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ABSTRACT

In 1964, Yeh and Cummins demonstrated that coherent light
sources could be used for the measurement of steady fluid
velocities by observing the Doppler shift in the frequency of
light scattered from small particles moving with the fluid.
Since 1964 many investigators have attempted to extend this
technique to the measurement of turbulent velocity fluctuations.

A fundamental limitation on this type of velocimeter is
the Doppler ambiguity introduced by the finite transit time of
particles through the scattering volume, turbulent velocity
fluctuations across the scattering volume, velocity gradients,
aperture, and electronic noise. A unified account of the’
effect of the Doppler ambiguity is presented and results are
interpreted using the power spectrum. The influence of the
ambiguity on the measurement of other statistical quantities
is also examined.

Limitations on the spatial and temporal resolution imposed
by the finite sampling volume are examined using the power
spectrum and criteria for optimization of the response are

proposed.
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An operational Laser-Doppler Velocimeter is described and
measurements of spectra in both laminar and turbulent flow are
presented. The experimental results are seen to be in

excellent agreement with theoretical predictions.
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1 INTRODUCTION

1.1 General Statement of the Problem

The problem to be discussed here is whether a Laser-
Doppler Velocimeter can be used in the measurement of

turbulence; and if so, what are its limitations?

1.2 Relevance o¢f the Problem

Because of the difficulties that have been encountered
in the use of conventional heat transfer probes in certain
non-Newtonian and high polymer flows (e.g. - Fabula (1966)),
efforts have been made to develop alternate methods. One
such method that has been suggested is the use of a Laser-
Doppler Velocimeter. This instrument uses the Doppler shift
of light scattered from moving particles in the flow to
extract velocity information. The prime advantage of the
Laser-Doppler Velocimeter is that it requires no obstructing
devices to be placed in the flow which might influence the

phenomenon being measured. A disadvantage is that a



scattering agent (usually in the form of suspended particles)
must be present in the flow; in liquids, however, this
generally is not a problem. If the Laser-Doppler Velocimeter
could be shown to be a reliable and practical means of
measuring turbulence, it would provide an attractive alter-

native to conventional techniques in many flow situations.

1.3 Histornical Background

In 1964, Yeh and Cummins successfully measured velocity
profiles in a liquid by examining the frequency shift in
monochromatic radiation scattered from particles in the
liquid. The scattered and unscattered radiation was hetero-
dyned on a photocell producing an electrical signal at the
difference frequency; the spectrum of this difference fre-
quency was examined by conventional techniques. Since 1964,
numerous investigators have applied this technique to the
measurement of mean square fluctuating velocities and instan-
taneous velocities in the unsteady flow of gases and liquids

(Foreman et. al. (1966), Pike et. al. (1968), Welch et. al.



(1968), and Lumley et. al. (1969)). Recent attempts have
been made to measure turbulence in the atmosphere and
ocean using radar and sonar as incident radiation (Wiseman

(1969), Little (1965), Thermitte (1968)).

1.4 Nature of Zhe Problem

Considerable attention has been given in the literature
to the choice of optical components, scattering particles,
and electronic signal processing (Huffaker et. al. (1969),
Mayo (1969), Davis (1968), Rolfe et. al. (1968)). The
sources of noise have been identified and theory for opti-
mization of the signal-to-noise ratio has been developed.
In spite of these advances, the most basic question has not
been answered; that is, how does the instantaneous Doppler
frequency relate to the instantaneous flow velocity?

The fundamental problem in attempting to relate the
Doppler frequency and the flow velocity is that even in a
steady laminar flow the Doppler frequency is not steady.

The signal received by the photocell is the sum of the



signals produced by all the scatterers present in the
scattering volume at that instant; the individual signals
may have the same frequency, but each has a phase dependent
on its position in the scattering volume at some arbitrarily
chosen origin in time as well as an intensity dependent on
the particle size. As scatterers leave the scattering
volume and new ones enter, the signal gradually loses
coherence; when the entire population has changed, all
coherence is lost. Velocity gradients, turbulent velocity
fluctuations in the scattering volume, receiver aperture,
and electronic noise arising from the detection process may

also contribute to a loss of coherence.

1.5 The Scope ¢f This Investigation

This paper will first examine the spatial and temporal
resolution of the Laser-Doppler Velocimeter and criteria
for meaningful measurement will be established. Second,
the effect of the random phase fluctuations introduced by

the Doppler ambiguity on attempts to measure statistical



quantities in turbulent flow will be examined. An exact
theory for the statistics of the phase fluctuations will
be presented. Third, an operational Laser-Doppler Veloci-
meter will be described and measurements in both laminar

and turbulent flow will be presented.



2  SPATIAL AND TEMPORAL DEPENDENCE
OF THE PHOTOELECTRIC CURRENT

*
2.1 Spatial Dependence of the Photoelectrnic Cuvrent

The typical Laser-Doppler Velocimeter employs a
scattering beam which is focused at some region in the flow
and which is scattered from neutrally buoyant particles
suspended in the flow. This scattered radiation is
collected by a photocell and mixed with a reference beam
which has not been scattered.

If ar(x”,yg,z,t) and ﬁs'(x”,yg,z,t) represent respec-
tively the reference beam ané light scattered from the itb

particle in the coordinate system defined by the photocell

(see Figure 1) we may write

A 1" 1" 1" 1" 3
_ ja2rft
ur(x ,yd,z,t) = ur(x ,yd,z)e (2.1)

*
The analysis of this section follows closely that of
Mayo (1969).



Origin of all
coordinate systems
chosen at center

REFERENCE
SCBEAT BEAN
Figure 1: Scattering Coordinates with Origins Chosen at

Center of Scattering Volume.



1

~ 1 " 1" 1" H
_ j2nft
usi(x ,Yd,Z,t) - usi(x ,Yd,Z)e

(2.2)

where u, and u, are the respective complex amplitudes and
where f is the ;requency of the unscattered radiation. For
simplicity the source of light has been assumed monochro-
matic.

The current at the photocell is then given by the

integral over the photosensitive surface of the intensity

of the light striking it; hence

rnoon "noon 2 u
‘total = N éf lur(x ,yd,z) ¥ i us.(x ,Yd,Z)l dx dz (2.3)

1

where

S = photosensitive surface
N = Jde/hf
§ =

quantum efficiency of photocell



[¢]
Ll

electronic charge

=
I

Planck's constant

and where the summation is over all contributing scattering

particles. Expanding the integrand of (2.3) we have

* * *
1total = NJJ {urur * ur ? us. * ur ; us.
S 1 i 1 i
(2.4)
* T
+ I u_. u } dx dz
i "1 7j

We may immediately identify the integral of the first
term as the direct current produced by the reference beam

alone; that is,

* 1"
i = NS/ uu  dx dz (2.5)
.C. g TrrT
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Since u is usually much larger than the ug it is this
term that is primarily responsible for the ;hoton shot
noise at the photocell (see Ross (1967)).

It will be shown later that the frequency of moving
particles is Doppler shifted; hence, the last integral of
(2.4) will contribute only in the frequency range from zero
to a value representative of the maximum velocity dif4erences
in the volume, and in a similar symmetric interval around
Awice the mean Doppler frequency. If we are narrow band
filtering we will nof see this.

For convenience we will define i as the complex alter-

nating current where

1!
i = NJ/fu Iu dx dz (2.6)
T s.

(2.7)

Il
I
+
[l

i ()
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If we change the order of summation and integration in

(2.6) we have

* 1"
i = NI J/fu, u dx dz (2.8)
. T S,
1S 1

Thus the net time dependent current i is simply the sum of
the currents generated by the individual scattering

particles iS where
p

¥ noon noon 1"
i , = N éf u, (x ,yd,z) usp(x ,yd,z) dx dz (2.9)

ug s the amplitude of the light scattered from the

%
particle, may be approximated by the paraxial propagation

of a spherical wave originating at the particle; that is,
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T

ITIET t '
uS (X ,Yd,Z,t) = ui(XP,)’p,Zp)

p
(2.10)

oo oo 2 noon 2 "noon
(€3 (rgy)ed* Cayp) el O o) w(a-2p) 172 07g-7p)

where

C = (ja/2) ¥ o 2/m &9

b (3A/2) p/
Op = the scattering cross-section of the particle
¢ = relative phase of incident to scattered

P radiation

K = wave number of light

p = denotes position of the particle

1 1 1
and ui(xp,yp,zp) is the amplitude of the scattering beam at
the particle position.

From equation (2.9) we have using (2.10)
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1t
1

t
1] + " "
: - i« (Ya-y.) . _
i, = N ui(xp,yp,zp) Cp{[e d’p /JA(yd yp)]

(2.11)

oo 2 2 "noon

* moon . _ _ - 1"
o oy el L) ) 1200 e
S

The term in brackets has been identified by Mayo (1970) as
e 1"
the inverse propagation convolution of ur(x ,yd,z) and there-
fore specifies the form of the reference beam at the position
1"

1t
of the particle; that is ur(xp,yp,z). Thus

' ' ¥ oo
1sp = N Cp ui(xp,yp,zp) u, (xp,yp,zp) F2.12)

where it should be noted that uy and u_. are expressed in
different coordinate systems. A justification of (2.12) is
provided in Appendix (1). It is important to note that (2.12)
is true only if there are no spatial filters between the

scattering volume and the photocell and if all apertures block
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negligible reference beam intensity. These limitations have
been discussed more fully by Mayo (1970).

We will determine u; and u. by focusing the Gaussian
cross-section reference and scattered beams to their diffrac-

tion limited spot sizes at the desired flow location, hence

"o 12 2 1
WX,y ,z) =U_ e (X *z)/20 Ky (2.13)
T T
. , 12 2 2
u; (x ,y ,2) = Uy X+ z)/20 gk (2.14)
where o is determined by
o = V2 £ 2/nd (2.15)

fo is the focal length of the lens and d is the distance
2
between the 1/e intensity points of the beam at the lens.

