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The eternal mystery of the world is its comprehensibility.

-Albert Einstein

How can you be expected to govern a country that has 246 kinds of cheese?

-Charles De Gaulle



Abstract

A similarity analysis for the turbulence energy spectrum is proposed that extends
Kolmogorov and Van Karman theories to include the effects of finite Reynolds num-
ber. From dimensional and physical considerations, a proper scaling is defined for
low and high wavenumbers but with functions describing the entire range of the spec-
trum. The scaling for low wavenumbers implies the definition of an integral scale,
L, based on the integral of the correlation function; this scale differs from the widely
used scale | ~ u?/e.

The fact that both the scaled profiles describe the entire spectrum for finite values
of Reynolds number but reduce to different profiles in the limit is used to determine
their functional forms in the “overlap” region that both retain in the limit. The
profiles in this region follow a power law with an exponent that is Reynolds number
dependent but goes to —5/3 in the limit of infinite Reynolds number.

Existing models for low and high wavenumbers are modified to account for the
Reynolds number dependence. They are then used to build a spectral model covering
all the range of wavenumbers at every Reynolds number. This model allows us to get
a better estimate of the exponent of the power law.

Experimental data from grid-generated turbulence are then examined and found
to be in good agreement with the model.
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A : Constant in the model of u (equation 9.1)
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Bi; : Velocity correlation tensor (equation 3.1)
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E : Energy spectrum (equation 3.6)
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g : = R™%3¢?/3 Ratio of fi over fy (equation 6.4)

: Function modeling p (equation 6.28)

k : Wavenumber
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ke : Wavenumber of reference in the low wavenumber model

kn : Intermediate variable to define the overlap region

k, : Wavenumber at which the dissipation integral gets its primary contribution
l : ~u3/e, “Pseudo” integral scale

L : Physical integral scale: integral of the correlation function

L, : Physical longitudinal integral scale (Batchelor’s notation [2])

r : Space vector

S : Energy flux function (equation 5.10)

Su : First term of a Taylor expansion of fy at fixed Reynolds number (equation 6.7)

vii



St

: First term of a Taylor expansion of fr, at fixed Reynolds number (equation 6.6)
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: Surface element
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Chapter 1

Introduction

1.1 Motivation

The year 1941 might be considered as the beginning of modern turbulence theory with
three papers from Kolmogorov. With only three hypotheses (stated in chapter 1.2),
Kolmogorov [20] produced physical evidence for turbulence similarity. After more
than fifty years, his theory has been widely discussed and, apart from the question of
universality, more or less accepted. However, a crucial point in Kolmogorov’s theory is
the necessity of “a sufficiently large Reynolds number”. Unfortunately, this definition
is rather unclear. So for the years that followed Kolmogorov papers, experimentalists
tried to produce results at that “sufficiently large Reynolds number” which many
claimed to have achieved, or to cover the gap in theory before those large Reynolds
numbers.

In 1996, Mydlarski and Warhaft [25], proposed, on experimental grounds, that the
exponent in the inertial subrange was not the —5/3 proposed by Kolmogorov, but
rather a function of the Reynolds number that went to —5/3 in the limit of infinite
Reynolds number. Meanwhile, George developed the Asymptotic Invariance Princi-
ple [10] and successfully applied it to a number of turbulent flows. The next step,

which is presented in this thesis is to extend the Asymptotic Invariance Principle to



theoretically justify Warhaft’s assumptions and lay down the first steps in expressing

the similarity functions at low Reynolds numbers for the energy spectrum.

1.2 The Kolmogorov Hypotheses

Kolmogorov published three papers in 1941 concerning isotropic turbulence. Only
the first one [20] (and to a certain extent the third one [19], which rederives the
value of the exponent from the Navier-Stokes equations) are of interest to this work.
We reproduce here a recent translation of the three hypotheses re-published in the
Proceedings of the Royal Society as a special publication to mark the 50th anniversary
of the original. We adapt the notations to the present work.

We start by giving the definition of local isotropy:

“The turbulence is called locally isotropic in the domain G if it is
homogeneous and if, besides, [the average properties of the flow| are in-
variant with respect to rotations and reflections of the original system of

coordinate axes.”
This definition was then followed by three hypotheses:

e The local isotropy

“(...) we think it is rather likely that in an arbitrary turbu-
lent flow with a sufficiently large Reynolds number R;, = uL/v the
hypothesis of local isotropy is realized with good approximation in
sufficiently small domains (...) not lying near the boundary of the

flow or other singularities.”
e First hypothesis of similarity

“For the locally isotropic turbulence the [statistics of the flow] are

uniquely determined by the quantities v and €.”

2



He then defines appropriate length to this domain (called the Kolmogorov scale,
see chapter 4.2) and velocity scales. To determine the functional form of the

two-points velocity correlations he adds a third hypothesis.

e Second hypothesis of similarity

“If the [scales of the flow] are large in comparison with [the Kol-
mogorov scale], then the [statistics of the flow| are uniquely deter-

mined by the quantity ¢ and do not depend on v.”

The range of wavenumbers (in Fourier space) of validity of the latter hypothesis
is called the inertial subrange. Note that Batchelor [2] includes both the inertial
subrange and the dissipation range into the “universal equilibrium” range. Figure
1.1 describes the different regions in Fourier space. Based on these hypotheses, he
determines that the two points velocity correlation function By (rq) o< rf/ 3 A Fourier

transform leads to the better known result F, oc ki 53,

1.3 Thesis Outline

This section is a brief description of the present thesis. Chapter 2 gives an overview of
the existing work on the subject. Since the amount of research on isotropic turbulence
and the Kolmogorov hypotheses is quite overwhelming, we will restrain ourselves to
the subjects dealing directly with our theory. The next chapter (chapter 3) is aiming
to clearly define all the mathematical basis that we need. It defines among others the
energy spectrum (chapter 3.1), the dissipation rate (chapter 3.4), and the half-line
spectrum (3.5). Some isotropic properties are inserted (chapter 3.2) that lead to key
relations between the different spectra (chapter 3.3). These isotropic simplifications
are used only in the data analysis and are, thus, not required for the similarity theory.

As for any similarity theory, we require proper scalings, and thus length scales.

Chapter 4 proposes that the appropriate length scale in low wavenumber should be
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Figure 1.1: The different regions of turbulence



the physical integral scale (chapter 4.1), and not the widely used [ ~ u?/e. Formulae
to derive it from the spectra are also given. The second length scale has been first
introduced by Kolmogorov and bears his name (chapter 4.2). It is representative of
the small scales in turbulence corresponding to the high wavenumbers. Finally, as a
reminder, we define the Taylor microscale (chapter 4.3). This scale is used here only
in the experimental section since Reynolds numbers are formed on it.

The following chapter (5) develops the similarity analysis. We define the proper
scalings for low and high wavenumbers (chapter 5.1), and justify them (chapter 5.2).
The matching between the two profiles is used to derive the functional form in the
overlap (chapter 6). The result yields a power law form with exponent —5/3 + u(R),
where p is a function of the Reynolds number.

We then implement this theory on a set of grid-generated turbulence (chapter
7). First we check the isotropy of the experimental values (chapter 7.1) since we use
isotropic simplifications later on. Then, the one-dimensional spectra are plotted in
high (chapter 7.2) and low (chapter 7.3) wavenumbers scaling, before trying to obtain
the experimental values for p (chapter 7.4).

In order to refine the estimates of y and especially its Reynolds number depen-
dence, spectral models were developed (chapter 8) that should cover all the range
of wavenumbers. From those, values of u were obtained after a fit with the data
sets. We first develop a low wavenumbers model (chapter 8.1), then one for the high
wavenumbers region (chapter 8.2). Those models are then combined to form a com-
posite model (chapter 8.3). The values of the exponent u found this way proved to
be quite similar to the ones found through data analysis only (chapter 8.4). It is
important to note that the primary theory of this thesis does not depend on these
models. While they are, of course, useful in other contexts, herein their purpose was
to facilitate the determination of y from the data.

Finally we summarize results on the exponent p (chapter 9). A model for y is

proposed (chapter 9.1) that describes all the functional form of the profiles in the



overlap region. We then conclude the present work (chapter 10) and give some hints

for future work on the subject.



