) a—jk(ua - uﬁ) {21/a — ( u'ﬁ) } ~ O ( y ) (4.51)
and
9] N2 0? nvill U,l?
Uk + U) 5= 7 (0 — uj) {21/3—9?;%(““ — uj) } ~0 <xl—1/> : (4.52)

where U¢ is the scale for the velocity difference.

If the origin of the coordinate system is placed at the virtual origin of the jet, the
scale for the difference between the mean velocities at the two points can be deduced

by examining the velocity difference in the z; direction for a length on the order of

ls given by
Us(z1) — Uy +1,) = 2 * (4.53)
s\41 s\+L1 ] _:L'%/Q ($1+15)1/2. .
This expression can be binomially expanded to yield
ko ls 3 l Usls Us ls
U, - U ls 1-— ~ —— 4.54
(1) = Usla1 +1) » 22172 11 ( 4:51) 201 20 (4.54)
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if [ < x1, which is valid in the infinite-Reynolds-number limit.

Hence, the two sets of convective terms are of the same order? in the infinite-

Reynolds-number limit and the ratio of the convective and viscous terms can be

U,d 12
o(E) (459

Consequently, the convective terms are negligible relative to the viscous terms if this

approximated by

ratio is negligible, or if

I, < 2%/t (4.56)

as r; — oo.

The ratios of the velocity-difference production terms and the viscous are given

by

U g = ! U.C42
B ! 5%s's
2(“04 — u’a)uk al‘;c lyaikajk (U'a — Uﬂ) ] ~ O <TB?> s (457)
where C¢ is the scale for the difference of the correlation function in the production

terms; i.e.,

(U — ul)u), = uqu), — ul uj, (4.58)

(which is zero in the limit of zero separation). The order of this term can be approx-

imated by expanding the correlation function into a Taylor series; i.e.,

!
Ouguy,

1 %uqu!
I, + ok
or

*T 9 gr2

Tm=2z), Tm=2h,

12, (4.59)

U Uy, — Ul U, R

where r is the arbitrary separation distance and I is the magnitude of the separation.

The scale for these terms can be approximated using the second term in this expansion

2The two scales do differ by the growth rate of the jet
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by noting that (Tennekes and Lumley 1972)

— T
0*uqul, _ _2uaua

orr | _, A2
m

(4.60)

where ) is a Taylor microscale. For isotropic turbulence, this ratio can be related to
the dissipation of kinetic energy by (v. Tennekes and Lumley 1972)
"2
uy
€= 15yﬁ (4.61)
In the current analysis where it has been assumed that the turbulence is ‘locally’
homogeneous, it is reasonable to approximate the scale C¢ by
%
— ~ 0(1), 4.62
o ~ o) (462
in which case the production terms are small relative to the turbulent transport terms
if
4

It U,
Bt <1 (4.63)

S

It is instructive to check whether these criteria are satisfied for the similarity
hypothesis proposed by Kolmogorov’s for the small-scale motions. In this case, the
moments of the small-scale motions are described by a single length and velocity scale
given by

me= (/)" (4.64)
and

up = (ve)'/*. (4.65)

The similarity analysis of the single-point equations (George 1994) demonstrated

that the these equations admit similarity solutions only when the scale for the rate
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of dissipation per unit mass is given by

3
€ X % oc x7%2, (4.66)

which is in agreement with Kolmogorov’s hypothesis (Monin and Yaglom, 1975).
Thus,

e o< /8 (4.67)

and

uy, o< 778, (4.68)

which satisfy the criterion in equations 4.56 and 4.63. Therefore, it is reasonable
to assume that the convective and production terms for the velocity difference are
negligible, since the criteria outlined in equations 4.56 and 4.63 are satisfied for at

least this case.

Neglecting the convective and production terms, the equation for the second order

structure function is given by

p Oug pOug ﬁa[]{l} U,
=+2- 2= — — € — €5 — 2(ujy — ul — 2(us — uy
0=+ p 0z, + p Oz i — €jj (ufg — uly)uy, o7, (ug — uq)ug o2,
2 0 , 9 ~
_;8.%& lp (Ua ulﬂ) + _a~/ p (ua - ub)] - o7 (Ulc - Uk) <Ua — u’ﬁ)
0?2
+2”a—j;@(“a — uj) . (4.69)

In order to find a similarity solution for this equation it is necessary to make as-
sumptions in the similarity analysis that are consistent with the assumption that the

turbulence is ‘locally’ homogeneous.
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First, it is necessary to examine the length scale that is used to normalize the sepa-
ration distance in the three coordinate directions. It is straightforward to demonstrate
that it is not possible to find a similarity solution for equation 4.69 using individual
length scales for both points. Instead, it is necessary to assume that the length scale
does not vary significantly over distances on the order of [;. The variation of this

length scale in the z;-direction can be approximated by

dl
() m ls(z1) + — (21 — 27) + ... (4.70)
dl’l
If the length scale evolves as a power law, it follows that for separation distances on

order of Iy, I is given by

e =tien (1 0 (2)). )

x?
Hence, to first approximation, the length scale at the two points is equal in the
infinite-Reynolds-number limit. A similar argument can be made for the velocity
scale for the small scale motions, so to first approximation the similarity scale for ve-

locity moments can be evaluated at a single point in the large-scale coordinate system.

Using these approximations, the hypothesized similarity solutions for the moments

in equation 4.69 are given by

(ua - ullg)2 - Baﬁ(xl)baﬁ(ga ’Ya Ca 77)7 (472)
(uk — u}c) (’U,a - ’U/ﬂ)z = Taﬂk(xl)taﬁk(é-a Y, C) n)a (473)
P(ua — ug) = PP (21)pa (&, 7, C, ), (4.74)

and

P (ua — ug) = PJ(z1)p4(&,7, ¢ ), (4.75)
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where
£=7, (4.76)
7="15 (4.77)
(=7 (4.78)

and 7 is the similarity coordinate from the single-point similarity analysis; i.e.,
n=-—. (4.79)

The functional form of the velocity difference correlations includes the variable 7
because the similarity solution for the structure function may differ for different loca-
tions in the jet. Of course, the variation occurs over distances much larger than the

characteristic length scale of the motions where the dissipation occurs.

A similar approximation can be utilized to evaluate the single-point moments in
equation 4.69. Since points that are separated by distance of order [, are, to first
approximation, at the same point in the large-scale coordinate system in the infinte-
Reynolds-number limit, the single-point moments in equation 4.69 can be evaluated
at the same point. The similarity analysis of the single-point moments reported by
(George 1994) illustrated that all of the terms in equation 4.69 are all proportional,

so they can combined into a single term given by

P OUg, p 8u5 78Ué U,
2= “a. T taa — —2(u’, — u))u! -9 — Uy
* p 0x, + pOzg € €58 (ug — uly)uy, o7, (ug — Uq)Ug o2,
= Z°%(21)2ap(n), (4.80)
where 798 (1) satisfies (George 1994)
U3
7 (1) oc = (4.81)

5 Y
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which is, of course, the scale for the dissipation of kinetic energy per unit mass.