For convenience we have chosen the focal length of the two
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lenses to be equal; this is not necessary, although interpre-
tation of results to be presented in following chapters
becomes more difficult if different lenses are used. The depth
of field of the lens has been ignored since for all reasonable
focal length lenses it is much larger than the effective beam
cross-section as defined by equation (2.16); hence the beam is
considered constént along the direction of propagation.
Substitution of (2.13) and (2.14) into (2.12) and trans-

formation to the flow coordinate system yields

2 L 2 2 2 2
ig (t):NCpUiUre'(Xp cos (6/2)+yp sin (6/2)+zp )/o

p “
(2.16)

. cos[Zprsin(e/Z)]

where (xp,yp,zp) are the coordinates of the scattering particle.
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2.2 The Signal grom Moving Particles

We define (x_ ,y _,z_ ) to be the initial position of the
Py "Py Py

scattering particle which at time t is at (xp,yp,zp) and

require that u >> v,w; then, if the time for a particle to

traverse the scattering volume (say 2¢/u) is less than the
1/2

smallest time scale of the turbulence (say (v/e) ), we may

write

X - ut + X
P PO
= 2.17
Yo ypo ( )
z =z
P Po

where the u for a particular particle is effectively constant as

it moves through the volume. Then iS is given by
P

{( )2 2( /2) ’ 2( /2) 2}/ ’
. _ -1(x_ +ut) cos (8/2)+y_ sin (8/2)+z c
i (t) = NCPUiUre P, P, Py

P
(2.18)

1
ccos(wt + v)
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1
where the Doppler shift w is defined by

w = 2m(2u/A) sin 6/2 = 2xu sin 6/2 (2.19)

and the phase y is fixed by the initial x-coordinate of the

particle

Yy = 2xkx_ sin 6/2 (2.20)
Py

For steady laminar flow in the x-direction the above expressions
are exact. For turbulent flow the assumptions leading to. (2.17)
amount to Taylor's hypothesis (c.f. Lumley (1964)); namely, that
the flow is effectively frozen in time as it is swept through

the volume.



3  SPATIAL AND TEMPORAL RESOLUTION
OF THE LASER-DOPPLER VELOCIMETER

3.1 The Efgective Instantaneous Velocity

Before the Laser-Doppler Velocimeter can be used to provide
reliable measurements in turbulent flow, its spatial and temporal
resolution must be well understood. The frequency fluctuations
arising from the Doppler scattering result only from the velocity
component parallel to the difference wave number of the incident

and scattered radiation; that is,

w = (k, - k) + u (3.1

where Ky and K are the wave number vectors of the incident and
scattered light respectively. For the choice of coordinates in
Figure (1), it is clear from equation (2.19) that the frequency
fluctuations depend only on the u-velocity component.

The effective velocity seen by the velocimeter, say uo(t),
is the average of the velocities of all the particles in the

scattering volume - an average that is, of course, weighted by
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the relative strength of the signal from each particle. Using
the amplitude envelope for a single particle (determined in
equafion (2.16)) to characterize the scattering volume and
normalizing the weighting to unity over the entire volume, it
is easy to show that the effective velocity seen by the veloci-

meter is given by

uo(t) = [/f ulx,y,z,t)
(3.2)
3/2 2 2 2 2 2 2
{1/(2m }e"{(X /20, ) + (v /20, ) + (z /204 )} dxdydz
where we have defined
o = o/V 2 cos 8/2
o, = o/vV 2 sin 6/2 (3.3)
o, = o/V 2

01,0 ,03 clearly measure the extent of the scattering volume in
2

the x,y,z directions respectively.
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3.2 The Measutred Velocity Spectrum

By taking the Fourier transform of equation (3.2), it is
not difficult to show, under the assumption that the turbulence
is frozen as it moves through the volume, that the mean square

1

2
velocity fluctuation u, (t) measured by the velocimeter is

given by

!

2 2
u, (8) = [u (t) - U (D]

(3.4)

. 2 2 2 2 2 2
= 115 (ko Lk Lk e LW /20 0v e /am (/0 Vg g gk
o111’ 2t s 1 2 3

where @ll(kl,kz,ks) is the velocity spectrum associated with the
u- component of velocity, (kl’kz’ks) are the wave number
components of spatial variations of velocity in the (x,y,z)
directions respectively, and (k*,m*,n*) are cutoff wave numbers

defined from the scattering volume dimensions as

k* = 1/V2 ol
m, = 1/vV 2 o, (3.5)
n, = 1/v 2 o

3
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It is clear that contributions to (3.4) from spatial variations

in velocity smaller than the extent of the scattering volume

will be attenuated.

The one-dimensional velocity spectrum of the turbulence is

defined by (c.f. Lumley (1964))

u’ = S F (k)dk
11( l) 1

F (k) = S/ ¢ (k,k ,k )dk dk
1 11 1 2 3 2 3

(3.6)

Using (3.4) the one-dimensional velocity spectrum measured by

the Laser-Doppler Velocimeter, say Fo(kl),is seen to be defined

by

2 =
w ' = F_(k )dk
0 - o) 1 1

2
¥ [fo (k ,k ,k )e
11 1 2 3

- 00

2
-k /2
Fo(kl)—e 1

2 2 2 2
-{(k, /2m, )+ (k, /2n, 7))

(3.7)

dk dk
2 3
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The relation between Fo(k), the measured spectrum, and F (k)
11
the true spectrum is of course, of great interest.
If we restrict ourselves to isotropic turbulence we may

write (c.f. Batchelor (1960))

L 2 2
o (koK Lk = (BOO/4mk Y[k -k ] (3.8)

2 2 2 2

where k = kl + k2 + k3 and where E(k) is the three-dimen-

sional spectrum function (c.f. Batchelor (1960)). Using (3.8)

it is not difficult to show that

o ' 2 2
F (k)= % f EK/KL - k /K )]dk (5.9)
111 y 1

1

If we define
B = sin 6/2 (3.10)

so that m, = Bn, from (3.5) and (3.3) and use (3.7), (3.8) it

is more difficult, but straight-forward to show that
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© 2 2
S EE/KIL - Kk /kO)]

k
1

kz/}\z
. - 2,‘
Fo(kl) =e 1 *

(3.11)

2 - 2 2 2 2 2.2 2
L om (K -k ) (1v8 ) /dm, LU G-k )-8 )/4m,  }dk

where Io is the zeroth-order modified Bessel function of the

second kind. Usually B = sin 6/2 is small since the scattering

angle is small.

*
Pao's form of the spectrum E(k) is given by (Pao (1966))

E(k) = a k7% ¢ "3
= xpi{-(3/2)a(kn) } (3.12)

By substituting (3.12) into (3.11) and letting & = kl/k we have

a form suitable for numerical computation

4/3

2 2
& 1 2/3
“k, 72k, ok /300y ra-eye exp{-(3/D)ak vE)  }
0

Fo(kl)=e

(3.13)
2 2‘ 2 2 2

. 2 2 2 2 2

eIk, -e 8 ) am e ]Io[kl (1-£ ) (1-8 )/4m, & ]d&

*
n 1is the Kolmogorov microscale defined by n=(v3/e)l/4where €

is the rate of dissipation and v is the kinematic viscosity.
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It is convenient to nondimensionalize by Kolmogorov variables
€, v where v is the kinematic viscosity and ¢ is the rate of

dissipation of turbulent energy; we have

~
e
~
(4]
-
<
g
~—
T
~
=
1
—
n
e ]
~
e
(e

ﬁo(il) has been computed from (3.13) and is shown in
Figure (2) for several values of ﬁ* where B = 0.145. The true
spectrum ﬁll(il) is alsq shown for comparison. It is clear that
when El becomes of order ﬁ*, the spectrum shows significapt
attenuation. The degree of attenuation is shown more clearly in
Figure (3) where the velocimeter transfer function defined by
Fo(kl)/Fll(kl) has been plotted for several values of ﬁ*,
B = 0.145. Figure (4) plots the wave number at which the
spectrum is reduced to half its true value (half-power point) as
a function of ﬁ* for values of B8 = 0.0725, 0.145, 0.29. The
curves are seen to be approximately linear on a log-log plot;
clearly, the dependence on angle is diminishing as © becomes

small.
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In order to illustrate more clearly the effect of the
attenuation at high wave numbers the true and measured rates

of dissipation, say DT and Dm,were computed from

o 2 o 2
D /D = Sk F (k)dk /S k F k )dk 3.14
n’Pr - 1 o! 1) 1Zoc 1 11( 1) 1 ( )

Dm/DT is shown in Figure (5) as a function of ﬁ*. It is
obvious from the graph that if the dissipation is to be measured

to 10% accuracy, m,Z must be nearly unity; that is, the largest

*
dimension of the scattering volume must be at least as small as
the Kolmogorov microscale. These results are quite similar to

those obtained by Wyngaard (1968) for a hot-wire and may easily

be extended to the measurement of cross-stream velocity components.

3.3 The Chodice of Scattering Volume Size

It would seem apparent from the results above that if one
desires to measure the entire spectrum accurately, the smallest
possible scattering volume should be used.

We shall see in Chapter 4, however, that because of the
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Doppler ambiguity there are very good reasons for picking a
scattering volume which may be many times larger than the above
criteria would indicate; clearly a trade-off will be required.

This subject will be discussed more completely in Chapter 7.

3.4 Velocity Fluctuations Across the Scattering Volume

It is appropriate to note at this point that because of
the finite dimensions of the scattering volume, velocity gradients
will exist across it; these will result in a broadening of the
instantaneous Doppler signal where the amount of broadening, say
AwT, will be proportional to the root mean square velocity
fluctuation across the scattering volume.

The mean square fluctuating velocity across the beam is just

the spatially weighted average of the quantity
2 2
[U(X,Y,Z,t) - uo(t)] = (Au)

It is straight-forward to show that the expected value of this

quantity is given by
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2
<[utxy,z,t) - u (0] > (3.15)

I 2 2 2 2 2 2
Siife (k Lk Lk ){1-e T /2 )+l /2m g+ (k /20, Y hy g g gk
o111 27 s 1 2 3

where — denotes the expected value and <> denotes the weighted

spatial average. We may immediately recognize this from (3.6),

(3.7) as

<w® = 7 [F (k) - B (k )ldk (3.16)

and compute it as a function of (k*,m*,n*) as in (3.13). .

More physical insight may be gained, however, by relating

<(Au)2> to the rate of dissipation €. Expanding the exponential

of (3.15) in a Taylor series we have

2 2 2 2 2 2
e—[(k1 /2k* ) + (k2 /Zm* ) + (k3 /Zn* )]
(3.17)

2 2 2 2 2 2
= 1- [(k1 /2k, ) + (k2 /2m, ) + (k3 /2n, )] + h.t.
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Assuming that m*,k*,n* >> 0.2 n* (the peak of the dissipation
spectrum and hence the wave number associated with the velocity

derivatives) and substituting (3.17) into (3.15) we have

2 2 ®° 2 2 ®° 2
<(u) >2(1/2k )k PGk o+ (1/2m )0k CF(k )dk

(3.18)

[o0]

2
£ (/2 )k Gk )k

From Batchelor (1960) we may immediately write (assuming isotropy)
2 2 2 2
<(8w) > = (e/15v)[(1/2k, ) + (I/m. ) + (1/n, )] (3.19)

Since

=)
"

in 6/2
n* sin 6/

e
]

n_ cos 8/2

we have



-33-

<(Au)2> = (e/lSv)(l/m*z){1+sin26/2[(1+2cose/2)/2c0526/2]}

(3.20)

2
= (e/15%) (1/m, )

because 6 is usually small. The correction term, for a typical

2 2
scattering angle of sin 6/2~0.1 is sin 6/2[(1+2cos8/2)/2cos 6/2]
~ 0.015.