Chapter 2

Previous Research

The energy spectrum and Kolmogorov theory are quite important subjects in the field
of turbulence, so we will limit this section only to the materials directly related to the
present work (or that can explain its evolution from earlier theories). An interested
reader can easily find more information on the subject on books by Batchelor [2],
Hinze [16], or Monin and Yaglom [24], or on an article by Bradshaw [3] that aims to
clarify the studies of turbulence.

The study of turbulence is a recent one, but since the beginning people have tried
to simplify the problem. Taylor was among the first to describe turbulence with the
help of statistical tools and simplify it with isotropic hypotheses [30]. In this paper
and those that followed it, he first introduced the correlation between the velocities
at two points as a key function in the study of turbulence. Later on, he tried to see
implications of spectral analysis [31], a tool that was only used by mathematicians at
that time. Then, Von Karman and Howarth worked on the Navier-Stokes equation
using product of two or three components of the velocity and derived what is now
known as the energy equation. Von Karman also put forth the assumption of “self-
preservation” which will form the basis of the low wavenumber scaling considered
later. This hypothesis was not successful for physical reasons that became clear with

Kolmogorov’s work.



Kolmogorov developed in 1941 physical reasons for similarity with the publication
of three papers. The first one [20] proposed an alternative definition of isotropy
and gave three hypotheses that fully describe a similarity analysis at high Reynolds
number. A questionable point was that Kolmogorov believed in the universality of
the spectrum in the inertial range at high Reynolds number. Perhaps to avoid linking
forever the problem of universality to its theory, he published another paper the same
year [19] where he rederives the important results with the Navier-Stokes equation.
Frisch [6] after emphasizing Landau’s remark about the lack of universality, revisits
Kolmogorov’s theory from a symmetry point of view that apparently bypasses this
problem.

The real importance of Kolmogorov’s work was not appreciated in western coun-
tries before its revelation by Batchelor [2] in 1947. A special publication of the
“Proceedings of the Royal Society of London” on the fiftieth anniversary of the Kol-
mogorov’s theories re-publishes them in, along with papers, like the one from Hunt
and Vassilicos [17] or the extension made by Frisch [5], commenting on their impact
and the consequent evolution on turbulence works. The first implication of Kol-
mogorov hypotheses on the energy spectrum was developed by Obukhov in 1941 and
leads to the fact that the energy spectrum follows a —5/3 power law in the inertial
subrange. In 1962, Kolmogorov presented another paper [21] that takes into account
the phenomenon of intermittency to modify his 1941 papers.

The following years, experimentalists affirmed having confirmed Kolmogorov re-
sults (see for instance Saddoughi’s tests [29] and [28]), even though the Reynolds

[4

numbers were not that high. Thus the “—5/3-law” became widely accepted. Some
theoreticians tried to fully define the Reynolds numbers evolution on the scalings and
regions (see Von Karman and Lin [18]). In the meantime, some empirical models of
the energy spectrum were developed, mostly at high wavenumbers by Corrsin, Pao
[26] and [27], Lin [23], Hill [15] and others to catch the roll off in the dissipation

range. For the low wavenumber range, the model from Von Karman is still used.



Then mixing of the models are sometimes used to create a model covering all the
range of wavenumbers (see for instance Driscoll [4] or Helland et al. [14]).

In the perspective of the present work, an important breakthrough occurred in
1996 with the publication of the paper by Mydlarski and Warhaft [25]. They ex-
perimentally found a Reynolds number dependence in the exponent of the energy
spectrum in the inertial range, contrary to earlier beliefs'. The exponent reaches the
expected —5/3 only beyond a Reynolds number of 10%.

Meanwhile, George and Hussein explained the problems of local isotropy by hy-
pothesing that the turbulence is locally axisymmetric instead [13]. Then George and
Gibson [12] showed that there can not be any universality in the spectrum since it
depends on the initial conditions. This is emphasized with the basis for this present
similarity analysis in George [8], or with consequences of self-preservation in different
kind of turbulence [7]. The last step that directly leaded to this work was the devel-
opment of the Asymptotic Invariance Principle to clearly defines a similarity analysis
[9]. It was successfully applied to zero-pressure-gradient boundary layers (George and
Castillo, 1997 [10]), turbulent pipes and channel flows (George, Castillo and Wosnik,
1997 [11]), and now to the the energy spectrum.

IThese results were presented by Warhaft in Crete in June 1996 at a meeting also attended by
George. He then informed Warhaft of the existence of the basis of this theory, but also of his lack of
experimental data to verify it. Warhaft and Mydlarski, then shared their results to allow this thesis
to be done.



Chapter 3

Definition of the Energy Spectrum

and Direct Consequences

3.1 Definitions

The first step towards the definition of the energy spectrum is the velocity correlation

tensor for two points separated by the space vector r:

Bij(r) = ui(z)uj(z +1). (3.1)

We can then define (see Batchelor [2]) a spectral energy tensor by taking the

Fourier transform of the velocity correlation tensor:

oot = s [ 00 =

or alternatively:

B [Z/ et ®y(k) dk. (3.3)

10



A consequence is that:
Bij(0) = wi(@)u;(@) = [ 7 [ @4(k) d: (3.4)

For experimental reasons, a Fourier analysis with respect to one-space coordinate
only is sometimes considered. The resulting spectrum function is a one-dimensional

Fourier transform of the velocity correlation tensor:

1 o0 —ik1r
F‘%(kl) - %/_ooBij(Tl,O,O)‘€ o 1d’rl
- // &, (kr, ko, ks) dks dks. (3.5)

The superscript 1 in Fé is there to stress the fact that the dependence on the
ko and ks3-directions vanishes by integration, leaving only a dependence on the k-
direction. This new appellation with the 1-superscript is necessary since a function
can not simply be named by its argument, in this case k;.

In the case i = j = 1, Fj;(k;) is called the longitudinal one-dimensional spec-
trum, while 7 = j = 2 is the lateral one-dimensional spectrum.

Of considerable physical and theoretical interest is the energy spectrum, function

defined by integrating the energy tensor ®;; over spherical shells of values &:

1
E(k) = 3 //@ZZ(E) do (k) (3.6)
Sph. sur face k=|k|
where do = sinfl d¢ df in spherical polar coordinates. Note that E(k) is a scalar
function of only the magnitude & = |k|, hence the directional information has been
removed.

A direct consequence of equation 3.6, which justifies its name “energy spectrum”

11



is that:

U Uyq
2

3

=1

= 7OE(/§) dkc. (3.7)

3.2 Isotropic Turbulence

Since the first hypothesis of Kolmogorov states that in small regions of space, the
turbulence is nearly isotropic, we will consider here only isotropic turbulence, although
most of the conclusions probably have a much wider range of applicability.

For isotropic turbulence:

u? =

u?, (3.8)

Sl
Il

¥

Also, using isotropy, one can relate the energy spectrum E(k) to the energy tensor

Ek) o
ij(k) = 3 (K70 — kiky) (3.9)
where d;; is the Kronecker symbol:
1 : 1=
5ij = g
0 : i#]

It is straightforward to derive the corresponding isotropic relations for the 1-

dimensional spectra:

e longitudinal:

FL (k) = %7(1 _ (%)j -@dk, (3.10)

B(k) = k?’d% (%%) | (3.11)

or:

12



e lateral:

FlL(k) = // B (K1, kg, kis) dky dks

17 )\ E(k)
= - 1 - LY
4k/< +<k> ) o dk
1., 1 dF}L
= ZF, = . 12
2F11 2k1 dkl (3 )

3.3 Consequences of Isotropic Relations

As it will be shown in chapter 6, in the overlap region, the energy spectrum follows
a power law: E o k™. It follows from isotropic relations 3.11 and 3.12, that the
exponent in the matching region is the same for all the spectra (three-dimensional,

and one-dimensional), i.e.:

1 n
Fy, o k]

and

1 n
F5o o< kY

The isotropic relations also give relations between the different coefficients of pro-

portionality. For example if

E = Ck" (3.13)

in the overlap region, we can express C; and Cs, where
Fl, = Ck} (3.14)

and

13



C, = T (3.16)
and
_(n-1)0
Cy = m (3.17)

