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the potential éore but with the fourth, fifth and sixth modes
dominating from the center of the mixing layer and outward toward the
low-speed side of the mixing layer. The Reynolds—stress‘azimuthal
correlations and their breakdown into azimuthal modes show that the
incoherent turbulence is transported to the cemter of the coherent
structure as suggested by Hussain (1986). The results are shown to be
consistent with the vortex ring-type instability investigated by
Widnall and Sullivan (1973).

A life-like cycle is proposed for the evolution of coherent
structures in the jet mixing layer which begins with inception of rings
of concentrated vorticity from an instability of the mean flow, then a
vortex—ring type instability arising from the interaction of two
different rings, and finally a cascade of energy to small scales by
vortex breakup and stretching. A view of the orthogonal decomposition
(Lumley 1967, 1970)is proposed in which the large eddy is not
necessarily identified with the lowest order eigenfunction;, but
rather the eigenfunctions define in an optimal manner the evolution in

time and space of large scale vorticity concentrations.
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CHAPTER 1

1.1 Introduction

Qualitative models for the large scale structures in a number of
turbulent flows were formulated by Grant (1958) and Townsend (1956).
These structures were assumed to be responsible for finite correlation
at large lags (i.e. bigger than the integral scale) and to account for
10-20%Z of the total energy. They were believed to be responsible for
intermittency and entrainment but were not believed to be very involved
(at least directly) in the energetics of the flow. Large eddies were
viewed as rather passive contributors to the dynamics of the
turbulence.

In the early 1970°s the turbulence community discovered coherent
structures (v. Crowe and Champagne 1971, Brown and Roshko 1974).
Unlike Townsend’s passive eddies these coherent structures were very
active phenomena. They were visible clearly with flow visualization
where they were seen to pair and explode (v. Hussain and Clark 1981).
Like Townsend’s (1956) big eddies these coherent structures were
responsible for entrainment and mixing. It was alleged that turbulence
could not be modelled, much less understood, without explicitly
accounting for the existence of coherent structures (v. Liepmann (1979)).
Averaging, at least of the conventional form, was consigered outdated
since it smeared out such events. It was.suggested tha£ conditional
averaging was the thing to do (v. Cantwell 1981). This approach has
been extensively exploited over the past decade (v. Hussain 1986).

Where has this approach taken us? We have seen many coherent
structures but we still do not have a very good idea as to why they

arise nor do we understand their dynamics. In addition, a practical



modelling scheme which incorporates them has yet to be developed.

What is a coherent structure? To this point the t;fbulence
community has been unable to provide a definition which can be
exploited in a dynamical model of the turbulence. The situation has
been nicely summed up by Lumley (1982) who draws an analogy to the
definition of pornography, i.e., it is hard to define but you know it
when you see it!™ Such has indeed been the case with coherent
structures in turbulence.

In 1967 Lumley proposed that a coherent structure should be that
structure which has the largest mean square projection on the velocity
field. This structure is identified by correlating the proposed
structure in the mean square sense with an ensemble of realizations of
the flow field. This maximization leads to a well-defined integral
eigenvalue problem which has as its kernel the velocity cross-
correlation tensor. Because this velocity tensor is symmetric the
solutions to the integral eigenvalue problem are governed Sy the
Hilbert-Schmidt theory (v. Lumley (1967)). These solutions allow a
representation of any one of the original realizations in terms of the
orthogonal eigenf&nctions extracted from the eigenvalue problem. It
also allows for objective determination of the contributions of the
individual orthogonal eigenmodes to the kinmetic energief and Reynolds
stresses. A small number of researchers have applied this
decomposition to various flows: Payne (1966), Bakewéll (1967),
Lemmerman (1976), Moin (1984) and Herzog (1986).

In this current work the decomposition is applied to the near
field mixing layer of the axisymmetric jet. The earliest

investigations of the statistical characteristics of jet shear layer



were carried out by Lawrence (1956), Davies et al. (1963) and Bradshaw
et al. (1964). Crowe and Champagne (1971) found identifiable
structures in a jet which resembled large scale vorticai puffs. These
experiments, however, contained much less information about the two-
point correlation tensor than is needed to solve the integral
eigenvalue problem. Hence the goal of this work has been to acquire
the necessary data to apply the General Orthogonal Decomposition to the
near field jet mixing layer.

The measurements were performed in the axisymmetric jet facility
of the Turbulence Research Laboratory at the University at Buffalo,
SUNY. This facility is described in detail in Chapter 3. The initial
data reduction was performed using the Vax Cluster System of the
University at Buffalo. The eigenvalue p?oblem was solved at NASA/Ames

using the Cray XMP.