Substituting these similarity solutions into equation 4.69 yields

N PP op PP7 opl PP1 ap
O = [Z ﬁ(xl)] Zaﬁ(’f]) - { [Ti] ﬁéal l li ] a—;daQ + 1 65043

Pg op? Py apa Pg1 0p2 TP Btapr  [TF?] Otape
) o ] o ] ) - [ -
ls | 0¢ l o€ [ oy
Taﬁ ataﬂg I/Baﬂ 82 82 82
— 4+ — 4.82
) e o e (45
This equation admits to a similarity solution when
Pﬁ P2 Taﬂk Ba,@
[Zaﬂ(xl)] oc | =] o |[52] o x |2 : (4.83)
l ls l l5

Therefore, the similarity scales for the measures of the small-scale motions are im-
posed by the single point-moments or the large-scale motions (analogous to the result

reported by Batchelor 1947).

In this case, the scale for the structure function is given by

Zaﬂl2 U3l2
B o 2 4.84
7y > ov ( )
and the scales for the other moments are given by
ls
PP o P o TP o« BBy, L U ; (4.85)
Us

Thus, the equations that govern the second-order structure functions admit sim-
ilarity solutions in the infinite-Reynolds-number limit. The similarity scales are not

uniquely determined by equation 4.84, but the scales must approach a finite value
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that is independent of Reynolds number in this limit. Further, Kolmogorov’s hypoth-
esis, in which the scale for the second- and third-order structure functions are given
by

B o u? oc z75/* (4.86)

and

T o ul oc 71578, (4.87)

is consistent with the similarity solution outlined here.
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Figure 4.1: Geometry for the spatially developing plane jet.



Chapter 5

Implications of the Two-Point

Similarity Hypothesis

The analysis in the previous sections illustrated that the equations that govern the
two-point correlation in a number of free-shear flows admit similarity solutions. These
solutions have a number of implications for the evolution of free shear flows, some of
which (the similarity of the derivative moments, the evolution of the lengths scales in
the flow, and the evolution of the pressure-velocity correlation), were outlined in the
previous section. This section will discuss two other important implications of the
similarity solution. The similarity of the single-point moments at a finite Reynolds
number. The representation of a velocity field whose evolution is in agreement with

the predictions of the similarity theory.

207
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5.1 Single-Point Similarity Solution For Finite-
Reynolds-Number Flows

Traditionally, the single-point similarity analyses have been carried out only for equa-
tions that have been simplified using the standard high-Reynolds-number, thin shear-
layer approximations. The analysis of the equations that govern the two-point ve-
locity correlation tensor in a finite-Reynolds-number temporally evolving wake and
spatially evolving axisymmetric jet illustrated that these equations admit similarity
solutions without any simplifying assumptions. This also implies that similarity solu-
tions exist for the single-point moments in these flows that are valid at finite Reynolds
number (since the single-point moments are a particular solutions of the two-point

correlations).!

The mean velocity profile cannot be determined from the two-point velocity corre-
lation, so it is necessary to illustrate that the finite-Reynolds-number, mean momen-
tum equation admits a similarity solution. For example, in the temporally evolving
wake, substituting the hypothesized similarity solutions into the full differential mean

momentum equation yields

U, U,d6]\ df _ [R,] dg U,1 d*f
{[ il ] f- [7@”% =15t el o (5:1)

The viscous terms are proportional to the unsteady terms if

U, dd U,
0 dt 02
! The similarity solution for the two-point velocity correlations also yields sufficient information to

evaluate the viscous redistribution terms that could not be formally evaluated without the two-point
information and were neglect in the approximated single-point equations.

(5.2)
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or,
52
s const. (5.3)

Equation 5.2 can also be manipulated to yield
Uso
Res = — = const. (5.4)
v

Thus, the differential mean momentum equation admits a similarity solution in this
flow at a finite Reynolds number, since the Reynolds number of the flow based on
the similarity variables is a constant. A similar result can be derived for the mean

momentum equation in the axisymmetric jet.

In the case of the plane jet, where the Reynolds number based on the similarity
variables is not a constant, it follows the equations for the single-point moments do
not admit similarity solutions at finite Reynolds number, even for an idealized line

source jet, so the similarity solutions must be viewed as an asymptotic state of the jet.

5.2 The Representation of the Velocity Field

Although it is not possible to uniquely determine the structure of a turbulent flow
using the two-point velocity correlation tensor, a number of attempts have been made
to deduce the possible structures in the flow using this measure (eg., Grant, 1958 or
Towsend, 1970,1979). The difficulty with many of these approaches is that they do
not incorporate an objective manner for finding the coherent structures. Instead,
the experimentalist proposes arbitrary structures whose correlation function is then

compared those measured in the flow. A more objective technique introduced by



CHAPTER 5. IMPLICATIONS OF THE HYPOTHESIS 210

Lumley (1970), determines an orthogonal basis which is optimally representative of

the flow in a mean square sense. 2

The objective of the orthogonal decomposition technique is to find functions that
yield the largest mean-square coefficient when the velocity field is projected onto
them, where the coefficients a™ are given by

S0 wilwy, 1) (215 ) dy

"(t) = . 5.9

O = T v (s ) )
Hence, the objective is to maximize the value of A" =< a"(t)a™*(t) >, or
oo wilxy, )yl (xf  O) U (g5 £) U (205 t)dxyda),

oy = o L D, D 1) ¥y ) .

J2o0 Wi (@ys ) Wi (a7 ) dy
The time dependence is maintained in the functional form of the orthogonal functions
because in non-stationary flows, such as the temporally evolving wake, the functional
form of the two point velocity correlation tensor varies as a function of time. Con-
sequently, the orthogonal functions determined from the two-point velocity are, in
general, a function of time. Following Lumley (1970), the orthogonal functions which

maximize A\"(¢) can be determined using variational calculus.

It is evident from equation 5.6 that it is the information in the two-point velocity
correlation tensor that is used to characterize the flow in this orthogonal decompo-
sition. Thus, when the equations for the two-point velocity correlation tensor admit
similarity solutions, it is reasonable to expect that the functions determined from
this orthogonal decomposition can be written in a similarity form. In the following
sections this hypothesis is examined for the temporally evolving plane wake and the

spatially evolving axisymmetric jet.