It then follows that in the region described by the power law, the ratio of the

spectra is constant and given by:

Fy, 1—-n
F, 2

(3.18)

It will be seen in chapter 6 that n = —5/3 + p(R) for finite Reynolds number
and, in the limit of infinite Reynolds number, y — 0 and n — —5/3. Hence for finite

Reynolds number the above relations become:

c
C, = , 3.19
TG E-w 49
I G E0LS
C = B (5 (3.20)
and X
% - % - g (3.21)

They obviously reduce to the classical form for infinite Reynolds number, i.e.:

9
C = %C, (3.22)
Cy = TE C, (3.23)
and: X
1 21

These relations will play an important role in constraining the empirical relations

14



in the experimental data analysis considered in chapter 7. We should note that,
although Warhaft et al. [25] recognized equation 3.12, since they used equation 3.24,
they appear to ignore the effect of this equation to relate the exponents of F}; and

1
F,.

3.4 The Dissipation Rate

The wavenumbers at which viscous forces play an important part correspond to the
values of k where the dissipation integral gets its primary contribution, and the inte-
gral in turn defines the dissipation rate e. It is straightforward (see Batchelor [2]) to
show that the rate of dissipation of turbulent kinetic energy per unit mass (or simply

the dissipation rate) is related to the energy spectrum by:

€= /000 K2E (k) dk. (3.25)

We use the isotropic relation between E(k) and Fl (k) (equation 3.11) to get €

as a function of the one-dimensional spectrum:

¢ = 300 / k2 FL (ky) dks. (3.26)
0

3.5 Half-Line versus Whole-Line Spectra

Experimentalists, for historical reasons, often prefer to deal with a half-line one-
dimensional spectrum (which will be denoted by F;; to differentiate it from the 1-D
spectrum F}). This spectrum is simply the double of the 1-D spectrum (since the
1-D spectrum is symmetrical in ;).

Theoreticians, on the other hand, prefer the whole-line spectrum because of its
symmetry. Unfortunately, the distinction between the half-line and the one-dimensional

spectrum is seldom defined in the literature and it is often difficult to decide which

15



one is used in a given result. This creates many more problems than simply dealing
with the 1-D spectrum all along. Since the data set used to verify the present work
was based on the half-line spectrum, I summarize below what our main equations

become when using Fj.

e Isotropic relations with E:
7 )\ E(k)
1

Fi = / (1 - (?) ) - = dk (3.27)

k1
and:
_1.45d 1 dF} (k)
E(k) = 2k T (k Ik . (3.28)

e Isotropic relation with F,:

1, dF}

1
1 1
=— - =k : 3.29
f22 2F11 ) 1 dkl ( )
e Dissipation rate:
e =150 / k2 FL (ky) dks. (3.30)
0
e Longitudinal velocity:
2 _
u = Bll(O)
0
- / FL dk,. (3.31)
0

16



Chapter 4

The Length Scales

4.1 The Integral Length Scale

There exists much confusion in the literature about which scales are really appropriate
to the description of the energy spectrum. Nonetheless, all agree in the need of a large
scale for turbulence. The large scale we consider will be called physical integral
scale and represented by L !. It is defined from the integral of the correlation
function. It is important to note that the “physical” integral scale differs from the
“pseudo” integral scale (I ~ u3/¢) often found in the literature. In fact, the ratio
L/l = eL/u?® (= ¢) is Reynolds-number dependent and constant only in the limit of
infinite Reynolds number (see George [8]). Recognizing the difference between L and
[ is fundamental in understanding the following theory and the interpretation of the
data.

The physical integral scale is not unique since, even in isotropic turbulence, there
are still longitudinal and lateral correlation functions. For the energy spectrum E,
we will use L, the longitudinal integral scale (called L, in Batchelor’s [2]). This
longitudinal integral scale, and its counterpart, Lo, the transverse integral scale can

be related to the spectra by:

lwith the appropriate subscript to precisely distinguish which integral scale is being referred to.

17



e Longitudinal 1-dimensional spectrum:

Of Bll(’l“) dr
Li="—8+——. 4.1
1 Bll(O) ( )
e Lateral 1-dimensional spectrum:
g‘ BQQ (’I") dr
Ly="———. 4.2
2 B22 (0) ( )

The integral scale can also be expressed in terms of the 1-dimensional spectrum.

In equation 4.1, we replace By, (0):

Bi(0) = u? = / FL (k) dky,

then, using relation 3.5, we get:

FlL(0) = % /o:o Byi(r)dr = %/Ooo By (r) dr,
implying finally: FL0)
L = Wfi"éo Flllll(kl) T (4.3)
Similarly, X
o= (44)

The relation that has been used to derive the integral scale in the experimental

part of this work with the half-line spectrum is:

T F1(0)
Li=— 11 ) 4.5
LT Y [ L (k) dky (4.5)
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The same kind of relation can be derived for the lateral 1-dimensional spectrum:

n F3(0)
Ly = — . 4.6
P2 I (k) dhy 4)
Using isotropic relations, it is straightforward to show that:
T E(k)/k dk
L= (4.7)
J E(k) dk
0
and:
Ly, 1
=2 _ - 4.
7.~ 3 (4.8)

This last equation is a consequence of isotropy only and does not depend on any
other property of the spectrum. In the data analysis considered later (chapter 7), it

will, in fact, be seen to be the least well-satisfied of the isotropic conditions considered.

4.2 The Kolmogorov Microscale

The other important length scale is the Kolmogorov microscale (7). Based on Kol-
mogorov second hypothesis, which implies that the important parameters in the equi-

librium range are € and v, we define (on dimensional basis) a microscale:

() as

This scale is characteristic of the high wavenumber part of the spectrum since it

is of the order of the smallest eddies found in homogeneous turbulence.
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4.3 The Taylor Microscale

The last length scale of interest is called the Taylor microscale (A). As for the other
length scales, we can define two A, one for each one-dimensional spectrum. The one

for the longitudinal is given by:

1 1 d’By

A2 w? dr?

(4.10)

r=0
The behavior of the correlation function near the origin is then approximated by:

2

Bu(r) ~ u? (1 - 2%%) . (4.11)

We can then easily relate the Taylor microscale to the 1-D longitudinal and the

energy spectra by:

U2

JZo KEFT (K1) dky
15 - u?
2. [SCk2E(k) dk
IsC E(k)dk
IS K2E(k) dk

5 (4.12)

The same way, we define it for the lateral one-dimensional spectrum:

1 1 d2B22
- I mee 4.13
A2 w2 dr? r:O’ ( )

so that
2

o K Fya (y) dky

A3 = (4.14)

This scale appears in this work only in the experimental part with the half-line
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spectrum, so:

A2 = u?
! f()oo k%j:lll(kl) dkl
A = v’ .
2 Jo? k1 F(ky) dky

Using isotropic relation 3.12, it is easy to show that:

A1
ﬁ:a (4.15)
1
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Chapter 5

Similarity Considerations

Following George [8], we will argue in term of the energy equation:

OB (k)

e T(k) — 2vk*E(k) (5.1)

that relates the temporal variation of the energy spectrum in terms of itself and T,
the energy transfer between different wavenumbers. A discussion on the two different
regions and scalings have also been treated by Von Karman and Lin [18] or in Tennekes

and Lumley [32].

5.1 Similarity Scalings

A dimensional analysis of the energy spectrum shows its proportionality to the prod-
uct of a characteristic velocity and length. As seen in chapter 4, we can associate
a length and velocity scale to the two regions of interest: L, u for the low and 7,
u, = (v.€)'/* for the high wavenumbers part of the spectrum. Based on the ratio of

the length scales, we define a Reynolds number, R, given by:

L
R =

= (5.2)
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The spectra can be scaled by either set of parameters, but will retain a Reynolds

number dependence. Using € and 7, a dimensional analysis yields:

E = fu(k,R) (5.3)
with:
k= kn
BB = (i

Using u and L, a dimensional analysis yields:

E = fr(k,R) (5.4)
with:
k = kL
—_— E(k, R
E(k,R) = ER’L )

The tilta represents a non-dimensional scaling in high wavenumbers and the over-
bar one in low wavenumbers.