CHAPTER 2
THEORY — ORTHOGONAIL, DECOMPOSITION )

2.1 The General Inhomogeneous Problem

In 1967 Lumley proposed that the coherent structure should be that
structure which has the largest mean square projection on the velocity

field, If Q(;.t) is our candidate structure, then § should be chosen

tomaximize

lu-g|% = lal® (2.1.1)

where u = y(x,t) is the instantaneous velocity and the overbar denotes

the ensembl.e 'average. The above expression is assumed to be normalized
by the modulus of © 50 that (2.1.1) depends only on the degree of
projection and not the magnitude. Q is then, in the averaged mean
square sense, the most likely occurrence of B, To get a physical sense

of what has been suggested examine Figure 2.1.1

/
i(x,t) —>

=

Ot,t) —-—>

Figure 2.1.1
In this figure the solid line vectors correspond to dif'ferent

realizations of u, the random velocity, and the dashed lime vector
corresponds to @, the candidate structure.

Maxix:xiz:’.ng-l_ch2 can be dome by using the methods of variational
calculus, This leads to the following integral eigenvalue problem

(Lumley 1970):



_” Rij(x.x',t.t')(ij(x'.t') dx' dt' = A ¢;(x,t) (2.1.2)
where o ' . '

RiJ (xox,at:t') = ui(x:t) uj("at') (2-1-3)
is the two—iooint correlatioil tensor,~ and

A = [al2 (2.1.4)

Because Rij is a symmetric function the solution of (2.1.2) can be
discussed using the Hilbert-Schmidt theory (Lumley 1967). Also, if the
y
random vector field is of finite extent so that the integral in (2.1.2)

is over a finite area then the following hold (Lumley 1967):
1, There are not one, but a discrete set of solutions so that

(2.1.2) becomes

jj Ri.] (x"x"t‘t') ojn) (L'pt') dx' dt'
= }.,n ogn)(é,t), (n=1'2‘3....) (2.1.5)

2. This discrete set can be chosen so that the 6(in) are ortho-

normal, i.e.,

[ 4P, 08{P @0 azat = 8pq (2.1.6)

3. The original random vector field u; may be expressed in terms

of the dgn) as

v (x,t) = ¥ ap 082 (x,0) | (2.1.7)
where .
Cy = 5 u; (x,t) dﬁn)'_‘(i,t) dax dt (2.1.8)



The series comverges in mean square and the coefficients in (2.1.8)

are uncorrelated, i.e.,

0 n#m

L (2.1.9)

A0) pep

4. The kermel Rij can be decomposed into a double series in the

¢gn) and the series is uniformly and absolutely convergent, i.e.,

gt = 330 00 oM e (2.1.10)

R, .
i ¢ 4

5. The A™®) are positive and their sum is finite

A@ 5 5 ¥ ,®) (e (2.1.11)
and

A1)y a(2) 5 3 (3) 5 saln) (2.1.12)

The Orthogonal Decomposition is a non;prejudicial way of
extracting organized structures from an inhomogeneous randqm function
on an energy-weighted basis, The structures obtained are those that
contribute the most to the energy because the representation converges
optimally fast — the first term (or largest structure according to
Lumley) is as large as possible (in a mean—square sense), the mnext

term as large as possible, and so on,

2.2 Dealing With Stationary, Homogeneous or Periodic Directions

The Orthogonal Decomposition Theorem reduces to the Harmonic
Decomposition Theorem if the process is stationary, homogeneous or
periodic. If the process is stationary, homogeneous, or periodic in
one or more variables, then the eigenfunction are harmonic functions

in these directions. Since the eigenfunctions are known for these



variables, it is convenient usually to carry out a Fourier analysis in
these directions first. )

In the axisymmetric jet being studied the time 'dii‘ection' is
stationary and the azimuthal direction is periodic as well as
symmetric (v. Sreenivasan (1984)) so that Rij(x.x'.t't') in equation

(2.1.3) breaks down in the following manner. First the time direction

is removed by using the Fourier transform

™
Qijgxpx' »0,f) = I e—IZHfT Rij (xax’ ltle)dﬂ (2.2 .1)

-

resulting in
RiJ (‘:x"‘:e) — Qij (x:x'aeaf)

where q)ij is the cross—spectral tensor. Second, a decomposition (of

the cross-spectral tensor now) over the periodic and symmetric

direction gives

[ -]
(pij (x,x', 0,f) =m=>0 Aij {(x,x',f,m) cos mO (2.2.2)

where m is the azimuthal mode number, € is the gifference in azimuthal
angle, and x denotes the remaining inhomogeneous variables. The

complex coefficients of the above series are defined by

1
R

]

n
Aij (x:x': f,o) £ Qij (I.,x.'.e. f) de i (2-2'3)

and by

It
2/n i % (x.x', 0, £) cos m6d6,m>0  (2.2.4)

Aij (l:x"of& m)

Finally, the inhomogeneous direction is decomposed by using

Aij in equation (2.1,5), thus



inJ (x, x',f,m) wj(n) (E'Jfom) ax’
= 2@ (£, m) Wi(n) (x,f,m). : (2.2.5)

The eigenvalues have now become frequency and azimuthal

mode dependent eigenspectra, i.e.,

A@ 5@ (£,m) (2.2.6)
and the eigenvectors are frequency and mode number dependent,

i.e.,
¢, (x, o) —> 0, ® (z,1,m). (2.2.7)