2Note, other techniques of finding structure in the flow are available (v. Hussain, 1989 or Zhou
and Antonia, 1993), but they are not discussed here.
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5.2.1 The Temporally Evolving, Plane Wake

The optimal representation of the flow in physical variables can be determined by
applying variation calculus to equation 5.6. Fourier transforming the information in

the homogeneous x;- and z3-directions (v. Lumley 1970) this yields

| i, o, k) 07 (0, K, Ky, )y = N (ki by 92 (2, i, 1), (5.7)

where
1 0© oo .
bglbanahhe) = 5 [ ™ Roylcanag)e @0 dedy (58)
and

~ 1 0o 00 .
Ui (w2, k1, k3, 1) = m[ 1 U (x5 ) e~ krzitkazs) gy, dgy. (5.9)

It is straightforward to demonstrate that the functions determined from equation 5.7
are unique and orthogonal (v. Lumley, 1970 or Berkooz et al., 1993), so they can be

normalized to form an orthonormal basis; i.e.,
‘/7 \Tl;'l(x;:klaki’nt)\i];n*(xlg,]f1,]€3,t)d37’2 = 5nma (510)

where 6,,,, is a Kronecker delta.

It is evident that the orthogonal functions determined using this technique are
time-dependent since the physical dimension of the wake is increasing as the flow
evolves. When the flow is evolving such that the two-point velocity correlation tensor
admits a similarity solution, it is hypothesized that the orthogonal function can be
written as

U, (1, @2, k33 t) = Y(¢)%i k1, 1, Ks), (5.11)

where
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and

for = k16, (5.13)

Note, the orthogonal functions at a given value of k; and k3 in the physical wavenum-
ber space are equated to orthogonal functions at continuously changing wavenumbers
k1 and k3 in the similarity wavenumber space as the flow evolves. This occurs because
the spectrum of the turbulence is continuously being shifted to the smaller wavenum-

bers as the flow evolves.

Substituting the similarity solution for the orthogonal function (eq. 5.11) and the
similarity solution for the Fourier transform of the two-point velocity correlation given

by

Yij (K1, o9, Ty, k3, 1) = 47r2/ /R,j (s, g, x4, B, t)e {krsHkabl gedp

1 o0 o0 . .
= (@) 5 | [ wotin Qe BriOg
= [Q ’ 5 ] Qi,j(kla mn ak?)) (514)
into equation 5.7 yields
Vi,j /_ Qi,j (/;1, n, nla 12'3))2_?(];17 n, ];3)d77/ = An(lz:la ];;3)&(?(];1, n, ]:33)a (515)
where
i, Q"
Vil = i (5.16)
and X
- - ANk, ks, t
Ay, Fy) = Y B 1) (5.17)

U243
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are both independent of time.

Following the methodology outlined by Lumley (1970), it is straightforward to
demonstrate that the functions determined from this equation are orthogonal so they

can be normalized to form an orthonormal set of functions; i.e.,

o0

/ X?(l;la 7, %3)}2?*(%1, n, ]}3)d77 = 5nm (518)

—0oQ
The similarity scale for the orthogonal functions can be deduced by examining
the orthogonality condition for the two sets of orthogonal functions. Substituting
equation 5.11 into the orthogonality condition for the functions in physical variables

and transforming yields

o0

2] [ 5k, m, k)7 (s, )l = G (5.19)

—00

Thus, the functions in the similarity variables form an orthonormal set when

T =012 (5.20)

The relationship between the coefficients of the orthogonal functions in similarity

variables and the coefficients of the functions in physical variables is given by

(Ln(kl,kg,t) = / ai(k]_,ff)g,kg,t)@?*(kl,xg,kg,t)dxg

—00

= [U553T] / ai(lz“la 7, Z“3: t))%zn*(]::la 7, k3)d,’7

= [U.0°2] b"(ky, ks, 1), (5.21)
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where 5" is the coefficient of the orthogonal functions in similarity variables,

o B 1 00 00 Z " I
ﬂi(k17n7k37t) = ﬁ/ /u xl’n,x?” )e_z(klwl+k3$3)djld.’i'3
= L[ ] / /uZ T1, T2, T3, 1t )e_i(k1$1+k3$3)dx1dx3
4m? LU,6%] . T
= |: :| Usj kla$2ak3>t)a (522)
- x
By = ?1 (5.23)
and
Y T3
—. 5.24
T3 5 ( )

It is evident from equation 5.21 that the coefficients of the orthogonal functions at a
fixed wavenumber in physical space are related to the coefficients of the orthogonal
functions at different wavenumbers in similarity space (which is again a consequence
of the fact that the information is shifting to lower wavenumbers as the flow evolves).
Thus, Fourier coefficients of the velocity field at a fixed wavenumber in physical vari-
ables are measures of different regimes of the flow as the wake evolves, since the

characteristic length scales of the motions grow as the flow evolves.

It is useful to verify that the relationship between the coefficients in equation 5.21
can be used to derive the relationship between the eigenvalues given in equation 5.17,

since

~

and

b (ky, ks, £)bm (KL K, ) = A™(ky, k) Onmd (K — k)6 (ks — KS), (5.26)
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where 0y, is the Kronecker delta and §(k; — k}), etc., are delta functions in the sense

of generalized functions.

Using equation 5.11 it follows
A" (ky, ks, ) Orm (ky — k)0 (ks — k) = [U26°] A" (K, k3)Om (k1 — K1)0 (ks — K3). (5.27)
Integrating this expression yields
(s, ) = [ / A" (e, K, )Gy — K,)0 (ks — kb)dkbdE,
which can be transformed to yield

. N - T B
Ny ks, t) = / / [U26°) A" (v, By — B1)0 (ks — Ry =5 by

= [(]_353] A™(ky, k) (5.28)

as required.

Thus, when the two-point velocity correlation tensor has a similarity solution, the
orthogonal functions that are optimally representative of the velocity field at differ-
ent times in wake evolution (in a mean square sense) can be related by a similarity
transform. In which case, it is possible to find a single set of orthogonal functions

that can be used to optimally represent the spatial information in the flow.

5.2.2 The Spatially Developing Axisymmetric Jet

In the axisymmetric jet flow, it is not possible to directly transform the equations

for the orthogonal functions that are representative of the flow in the three spatial
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directions in the physical variables into an equation for the orthogonal functions in
similarity space. It is possible, though, to find a set of orthogonal functions that are

representative of the flow in similarity variables.

The objective is then to find a set of orthogonal functions that are optimally
representative of the scaled velocity field in a mean square sense. That is, the functions
that maximize the mean-square value of the coefficient given by

_ az(f; 1,3, t) —nx
ba(t) = / T e nd&dndzs, (5.29)

where @;(&, 7, x3,t) is the instantaneous velocity in similarity variables and U, (&) is
the velocity scale Us(z1) written in similarity variables. Thus, the mean square value

of the coefficients, I, is given by

e s dyi] [ = dg ]

jy ey L AN " n "
EpEyn"de" dn' doy

I = | (5.30)

Following Lumley (1970), I'™ can be maximized using variation calculus to yield

ds b(i,7)
(d—xl> / / i,5(n, ', 0, 0) 2 ndndzsdén'dn’ dryd’

=" / =D Q" iy dal dE”, (5.31)

where the exponent b(i, j) includes the possibility that all of the components in the

Reynolds stress tensor are not equal to UZ.