It is important to note that both f; and fy represent exactly the same
spectrum, they are just the non-dimensional results of different scalings of the same
function, at least at finite Reynolds number. However, in the limit of infinite Reynolds
number, fg reduces to the Kolmogorov scaling and loses the ability to collapse the
low wavenumber spectral behavior. Similarly f; reduces to the Von Karman spec-
tral scaling and loses the ability to collapse the dissipation range. In fact, at low
wavenumbers, fg o< £~5/3 while for high wavenumbers fi, o % °/*. This is the reason

for including the parameter R in E(k, R) and E(k, R). Obviously this dependence
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vanishes in the limit of infinite Reynolds number so that:

}%EEOE(k,R) = FEy (k) only
I%LI)I;OE(IC,R) = E (k) only

Therefore, Eo (k) and E, (k) can not have the same functional dependence on £,
except in a possible overlap region (the k£=%/3 region).

It is often thought that fx is a universal function independent of the flow. However
as seen in George [8] and repeated here, we can relate the two non-dimensionalised
scaling expressions. Since they represent the same spectrum at finite Reynolds num-
ber, it follows that:

fu(k, R) = R™* ¢ fu (k, R) (55)

Obviously, both depend on the Reynolds number.

5.2 Physical Analysis

We now aim to explain the limiting behavior of Eo (k) and E. (k) by splitting the
spectral energy equation into two parts: one for the low wavenumbers, say (0, k,),
and the other for the high wavenumbers, say (k,, o). k, will have a specific definition
later, for now it can be considered as a wavenumber in a medium range.

Using the scalings defined before, one can change the energy equation 5.1 into two

non-dimensional versions:

e for low wavenumbers:

0E(E, R)

5 =T(F,R) - —F E(k, R) (5.6)

2
Ry

R;p =wu.L/v is a Reynolds number based on the integral scale.
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e for high wavenumbers:

OE(k,R) - - o

—%#—E:TMJ@—2HE%Jﬂ (5.7)
If the Reynolds number R = L/n is sufficiently high and £, is chosen between L~*

and 777! so that k£ > 1 and k < 1, then the resulting equations are (in dimensional

form):

~ T(k) (0 <k <kp) (5.8)
0~ T(k)—2wk?E(k) (k, <k < c0). (5.9)

Equation 5.8 is approximately valid for low wavenumbers and equation 5.9 for
the high ones. These two equations become exact only in the limit of an infinite
Reynolds number. Their physical interpretations are that the low wavenumber re-
gion has no direct dissipation and loses energy only by the spectral energy transfer 7’
at high wavenumbers. All the dissipation occurs at high wavenumbers which are in
statistical equilibrium (hence Batchelor’s [2] designation of it as the “universal equi-
librium range”). These energy-containing and dissipation ranges are only completely
separated at infinite Reynolds number.

We now examine the two regions for finite R. We first define S, the energy flux

function:
as

= =T .
o (5.10)

For the low wavenumber region, i.e. for & < k,, we integrate equation 5.8:

i/Edk:/Tdk, (5.11)
0 0
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or using the fact that almost all the energy is contained in this region,

3 du?

For the high wavenumber region, £ > k,, we integrate equation 5.9:

0~ /Tdk . Qz//kQEdk. (5.13)
kp Ky
Knowing that [ T'dk = 0, we simplify equation 5.13:
0

00
0~ S—2v / k2Edk. (5.14)
kyp

Now in the limit of infinite Reynolds number, the above equations are exact, then

k, is the wavenumber at which the dissipation integral gets its primary contribution,
and thus S = € as defined in chapter 3.4. We note that for low wavenumbers the
important parameters are u and € and, for high wavenumbers, » and €. Since this
is only valid at infinite Reynolds number, neither scaling is expected to perfectly
collapse the data anywhere; the low wavenumber region will still dissipate energy,

and the high wavenumber region still contains some of it.
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Chapter 6

Matching of the Two Profiles

Since the spectrum both in low and high wavenumber scalings is a non-dimensional
profile with different scales and the ratio of those scales is Reynolds number depen-
dent, then there can not exist any region in between which would be Reynolds number
independent (except possibly in the limit of infinite Reynolds number).

fr and fy represent the spectrum everywhere (for finite Reynolds number), and
so, the problem of solving the overlap region should be tackled in a different way than
the usual: we do not try to see if f; and fy overlap and match them if they do, but
we rather see how the fact that those finite Reynolds number functions degenerate in
different ways at infinite Reynolds number can be used to determine their functional
form in the common region they describe in this limit. All this methodology has been
developed in George and Castillo (1997)[10] and is also found in George, Castillo and
Wosnik (1997)[11] and adapted to the present theory.

Even if we do not know the analytical form of f; and fg, we can still use their
properties. First, since even with two different scalings, we describe the same spec-

trum, then, from equations 5.3 and 5.4:

u’L fr(k, R) = (ev®)"* fy(k, R)
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fu(k, R) = R ¢*3 fu(k, R), (6.1)

where R is defined as the ratio of the scaling length scales:

L
R=—, 6.2
p (6.2)
and
el
¢ = B (6.3)

As noted in section 4.1, ¢ is the ratio of the “physical” length scale, L, over the
“pseudo” length scale, [.

To simplify the following expressions, we define g as:
g(R) = R ¢*P%. (6.4)

Then, for finite values of R, partial derivatives from both high and low wavenum-

bers forms of the spectrum must be the same, implying:

o (D) (R ) - o (@) ful, B)) )
L(u®L) w = n(ev®)H* w R
Therefore: - )
%%R:%%R. (6.5)

Finally, in the limit, both f; and fg should become asymptotically independent
of R:

fL (E, R) — fLoo(E) only
fH(/E,R) — fHoo(/Tc) only
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when R — oo.

In the limit of infinite Reynolds number, the question is to know if we still have a
common part to the two different scalings, in other words, is there any region where
equation 6.1 is valid? To examine this, we look how f; and fy are changing with R

with a Taylor expansion at fixed k:

fuk,R+AR)— fL(k,R) 1  3fu(k,R)

AR f1(k, R) =GR or |- orER., (66

and: ~ ~ ~
fulk,R+AR) — fu(k,R) 1 Ofu(k, R)

AR fu(k, R) =R or |- om0

k

St and Sy represent the Reynolds number dependence in f;, and fg thus:

lim Sp(F,R) =0, (6.8)
Jlim Sp(k,R) =0 . (6.9)

We want to examine if there is an matching region when R — oo, which would

|

Since k/ k= R, in order to fix our interest in the overlap region, should it exist,

correspond to:

N

— 00
—- 0

N

we define an intermediate variable: k, = k - R~", where n is to be defined. We can

simultaneously satisfy & — oo and k£ — 0 as R — oo if we choose:

= k-R!

oull

= ky-R", (6.10)

which require 0 < n < 1.
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Introducing £, in equation 6.1:

L —

we can differentiate with respect to R at fixed £, to obtain:

0| K| ok ok |, Of

dg Ofu
= — = = —_— — . 6.12
ok |, OR|, " oR|; T R’ [akRaRkn 8R,~j (6.12)
Using equation 6.10:
k ofy ot dg ]%afH Ofn
AL R — ) E S 6.13
R k|, OR| dele(” B ok, T oR |, (6.13)
We multiply by: R/fr, = R/(g- fu):
kE ofy, k Ofy R dg l 1 Ofy 1 0fs ]
n— okl _(p—1)— 22 =2y p| 2 L (6.4
foor "V ok, " gar TR T or | or s O
Combining this equation with equation 6.5, we finally obtain :
k 0fu| _Rdg [18fH 10f; ]
SR 2 g 2 SR 6.15
Ja ok |, gdR T Ta R | T T 0R | (6.15)
or: B
k 0 - _
£ Ol (R)+ RiSu(k, R) — Su(F, R)), (6.16)
fu Ok |p
where y(R) is defined by:
_Rdg d(lng)
v(R) = T (6.17)

All the dependence in k in equation 6.16 is in the R[Sy (k, R) — S.(k, R)] term.
Now if:
R|Su| <7, (6.18)
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and:

RISp| <, (6.19)

then v dominates on the right-hand side of equation 6.16. Another weaker condition
is that S, = Sy, mainly that both scaling profiles have the same dependence in R.