The Doppler bandwidth due to the turbulent velocity gradients

is then given by

2 2 2 2
(Awp) = (wy /U )<[ux,y,z,t)-u ()] >
(3.21)
2 _2 2
= (wg /U (e/15v) (1/m )
*
or
_ _ /2
Ay, (0w /U) (1/Y15 m ) (g/v) (3.22)
o] *

where U, 56 are the mean velocity and mean Doppler frequency

1/2
respectively and where (g/v) is recognized as the frequency

characteristic of the turbulence fine structure. Non-dimensionalizing
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by Kolmogorov variables e,v we have

dor/a, = (VI7E ) (/Tn) w7 (3.23)

Thus the turbulent broadening Aw, is seen to, at least asymp-

T
totically, increase linearly with the largest dimension of the
scattering volume when that dimension of the scattering volume
is much smaller than the scale of the dissipative turbulent
fluctuations. AwT also depends inversely on the Reynolds
number based on the mean flow rate and the Kolmogorov microscale;
thus, the smaller the turbulence fine structure, the more velocity
fluctuations across the scéttering volume, and the greater the
turbulent broadening. This is, of course, consistent with what
one might have expected intuitively.

Since k*, n_ are almost always much larger than m, and
generally chosen near kn = k ~ 1 where the spectrum is falling
off very rapidly, another approximation to (3.15) may be obtained
by ignoring the effect of k*, n, and integrating over kl’ k3 to
yield

2 . ® -k 2/2m ’
-e *

<(fu) > = [ Fzz(kz){l

- OO

tdk (3.24)
2
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where F22(k2) is the transverse spectrum and is defined by

oo

F (k) = Jf o (k,k ,k )dk dk 3.25
22(2) o 11(1 2 3) 1 3 ( )

(3.24) is useful in estimating the effect of the turbulent
broadening from experimentally determined spectra where the
conditions for the asymptotic estimate of (3.23) may not be

satisfied nor the Reynolds number sufficiently high to permit an

accurate determination from Pao's spectrum as in (3.16). Clearly
-1
(3.24) reduces to (3.23) when m_>> 0.2 n .
The dimensionless turbulent bandwidth defined by
_ Tz
bog/w = V<(au) >/ U (3.26)

has been plotted as a function of ﬁ* in Figure (6). Values obtained
numerically using Pao's spectrum in (3.24) and in (3.16) with

B = sin 6/2 = 0.145 coincided within 5% and were plotted together.
The asymptotic estimate of (3.23) is seen to be accurate within

10% when ﬁ* > 0.3; for values less than this it significantly over-

estimates the turbulent broadening as would be expected from the

form of the spectrum.
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Finally it should be emphasized that the turbulent broadening
discussed above arises only from the velocity fluctuations across
the scattering volume; there is, of course, additional broadening
of the Doppler spectrum due to the temporal fluctuations of Wy

This subject is discussed more fully in Chapter 4.



4  THE INSTANTANEOUS DOPPLER SIGNAL

4.1  The Doppler Signal

The signal generated by a single scattering particle using

equations (2.18) and (3.3) may be represented as

2 2 2 2 2 2
+ 1o t(ut+x)) /20, 1+ (v, /20, )+(z, /20, )}cos[w't+y(xo)]

(4.1)
t
where w is the instantaneous Doppler frequency
1
w = 2« usin 6/2 (4.2)
where y(xo) is the phase
y(xo) = 2« X, sin 8/2 4.3)

and where X, is the position of the particle at t = 0. Recall
that this representation assumes that the transit time for particles
through the scattering volume is less than the smallest time scale

of the turbulence; in other words, the turbulence is assumed frozen
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in time as it is swept through the volume and the lateral dis-
placement of particles is negligible.
The net signal at the photocell arising from all contributing

scattering particles may be represented by

1
i) = Jig (t,x .0 )dE(x)
X °p

(4.4)

' ~0 <0
d€(§o)d£(§o )

where the dg(go) is, in fact, statistically independent at two
different times and where w is a random variable depending
linearly on the velocity. This is similaf to the shot effect
(c.f. Rice in Wax).
If we, as in Chapter 3, split the local Doppler frequency
'

w 1into its average across the volume Wy and the local deviation

from wyssSay w = w(x,t); we may write
i(t) = F(t)coswot + G(t)sinwot (4.5)

where F, G are defined by
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2 2 2 2
F(t)=Ife_{[(Xo+Ut) /201 ]+(yo/202 )*(z, /20

X
~0

2
3 M eos (utem)dt (x )

(4.6)

2 2 2 2 2 2
G(t)=Ife_{[(Xo+ut) /201 I+(y, /202 )+ (2 /203 )}sin(wt+Y)d5(§o)

X
~0
4.7)
Equation (4.5) may also be written as
. 2 2%
i(t) = (F +G) cos(wot - ¢) (4.8)
where
6 = tan '{G/F} (4.9)

It is straight-forward to show that if the velocity fluctua-
tions across the scattering volume are assumed frozen in time that
F and G are identically distributed Gaussian variables with

correlation

2 t 2
o(t-t') = FF'/E. = G6'/6. = e (W) (-t ) /2 4 40

where



-4]1-

2 2 2 2
(Aw) = (U /20l ) + (AwT) (4.11)

2
and where we have neglected terms of order (Aw/wo) because the
bandwidth of the Doppler signal is assumed small.
If there were no turbulence the Doppler bandwidth Aw would

be given by

Aw = (Uy/“i'ol) = k*ﬁ' (4.12)

since AwT would be zero. We may identify this with the Doppler
broadening caused by the finite transit time of particles through

the scattering volume and denote it by AwL; hence

2 2 2
Gu) = (du) + (bup) (4.13)

The ratio AwL/wo may be easily shown to be inversely proportional
to the number of Doppler pulses that are received from a single
particle; clearly the more pulses that are received the lower will
be the uncertainty in the determination of w3 this is, in fact,

similar to the uncertainty principle in wave mechanics. Borrowing
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from RADAR terminology, we will use the term Doppler ambiguity to
denote all of the types of Doppler broadening considered here.

It should be pointed out at this time that there may be
other sources of Doppler broadening which contribute to Aw.
Clearly laminar velocity gradients will contribute to the Doppler
broadening as will the presence of apertures in the optical system.
We will define aperture ambiguity so as to exclude effects which
may be identified as transit time phenomena and include only
optical effects which cause the reception of a finite band of
Doppler signals; for example, a rapidly diverging or converging
scattering beam which causes a varying scattering angle across
the scattering volume. If we assume that the velocity gradients
and apertures are Gaussian, for convenience, it is easy to show

that the total bandwidth is given by

2 2 2 2 2 2
(Aw) = (AwL) + (AwT) + (AwG) + (AwA) + (AwB)

where Awg is the bandwidth associated with the laminar velocity

gradient, Aw

A is the aperture-induced bandwidth, and Aw, includes

B

the possible broadening due to an nonmonochromatic light source.
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In the remaining analysis of this work, we shall consider
only the broadening due to the finite transit time and the
turbulence; however, the extension to the general case is

straight-forward.

4.2 The Spectrum o4 the Doppler Signal and Intensity Measurements

The spectrum of equation (4.8) is easily obtained as

2 2 2 2
F(w) = (1// 87 sw){e” (078g) /2(8w) | ~(wrw ) /2(dw) 4 (4.14)

This is obviously the sum of two Gaussian peaks centered at W -
In turbulent flow the center frequencies iwo are also fluctuating
yielding an additional broadening equal to the root mean square

fluctuation of Wy in fact,

o

FT(w) = oof F(w—wo) P(wo)dwo (4.15)

where P(wo) is the probability density of W,
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Clearly, the foregoing analysis must be taken into con-
sideration whenever one attempts to measure mean square
fluctuating quantities from the spectrum of the Doppler signal;
when the fluctuations of w, are of order Aw the fluctuating
velocities can no longer be distinguished from the fluctuations
due to the Doppler ambiguity. The problem is illustrated
graphically in Figure (7).

The limit of resolution may be taken as

1

Aw/?JO < u /U (4.16)

1
where u 1is the root mean square fluctuating velocity. It should

be noted that because of the turbulent broadening Aw,., the intensity

T’
values measured from the spectral broadening may not be corrected
by simply subtracting the values measured in laminar flow as
suggested by some authors (Pike et al (1967), Goldstein (1967)).

Failure to properly account for the Doppler ambiguity may explain

the anomalous results of Greated (1969).