Note, the transformed streamwise coordinate £ is infinite in extent and the two-
point correlation is a function of the separation distance between the points in this

direction. Therefore, this coordinate direction can be Fourier transformed out of



CHAPTER 5. IMPLICATIONS OF THE HYPOTHESIS 217

equation 5.31 along with the x5 direction to yield (Lumley 1970)

ds \ Pea)
(d_:c) [ s nsm, k) Osm k) = Elm, k)i gm, k), (5.32)
0

where m is the mode number for the azimuthal direction and k; is the wavenumber
in the transformed streamwise direction. Following the approach outlined by Lum-
ley (1970), it is straightforward to demonstrate that the functions determined from

equation 5.32 are orthogonal.

Note, the orthogonal functions determined from equation 5.32 are dependent on
the growth rate of the jet when either the value of b(i,j) is not independent of 4
and j or the functional form of the similarity solutions are implicitly a function of
the growth rate. The explicit dependence on the growth rate to the power b(7, j) in
equation 5.32 occurs because the velocity has been scaled as a vector in this analysis.
Hence, this growth rate factor incorporates two effects: First, it includes the possi-
bility that the scales for the normal stresses may not be proportional, which would
indicate that on average the orientation of the velocity vector changes as the growth
rate changes. Second, the scale for the shear stresses may differ from those of the
normal stresses, which would indicate that the turbulence has been modified causing

the (normalized) motion of two of the components to become more or less correlated.

The coefficients for this orthogonal basis are given by

00 ) 2

1 1 ra;(&n,xs,t) _,

d*(t;m, k :/ —/—/—1’ e masthil gy de | o™ (n;m, ki)ndn,

(t;m, k1) [% o 0.6 ¢ z3dg | " (m;m, k1 )ndn
0 —00 0

(5.33)

where the integration over ¢ is defined in the sense of generalized functions (Lighthill,

1956 or Lumley, 1970). Using these coefficients, the instantaneous velocity field in
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the far field of the axisymmetric jet can be written as

Ui(%n—(,é-x)?,,t) _ / ( Z Z dn(t, m, kl)ei(mZP,-Fklf)QO?(n; m, k1)> dkl (534)
s oo \M=—00n=0

where the integration over k; is also carried out in the sense of generalized functions.

Note, this representation of the flow differs from that outlined for the temporally
evolving wake in that the spatially developing, axisymmetric jet is stationary. Hence,
neither the orthogonal functions in similarity space nor a set of orthogonal functions

deduced in physical variables are functions of time.

In many applications it is difficult to sample the correlation sufficiently in the semi-
infinite streamwise direction to resolve the modes in this direction without introducing
a significant error due to undersampling. Therefore, it may be desirable to decompose
the field in fewer coordinate directions, such as a decomposition of the field on a single
plane normal to the streamwise direction (analogous to the decomposition carried out
by Glauser et al. 1995 in the axisymmetric shear layer). For this type of decomposi-
tion in the far field of the axisymmetric jet , Ewing and George (1994) demonstrated
that the orthogonal basis in similarity coordinates can be related to the orthogonal
basis in the physical coordinate system (analogous to the temporally evolving wake)
when the two-point velocity correlation tensor has a similarity solution. Thus, in this
case a single orthogonal basis could be used to optimally decompose the flow on any

plane (orthogonal to the streamwise direction) in the far field of the axisymmetric jet.



Chapter 6

Summary and Concluding Remarks

The analyses outlined in the previous chapters illustrate that the equations that gov-
ern the evolution of the two-point velocity correlation tensor admit similarity solutions
for three different free-shear flows: the temporally evolving plane wake, the spatially
evolving axisymmetric jet, and the spatially evolving plane jet. The similarity so-
lutions for each of these flows have different characteristics that shed insight into
the nature of their evolution. The analyses of these flows also outlines many of the
techniques that are necessary for extensions to other shear flows. These solutions are
consistent with those derived for the single-point moments. In fact, the solutions for
the single-point moments can be viewed as a special case of a more general similarity

solution for the two-point correlations.

For the temporally evolving wake, the similarity analysis was extended to the
more general two-point, two-time correlation tensor in a reference frame which is
translating with a velocity equal to the freestream velocity. This was accomplished

by defining a new time scale where each differential change in time is normalized by

219
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a time scale that was proportional to the local time scales of the flow, yielding a new

time coordinate that varies in synchronicity with the flow.

It was also demonstrated that the governing equation for the two-point scalar
correlation in the wake admits a similarity solution for two different scalar fields. The
first was a field where the mean value of the scalar differs on the two sides of the flow,
which physically corresponds to a flow behind a splitter plate with different mean
values of the scalar on either side of the wake. The second was a scalar field with a
mean deficit (or surplus) in the wake which physically corresponds to the flow over a

hot/cold body.

The two-point velocity correlation tensor and the two-point scalar correlation
contain a great deal of information about the flow. Thus, a number of observations
can be made when a similarity solution exists for the two-point velocity correlation
tensor and the two-point scalar correlation. Firstly, it can be shown that the two-
point velocity-gradient moments and the two-point scalar-gradient moments can be
expressed as a similarity solution. In fact, this is a necessary condition to ensure that
the molecular diffusion terms and the convective terms in equations which govern
the two-point correlation tensor evolve in an ‘equilibrium’ or ‘similarity’ manner. In
this case, the two-point vorticity correlation tensor and the two-point rate-of-strain
correlation tensor can also be expressed in similarity form. Consequently, the single-
point vorticity correlation and the rate of dissipation of the kinetic energy per unit
mass have similarity solutions when the two-point velocity correlation tensor has a
similarity solution. Similarly, the similarity solution for the two-point scalar-gradient

correlation can be used to demonstrate that a similarity solution exists for the rate
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of dissipation of the scalar variance in this flow.

It is also straightforward to demonstrate that the second-order structure function
for the velocity and the scalar fields can be written as similarity solutions. The so-
lutions for both of the two-point velocity gradient correlations and the second-order
structure function for the velocity field are consistent that purposed by Kolmogorov
(1941) for the small-scale motions. Hence, when a similarity solution exists for the
two-point velocity correlation tensor, the statistical measures of the small-scale mo-
tions will collapse when they are scaled by the Kolmogorov length and velocity scale,
(in fact the statistics of all of the motion collapse with this scaling) even in finite-
Reynolds-number flows. Of course, the profiles are a function of the Reynolds number.
The present analysis does not indicate whether or not the profiles are universal for
very high Reynolds numbers as proposed by Kolmogorov, but it does not exclude the

possibility.

It can also be shown that the one-dimensional spectra of the two-point velocity and
scalar correlations in the homogeneous directions can be expressed as similarity solu-
tions. Further, the length scales that can be determined from these one-dimensional
spectra or the two-point correlation tensor, such as the integral and the Taylor mi-

croscales, grow in proportion to the similarity length scale.