Therefore, as a first order approximation, we neglect (Sy — S) on y(R) and get:

kof
ran v(R), (6.20)
k Ofn

T Oh |, v(R). (6.21)

Here the functions are first-order approximations only, higher order terms being ne-
glected. Note that it is different from an expansion at infinite Reynolds number where
~v would have to be constant. Obviously the approximation is valid only as long as
R[Sy — S1] < 7, a condition which limits the matching region.

An immediate consequence of integrating equations 6.20 and 6.21 leads to a power

law for both f;, and fy:

fo(k,R) = CL(R) - (k)™ (6.22)

fu(k, R) = Cy(R) - (k)"® (6.23)

Note: to be fully accurate, we should have (k+a)"® instead of simply (k)"® where @
is a constant resulting from the integration. However, based on experimental reasons,
this term has never been observed, we assume its value to be zero. (this implies the
integration constant for fy to be null also).

Using the definition of g (equation 6.4) into equation 6.17 leads to the value of
Yoo = —b/3, which is the result predicted by Kolmogorov hypotheses. We then define
1 to be:

=7 = Y0 =7+5/3. (6.24)
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By taking the ratio of f; over fg, we get g:

_Ji _ Cu(B) pspmium

(6.25)
Going back to the definition of v(R) (equation 6.17) and combining it with equation

6.25 yield:
d")/ . dIn CH/CL

MEIWR T dmR (6.26)
which has as solution
g—’z — exp[(u(R)) In R+ h], (6.27)
where h is linked to p by:
u(R) = — df:R. (6.28)

(this relation comes from putting Cy/C from equation 6.27 into equation 6.26.)

So the determination of A allows the determination of all our functions. Indeed,

g(R) — %R5/3+M(R)
H

= exp[—plnR—h+(=5/3+ p)InR]
= exp[—5/3InR — hj (6.29)

Cy and Cp must become finite and different from zero in the limit of infinite
Reynolds number. Otherwise the spectrum would increase without any limit, which
is not physically acceptable, or there could be no inertial subrange at infinite Reynolds

number (if Cyo and Cry are null). So to avoid that, we must have either:
e ('y, C} stay constant, and p = 0 and are, thus, Reynolds number independent.
Or:

e 1 — 0 faster than In R — oo and h(R) — h = constant, which immediately

implies that:
CVH 00
CLoo

= exp heo (6.30)
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The first condition leads to a —5/3 power-law which is independent of Reynolds
number. However, as shown by Mydlarski and Warhaft (1996) [25], the exponent is
Reynolds-number dependent. We therefore conclude that this hypothesis is not valid.

In conclusion, once h is defined, then the spectrum is completely defined in the

overlap region at every Reynolds number.
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Chapter 7

Analysis of the Spectral Data

In order to verify the above theory, we need to use nearly isotropic turbulence data

over a wide range of Reynolds number. Ideally, to fully test the theory, the data sets

should be obtained with the same initial conditions since George 1989 [7] or George

and Gibson 1992 [12] showed they highly influence the functional forms. Such data

does not exist at the moment, we therefore used the spectral data (longitudinal and

lateral one-dimensional spectrum) obtained by Mydlarski and Warhaft (1996) [25]

obtained in a careful series of experiments. Briefly the experiments were performed

downstream of a variety of passive and active grids. The turbulence was effectively

homogeneous across the flow and decayed slowly downstream. The details of their

installation will not be repeated here since it is not essential to the present work; the

curious reader can refer to their paper for more information.

Table 7.1: Testing Parameters

| R- | 50 | 100 | 124 | 174 | 207 | 275 | 330 | 473
Modes static grid active grid

e (m2s'3) | 0227 | 0.071 | 0.329 | 142 | 327 | 1.75 | 515 | 153
n (mm) 0.349 | 0.467 | 0.318 | 0.221 | 0.179 | 0.210 | 0.160 | 0.122
u? (m%s~%) | 0.0235 | 0.0242 | 0.0715 | 0.2067 | 0.3751 | 0.3636 | 0.7483 | 1.8526
vZ (m%s %) [ 0.0195 | 0.0221 | 0.0598 | 0.1877 | 0.3212 | 0.2516 | 0.6497 | 1.3815
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Table 7.2: Isotropy checked

| R [ u® (m?s?) | v® (m?s™?) | u®/v? | Li/Ly | A2/A3 |
50 0.0234 0.0196 1.20 2.96 2.09
100 0.0243 0.0221 1.10 3.04 2.01
124 0.0715 0.0598 1.20 2.46 1.93
174 0.2067 0.1877 1.01 2.95 1.56
207 0.3751 0.3212 1.17 2.52 1.74
275 0.3633 0.2516 1.44 3.94 2.10
330 0.7483 0.6497 1.15 2.96 1.58
473 1.8526 1.3814 1.34 3.06 1.73

Those tests were performed on quite a wide range of Reynolds number; unfortu-
nately they were not performed with strictly identical initial conditions and this is
apparent in what follows. The important experimental parameters are listed in table
7.1.

It should be noted that all the data sets have been done with the half-

line spectrum.

7.1 On the Isotropy of the Spectrum

We used isotropic simplifications whenever possible in this theory. So, before applying
our results to a data set, we checked to see if it was legitimate to use isotropic
assumptions. This was tested in many ways to assure its veracity. Results of our
calculations are in table 7.2.

First, we checked relation 3.21 by plotting F.,/F}; and 4/3 — /2. If the set is
isotropic, we should see a constant region on the curve Fy,/F}| vs. k; corresponding
to a power law region. An example is given in figure 7.1.

Then, we checked the ratio of u_% over u_% The results have proved to be quite
good. We then checked the large scales by computing L;/Ls. The set is isotropic if

the ratio is equal to 2 (equation 4.8). This test was less successful, since the values
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Figure 7.1: Isotropic test between F}; and F), at Ry = 473
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were between 20 and 50% off, implying a lack of isotropy in the large scales. The
values of the ratios \?/\3 were for the most part close to the value of 2 expected from
equation 4.15, confirming that the smaller scales were close to being isotropic. We
can note that the value of e cited by Mydlarski and Warhaft [25] were consistent with
those obtained by integrating k?.F}, (equation 3.30), and this integral is part of the
definition of \; (equation 4.15).

In conclusion, the data can, with restrictions, be considered as isotropic, the
main deviation occurring at large scales. However, this did not affect plots in low
wavenumbers scaling as seen in chapter 7.3. The set at Ry = 275 is the least isotropic
one at every scale, which certainly explains the problem in obtaining g with the

composite model developed later in chapter 8.

7.2 The High Wavenumber Scaling

This is the classical Kolmogorov scaling (equation 5.3), which has proven to be quite
successful on many experiments. As expected, we see (figure 7.2) a tendency towards
collapse except at low wavenumbers where the scaling in no longer appropriate. The
increase of the spectrum, at low wavenumbers, with the Reynolds number is also
expected. Unfortunately, the difference between the initial conditions is probably re-
sponsible for the lack of a consistent trend with Reynolds numbers at low wavenum-
bers.

Some can say that those figures show nearly 2 decades of —5/3 power law region
for the highest Reynolds number; but when the spectrum is multiplied by £%/3 (see
figure 7.3 for the highest number), Mydlarski and Warhaft [25] did not observe the
flat region which would have been implied by a —5/3 power law, nor do we when

re-plotting the same data. This is consistent with our theory.
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Table 7.3: Ratio of the physical integral scale over the pseudo integral scale

| R- | 50 [ 100 [ 124 | 174 | 207 | 275 | 330 | 473 |
|Li/1[156 [1.17]0.93]0.890.79 | 1.21 | 0.93 | 0.82 |

7.3 The Low Wavenumber Scaling

The low wavenumber scaling (equation 5.4) uses the integral scale defined using equa-
tions 4.5 and 4.6 for the one-dimensional half-line spectrum. The main problem was
to obtain the value of the spectrum at the origin, since it was not included in the data
set. The pseudo-integral scale | = 0.9u3/e was given. However, the ratio L/l = ¢
is Reynolds number dependent (see table 7.3). Therefore, a determination of L; and
L, was essential, but the spectra can not be determined at zero wavenumbers be-
cause of record length limitation. Moreover, the spectral errors cannot be removed
by smoothing since there are fewer estimates here and the spectrum shape is changing
rapidly.