4.3 Instantaneous Velooity Measurements

The matter of measuring instantaneous fluctuating velocities
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is somewhat more serious and involves the question of the

spectrum of the fluctuations in phase. From equation (4.8) we

have
2 2 1
i(t) = (F+G)~* cos(wot—¢)

The usual sort of measuring circuit will remove the amplitude
information by amplifying and clipping, keeping only the infor-
mation on the zero crossings, and will produce a signal propor-

tional to frequency

wl = w, - d¢/dt (4.17)
We write

: e — 0, a # a
w, = fe'*tdz () dZ(a)dZ(e ) = 5 o '
(wo /U )Fo(a/U)d(a/U),a=a
(4.18)

C et — i 0, a # a
¢ = Je dN (o) dN{a)dN(a ) = . (4.19)

n(a)de, a = a

where 66 is the expected value of the mean center frequency
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corresponding to the mean flow velocity U, FO is the spectrum
of Ugs the volume averaged velocity defined in Chapter (3),

and n(a) is the spectrum of the phase fluctuations. Clearly

w = ret®aza) - ret®tan(a) (4.20)

and since the phase fluctuations and w, are uncorrelated, the

spectrum of the composite signal is given by

—2_3 —
(wo /U )Fo(a/U) + n(a) (4.21)

4.4 The Measurement of Turbulent Spectra

The problem of measuring turbulent spectra has thus been
reduced to what is n(a). Since F and G are identically dis-
tributed Gaussian random variables, we may take F and G to be the
coordinates of a point in the x-y plane where the point moves in
such a way that it has a circularly symmetric Gaussian distribution.
¢‘is clearly the angle subtended by the radius vector and the

X-axis.
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It is evident that ¢ is not stationary. If ¢ begins from
zero, say, then for times short compared to 2n/Aw the probability
of finding |¢| > 27 will be small; as time passes it becomes more
and more likely that ¢ will have made one or more revolutions
about the origin. The value of the spectrum at the origin is

given by

o

. . 2
n@) = (1/2m) £ ¢(t)é(t+t)dtr = (1/2m) dé /dt (4.22)

This will be non-zero since ¢ is nonstationary.
The joint characteristic functional of F and G is determined
entirely by one parameter Aw; consequently that of ¢ will also be

determined only by Aw. Hence we must have on dimensional grounds

2
d¢ /dt = Aw (4.23)

with an unknown coefficient, hopefully on order unity.
The exact form of the spectrum has been determined analytically
in Appendix (2). The coefficient in equation (4.23) is equal to 2w

and the spectrum is flat to o ~ Aw beyond which it drops slowly as
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inverse frequency. Since a ~ Aw is usually beyond the cutoff of
the electronics, the spectrum is experimentally white with height

Aw; i.e.,

n(e) = Aw (4.24)

If there is a significant amount of noise added by the
electronics and the detection process, this will also contribute
to the random phase fluctuations. The effect of a filtered white
noise on the spectrum n(a) is included in the analysis of
Appendix (2). If B is taken as the signal-to-noise ratio measured
after the filter and Aw,. is the filter half-width, the spectrum of

f

the phase fluctuations is increased by the ratio

2
1 + 0.40(Awf/AwB )

2 2
where it is assumed that (Awf/AwB ) < 1 and (Awf/Aw) >> 1.

The spectrum of the Doppler ambiguity plus noise is then given

by

nee) = dw {1 + 0.4O(Awf/Aw62)} (4.25)



-50-

It is easily seen that the effect of the noise is to set a lower
bound on the minimum spectral height that can be achieved by

reducing Aw while keeping the signal-to-noise ratio B constant.

4.5 The Limit of Spectral Measurement

The 1limit of measurement of Fll(a) will be determined by the
frequency o where the ratio of the turbulence spectrum to the

ambiguity spectrum is unity, or where

2 _3 —
(W, /UDJE (2 /U) = nloy) (4.26)

Nondimensionalizing by Kolmogorov variables e,v

(4.27)

where n is the Kolmogorov microscale
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3y
n o= (v /e)?

we have, using (4.13) for Aw and the asymptotic estimate for

AwT given in equation (3.23)

-~ . 2o~ 2 2 2 . 4 2 1
Fll(ko) = 2.53 x 10 k*R {1+[(2m) /15R k* sin 6/2]}7

(4.28)
2 ~ 2 2
+ 2.53 x 10 k*R (0.4 Awf/AwB )

where the first term includes the effects of transit time and
turbulence broadening respectively and the second term is the
effect of the photodetection noise from equation (4.25). The

parameter R is defined by

2 —
R = 2nU /vwO = UA/v2sin 6/2 (4.29)

Physically, R is just a Reynolds number based on the smallest length
that can be resolved iﬁ the mean flow direction; if the crests of
the light waves (wave length 1) make an angle 6/2 with the direction
of mean flow, then A/2 sin 6/2 is the smallest length that can be

resolved in that direction.
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If we ignore the contribution of the noise, the lowest
ambiguity spectral level (highest cutoff frequency ao) is
obtained when the contributions of the turbulence and the transit
time are equal; from (4.28) the optimum cutoff wave number is
then

~

_ . -1/2
,crit, = 1-27(R sin 6/2) (4.30)

Thus the lowest ambiguity spectral height for fixed R and 6 is
given by
~ 2 3/

_ 2 1/2
Fll(ko) = 4.27 x 10 © R~ /(sin 8/2) (4.31)

This equation implicitly determines the largest Eo (the wave
number of unity turbulence to ambiguity spectrum) that can be
obtained for fixed R and 6.

The ambiguity spectral levels from equation (4.28) are shown
in Figures (8) and (9). Figure (8) shows the relative effect of
the photodetection noise as a function of 8//—55;735'. Figure (9)
demonstrates the combined effects of the finite transit time and

turbulence broadening as a function of i*/ﬂ* for R = 1.0,

crit.
sin 6/2 = 0.1,
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Figure 8: Relative Influence of the Electronic Noise on

the Ambiguity Spectrum.
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The optimum spectra from equation (4.31) are shown in
Figure (10) for several values of R1 = R/ (sin 6/2)1/3. Pao's
spectrum for the turbulence has also been plotted; Eo is
determined by the intersection of the turbulence and ambiguity
spectra.

Finally, Figure (11) shows io (unity turbulence spectrum
to ambiguity spectrum) as a function of Rl' io is determined
implicitly by equation (4.31) and Pao's spectrum has been used
for Fll(ko). ) s

From Figure (11) it can be seen that for k0 = 1, R(sin 6/2)
= 0.10. With typical values of A = 6.3 x 107> cm., v = 107°

2

cm /sec (corresponding to measurements in water) and

2 sin 6/2 = 0.2 we have

U ~ 1.5 cm/sec

Relaxation of the resolution requirements to io = 0.1
increases the permissible mean velocity U by about two orders
of magnitude. It should be remembered, however, that the io
determined from equation (4.28) is actually quite conservative
since a turbulence/ambiguity ratio of unity does not permit

accurate determination of the spectrum.
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From Figure (10) it can be seen that for io ~ 1, the
spectrum begins to deviate perceptably at about Eo ~0.5. A
certain amount of subtraction of the ambiguity can be done
since it is uncorrelated with the turbulence.

The situation might be improved somewhat by increasing the
mean Doppler frequency 65 which corresponds to increasing the
scattering angle 6. Unfortunately, forward scattering is much
more efficient and it is difficult in practice to achieve a
suitable Doppler signal when 2 sin 6/2 is much above 0.7.

Additional problems may arise from the electronics as higher

frequencies are used.

4.6 Intensity Measurements and Higher Onden Statistics

From the form of n(a) and from Appendix (2), the mean square
value of é is infinite. This value in practice is finite because
of the low-pass filtering introduced by the detection process;
however, considerable contamination of intensity measurements
from the instantaneous signal may result‘because of the wide band
nature of $. Clearly this effect will also be present and perhaps
even dominant in attempts to measure higher order statistics such

as skewness and kurtosis.
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4.7 Two-Point Velocity Corrnelations

Two-point velocity correlations may be performed using two
independent Laser-Doppler Velocimeters. From equation (4.4) it
is clear that as long as the scattering volumes do not overlap,
the Doppler ambiguity induced phase fluctuations are uncorrelated
between the two signals; consequently, only velocity correlations

are obtained, i.e.,

w w
(o} o

W@ L, @, () @)

(1)

= W w (2

o u, (4.32)

(E’oz/ﬁz) u(l)u(z)

where (1) and (2) denote the signals from the two velocimeters.
This is consistent with the observations of Clarke (1970) who
successfully measured velocity correlations in turbulent pipe flow
by using two velocimeters.

It has been suggested (Morton (1970)) that the phase

fluctuations from two velocimeters looking at the same scattering
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volume might be uncorrelated if the velocimeters were placed at
different angles to the flow (i.e., rotated about the axis defined
by the mean flow direction) because the phases for individual
particles would be different. An examination of equations (4.3)
and (4.4) reveals that the phase of a scattering particle depends
only on the x-coordinate which is the same for each velocimeter.
Thus, while the correlation may not be unity because of the
possibly different amplitudes associated with each particle, it

clearly will be finite if the scattering volumes indeed overlap.

4.8 Summary

The effect of the Doppler ambiguity on attempts to measure
turbulence has been examined. The ambiguity was seen to arise
from the finite transit time of particles through the séattering
volume as well as from velocity gradients across the beam. The
additional random phase fluctuations due to electronic noise
were‘also considered.

The random phase fluctuations were seen to influence spectral
measurements at all frequencies, as well as providing a major

source of error in attempts to measure the higher order statistics of
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the turbulence. Criteria for minimizing the Doppler ambiguity
were established. In Chapter 7, we shall examine these criteria

in conjunction with the resolution criteria of Chapter 3.



5  EXPERIMENTAL APPARATUS

5.1 Intrnoduction

This chapter attempts to briefly describe the apparatus used
in obtaining the experimental results which are presented in
Chapter 6. Included are descriptions of the optics, the heterodyne

receiver, the flow facility, and the signal processing units.

5.2 The Optical System

The optical system used in these experiments is of the type
proposed by Goldstein and is shown in Figure (12). The system
was chosen for its simplicity and for the ease with which it could
be aligned.

The source of radiation was a nominal 50 mw. Ne-He Laser
(Spectra-Physics Model 125); the actual output was closer to 90 mw.
The beam was vertically polarized and of Gaussian cross-section.
The distance between the l/e2 points of intensity was about 2 mm.

and the divergence angle was less than 0.7 millirad.
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The beam was split into the reference and scattered beams
by means of a polarized beamsplitter which passed only
horizontally polarized light. By rotating the plane of polari-
zation of the incoming light with a polarization rotator
(Spectra-Physics Model 310), the relative intensity of the two
beams could be adjusted for the optimum signal strength. A
second polarization rotator served to return the horizontally
polarized beam to vertical since the scattering intensity is
maximized when the polarization of the light is perpendicular
to the plane of scattering (which in our case was horizontal).

The two beams were focused to the desired region in the
flow with spherical lenses obtained from Ealing Optical. Since
the f-number based on beam diameter in our experiments ranged
from 50 to 1000, aberations were negligible and the lense; were
diffraction limited to a high approximation. Precise alignment
was afforded by micrometer mirror mounts (Oriel Model 145) in the
reference and scattered beams.

The entire optical system rested on a 700 1lb. concrete
table supported by four viscoelastic sandwich pads. This arrange-
ment served to minimize vibrations to the point where no realign-

ment of the optics was necessary over run periods up to three

hours.
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The test section was circular in cross-section and con-
structed of plexiglass tubing. To minimize the lens effect of
the test section, an optically flat box was placed around the
test section and filled with water so as to provide an approxi-
mately constant index of refraction. No additional optical
filters or apertures were present between the flow and the

photodiode.