The similarity solutions for the two-point velocity correlation tensor and the two-
point scalar correlation in the wake flow are derived assuming the flow originated
from a virtual source. Hence, for a temporally developing wake generated from an

actual set of initial conditions, these similarity solutions must be viewed as a possible
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asymptotic state of the turbulence. Further, the governing equations for the similar-
ity profiles of the two-point correlation contain constants which may depend on the
source conditions of the wake. Consequently, the asymptotic state of the wakes gen-
erated from actual sources may depend on the source used to generate the wake; i.e.,

the asymptotic state of the turbulence in different wake flows may not be universal.

The similarity hypothesis for the two-point velocity correlation tensor and the
two-point scalar correlation were examined using Direct Numerical Simulations of
temporally evolving wakes computed by Moser and Rogers (1994): an unforced wake
and a wake with two-dimensional forcing. It is not possible to simulate a wake that
is infinite in extent in the z;- and x3-directions, so the flow was modeled by a wake
in a box that is periodic in the x;- and x3-directions. It is argued that motions sig-
nificantly smaller than the dimensions of the box evolve like those in a wake evolving

in an infinite environment.

The one-dimensional spectra of the two-point velocity correlation tensor in the x1-
and x3-directions are utilized to compare the predictions of the two-point similarity
hypothesis and the data from the simulations. Overall, the agreement between the
data and the predictions of the theory in both wakes is good for all but the largest
scales in the computation, particularly for the central region of the wake. Further
from the centerline there is more scatter owing to the highly intermittent nature of
the flow in this region (which caused poor statistical convergence). A comparison
of the Taylor microscales calculated from the one-dimensional spectra demonstrated
that these lengths scales grow approximately in proportion with the similarity length

scales for the points between the half-deficit points in the wake, as predicted by the
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similarity hypothesis. The second order structure functions in the x,-directions were
also used to test the similarity hypothesis. The functions collapse when they are
scaled in the manner predicted by the similarity hypothesis for small and moderate

separation distances.

The one-dimensional spectra of the two-point scalar spectra in the ;- and x3-
directions were also compared to the data from the simulation of the wake with a
two-stream mean scalar field. Again, the spectra except for the low-wave-number
region collapsed when they were scaled in the manner predicted by the similarity
hypothesis for positions between the half-deficit points of the wake. Outside of this
region the realizations from the simulations could not provide an accurate statistical
measure of the flow because the wake is too intermittent. The Taylor microscales
computed from these spectra are also approximately proportional to the similarity

length scale, as required by the similarity analysis.

Much of the variability in the statistical measures of the large-scale motions is
attributable to a lack of sufficient independent samples for the motions of this scale,
since the statistical measures are computed by spatially averaging over one full-field
realization of the flow. An ensemble average over several simulations, would presum-
ably yield better agreement with the predictions from the theory. Of course, there
would never be exact agreement because the periodic boundary conditions in the wake
simulations are incompatible with the boundary conditions used in the development
of the two-point similarity hypothesis for an infinite environment. Overall, the good
agreement between the theory and the data adds credence to both the two-point

similarity hypothesis and the idea that the motions in the simulations resemble the
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motions in wake evolving in an infinite environment.

In the similarity solution for the two-point velocity correlation tensor in the spa-
tially developing axisymmetric jet it is necessary to define the similarity coordinate
in the streamwise direction by normalizing the distances in this direction by the local
length scale of the flow. (This is analogous to the methodology use in the analysis of
the two-point, two time correlation in the temporally evolving wake). This similarity
solution is valid for all separation distances. In fact, the two-point correlation tensor
will collapse when it is normalized by any length and velocity scales that are pro-
portional to the similarity scales, including those proposed by Kolmogorov, though,
the functional form of the similarity profiles do depend on the ratios of the similarity
variables chosen and the characteristic length and velocity scales of the turbulence
(which are dependent on the Reynolds number of the flow). The growth rate of the
axisymmetric jet also appeared as a parameter in the equations for the similarity
profiles, indicating that they may be depend on the source conditions of the jet, to

the extent that such conditions control this parameter.

The functional form of the pressure-velocity correlation was determine by solving
a Poisson-type equation for the pressure field (c.f. Townsend 1956). The pressure
field required to produce the motion in the thin vortical region of the jet yielded
a pressure-velocity correlation that is consistent with the solution required in the
analysis of the two-point velocity correlation tensor. But, it was also evident that
the equations of motion would not admit similarity solutions unless the pressure field
required to satisfy the boundary conditions on the flow yielded a pressure-velocity cor-

relations that is also consistent with the hypothesized similarity solution. In theory,
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such a set of boundary conditions should exist, in which case the governing equations

for the two-point correlation tensor admit similarity solutions.

It was also straightforward to demonstrate that the velocity-gradient moments in
the axisymmetric jet can be written in a similarity form, when the two-point velocity
correlation tensor has a similarity solution. In this case, the rate of dissipation of the
kinetic energy per unit mass, the two-point vorticity correlation, and the single point

vorticity moments can be written in the similarity form.

Unlike the previous two flows, many free-shear flows, such as the plane jet, are not
constant-Reynolds-number flows. In the plane jet, the Reynolds number of the flow
increases as the flow evolves downstream. In this flow, the equations governing the
two-point velocity correlation tensor do not admit similarity solutions. Instead, the
equations that govern the correlation tensor for large separation distances (which em-
phasize the large-scale motions) and the equations that govern the second-order struc-
ture functions (which emphasize the small-scale motions) were examined separately.
Each of these equation sets can be reduced to an equation set that admits similarity
solutions, by neglecting the higher-order terms in the infinite-Reynolds-number limit.
These solutions can, of course, be considered to be a first-order approximation of the
two-point correlation tensor in a finite-Reynolds-number flow. The similarity solu-
tion derived for the second-order structure function (in the infinite-Reynolds-number
limit) are consistent with the similarity solution proposed by Kolmogorov (1941).
Again the analysis did not indicate that the similarity solutions for the scale-motions

are unique, but it did not exclude this possibility.
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The analyses outlined in this thesis demonstrate that similarity solutions do exist
for the two-point velocity correlation tensor in several free-shear flows. Hence, the
equations governing the statistical moments in these flows are consistent with the
hypothesis that the turbulent structure (and the related probability density function)
is similar at least to the level of the two-point velocity correlation tensor. It seems
reasonable to expect that similarity solutions exist for the higher order moments, par-
ticularly for the constant Reynolds number flows, although this is obviously a point
that must be investigated further in the future. Of course, the similarity solutions
outlined here must be considered as an asymptotic solution of a flow from a real
source, so the same would be true of the similar turbulent structure, if it exists. The
governing equations also indicate that this asymptotic state may not be independent
of the source conditions of the flow. The boundary conditions of the flow also play a
crucial role in determining whether, in fact, the flow reaches an asymptotic state, and
if is does, what that state is. It is reasonable to expect that the boundary conditions
will influence the evolution of the large-scale structures more than the smaller struc-
tures in the flow. Thus, it is far more likely that evidence of the two-point similarity
solution can be found for the moderate- to small-scale motions, as is, in fact, observed

in the data from the temporally developing wake simulations.