The one-dimensional spectra at the origin (k; = 0) can be expanded as (see

Tennekes and Lumley [32]):

Fl, = A —B.E+Ck} (7.1)
1
Fy, = A2+§BQ./€§, (7.2)

where By = B, if isotropic.

By fitting the curves to the measured spectra at the lowest wavenumbers, it was
possible to extrapolate the “zero wavenumbers” values without being dependent on
simply the lowest wavenumber data alone. The different values of the integral scales
can be found in table 7.4.

The low wavenumber scaling is seldom found in the literature, due mainly to

the problem of definition of the integral scale. We scaled therefore our spectra with
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Table 7.4: The Integral scales

|R- | 50 | 100 | 124 | 174 | 207 | 275 | 330 | 473

Ly (m) | 0.0226 | 0.0648 | 0.0483 | 0.0532 | 0.0500 | 0.1364 | 0.1054 | 0.1218
Ls (m) | 0.0076 | 0.0213 | 0.0196 | 0.0180 | 0.0198 | 0.0346 | 0.0356 | 0.0398

u?L; for the longitudinal part and v?L, for the lateral one. As expected, we see
(figure 7.4) a good collapse until the high wavenumber values where the scaling is no
longer appropriate. The lowest Reynolds number spectrum does not really show any
power-law region, therefore we should expect some problems in finding the correct
exponent. The problem with the initial conditions is also present with the lack of a
consistent Reynolds numbers’ trend at high wavenumbers outside the collapse zone.
The phenomenon is the same as for the the high wavenumbers scaling.

To emphasize the fact that the low wavenumber scaling is the most appropriate,
we also show the spectra non-dimensionalized with u and [ = 0.9u3/¢, the integral
scale used by Mydlarski and Warhaft [25] (see figure 7.5), and v and A ( figure 7.6).
Although the difference is slight it is still clear that the proper scaling uses the physical

integral scale L.

7.4 Direct Determination of u

As seen, for instance in figure 7.3, the exponent in the power law region is different
from —5/3; this difference is p as defined in chapter 6. Mydlarski and Warhaft
[25] computed its value by choosing the exponent n such as k7.F;: get a constant
plateau. Unfortunately, it appears they did not recognize the isotropic properties
of the spectrum, and thus, cited two different values for y: one for the longitudinal
part of the spectrum and one for the lateral part. In effect, this reduces by half the
amount of data that can be used to account for statistical accuracy. We treated both

longitudinal and lateral spectrum together using isotropic assumptions (implying the
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Figure 7.6: One-dimensional spectra scaled with u and A
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same exponent for the two spectra). Once p is found in this manner, the values of
Cpi and Cy; are read on the curves of FL.kY* ™ and F;.Ef/s_“.

Another way to find p is to use equations 6.20 and 6.21 for the power-law region:

Fof|
Eofa| _

So, we now have four different ways of obtaining u:

e using equations 7.3 or 7.4 (see for instance figure 7.7),

. —5/3 . . .
e finding u such as &, /3tu .F} is constant in a region,

and doing it for F}; and Fj, simultaneously to get the same value of u for the
two one-dimensional spectra. Unfortunately, even with this, due to the scatter (even

when using filters), there is much room left in the determination of p.
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Chapter 8

Empirical Spectral Models

The main reason for the development of these models is to get a better estimate
for pu(R). As it has been seen in the previous chapter, the scatter of the data set
complicates the determination of the Reynolds number dependence of p. Another
problem complicating the determination is that even with no scatter in the data, the
overlap region at finite Reynolds number is never completely free from the influence
of both the high and low wavenumbers regions. The objective of this chapter is,
thus, to develop an analytical model depending only on u to fit the data set. The
primary advantage of this approach is that all of the spectral data can be used in the
determination of i, not just that in the overlap region. Thus, there is no arbitrary
choice of which data to include in the determination of p, and which to discard.

It has been customary to consider two classes of spectral models: a low wavenum-
ber one and a high wavenumber one. The low wavenumber model should roll off a
k=%/3 and never reach the dissipation range. An example is the Von Karman model
considered below. The high wavenumber model, on the opposite, starts as k /3 then
rolls off exponentially with increasing wavenumbers. All of the existent models have
been developed at infinite Reynolds number, and we must therefore modify those ex-
isting models to incorporate the effect of finite Reynolds number. We then mix these

two models to create a composite model (in a similar way to Driscoll [4] or Helland,
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Van Atta and Stegen [14]) which then covers all the wavenumber range.

8.1 A Low Wavenumber Model

At low wavenumbers, the energy spectrum starts from zero wavenumber as £ where
1 < n < 4 (Lesieur [22]). Von Karman and others have gotten reasonable agreement

with grid generated turbulence by using n = 4 and the following functional form:

.’L‘4

B(@) = B oy (8.1)

With z = k/ke, B and k. to be defined.
To incorporate the finite Reynolds number form in the matching region, we modify

the above model:

.’L’4

(1 + 22)17/6-n/2

E(z) = B (8.2)

Using this model, we find the functional form for the 1-D longitudinal half-line

spectrum:

Fir(ky) = 7(1— (%)2) -@dk
_ 2 —5/6+u/2'
BRI A

To define B and k. we use the relations between u? and the integral scale and F7,

(8.3)

since, at low wavenumbers, u? and L; are the proper scaling parameters.

W = /Ooflll dk,
0

_ 2Bk, Iu) /0°° (1+x%)—5/6+u/2 da,

G-nG-

i) (8.4)



where [ is the Euler-Gamma function.

The definition of the integral scale implies:

F11(0)
Ll = T 2u?
T B
— - : (8.5)
v (5 (E-n)
Combining equations 8.4 and 8.5, we define k. to be:
—.T(2_n
ke vrT(3-b) (8.6)

Finally, equations 8.3 and 8.5 lead to the final form of the low wavenumber model:

’L —5/6+1/2

Fh(k) = 222 (1+42) foul (8.7)
u?L —5/64+4/2

Fi(k) = —*(1+af) 7 (8:8)

™

This model is valid for low wavenumber scaling hence, in the limit of infinite
wavenumbers, it should go asymptotically towards the matching form of the 1-D

spectrum. In the limit k1 L; — oo (or 21 — 00):

U2L1 lel
Fl
11 <keL1

= u?Ly Cpy (k1 Ly) 7?3 (power form)

—5/34u
) (model limit)
T

Clearly these two equations require:
1
CLI = } (keL1)5/3_“ (89)

where both 1 and Cp; depending on the Reynolds number.
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8.2 A High Wavenumber Model

There are numerous examples of high wavenumber spectral models. Monin and Ya-
glom [24], for instance have an exhaustive review. We will consider in this work an
improvement of the Lin-Hill model, which seems to reproduce the spectral behavior
the best. This model originated from Corrsin and Pao’s ([26] and [27]) ideas on mod-
eling S as a function of F and k, in addition to e. Later on, Lin [23] improved the
model to better simulate the spectral behavior at high wavenumbers. Finally Hill [15]
extended slightly the model. Based on Driscoll [4], we name the final model Lin-Hill.