5.3 The Scattering Agent

Because of the large quantity of scattering particles
necessary for a 1000 gallon facility, an inexpensive supply was
necessary. Homogenized milk in concentrations of about 1: 2000
was found to provide an excellent signal-to-noise ratio. From
Clayton, the average fat particle size is approximately 0.3 microns
with about 101‘+ particles per liter of milk. The primary dis-
advantage of milk was, of course, the necessity of frequently

draining the facility.

5.4 The Optical Receiver

The heart of the receiver package was an EG § G Model SDG-040A
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photodiode (surface area ~ 0.1 cmz). This was chosen because
of its high quantum efficiency (~ 50%) and low cost (~ $15.00).
The photodiode was biased at 90 v. with standard mercury cells.
The noise was primarily due to the input noise from the first
amplifier stage; this represented a distinct improvement over
previous attempts to use a photomultiplier tube where because
of the much lower quantum efficiency the noise was predominantly
photon shot noise from the reference beam. With utilization of
the latest avalanche and combination diodes, the noise in our
setup could probably have been reduced to the shot noise limit,
but this was not deemed necessary.

The photodiode was followed by a single broadband amplifier
having a gain of 12, a tunable bandpass filter (250 to 700 kHz)
with a bandwidth of about 10%, and an infinite clipper (gain
~ 140 db.) which effectively removed all the amplitude information.
Signal-to-noise ratios measured after the filter by blocking the

scattering beam typically ranged from 10 to 50.

5.5 Frequency-to-Voltage Converton

The frequency-to-voltage convertor, together with the optical
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receiver package, is shown in Figure (13). The F-to-V convertor
was constructed from standard Honeywell 5 mc¢. microcircuits
(u-PACS) along with a -60 db/octave Butterworth low pass filter
(Wyngaard, et al (1967)). The response was linear to inputs

between 8 kHz and 1 MHz to within 3%.

5.6 The Flow Facility

The facility used in these experiments is shown diagram-
matically in Figure (14). It is essentially a closed circuit
water tunnel with a 1.7 inch I.D. circular test section. The
flow passes from a 1000 gallon reservoir into a 12' diameter
by 30" long settling chamber. From the settling chamber the
flow enters the test section through a 36:1 contraction. ‘The
flow is pulled through the test section by a pump which permits
flow rates up to 10 meters per second; the flow rate is controlled
by varying the pump speed or by adjusting the valve in the return
system. The mean flow rate shows negligible drift over periods
up to an hour and the root mean square velocity fluctuation with

no grid is less than 0.2% of the mean flow rate.
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The flow could be made turbulent by means of a grid inserted
at the end of the contraction. The grid was of biplane design
and was constructed of #19 hypodermic needle tubing. The bar
spacing was 0.1 "; this corresponded to a solidity of 0.32 which
was close to that used by other investigators of homogeneous

turbulent flows (c.f. Corrsin, et al (1966)).

5.7 The Measurement o4 Mean FLow Rate

Mean flow velocities were measured with a Potter flowmeter
(Model 1-5550) which was installed after the test section. The
meter produced a signal whose frequency was proportional to the
mean flow rate. The frequency of the flowmeter output was
monitored with a counter and flow rates were read from the
calibration curve which was linear over the range of velocities

used.

5.8 The Measwiement of Spectra

A block diagram of the spectral measuring equipment is shown

in Figure (15). The amplitude-modulated signal from the detector
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of the Laser-Doppler Velocimeter was fed into a Hewlett-Packard
Model (302A) Wave Analyzer (equivalent noise bandwidth 6 cps.).
The internal 100 kHz carrier from the wave analyzer was squared
by a Ballantine true r.m.s. voltmeter (Model 320A) and then
integrated for 60 seconds by an analog integrator which yielded
a D.C. output proportional to the spectral height.

The system was calibrated with a random noise generator
(Scott Model 811A) as shown also in Figure (15). The spectrally
white output from the generator was filtered by a 6 db/octave low
pass filter and the height of the spectrum for some frequency well
below the filter cutoff was measured. It is not difficult to show
that if fo is the frequency of the 3 db. point of the filter, ;E
is the mean square value of the filtered output from the noise
generator, A is the true spectral height, and Ameas is the measured

spectral height, then

A = CA = &
meas wfo

where C is the calibration constant.
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5.9 Experimental Erron

If it is assumed that the experimental error is due primarily
to the fact that we are taking a finite sample of a random signal,
we may estimate the error if we assume that the input is Gaussian.
The error E, defined by the root mean square fluctuation from the
expected value, for spectral measurements is given by Lumley (1964)

as

2
E = V2 /TAf

where Af is the bandwidth of the analyzer and T is the averaging
time. Using a Af of 6 cps. and an integration time of 60 seconds,

we have

ey
i}

Y2 /60 x 6

or

E = 0.06

Thus the spectral measurements may be believed to about 6%.
Since the spectral calibration described earlier has the same
level of confidence, a reasonable estimate of the overall error

would not be worse than 12%.



6  EXPERIMENTAL RESULTS

6.1 Introduction

Spectral measurements were taken in both laminar and turbulent
flow in water in an attempt to identify the separate effects of
finite particle transit time and the turbulent fluctuations across
the beam. 1In all cases the effect of the noise was less than 1%.

The flow velocities varied from 70-100 cm/s and the Doppler
beat frequencies from 250-650 kHz. This corresponded to values of

R from about 1 to 3.

6.2 Laminarn Flow

Figure (16) shows measured spectra in laminar flow. The
measurements were non-dimensionalized by a nominal value of
v = 10'2 cm2/s and the cutoff wave number k* (since without
turbulence there is no n) which was computed from equations (2.15)
and (3.5). The dependence of the height of the ambiguity spectrum

on the transit time (l/k*ﬁ) is clearly shown in Figure (17) which

plots spectral height as a function of k_ . Agreement with theory
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is seen to be within 10% although one set of measurements in
Figure (17) is seen to be consistently low (about 10-15%).

This would not be considered significant were it not for the
fact that measurements in turbulent flow show about the same

discrepancy.

6.3 Tuwibulent Flow

The measurements in turbulent flow were taken at 45 mesh
lengths behind the grid where the turbuleﬁce is approximately
isotropic. Spectra were non-dimensionalized by v and the rate
of dissipation ¢ determined from the measured decrease in turbulent
intensity with distance from the grid. The intensity measurements
were taken with a hot-film anemometer because of the high ambiguity
to turbulence ratio in such a low intensity flow.

‘fA typical turbulence spectrum is shown in Figure (18). The
measured spectral values are seen to approach a constant value
and then to drop slowly; the constant value is within 10% of that
predicted theoretically and the slow drop-off seems to begin at
about the wave number corresponding to o ~ Aw as predicted. The

constant value was subtracted from the measured spectral values;
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the result is seen to be close to Pao's spectrum although about
10% above it. The error may be due to an error in the calibration
of the measurements.

Corrected spectral measurements for six different values of
ﬂ* are shown in Figure (19). The smallest value of E* used (0.55)
corresponds to a value of ﬁ* = 0.08. C(Clearly, as expected from
the analysis of Chapter 3, this set of measurements shows con-
siderable attenuation (~ 50%) at all wave numbers. Because of the
low Reynolds number (deviation from Pao's spectrum at low wave
numbers) and the large error at high wave numbers, it was not
possible to perform an accurate check on the transfer function
given in Chapter 3.

Figure (20) shows the measured ambiguity spectral height
(determined from the asymptotic values of the turbulent spectra)
as a function of i*/ﬁ*

where k*c is computed from equation

crit Tit
(4.30). The asymptotic theory is nof applicable here because of the
relatively small values of ﬁ*. Likewise, the turbulent bandwidth
computed from Pao's spectrum is too high since it is clear from

the measured spectra that the velocity fluctuations at low wave
numbers are overestimated. The transverse spectrum F22(k2) was

computed from the measured longitudinal spectrum Fll(kl) and this

was used in equation (3.24) to compute the turbulent bandwidth AwT.
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The measured values lie within 15% of the theoretical curve, but

as in the case of the laminar measurements; seem to lie consistently
below it. The fact that this trend seems consistent indicates that
the theoretical constant computed in Appendix 2 may be about 10%
high. This would not be surprising in view of the approximations

used in evaluating the spectral height.

6.4 The Electronic Noise

The effect of the electronic noise on the height of the
ambiguity spectrum was measured by varying the signal-to-noise
ratio 8. This was accomplished by means of a polaroid filter in
the scattering beam which could be rotated to provide the.desired
reduction in the signal-to-noise ratio. The asymptotic values of
the spectral height at large signal-to-noise ratios were sﬁbtracted
from the measured values; the ratio of the amount of increase of
the ambiguity height to the asymptotic value is shown in Figure (21)
as a function of B/VN for two different values of N = Awf/Aw. When
g/VN > 2, the measurements are seen to lie within 10% of the
theoretical curve given in equation (4.25). The deviation at
B/VN < 2 is not surprising since the theoretical assumptions are

no longer satisfied.
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6.5 Conclusions

The measurements taken in both laminar and turbulent flow
agree with theory to within the experimental error. Trends in
the data, nevertheless, seem to indicate that the theoretical
prediction may be about 10% too high. However, since there are
no adjustable constants in either theory or experiment, these
results must be regarded as conclusive and the theory sub-

stantially correct.



7 SUMMARY AND CONCLUSTIONS

7.1 Review o4 Results

The limitations on the use of a Laser-Doppler Velocimeter in
the measurement of turbulence have been explored theoretically
and experimentally.

The relationship between the size of fhe scattering volume
and the resolution of the velocimeter was explored in Chapter 3
and criteria for accurate measurement were established; briefly,
it was found that the turbulent fluctuations of wave number larger
than the cutoff wave number associated with the largest dimension
of the scattering volume were seriously attenuated.

The influence of the Doppler ambiguity on the measurement of
spectra and other statistical quantities was examined and an exact
theory for the spectrum of the random phase fluctuations was
established. The Doppler ambiguity was seen to arise from the
finite transit time of particles through the scattering volume,
velocity fluctuations across the volume, and electronic noise, as
well as velocity gradients and receiver aperture. The spectrum

of the phase fluctuations was seen to be experimentally white
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and proportional in height to the bandwidth of the Doppler
ambiguity. Criteria for minimizing the height of the ambiguity
spectrum were established and a critical scattering volume cutoff

wave number for minimization was given as

serit 1.27 (R sin 6/2) (7.1)

2 ~
where R = 27U /vwo and where k* is the dimensionless cutoff wave
number associated with that dimension of the scattering volume in

the direction of the mean flow (see equation (3.5)).