Bibliography

Batchelor, G. K. (1947). Kolmogoroff’s theory of locally isotropic turbulence. Proc.
Camb. Phil. Soc. 43, 533.

Batchelor, G. K. (1948). Energy decay and self-preserving correlation functions in
isotropic turbulence. Q. Appl. Math 6, 192.

Batchelor, G. K. (1953). Homogeneous Turbulence. Cambrigde University Press.

Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University
Press, New York.

Berkooz, G., Holmes, P., and Lumley, J. L. (1993). The proper orthgononal de-
composition in the analysis of turbulent shear flows. Ann. Rev. of Fluid Mech. 25,

538-575.

Bernard, C. G. Speziale P. (1992). The energy decay in self-preserving isotropic
turbulence revisited. J. of Fluid Mech. 241, 645-47.

Bonnet, J. P., Delville, J., and Garem, H. (1986). Space and space-time longitudinal
velocity correlations in the turbulent far wake of a flat plate in incompressible flow.

FExpts. in Fluids 4, 189-196.

Burmeister, L. C. (1983). Convective Heat Transfer. John Wiley & Sons, New York.

227



BIBLIOGRAPHY 228

Cantwell, B. J. and Coles, D. (1983). An experimental study of entrainment and
transport in the turbulent near wake of a circular cylinder. J. of Fluid Mech. 136,

321-374.

Champagne, F. H. (1978). The fine-scale structure of the turbulent velocity field.
J. of Fluid Mech. 86, 67-108.

Cohen, J. and Wygnanski, I. (1987). The evolution of instabilities in the axisym-
metric jet. part 1. the linear growth of disturbances near the nozzle. J. of Fluid

Mech. 176, 191-219.

Ewing, D. and George, W. K. (1994). Application of a similarity hypothesis to the
proper orthogonal decomposition for spatially evolving flows. In Proc. of the Int.

Symp. on Turbulent Heat and Mass Transfer, Lisbon, Portugal.

George, W. K. and Gibson, M. M. (1992). The self preservation of homogeneous
shear flow turbulence. Ezpts. in Fluids 13, 229.

George, W. K., Castillo, L., and Knecht, P. (1995). The zero pressure gradient

turbulent boundary layer. Phys. Fluids . submitted for publication.

George, W. K. (1978). Processing of random signals. In Proc. of the Dynamic Flow

Conference.

George, W. K. (1989). The self-preservation of turbulent flows and its relation
to initial conditions and coherent structures. In George, W. K. and Arndt, R. E.,

editors, Advances in Turbulence, pages 39-73. Hemisphere, New York.

George, W. K. (1990). Governing equations, experiments and the experimentalist.

Expt. Fluid and Therm. Sci. 3, 557-566.



BIBLIOGRAPHY 229

George, W. K. (1992). Decay of homogeneous isotropic turbulence. Phys. of Fluids
A 4, 1492-1508.

George, W. K. (1994). Some new ideas for similarity of turbulent shear flows. In

Proc. of the Int. Symp. on Turbulent Heat and Mass Transfer, Lisbon Portugal.

Glauser, M., Zheng, X., and George, W. K. (1995). An analysis of the turbulent
axisymmetric jet mixing layer utilizing the proper orthogonal decomposition. J. of

Fluid Mech . to be published.

Grant, H. L. (1958). The large eddies of turbulent motion. J. of Fluid Mech. 3,
149-190.

Grinstein, F. F. (1994). Open boundary conditions in the simulation of subsonic

turbulent shear flows. J. of Comp. Phys. 115, 343-55.

Hayakawa, M. and Hussain, F. (1989). Three-dimensionality of the organized struc-
tures in a plane turbulent wake. J. of Fluid Mech. 206, 375-404.

Hinze, J. O. (1975). Turbulence. McGraw-Hill, New York.

Hussein, H. J., Capp, S. P., and George, W. K. (1994). Velocity measurements in
a high-reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. of

Fluid Mech. 258, 31-75.

Kolmogorov, A. N. (1941). Local structure of turbulence in an incompressble fluid

at a very high reynolds number. Dokl. Akad. Nauk SSSR 30, 299-303.

Kolmogorov, A. N. (1963). A refinement of previous hypothesis concerning the local
structure of turbulence in a viscous incompressible fluid at high reynolds number.

J. of Fluid Mech. 1, 82-85.



BIBLIOGRAPHY 230

Lighthill, M. J. (1956). An Introduction to Fourier Analysis and Generalized Func-

tions. Cambridge University Press, London.
Lumley, J. L. (1970). Stochastic Tools. Academic Press.

Monin, A. S. and Yaglom, A. M. (1975). Statistical Fluid Mechanics Vol. II. MIT

Press.

Moser, R. D. and Rogers, M. M. (1994). Direct simulation of a self-similar plane
wake. Technical Report TM 108815, NASA Tech. Memo.

Mumford, J. C. (1983). The structure of the large eddies in fully developed turbulent
shear flows. part 2. the plane wake. J. of Fluid Mech. 137, 447-456.

Panchapakesan, N. R. and Lumley, J. L. (1993). Turbulence measurements in

axisymmetric jets of air and helium. part 1. air jet. J. Fluid Mech. 246, 197-223.

Payne, F. R. and Lumley, J. L. (1967). Large eddy structure of the turbulent wake
behind a circular cylinder. Phys. of Fluids Supp. 10, S194-5196.

Prasas, A. and Williamson, C. H. K. (1993). A new mechanism for oblique wave

resonance in the 'natural’ far wake. J. of Fluid Mech. 256, 269-313.

Spalart, P. R., Moser, R. D., and Rogers, M. M. (1991). Spectral methods for the
navier-stokes equations with one infinite and two periodic directions. J. of Comp.

Phys. 96, 297.

Spalart, P. R. (1988). Direct simulation of a turbulent boundary layer up to ry=1410.
J. of Fluid Mech. 187, 67.

Sreenivasan, K. R. (1983). The azimuthal correlations of velocity and temperature

fluctuations. J. of Fluid Mech. 136, 321-374.



BIBLIOGRAPHY 231

Tennekes, H. and Lumley, J. L. (1972). A First Course in Turbulence. MIT Press.

Townsend, A. A. (1956). The Structure of Turbulent Shear Flow. Cambridge Uni-

versity Press, London.

Townsend, A. A. (1979). Flow patterns of large eddies in a wake and in a boundary
layer. J. Fluid Mech. 95, 515-537.