The dynamical equation for the energy spectrum in isotropic turbulence (see chap-

ter 5) is:
OE (k)

e T(k) — 2vk*E(k). (8.10)

This equation reduces for high wavenumbers to:
T(k) = 2vk’E(k). (8.11)

T represents the energy transfer between the different wavenumbers, due to non-
linear interactions. An interesting property of T is that the net energy transfer is

7€ero, i.e.:

/ T(k) dk = 0 (8.12)
0
therefore allowing the definition of an energy flux function (see Batchelor[2]) by:

dsS (k)
.~ T

= —Wwk?E(k). (8.13)

We will work in the non-dimensional variables defined in section 5.1:
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E

E = (Voe)l/E

The characteristic parameters at high wavenumbers are € and v. Using the defi-
nition of € in terms of the energy spectrum, we can define a constraint equation for

the model:

¢ = 2u/°°k2Edk
0

= 21//00 N2k E (VP e)tntdk
0

1 = 2/0012212“(11}. (8.14)
0

This ensures that the high wavenumbers spectrum produces the correct dissipation
integral.
Adapting the model proposed by Lin in 1978 [15], we propose the functional form
for S = S/e: o
G tpru_BE) (8.15)

(1+ (k)*)
Using this model into equation 8.13 (rewritten in non-dimensional variables), we

get:
d < k3 E

. 7> =—-2ak’E, (8.16)
dk \ (1 + k2/3)

which expands into:

% = (=2B* 1 (1 +EP) () +2/3k P (1 + B = (5/3 - ) k) dk. (8.17)

Integration leads immediately to a functional form for the energy spectrum E:

B (1+RP (B A A U et
= = (%) <~—> exp | —2« 0 + 0 (8.18)
0

1+ kg ko 4/3 + p 2+ p

where EO and l~co are integration constants.
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To define the constants, we now use the constraint equation 8.14:

o0

(1 +k2/3 5/3+/J /
0

. LA/3+u _ pA/3tu Fogp _ p2+m .
k1/3+“+k1+“) exp [—2& (k ky k kg )] Ji

+
4/3+ p 2+

(8.19)
Recognizing in the integral the form “f’-exp(f)” leads to:
k2/3 Ros/ste /3t i2tn
(1+ ) kg == exp |20 [ 2 0 (8.20)
E, 3+pn 2+p
implying a relation between Ej and ko:
. e k4/3+u iztn
Eo = a1+ k®) ky oo —2 0 8.21
o= a4 R exp |20 (o4 (8.21)

Using the latest equation into the functional form of the energy spectrum (equation

8.18) leads finally to a completely defined analytical model:

(8.22)

B 5 B 1-4/3+p L.2+p
E=a(l+ BB E5% exp l_Qa ( k k )]

+
3+u " 244

Since the model reduces to the overlap power law form when k& — 0, we can identify
a as Cy. Note that Cy (or «) and p depend on Reynolds number.

Finally, using the isotropic relation between F;;, and E (equation 3.27), we can
implement the model for F};. Unfortunately, there is no analytical solution as for the

low wavenumber case, and a numerical integration has to be performed instead.

8.3 A Composite Model

We now have two models that define two different scaling regions, and overlap in a
common one (see figure 8.1). We can now build a composite model to describe the

spectrum in the whole range of wavenumbers by combining these two models. To
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accomplish this, we have two possibilities:

e Additive Composite Model:

We define the composite model as the sum of the low wavenumber and the high
wavenumber models and subtract the overlap power form, which is the common
part. This common part can be expressed in either low or high wavenumbers

form, i.e.:

Ecomi”"s”e = (uZL) ELowwave(E) + (61/5)1/4 EHighwaue(l%) - (UZL) Cr (E)_S/S—HL
(8.23)
Or:

Ecomposite = (U2L) ELowwave(E) + (67/5)1/4 EHighwa’ue(l’%) - (€V5)1/4 CH (7{;)75/34—”

e Multiplicative Composite Model:

We define the composite model as the product of the low wavenumber and the
high wavenumber models and divide by the common part. This type of model
has been developed, for instance, by Helland et al [14]. Again, there are two

ways of expressing the common part so:

FE = (U2L) EL‘"‘”UCWG(E) * (6_1/5)1/4 EN’H'Aghwave(if)
composite (U2L) CL (k)75/3+“

(8.24)

E e = (uZL) ELowwave(E) * (61/5)1/4 EHighwaue(l;)
composite — ~

(ev®)1/4 Cy (k)—5/3+n

We will see that only the multiplicative form leads to a useful result because of

the singularity in the high wavenumber modified Lin-Hill model when k—o0.
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Figure 8.1: Low and high wavenumber models implemented separately at Ry = 473
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The basic form for the low wavenumber model was
=Ty B (k/ke)*

E(k) =B — 7
N N AR

and for the high wavenumber model:

B 123N (g A fA/3tn _ GAtE ot _ j2tm
==\ exp | 2« 0 + 0 .
Ey 1+ kp ko 4/3+ p 24 pu

Note: We can not simply use the low and high wavenumber models separately since

we introduced p to account for finite Reynolds number effects, and their respective
roll offs are infinite Reynolds number effects due to a total separation between the
dissipation and the production ranges.

As it has been seen in the previous chapter, the two models have been set up by

using three different constraint equations:

1. The integral scale (equation 4.7):

E(k)/k dk

o3y

3
le—ﬂ—

[ E(k) dk
0
2. The dissipation rate (equation 3.25):

€= /°° KE(k) dk
0

3. The relation with u? (equation 3.7):

DN W
£
N
Il
O\g
S|
—~
=
U
o
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But, those equations have been used on either one of the models and not on the
composite model. So the constants found for those models by using the constraints
equations are not valid for a composite model. To define these constants in a compos-
ite model, the three constraint equations should be applied to the composite model
itself. Unfortunately, due to the special form of the high wavenumber model, the
constraint equation number 1 can not be used in the additive version since the result
of the integration is not finite. So, an additive composite model can not be rigorously
defined.

For the multiplicative composite spectrum, however, all integrals are defined, and
thus the problem encountered by the additive composite spectrum vanishes. How-
ever, the integrals do not have an analytical solution, and so we must carry out all

integrations numerically.

8.4 Implementation of the Composite Model

As defined in chapter 8.3, we developed a multiplicative composite spectrum. We
first kept the values of u found with the data alone (see chapter 7.4), and allowed
the different constants in the model to vary to verify the three constraint equations
altogether'. This allowed the model to initialize the constants for the next search
based on the value of u found with the data. The next step was to allow all the
constants and u to change to optimize the fit with the data while still verifying the
constraint equations. The graphical results are shown in figures 8.2 and 8.3.

The values for i (see chapter 9) were quite close to the ones found with the data
analysis alone, thus reassuring us of their validity. The only major discrepancies were
for Ry = 50 and Ry, = 275. The last one was not really isotropic (see chapter 7.1)
and since we used an isotropic relation to relate the energy spectrum to the one-

dimensional the result is not surprising. The lowest Reynolds number (R) = 50) was

LAll optimization schemes in this thesis were done with Microsoft Excel solver constrained to
reduce the sum of absolute errors between the model and the data values.
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Table 8.1: Composite values

|R- | 50 [ 100 | 124 | 174 | 207 | 275 | 330 | 473 |
p 013 [ 019 [ 018 | 0.14 | 0.13 | 0.02 | 0.09 | 0.1
Cri | 0.439 | 0.350 | 0.302 | 0.322 | 0.308 | 0.426 | 0.345 | 0.312
Crz | 0.387]0.291 [ 0.282 | 0.259 [ 0.279 | 0.328 | 0.279 | 0.282
Cpy | 0.589 | 0.798 | 0.830 | 0.805 | 0.812 | 0.453 | 0.700 | 0.799
Cr | 0.773 | 1.026 [ 1.005 | 1.045 [ 1.043 | 0.606 | 0.938 | 1.008

also the only value that did not fit into the analytical model for y as developed in
chapter 9.1. So it is our opinion that there is no real overlap region at Ry = 50
(we should note that this Reynolds number is quite far from the “sufficiently large
Reynolds number” necessary to the inertial subrange from Kolmogorov). The values
for the other Reynolds numbers are remarkably close to those determined graphically
as described earlier.

Once i was defined, we found the values of Cyg and C the same way we found
them with the data analysis by multiplying the spectra by k331 and E5/ Som respec-
tively. We did it for the data and the composite spectra and found similar values (see

table 8.1).
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Chapter 9

Conclusive Remarks on u

We saw in chapter 6 that to fully define the spectrum in the overlap region, we needed

a functional form for h, that is directly linked to pu.