7.2 The Measurement of Spectra

We must discuss the relationship between the resolution criteria
and the criteria for minimizing the Doppler ambiguity.

For small scattering angles, the wave number associated with
the largest dimension of the scattering volume, m,, is related to

k* by

sin(8/2)

Y (7)) 7-2)
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Using (7.1) we have

~ o sin(6/2) . (sin 6/2) .%
Meerit = Meritl Gsarzy 1 © 17 [—x—=1" (7.3

We saw in Chapter 3 that ﬁ* determines the half power point
of the spectral transfer function; that is, the wave number at
which the measured spectrum is attenuated by 50%. Clearly ﬁ*crit
determines the half-power point when the scattering volume is
chosen for minimum Doppler ambiguity. Figure (22) shows a combined
plot of, first, the wave number at which the turbulence to
ambiguity ratio is unity and, second, the wave number of half
power attenuation to which the spectrum may be corrected by
subtracting the ambiguity (sin 6/2 has been chosen as 0.145).

By choosing values of i* greater than i*crit the half-power
attenuation may be moved to as high a wave number as we please;
however, the Doppler ambiguity will be sharply increased as will
the error involved in obtaining the corrected spectral values.

To summarize the above comments into a practical plan for

research: 1in all but the most unusual circumstances, the size

of the scattering volume should be determined by (7.1) for
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minimum ambiguity; the spectral values obtained should then be
corrected by subtracting the Doppler ambiguity; and finally,
the corrected values should be multiplied by the inverse transfer

function Fll(kl)/Fo(kl) to determine the true spectrum.

7.3 Possible Alternatives gforn Spectral Measurement

It has been suggested by some investigators that the Doppler
ambiguity might be eliminated by using a frequency-tracking device.
A frequency-tracker basically averages the product of the signal
and a local oscillator, adjusting the local oscillator frequency
to minimize the mean product. It is thus seen to be equivalent
to a filter, operating on the input slewing rate, the filter
characteristic being determined by the loop gain and the averaging
characteristic. If the slewing rate of the phase fluctuations due
to the Doppler ambiguity é were significantly different from the
slewing rate of the turbulence Wys the averaging time of the
frequency-tracker might be adjusted to average out the ambiguity
fluctuations. Unfortunately, this attractive possibility does not
correspond to reality; an examination of the spectra reveals that

the slewing rates of the ambiguity and turbulence are quite similar



and thus indistinguishable on the basis of second order statistics.
Clearly the frequency tracker can remove the Doppler ambiguity
only by also removing some of the turbulence.

It was pointed out in Chapter 4 that two-point correlations
may be performed by using two velocimeters since the Doppler
ambiguity is uncorrelated if the scattering volumes do not overlap.
If sufficient accuracy in determining the spectrum is not obtainable
using the procedure suggested above, we may use two velocimeters
whose scattering volumes are very close to each other - say within
the turbulence microscale - although not overlapping; Figure (23)
shows a possible configuration. After performing time correlations
between the two outputs, we may obtain the spectrum by Fourier
transforming the correlation. Since the Doppler ambiguity is
uncorrelated between the two velocimeters and since the velocimeters
are essentially sampling the same velocity fluctuation, the measured
correlation is simply the correlation of the turbulence alone as is
the resulting spectrum. Clearly, the spectrum can only be resolved
to scales corresponding to the separation between the scattering
volumes. This method of measuring spectra suffers from several
obvious disadvantages: it requires two velocimeters instead of one,
it requires very careful aligmment to avoid overlapping end cross-
talk, and considerable added effort is necessary to correlate and

transform the outputs.
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7.4 Conclusions

The influence of the Doppler ambiguity, together with the
problems of resolution, have been shown to provide major
limitations on the use of the Laser-Doppler Velocimeter in the
measurement of turbulence.

It should be noted that these limitations apply to all
Doppler Velocimeters regardless of the incident radiation.
Table I shows an estimate of the dimensionless wave number
at which the turbulence to ambiguity ratio is unity for a
number of different applications. These estimates show that
the possibility of measuring dissipation spectra in high speed
or in geophysical flows using Doppler Velocimeters is quite

remote.
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APPENDIX 1

*
Al The Inverse Propagation Convolution

We have from equation (2.9) that

*

iS (t) = N gf us(x,yd,z,t) u, (x,yd,z)dxdz (A1.1)

P

If we define the two-dimensional Fourier transform over x and z

2

we may write

as(h,z,yd,t) F.T. {us(x,yd,z,t)} (A1.2)

ar(h,z,yd) F.T. {u (x,y4,2)} (A1.3)

From Goodman we may write

*
This analysis is a slightly revised form of Mayo (1970) and
has been included here for completeness.
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2 2
H(ke,ay) = el @mY/N) DMy (R +£ /4]

as the transfer function for the Fresnel approximation of

paraxial propagation over the distance Ay. Thus

O, (e, &y+y) = G (k,Ly) Hk,L,by)
If we let
y = Yp
b= yg -
y + by =y,

we have

Ul by = G G,Ly ) HE, Ly oY)

(Al.4)

(A1.5)

(A1.6)
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or

G (kL)) = 4 (elhyy) B (R Ly gy ) (AL.7)

Using (Al.4) it is clear that
~ ¥ . X ~
up (Roloyn) = up (kLyy) Hik Ly -y) (A1.8)

Transforming back to space coordinates we have

* *

u oy = ow (v @ heoygy,o) (AL.9)

wherfrc>defines a convolution over x and z and where

h(x,y,z) = F.T.‘l{H(h,K,y)}

(A1.10)
. : 2 2
- I 2my/A ) nx 2 )y
Jry



-97-

(Al1.9) defines the inverse propagation convolution of

ur(x,yd,z) and may be written as

*( - ejZW(Yd-Yp)/K ] f? *( )
u X Y »Z = _ u X,Yd:z
ToPTRR gy —eo T

(A1.11)

) 2 2
AT Gxp) "+ (2-2) 1A gy

But this is precisely the form of equation (2.11) and thus

equation (2.12) is valid.



APPENDIX 2

AZ  Bvaluation of n{a), The Spectrum o4 the Phase Fluctuations

A2.1 Introduction

The goal of this section is to determine analytically the
spectrum of the random phase fluctuations.

This analysis is essentially the same as that used by
Lumley (1969) with minor changes resulting in an improved estimate
of the spectral height. The analysis has also been extended to
include the effects of turbulent broadening (see Chapter 3) and
photodetection noise, as well as the random phase fluctuations
introduced by the finite transit time of particles through the

beam.

AZ.2  The Doppler Signat

It was shown in Chapter (4) that the net signal from the

scattering particles could be represented as

1(t) = F(t) cos ujt + G(t) sin ut (A2.1)
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where

2 2 2 2 2 2
F(t)=lre L (Xg*ut) /20 J+(y /20 )+(z,/20 )}
X

cos[w try (x ) ]dE(x))
(A2.2)

2 2 2 2 2 2
6(e)=-1re L (xgrut) /20 140y /20 ")+ (2 /20 "))
X

~

sinfu t+y(x,) 1dE (x,)

(A2.3)

! 0, %o ? 50'
de(x)de(x ) = , (A2.4)
dx , x =X

~0° ~0 ~0

and where w, represents the instantaneous spatially averaged Doppler
beat frequency while w represents the local deviations from W,
within the scattering volume.

If we assume the turbulence to be frozen in time as it is
swept through the scattering volume, since d€(§o) is statistically
independent at different times, F and G are identically distributed

Gaussian random variables. Their correlation is given by

— 0, 2 2 2 2 2 2 _ _ 2
F()F(t )=I / fffe_{(x /c1 Y+ (y /o2 )+ (z /o3 )}e-{UT(2x+UT)/201 }
w X

(A2.5)

cos[wt+y(x)]cos[y(x)]dxdydzP (w)dw

1 1
where T = t - t; a similar expression exists for G(t)G(t ).
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If the probability density of the turbulence is very nearly
2
Gaussian with variance (AwT) which was computed in Chapter (3),
we take

2 2
-w /2(AwT)

P(w) = (1/v 27 AwT) e (A2.6)

Substituting (A2.6) into (A2.5) and neglecting terms of

i
order (Aw/wo) since the bandwidth is assumed small, we have

1 2 t 2
pD(T) = FF /F = GG /G
(A2.7)
‘ 2 2
~ e—(Aw) T /2
where
2
(Aw) = (AwL) + (AwT)
(A2.8)

As explained in Chapter (4), AwL is the bandwidth introduced by the

finite transit time of particles through the beam.
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A2.3  The Effect 0§ ELectronic Noise

In addition to the Doppler signal, electronic noise arising
from the detection process may also be present. To enhance the
signal-to-noise ratio the Doppler signal and noise are usually
passed through a band-pass filter.

It is shown in Appendix (3) that the noise may be represented

k%
by

f(t)coswot + g(t)sinmot (A2.9)

f and g are identically distributed Gaussian random variables; if
we take the filter shape to be Gaussian for convenience, the

correlation is given by

—_ — 2
T 2 A -
- e (Awa) /2

og(0) = £ff /£ = gg'/g (A2.10)

where Awf is the filter half-width and where it has been assumed

*%
This representation is well-known for the case where 0y is
fixed at the center frequency of the filter. Appendix (3)
justifies the use of a fluctuating center frequency.
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12 2
that Wy /(Awf) << 1 (this must always be true if the turbulence
is not to be seriously attenuated by the filter).