Towsend, A. A. (1970). Entrainment and the structure of turbulent flow. J. of Fluid
Mech. 41, 13-46.

von Karmen, T. and Howarth, L. (1938). On the statistical theory of isotropic
turbulence. Proc. Roy. Soc. London (A) 164, 476.

Weygandt, J. H. and Mehta, R. D. (1993). Three-dimensional structure of straight
and curved plane wakes. Technical Report JIAA TR-110, Stanford University.

Wygnanski, I., Champagne, F., and Marasli, B. (1986). On the large-scale structures

in two-dimensional small-deficit, turbulent wakes. J. of Fluid Mech. 168, 31.

Zaman, K. B. M. Q. and Hussain, A. K. M. F. (1980). Vortex pairing in the circular

jet under controlled excitation. part 1. general jet response. J. of Fluid Mech .

Zhou, Y. and Antonia, R. A. (1993). A study of turbulent vorticies in the near wake
of a cylinder. J. of Fluid Mech. 253, 375-404.



Appendix A

Review of Single-Point Similarity
Hypothesis for the Axisymmetric
Jet

The similarity analysis of the single-point equations for the far field of the axisymmet-
ric jet was reported previously by (George, 1989), but recent studies of other shear
flows (George, 1994) have illustrated the need to vary the earlier approach outlined
by George (1989) (see also appendix of Hussein et al., 1994). The derivation in this
section is in keeping with this later work. The similarity analysis is carried out using
only the leading-order terms in the Reynolds-averaged equations, so the solutions

outlined in this section are first-order accurate.

Using the standard thin-shear-layer and high-Reynolds-number assumptions (v.

Tennekes and Lumley, 1972), the first-order differential and integral equations for the
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mean momentum are given by (Hussein et al. 1994)

8U1 8U1 _ 1 8x2u1u2
Uom Y V%n = o om,

(A1)
and
/OO Ufl'gdl’g = Mo, (AZ)
0

where U; and u; are the mean and fluctuating velocity, respectively, in the z;-direction.
The geometry of the axisymmetric jet and orientation of the coordinate system are
illustrated in figure 3.1. The overbar in the equation A.l indicates an ensemble aver-

age and M; in equation A.2 is the rate of momentum addition at the source.

It is hypothesized that a similarity solution exists for these equations where the

mean streamwise velocity, U;, can be written as

Ur(z1, v2) = Ug(w1) f(n) (A.3)

and the turbulent Reynolds stress @773 is given by

U Uy = Rs(xl)g(n), (A-4)
where
_ T2

and 6(z;) and Ug(x,) are the similarity length and velocity scales for the far field of
the axisymmetric jet. In this analysis it is assumed that the far field of the axisym-
metric jet is statistically homogeneous in the azimuthal direction, so the single-point
moments are independent of the azimuthal coordinate. Note, in order to avoid over-
constraining the analysis of the problem, the scale for the Reynolds stress is arbitrary

at this point and has not been chosen equal to U?.
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The mean cross-stream velocity, Us, can be determined by integrating the averaged

incompressible continuity equation for this flow given by

8U1 ial‘QUQ

83:1 T9 8:162

=0 (A.6)

Substituting the hypothesized similarity solution for U; (eq. A.3) into this equa-
tion A.6 and integrating the equation from the centerline (where the cross-tream

velocity U, is zero) yields

Utersa) = (592 |+ 2 02| ) 3 [ asoan+ |02 | nr. (a)

Substituting equations A.3, A.4 and A.7 into the differential and integral mean

momentum equations (eqn. A.1 and A.2) yields

dU, dU, U2 ds 1\ df1 m_,. ... [Rs]ldng
lUSdm]f“ (lUd—] ”lﬂ_xl])%a/o W=~ [5G ()

and
28] [ f2adn = My (A.9)
0
The z;-dependent portion of each term in equation A.8 and A.9 is contained in square

brackets.

Mathematically, these equations admit similarity solutions if the z; dependence
of all of the terms in each equation are proportional, so equations A.8 and A.9 can
be transformed into equations that are only a function of the similarity variable 7.
Physically, this implies that the flow evolves such that all of the terms in each equa-

tion maintain a relative balance as the flow evolves downstream.

Thus, equations A.8 and A.9 admit similarity solutions if

du,] [U?ds] (R,
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and
|U26%] o Mo, (A.11)
These constraints are satisfied if
do
Ry x U?—, A.12
VI (A12)
1/2
U, Mo : (A.13)
)
and
10U, 14dé

It is straightforward to demonstrate that equation A.14 is satisfied when the con-
straint in equation A.13 is satisfied, so there are only two independent equations.
Note, the growth rate of the jet is not determined by these constraints because the

ratio Rs/U? is not yet known.

It is also evident that the equations only admit similarity solutions when i.e.,

Us6
v

R€5 =

x M,, (A.15)

which is an important consideration in the analysis of the equations for the two-point

velocity correlation tensor.

In order to determine the growth rate of the jet, George (1989) examined the
turbulent kinetic energy equation using scales for the rate of dissipation of the tur-
bulent kinetic energy determined from physical arguments. Later analysis (George,
1994) indicated that it is more appropriate to examine the individual Reynolds stress

component equations.
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The first-order equation for the Reynolds stress uiu7 is given by

0 0 1 0 —s 0
it = 2p U —a ./L'QIUQU/% - 2’114”28—“1 — €11, (A16)
T2 OT9 4

U — ot
k o0xy, p 0xy

where €17 is the rate of dissipation of w7 per unit mass.

It is hypothesized that this equation admits a similarity solution where the mo-

ments are given by

2228 — P, (A17)
ugu? = T (z1)t(n), (A.18)

and
€11 = D(21)d1(n). (A.19)

It is straightforward to demonstrate that equation A.16 only admits a similarity

solution of the hypothesized form when

K' o U2, (A.20)
U3 dé
l)1 X Pl X Tsd—xl, (A21)
and
do
T o UP—. A.22
U (A.22)

Similar analyses can be carried out for first-order equations that govern the other

Reynolds stresses ustin, uzus, and uits, given by

Ouzu; . p1lowuy, 1 0 [ —
Up oot =22 =25 = % {00220} + 2
Bz pxy 0xy Ty 0Ty

u3usy

— A.23
o €22, ( )
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Oustus pOus 1 O — udug
—oP% - 9 o2 A.24
Uk 0z, pOr3 Ty 0T (wau203) €33 ( )
and
ouiuz; p [(Ou;  Ous 1 0 oU;  udu,
- _p(0m 0w 10 o 00 A25
k oxy, p \ 0z + 0xq Ty 0T (21113) — T 0xo T ( )