9.1 A model for u(R)

The only “free” function is h. Based on George and Castillo (1997) [10], we propose

a model of the form:

A
— ho = ) 1
h—h YL (9.1)
for which, the only adjustable parameters are A and (3.
Substituting the model into equation 6.28:
BA
=5 - =———. 2
Equations 6.27 and 6.30 yield:
C
% = exp((v— o) IR+ h)
Cr
e exp <7(ln Ry ) (9.3)
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Table 9.1: Values of y found by different ways

Present Work Warhaft and Mydlarski
R- || Data analysis | Composite spectrum ITh | o
50 0.43 0.13 0.37 0.57
100 0.19 0.19 0.37 0.37
124 0.18 0.18 0.17 0.27
174 0.14 0.14 0.15 0.21
207 0.13 0.13 0.15 0.21
275 0.11 0.02 0.13 0.21
330 0.11 0.09 0.11 0.15
473 0.11 0.11 0.09 0.11
Also:
Iz Cloo (B+1)A
JL_ 4(R)= T (R
= B =g e s TR
Creo B+1)A (B)A
= — 1
. ex"( Ry e
CLoo 7 ﬂA
= X R S A4
CHOOR exp ( (In )P (9.4)

If we examine conditions for the existence of finite C'go, and Cpro,, we find that

B > 0, this possibility rules out Barenblatt and Chorin’s [1] proposition where 5 = 0.

9.2 Results

Apart from the values found by Mydlarski and Warhaft [25], we have two different

ways of having u:
e Numerical results from a direct data analysis (chapter 7.4)
e Results from the application of the composite model (chapter 8.4)

Results are found in table 9.1.
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The model defined in chapter 9.1:

__ B4
h= (In R)A+1

was then applied to the values found for y, Cy;, and Cp;. Then the model values
were implemented back to the data until a reasonable agreement was found between

the models and the data. We found the model constants to be:

A = 4.22
5 0.87 (9.5)
giving the best fit model for u:
3.69
w(R) = (In R)187 (9.6)

This model has also been applied to the composite values and the differences are
negligible. Those values are in table 9.2.
It should be noted however that the values for Ry, = 50 are suspicious since we

did not see any real power law region.

Table 9.2: Implementation of the model for p

|R- | 50 | 100 | 124 | 174 | 207 | 275 | 330 | 473 |
p© 043 ] 019 | 018 | 0.14 | 0.13 | 0.11 | 0.11 | 0.11
Cr: | 0.310 | 0.351 | 0.301 | 0.321 | 0.308 | 0.341 | 0.332 | 0.312
Cr: | 0.315]0.292 | 0.282 [ 0.259 | 0.278 | 0.284 | 0.272 | 0.282
Cha | 1.475 | 0.793 | 0.840 | 0.807 [ 0.815 | 0.665 | 0.771 | 0.797
Cr | 1.620 | 1.021 [ 1.015 | 1.046 | 1.047 | 0.835 | 1.016 | 1.005
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Figure 9.1 shows the different values of y found with the data analysis, the com-
posite models and the model applied to p (chapter 9.1). This model is the best fit to
the data, however, George et al. [11] found surprisingly that a value of § = 0.44 was
a good fit to similarity analysis to pipe flows, and boundary layers, without being
able yet to find the possible consequence of this. We therefore decided to include this
model into figure 9.1 to see its eventual fit. We also added Barenblatt and Chorin’s
hypothesis [1] to emphasize its non-fit, even though their proposition gives infinite
values of C'y and (' in the limit of infinite Reynolds number, and so is not physically
acceptable since it contradicts both Kolmogorov and Von Karman simultaneously in
the limit. The figure also includes earlier values found by Mydlarski and Warhaft [25]
for the longitudinal one-dimensional spectrum, values for the lateral one being too
different from ours have not been included.

Figure 9.2 shows Cy/Cp, function of R for the two one-dimensional spectra. The
scatter in the values is due to the fact that the coefficient C, (or Cy) is dependent on
the value of p: a small change in y can give an important difference in the value of C'.
Clearly the theory and the proposed model are both consistent with the experimental

data and reduces to the correct limits.
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Chapter 10

Summary and Conclusions

10.1 Thesis Summary

In the previous pages, we developed a similarity theory for the energy spectrum at
finite Reynolds numbers. The aim is to cover the gap before the very large Reynolds
numbers where Kolmogorov’s hypotheses apply. Since the small scales of turbulence
are considered isotropic, we use isotropic simplifications in defining the energy and
the one-dimensional spectra. We then consider two ranges of wavenumbers (classified
as high and low), and define the appropriate length scales for each region: the so-
called Kolmogorov scale, n, which is representative of the small scales in turbulence,
and the physical integral scale, that we believe is the appropriate length scale for the
low wavenumbers region.
Based on the energy equation

OB (k)
at

= T(k) — 2vk*E(k)

and on its evolution at infinite Reynolds numbers, we derive the appropriate parame-
ters for the two regions. Those parameters are u and € for the low wavenumber region

(also being the region containing the energy), and v and € for the high wavenumber
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one (being the dissipation region). With those four parameters, we can collapse the
spectrum with scalings from the two regions, while still keeping functions describing
the whole range of wavenumbers, at least at finite Reynolds number.

Knowing that the two differently scaled energy spectra still represent the same
spectral function, we are able to determine conditions and properties of an overlap
region between the two similarity functions, that survives in the limit of an infinite
Reynolds number. We prove that the spectrum should follow a power law, k", in
the overlap. The exponent, n = —5/3 + pu, is Reynolds number dependent but
goes to —5/3 in the limit of infinite Reynolds number, as predicted by Kolmogorov’s
hypotheses.

To verify the above theory, we needed a set of data which should be on a wide
range of Reynolds numbers, isotropic, and done with nearly same initial conditions,
since the functional forms of the spectrum depend largely on it (and is not universal
as widely thought). We therefore used data of Mydlarski and Warhaft (1996) [25],
that were the closest ones to our request. Unfortunately, these were not always fully
isotropic, nor done with the same initial conditions and this has some repercussions
on some results. When plotted in either low or high wavenumbers variables, we find a
new perfect collapse, proving that the appropriate length scale for low wavenumbers is
really the physical integral scale L, and that the exponent is indeed Reynolds number
dependent. Using the functional model for i, we are able to define completely the
functional form of the spectrum in the overlap region.

The data, however, contained some scatter, and left some doubts concerning the
values of ;. We therefore developed an empirical spectral model allowing a Reynolds
number dependent exponent in the overlap region, as stated in the present theory. To
do so we created a multiplicative composite spectrum, based on a low wavenumber
model extended from a Von Karman one, and on a high wavenumber one, extended
from a Lin-Hill version. This composite model was then applied on the data sets for

a better evaluation of u. The results mostly confirm the previous estimates, apart
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from the sets that were the farther from our specifications.

We then conclude on the results for ;4. We implemented a semi-empirical model
for pu, the only “free” choice to completely define the spectrum in the overlap, based
on previous works. The model proposed by Barenblatt and Chorin [1] has been found
deficient, both because it does not agree with the data, and also because it violates
Kolmogorov similarity in the infinite Reynolds number limit.

It is our belief that this methodology can be easily applied to other sets, even non
isotropic ones to, perhaps, find a generic functional form for the overlap region, and

can certainly be extended to fully define the spectrum as a whole.

10.2 Suggestions for Future Work

We see two main directions for improving the present work. First, on an experimental
basis, this theory should be tested on more data sets, providing they are done with
same initial conditions, isotropic (unless this theory is expanded on non-isotropic sets,
which is certainly possible), and on a sufficient wide range of Reynolds numbers. It
should then be interesting to compare the results with the present work to see an
eventual common trend. Second, a major problem in this work is the modeling of u.
We decided on an empirical model based on works not really related to this one. Due
to certain computer improvements (like genetic algorithms), an optimal functional
form of u can be found that could certainly out-passes the present one. Also, this
exponent has also been introduced to take into account intermittency (see for instance
Hunt and Vassilicos [17]), and models (like log-normal law proposed by Kolmogorov
[21], see Frisch [5] which is more like a prelude to his book [6]) have been developed
for that purpose. It could be interesting to see how they adapt to our function.
Another area of improvement lies in the theoretical part. This theory is just a be-
ginning, and consequences should be explored. For instance, the function ¢ = €L /u?

which is the ratio of the physical length scale over the “pseudo” length scale goes to
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a constant as the Reynolds number reaches infinite values. Knowing this can lead to
a model for ¢, which would certainly appeal to people using “k-¢” models. Also the
functional form of the spectrum in either scaling form outside the matching region is
still unknown and the conditions of application of an overlap are not really practi-
cally clear. Finally, this work is another successful use of the Asymptotic Invariance

Principle, and it is logical to continue to find other applications.
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