Hence the total electronic signal may be represented by

5(t) = (F+ flecosut + (G + g)sinu t (A2.11)

Since F,G and f,g are statistically independent Gaussian variables,

so are F+f and G+g with correlation

' 2 t 2
p(1) = (F+£) (F+f) /(F+f) = (G+g)(G+g) /(G+g)
(A2.12)
2 2 2
oTp(T) = op pD(T) *+ Oy pN(T)

2 2

where 9 is the mean square Doppler signal, oy is the mean square

noise measured after the filter, and where

op = © + O (A2.13)

since the Doppler signal and noise are statistically independent

and thus their variances are additive.
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A2.4  Instantaneous Velocity Measurements

The total signal S(t) may be written as

S(t) = [(F+f)2 + (G+g)2]7/2 cos (w_t-¢) (A2.14)
where

o = tan '{ (G+g)/ (F+£)} (A2.15)

The usual sort of measuring circuit removes the amplitude informa-
tion by amplifying and clipping, keeping only information on the

zero crossings, and produces a signal proportional to frequency

w = o - d¢/dt (A2.16)

It was shown in Chapter (4) that since W, and ¢ are uncorrelated,

the spectrum of this signal is given by

(Egz/ﬁﬁ)Fo(a/ﬁﬁ + n(a) (A2.17)

where Fo is the spectrum of Wy which is related to the turbulence
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spectrum (see Chapter (3)) and n(a) is the spectrum of the phase

fluctuations and is given by

nG) = (1/21) £ 6(t)6(t+1) e ®Tdr (A2.18)
The value of n(a) at the origin is then
® 2
n(o) = (1/2w) S ¢¢ dt = (1/2m)d¢ /dt (A2.19)

If we let F+f and G+g represent the coordinates of a point in the
x-y plane, fhe point moves in such a way that it has a circularly
symmetric distribution since F+f and G+g are identically distributed
Gaussian variables. ¢ is the angle subtended by the radius vector
to the point and the x-axis. Since as time passes it becomes more
and more likely that ¢ will have made one or more revolutions about
the origin, ¢ is non-stationary and, theréfore, n{o) is non-zero.
The situation described here is a bit more complex than in
Chapter (4) due to the introduction of the noise; nevertheless,

the fact that F+f and G+g are identically distributed Gaussian



-105-

variables will permit an evaluation of n(o) as well as yielding

the shape of n(a).

From the geometrical representation of F+f and G+g and by

differentiating (A2.15) we have

(A2.20)
(F+f) (Gtg) -  (Gtg) (F+£)
(F+£)° + (Grg)?

where r is the radius vector to the point and V¢ is the azimuthal
velocity. It is easy to show that v¢ and r are statistically
independent. Since the distribution has circular symmetry, we may
consider the joint distribution of v, and r where ¢ = 0. Then

¢
Ve = G+ gandr=F + f and they are independent. Thus

Ve (£) V(t )
r(t)r(t')

E{

E{$(t)$(t')}

(A2.21)

11 !
E{;-;w}E{v¢v¢ }
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where E{} will be used hereafter to denote the expected value;

also

Hence

E{rv¢r Vs } = E{rr } E{v¢v¢ } (A2.22)

] 1
E{rv,rv, }

cey
E{¢p } = —2 ¢ E{%%.} (A2.23)
E{rr }
For convenience we will define

a = F+ f
(A2.24)

b = G+g

Then using (A2.20)
. .o .y

E{rv¢r'v¢ } = E{(ab-ba) (ab-ba) } (A2.25)

Since a and b are Gaussian and statistically independent
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E{aﬁalﬁ'} = E{aa'} E{BB'}

Efaa'} 5 /3tst’ E{b(t)b(t')}

= (A2.26)
L 2 2
= -0 p 3 p/dT
. ! 1
since T =t - t, 3/0t = - 3/37 and 3/3t = 3/d91. Similarly
R A b 2
E{abb a } = - o (8p/31) (A2.27)
LN L 2
E{baa b } = - ¢ (3p/0371) (A2.28)
LI L 2 2 .
E{bab a } = - o0 p 5 p/d1 (A2.29)
Collecting and substituting into (A2.25), we have
cey L ' "
E{gp } = 202 00 ) gy %—%w } (A2.30)
E{rr }
1 " 2 2 R
where p = 9p/91, p = 3 p/3T . We need only find the joint
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1
probability density for r and r to evaluate (A2.30) in terms

of known parameters.

2
A2.5 Evaluation of ¢

Since a and b are Gaussian and independent we may immediately
*
write their joint distribution; that is ,

Prob {c < a < c+de, d < b < d+dd}

(A2.31)

2 2 2 2
= (1/2m0 )Yexp{-(c +d )/20 }dcdd

Transforming to polar coordinates and averaging over 6 we obtain

the probability distribution for r(t)

Prob {z < r(t) < z + dz}

(A2.32)
2

2
-z /20 zdz

2
= (1/o0 )e

* 2
We will drop the subscript T from op and use o for the mean

square Doppler signal plus noise since there is no danger of
confusion with the beam diameter defined by (2.15).
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It is straightforward to show that

2 2
2 2 *° 3 _ 2
E{r } = (1/0 ) f 2z e 2729 4z = 26 (A2.33)
(o]
However,
11 2.% 4 e
E{ ;»;-} = (1/c) f z e dz = » (A2.34)

o

2 Caran
Hence from (A2.23), ¢ = » and thus ¢¢ is singular at the origin.

This behavior is not surprising: since v, and r are independent,

¢

the same values of v¢ may occur for small r as for large r; hence

very large values of v, may occur when r is small.

¢

o
Because of the singularity at the origin of ¢¢ , we may expect

the spectrum of n(a) to be very broad - the behavior at infinity

will depend on the type of singularity.

AZ.6  The Joint Probability Density fon x and #

' .
Since a and a are jointly Gaussian with correlation p we

may write
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Prob {c < a < c+dc, d i.a' < d+dd}

(A2.35)

2 2 2 2 2
= (1/2m0 vV 1-p?)exp{-(c -2cdp+d )/20 (1-p )}dedd

The probability distribution for b and b' is identical to (A2.35)
and since a and b are statistically independent, the joint

1 t
probability distribution for a, a , b, b is the product of the

individual distributions; that is,

1
c<a<c+dc, d<a <d+dd

Prob { . }
e<b<e+de  f<b <f+df
" (A2.36)
c<a<c+dc e<b<e+de
= Prob { } -+ Prob { ' }
d<a'<d+dd f<b'<f+df
By making the following coordinate transformations
2 2 2 2 2 12
c +e =7 d +f =71
1
c =71 cos 9 d=1 cos ¢ (A2.37)

0]
fl
H
9]
[
=
<@
’-h
[}
=
wn
—d
=]
<
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and noting that

dedddedf -+ rr drdr dedy

1
we obtain the joint probability density for r,r ,8,y as

' 2 4 2 . 2 19 1 2 2
P(r,r ,6,y)=[1/4m o (1-p )Y]exp{-[r +r "-2orr cos(6-y)]/20 (1-p )}

(A2.38)

By letting o = 8, B = ¢y - 6 and integrating over o and B we

1
obtain the joint probability density for r and r

, Y 5 2 2 2 z"w . T 5
P(r,r )={1/2nc (1-p )]e'(r +r  )/20 (1-p )rr re (PTT cosB)/o (1-p )dB

-0

(A2.39)

From Gray, this last integral may be immediately identified as
v 2 2
2ﬂIo[prr /o (1-p )] where Io is a modified Bessel function of the

second kind. Hence

e ety e @ T )/20 (1o ) t 2t
P(r,r )=[1/0c (1-p )]e & *F ° Jrr Io{prr /o (1-p )}

(A2.40)
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t
We are now in a position to evaluate E{rr } and E{%—%J}.

A2.7  Asympitotic Forms of Io(x)

Anticipating difficulty in evaluating integrals involving

Io(x) we note the following asymptotic forms:

Io(x) = 1; x-=>o0 (A2.41)

I(x) = &/ 2rx ; x > (A2.42)

v 2 2
In our case x = prr /o (1-p ); clearly p - o corresponds to

X > o and p > 1 corresponds to x - =,

11

!
A2.§ Evaluation of E{rn } and E{Z-Zq}
Using (A2.40) we have
1 atet 1! 1 '
E{rr } = S/ rr P(r,r )drdr

0o
(A2.43)

000 2 12 2 2
=[l/cu(l—pz)]ff(rr')ze—(r o )/20 (1-p )Io{prr'/cz(l—pz)}drdr
00
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and

t 1]
E{-%4} =[S %—%w P(r,r )drdr
(A2.44)

Y 5 wo 2 12 2 2 .2 2 .
=[1/0 (1-p )]ffe_(r T )/20 (1-p )Io{prr /o (1-p )}drdr
00

We shall evaluate this in two pieces - in the limits as p - 1
and p ~ o; then we shall use these asymptotic forms in the
evaluation of n(o).

Using the asymptotic forms of IO in (A2.41) and (A2.42) it

is straightforward to obtain

[ 2
E{rr }|p >0 = o w/2 (A2.45)
1 2
E{rr }|p > 1 = 209 (A2.46)
E{l-lw}|p >0 = ﬂ/202 (A2.47)
rTr

E{%-%w}|p > 1 is quite complicated, however, and is given by
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-% —r'2/20 d(r/c)e (r-p7) /20 (1-p )
e

2 % ]
(1/c ) (x /o)
0 0 [2m(1-p )(r /0)]/

}d(r'/c)

(A2.48)

It is shown in Appendix (4) that the inner integral may be

approximated by

p——

/ t
0.862// 1-p2 when opr < 1.35/)1—p2 e}

, .
v o/Y pr" when opr > 1.35/ 1-p2 *0o

Using (A2.49) and (A2.50) in (A2.48) we find

2 w -t
BL 2, = ooz s dEE
0.91(1-p2)
Y

]

A2.9  The Shape of the Spectrum

(A2.49)

(A2.50)

(A2.51)

» 1
It was previously concluded that since ¢¢ was singular,

the spectrum would be very broad - the shape depending on the

type of singularity. From (A2.51) and from the small time

2 2
expansion of p we have for OD /GN >> 1
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? dt e

2
0.91(1-p")
2
p

~  =In(AwT) (A2.52)

Hence the singularity is logarithmic and the spectrum will fall
off as inverse frequency. Since in the case of the Doppler signal
without the noise the spectrum is determined only by Aw, we may
expect the break to occur near o ~ Aw. As was pointed out in
Chapter 4, this is usually beyond the limit of the electronics

and the spectrum is experimentally white with n(a) = n(o) over

the range of measurement.