Expressing each of the moments in these equations in a similarity form analogous
to those in equations A.17 - A.19, it is straightforward to demonstrate that these

equations only admit similarity solutions of the hypothesized form when

UK? d§
P? x D? L A2
X X 6 d.’L'l’ ( 6)
T? & T USKQd—(S, (A.27)
dl’l
U,K?3 d§
P? x D? N A2
x x 5 do (A.28)
T3 & T% U5K3d—6, (A.29)
d.ﬁCl
dsé
p'? — A.
o RSUSd.Il, (A.30)
)
K? x R,—, A.31
x d$1 ( )
and
T o« T « U,R, do (A.32)

dz;’

In addition, for incompressible flows the sum of the pressure-strain terms in equa-

tions A.16, A.23, and A.24 must be zero; i.e.,

pOu; p 1 Oxouy pOus
P% P PZ% A.33
p 01y + pxy 0%y + p Ox3 ( )
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Substituting the hypothesized form of the similarity solutions into this equation yields
[P'] p1 + [P 2+ [P?] ps = 0. (A.34)

Therefore, the hypothesized similarity solutions for the Reynolds-stress equations are
only consistent with the equations of motion if the scales for the pressure-strain terms
are proportional; i.e.,

[P] oc [P?] o [P?], (A.35)

which can only be satisfied when

K'x K? < K* o U?. (A.36)

Comparing the constraints outlined in equations A.12, A.31, and A.36 yields

dd dd 2
2 2 2
K* x U; x Ry $10<US< 1) (A.37)

Thus, a similarity solution for the Reynolds-stress equations is only possible when

j—i x const, (A.38)

which is analogous to the result obtained by George (1994) in an analysis of the plane

jet.

There are two different choices for the scale in equation A.37 and it is not obvious
from this analysis which of these choices is more appropriate when scaling data from
jets with different growth rates. One consequence of having these two choices, is that

the final set of equations that govern the similarity solutions have terms multiplied
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by constants that depend on the growth rate of the jet.! Therefore, the functional
form of the similarity solutions (e.g. k2(7n)) may implicitly depend on the growth rate

of the jet, or more properly on the initial conditions of the jet (George 1989).

These constraints in the equations also define the scale for the dissipation rate
terms in the Reynolds-stress equations. It is straightforward to demonstrate that the
scales for all of the dissipation terms in these equations are proportional to a single

scale given by
Us

D' 5 (A.39)

The constant of proportionality may differ for the individual components and it may

be a function of the growth rate or Reynolds number of the jet.

!Here it is assumed that the length scale is chosen such that the mean velocity profiles collapse.



Appendix B

Transport Equation for the

Structure Function

Following the methodology Batchelor (1947) outlined for isotropic turbulence, it is
straightforward to derive an equation governing the evolution of the mean-square
velocity difference (or the second-order structure function) for non-homogeneous tur-

bulence.

For a Cartesian coordinate system, the governing equations for the two-point

velocity correlation tensor are given by (Hinze, 1975)

U Ouqu U Ouauy _ _18@ B lap/ua
" oxy, F o), p Oz,  p Ozj
Oupuguy  Oupuauy —0U, ~0Up
— — T — UgUp o — Ugly 2y
Oxy, oz}, Oxy, ox},
0? 0?
+ + e ,a B]‘
Y {axkaxk 0, O, } talp (B

where the primed variables are evaluated at of one of the arbitrary points in space
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and the unprimed variables are evaluated at the other.

The equation that governs the evolution of the correlation ujuj; (no summation

for greek indicies) in Cartesian coordinates is given by

auﬁuﬂ 20plug  pOup  Oupupuy gw Uy +V32u23u23 ., Ouj Ouj
L Oz, p Oxy  pOzy 0z, i Oz, 07,0z} O}, Ox),

(B.2)

where the index notation is used for the subscript k£ in this equation. Similarly, the

equation that governs the evolution of the correlation ., is given by

e oU, N V82uaua _, Oug Oug

a’L'k 8xk8:vk V@xk 8xk'
(B.3)

OlgUg 2 Opti, pOu, OUpligle
Uy = —— + 2= —
0z, p 0x, p 0x,, oxy,

The equation for the mean square velocity difference can be determined by adding

equation B.2 to equation B.3 and subtracting twice equation B.1 to yield

o auﬂuﬂ Oalla 5 (Uk Ouquy Y 8uauﬂ>

o TV oy, oz, Uk oy

2% 9P 2
+ p Oz * pOr, p Oy p 0T,

pauﬂ pOu, 20p'ug B 2 Opliq 9 15]@ N 10p'u,
p 0xo,  p Oxj

 OUgTialig Oujugu Ly <8ukuau’ﬂ N 8u§€uau’ﬂ>

oxy, oz}, oxy, o),
—__ U] oU, oU, 6U
B a B
—2u5uk 6 2uauk o1 T -2 (uﬁuk 8 + UoU Ic ox )

O*ulzuly 0% u 52 92
BB alq '
-9 _ _ .
™ o0z, " 9,0, <+” { dzr0z; | 01,04 } “““ﬁ> Voo ~ Vgp,  (B4)

where

(B.5)
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This equation can be simplified by noting that

oulsu’
BB
=0 B.6
9a, (B.6)
and
Olglg
=0 B.7
oz, (B.7)

since the dependent values evaluated at zj, are not a function of x; and vice versa.
For example, by adding
=0 (B.8)

to the convective terms in equation B.4 (the first line) they can be rewritten as

0 SR 0 S —
Up——— |Ugtig — 2uqty + uuly| + Ul — |Ugliq — 2uqtly + vl
kaxk[ s+ ] kax;[ -+ u)
0 N\ 2 , 0 N2
Similarly adding
iuku' Ul + iu' UalU (B.10)
axk ﬂ /6 83’);‘: kYaYa, .

which is zero for incompressible flow, to the turbulent transport terms (the third line
in eq. B.4) yields

g 1) g (=) B

The viscous diffusion terms (the two-point term in the last line of eqn. B.4) can

be written in a similar form by adding

, P ulyuly N 0ty

=0 (B.12)
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to these terms to yield

v o + o (u —u’)2
Oxydzy, — Oxioxl [N P

(B.13)
Finally, the pressure terms and the production terms can be manipulated to yield
0
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1\ 2 ' 0 )2 pau’ﬂ paua
i — i — — 198 o
Uk 8:1:k (ua U/ﬂ) + Uk 6x;c (ua 'U/ﬂ) + pax,ﬁ + paxa
20 —FT—~ 20 —F7—~ 0 2 0,7 2
_;ap (U,a — uﬂ) — ;ax%pl (’U,ﬂ — ’U,a) — a—xkuk (’U,a — U’ﬂ) — a—x;cuk (Ua — Uﬁ)
S, § —_ 0U, U, ] §f oU,
_ T 7 8 7 ol — W B8 92 — a
2(ua ua)uk ax;C 2(”5 uﬁ)uk axk (uﬂ ua)uk ax;‘: (ua uﬂ)uk a.Tk
+v o + o (u —u')Q—v —v
O0zrO0xy  Ox}, 0z, @ 7P oo T 700

(B.14)