A2.10 Evaluation of nlo)

From equations (A2.19) and (A2.30)

© b 42 1"
ne) = (/2m s 22le_ee) gl
-0 E{rr }

%v}dT (A2.53)

From equation (A2.12)

2 2

b " L 2 2 L 2
20 (p -ep ) = 20y (Aw) o) + 20y (Bug) ey
(A2.54)

2 2 2 2 2 2 2 2
+ 20N 9, {{(bw) + (Awf) 1 -1 [(Awf) - (bw) ]}
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Substituting into (A2.53) and using the fact that the integrand

of (A2.53)is an even function of T we have

, u(A )2 2

© 20 w) p

() = @/m f —2—D
o E{rr }

E{l —1_| }d=
rr

2 2 2 2 2 2 2 2
® 20y o {[ (Aw) +(dwg) 1-1 [(Awf) - (Mw) ] }prD

+ (/) —— E{L 2i}dt
o E{rr }
, u(A )2 2
© o w o
e(ymy s N £ N E{%—%w} dr
0 E{rr'}

(A2.55)

The first term in equation (A2.55) is clearly the only term
that would be present if there were no noise, while the last term
is the only term that would be present if there were no Doppler
ambiguity; the remaining term is then due to the interaction
between the noise and the ambiguity. We shall call these nD(o),
nI(o), nN(o) for Doppler ambiguity, interaction, and noise

respectively; thus
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n(0) = ny(o) + np(o) + ny (0] (A2.56)

If we are to now apply the asymptotic forms of E{rr'} and
E{%-%w}, we must decide where to split the integral in 1. We
shall always assume that the signal-to-noise ratio B = OD/GN
greater than unity and that Awf/Aw, the ratio of the filter band-
width to the Doppler bandwidth, is also much larger than unity.
Under these assumptions, the large time behavior of p is dominated
by Pps hence Aw. By expanding p about T = o, it can be shown that
as long as (Awf/AwB)2 << 1 the small time behavior of p is also
dominated by Aw. Therefore, we will split the integrals at
T = 1/Aw: when T > 1/Aw, we will use the p > 0 form for E{rrl}
and E{%—%J}; when 1t < 1/Aw, we will use the p > 1 forms.

2 2 2

Since o = o * Oy and since we have previously assumed that
2

2 2
(OD/GN) >> 1, (A2.55) reveals that nI(o) will be of order Oy /GD
L4
while nN(o) will be of order oy /UD . Hence, we shall ignore the
contribution of nN(o) and will consider only the interaction term

nI (0) .

nD(o) may now be written as
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o 2
() = (/w7 2a) e )

1/Aw
(A2.56)
Vo 2(aum) = gte’
+ (/™) S (Aw) e [2 + % S < ]dt
o 0.91(1-p?)
02
If we take
2 2
Q;QEéELEL;L X (Awt) (A2.57)
P
it is straightforward to show that
nD(o) T (3.14/1) Aw = Aw (A2.58)

Thus the height of the spectrum of the phase fluctuations due to

the Doppler ambiguity alone is just equal to the Doppler bandwidth

Aw.

From equation (A2.55) the contribution of the noise may be

shown to be given by
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N 2 2
(AwaNZ/ﬂGDZ){f{[l+(1/N2)]—x2[1-(1/N2)]2}e_x [1-(1/N )]/2
0

m ate”t
[2 +% f = 1 dx (A2.59)
0.91(1-p2)
2
p

> 2.2 2 2 —x2[1+(1/N2)]/2
+ 2 f {[1+(1/N )]-x [1-(1/N )] }e dx}
N

where

N = Amf/Aw

and where N is assumed much greater than unity. It is not difficult
to show that the second integral in (A2.59) goes to zero exponen-
tially as N. The evaluation of the first integral is straight-

forward, although tedious; to second order in N

2
ny(o) = [0.40 Awf/Bz]{l + (2/N )N - 2.5)} (A2.60)

where as before B = oD/oN.
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Thus to first order in Awf/Aw and oD/cN where we have assumed
2 2 2
that (Awf/Aw) >> 1, (OD/GN) >> 1, and (cNAwf/oDAw) << 1; n(o)

is given by

n(o) = Aw{l + (0.4 Awf/AwBZ)} (A2.61)

If B, the signal-to-noise ratio, is large enough, n(o)

reduces to

n(o) = Aw

which corresponds to the Doppler ambiguity alone.



APPENDIX 3

A3 Representation of the Photodetection Noise

It is well-known (c.f. Rice in Wax) that white noise passed

through a bandpass filter may be represented by

‘fl(t) cos wot + gl(t) sin wot (A3.1)

where R is the center frequency of the filter and fl,g1 are
identically distributed Gaussian random variables. If, for con-
venience, we take the filter to be of Gaussian shape with half-

width Aw,. then

f

1 2 1 2
fl (t)fl(t Y £ = gl(t)gl(t )/g
(A3.2)

2
e-(Awa) /2
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We saw in Chapter 4 that the Doppler signal could be

represented as

F cos wot + G sin wot (A3.3)

where w, was the instantaneous volume averaged Doppler frequency
and F,G were Gaussian random variables. Since the Doppler signal

and the noise are statistically independent, it would be convenient

to write the noise as

f cos wot + g sin wot (A3.4)

where f and g were identically distributed Gaussian random

variables. Then we could write the signal plus noise as

(F + £) cos wot + (G + g) sin wot (A3.5)

where F+f and G+g would be identically distributed Gaussian

variables.
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From the definition of fl,g1 and the fact that in reality

w,t is correctly written as

wt + © where wol = (do/dt)

the f and g of (A3.4) must be given by

H
1}

f cos © - g sin O
1 1

o
1}

g1 cos O + f1 sin ©

(A3.6)

(A3.7)

(A3.8)

If the representation of (A3.4) is to be useful to us we

must establish that the f,g defined by (A3.7) and (A3.8) are

Gaussian. The correlations are easily seen to be given by

ff

t 1 1] 1
(f1 cos O - g1 sin O)(fl cos © - g1 sin © )

(A3.9)
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and

!
fg = £ £ sin (6 - 8 ) (A3.10)
1
where © - © 1is given by
t
W, (t)dr (A3.11)

, t
o(t) - oe(t ) = [
t

Clearly

H

t 1 1 1 1
(0(0)-0(t)]° = ff o (1 ' (' )ddr
tl (o] (o]

12t 1 '
= W JI o (t -1)dtdr (A3.12)
(o} t' [0}
12 T x
= 2w0 T/ [1—;ﬂpo(x)dx

o}

where T = t - t and where s is the time correlation of the
1 2
fluctuating Doppler frequency. Since [0-© ] depends only on

1
time differences, © - ©® 1is stationary.
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%
If the turbulent velocities are taken to be Gaussian , we
may compute
t t 2 2 t
cos(0-60 ) = [ cos(0-0 ) ¢ (0-0) /20 d(e-0 )
(A3.13)
12 T
= exp{-wo T S (1-x/1)p (x)dx}
o
2 1 2
where ¢ = [0-0 ] . Similarly it may be shown that
t
sin (06-060) = 0 (A3.14)

To prove that f,g are Gaussian, we need only show that the
characteristic functions of f and g are Gaussian. First we
consider f,g at a single time. Using the fact that @,fl,g1 are

statistically independent it is easy to show that

2 2
K(E sin 0 + g cos 0) _ sk f (A3.15)

Hence f and g are Gaussian at one time.

%
Even if not, equation (A3.11) is asymptotically Gaussian with
appropriate restrictions (c.f. Lumley (1970)).
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Now we consider f and g at different times

———— 2 2 2 2 ! '
. . _1 - - !
elkf+1£g o 5 (k f1 +£ g )f o ka@flf1 cos (6-0 )P(O—@ )d(@-e')

(A3.16)
where
. v 2 2
P-0") = /7T o) e-(e-e ) /2¢ (A3.17)
1
and where we have already integrated over 0+06 . If we let
t
X = 0-0 /o , the integrand of (A3.16) may be written
? 1 2 )
peiAE £ cos ox e oX /2 gy (A3.18)

From (A3.9) and (A3.2) it is clear that we need only concern

ourselves with times of no larger order than 1/Awf. Since the

root mean square of W must of necessity be much less than Awf

if the fluctuations are not to be attenuated by the filter, the

1 2
correlation G falls much more slowly than flf1 /f . Hence for

T ~ 1/Awf
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o = (e-0) - o /(Awf)2 < 1 (A3.19)

Thus o is small.
Expanding the integrand of (A3.18) in powers of ¢ and

neglecting terms of higher order than the second, we have

t
- [ 2
oK £ cosox oy keE £ (0x) /2 (A3.20)

Integrating term by term, it is easy to show that to second order,

the integral of (A3.18) is

t ]
-kif f cos {0-0 )
€ 11

Hence

2

— T 2 2 ' ! 2
. . _1 -
e1kf+ ilg - e %(k fl + ZkI,flf1 cos(0 - 0 ) + £ gl (A3.21)

which was to be proven; thus f,g are Gaussian at two times.
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In summary we have shown that the filtered white noise may

be represented as

f(t) cos wot + g(t) sin w,t (A3.22)

where f,g are identically distributed Gaussian variables as long
12 2
as w_ /(Awf) << 1 and where Wy is the fluctuating Doppler

T ~Z
frequency. The correlation ff /f 1is given by

() = £F/f = gg /g

12 T
T/ [1-x/t] o (x)dx (A3.23)

2
e—(Awa) /2 ™% !

2
~ e—(Awa) /2

This is the form used in Appendix 2.
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A4 Evaluation of the Tntegnal Occurring én ECE 1) as oo

From equation (A2.38) the integral to be evaluated is of

the form

(rx) /2¢"
oo -(r-x 2¢e
1 = 5 & e (A4.1)
0 VT V2T €
1 2 2
where we have x = pr and ¢ =1 - p Clearly as p » 1,

e > 0.

For x # 0, the method of Laplace (Erdélyi) may be used to

give

2
1 -~ L . 3= (A4.2)
VX 8)(5/2
This is valid as long as
2
5€ L, 0 as e > 0 (A4.3)




~130-

Another expansion may be obtained by writing x/e = &, r/e = n

2 2
2
] e o -n /2 w -n /2 2
= Loy dn ) /2. Lypdne L i E—— v 02))
Yare o e o " Von 0 v 2m
(A4.4)
where from Janke and Emde
2/2
_n [o'e]
s s L gt o T2 34 g g
o /o VIm 25/% /i o 25/% /5 0.919
(A4.5)
and
2/2
feo o] c-.n [s o]
[odn/n S = L ot ot g - “/‘/2—/4
o 2n 23/%/7 o 23/4/50.906
(A4.6)

This expansion is valid if

™|
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It is not difficult to show that there is no region of overlap

where both expansions are valid. We may only say that

I ~ 1/Vx, e/x - 0 (A4.7)

s Xx/e - 0 (A4.8)

Values of I in between must be obtained from (A4.4) by exact
calculation.

It is possible to show, however, from (A4.4) that the
maximum value of I is probably no greater than 25% above (A4.8).
Hence to no more than about 10% error, we will approximate the

integral by extending (A4.7) and (A4.8) until they intersect;

thus we take

I = 1/Vx, x > 1.35 (A4.9)

~
| A

1.35 (A4.10)
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Figure 2:

Measured Spectra Computed from Equation (3.13).
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