2.3 The Experimental Approach

The choice of the near field mixing layer of the turbulent
axisymmetric jet for this study was made for several reasoms. In
particular, since the purpose of this work was to utilize and evaluate
the Orthogonal Decomposition theorem, the flow to be studied had to be
relatively ecasy to set up, the measuring techniques stgndard, and
capable of working well in the enviromment, The axisymmetric jet
mixing layer is a relatively simple flow to genmerate (based on
previous experience) and stationary hot wires are known to work
reasonably well in this environment,

Obtaining sufficient information on the two-point cross—spectral
tensor to apply the Orthogomnal Decomposition in the jet (or any flow
for that matter) is an ambitious and difficult task, Because of this
an approach was devised that consisted of doing the experiment in
several phases., This allowed for a gain of experience from each

phase. The effects of grid density, sampling rate, spectral



convergence, time record length and other relevant questions could be
ascertained from the first few phases before the final experiment was
performed.

The first phase (v, Glauser et al. 1987) involved using a rake of
seven hot-wire probes radially spanning the jet mixing layer at x/D=3.
This arrangement gave instantaneous streamwise velocity data as a
function of radius in the jet mixing layer. From this data
¢ ,(r,r',f) was computed and the integral eigenvalue problem solved
using it (see Equation 2,2.1)., In this case r (the radius in the
mixing layer) is the inhomogeneous variable,

The second phase involved using a rake of 13 hot-wire probes
across the same span as in phase 1. Again this arrangement gave
instantaneous streamwise velocity data as a function of radius in the
jet mixing layer, only now at 13 positions, The second phase was
performed because of a grid density question that arose from the first
experiment, This will be discussed in greater detail in C.hapter 5.

The third phase (v. Glauser and George (1987)) involved adding
the azimuthal variation to the problem in phase 1. The azimuthal
correlations were realized in the following manner: one rake of seven
hot-wire probes (same as in phase 1) was fixed at an arbitrarily
chosen azimuthal position (since the flow was axisymmetﬁc) while
another rake of 7 hot-wire probes was moved az imuthallyi. In all, 16
azimuthal positions were measured over a span of 180 degrees. The
addition of the azimuthal variation to the streamwise correlations
gave 2,,(r,r',0,f) where © is the difference im azimuthal angle.

The fourth phase (v. Glauser and George (1987)) involved

measuring, in addition to the streamwise velocity, the radial velocity



component, In effect, phases 1 and 3 were essentially repeated, only
now including the radial velocity. This final phase invylved using
two rakes of probes with 4 cross—wires on each rake. In all, 25

az imuthal positions were measured over a span of 180 degrees. The
results of phase 3 suggest that the grid wused (16 azimuthal
positions) was too coarse so that 25 azimuthal positions were used in
phase 4 (see Section 5.3). From this data ¢, .(r,r',£,0),
%alr,r',£0), %a(r,r',£,0) and & 1(x, 1',£,0) were calculated, the
integral eigénvalue problem was solved and the results compared to

those in the previous phases,

10



CHAPTER 3
THE EXPERIMENT

3.1 The Facility

The facility for producing an isothermal, incompressible,
axisymmetric air jet is shown schematically in Figure 3.1.1. This
facility can be used to create exit velocities of from 0.5 m/s to 40
m/s.

The exit conditions of the jet im this experiment were as
follows: the turbulence intensity was 0.35%, the Reynolds number based
on exit diameter was 110,000, the boundary layer at the exit was
turbulent with an approximate thickmess of 0.0012 m (based on Uhu99Ue)
and the mean velocity profile was flat to within 0.1%. A spectrum of
the fluctuating velocity at the exit plane is shown plotted in Figure
3.1.2.

The blower is a Dayton Model No. 4C108 with a 10-5/8'" wheel
containing six blades., It is directly driven by a 1 HP, 3 phase AC
motor which, in turn is controllable by a Toshiba Esp—130 tramsistor
invertor motor controller., The blower is rigidly mounted to a heavy
table in order to minimize vibrations.

The diffuser is connected to the blower with flexible mounts to
isolate the blower from the rest of the facility. The diffuser is
0.6096m long with the final diameter being 0.2521m. : This combination
results in a total diffuser angle of approximately 19 degrees. The
diffuser consists of 3 equal length sections, the first of which
allows for a conversion of rectangular (the exit of the blower is

rectangular) to circular. In between each of the first two sections
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is a 20 mesh, ‘25% solidity screen. At the point where the diffuser
joins the settling chamber there is a 30 mesh, 35% solidity screen.
This arrangement was chosen to avoid flow separation ov?r the flow
ranges obtainable from this facility. The basis for this design was
taken from NACA Report No, 949,

Downstream of the diffuser is a 0.9144m long, 0.2921m in diameter
settling chamber. At 0.254m downstream from the entrance of the
settling chamber a Scm long honeycomb section begins, This honeycomb
section is fabricated from approximately 4000, 4.5 mm in diameter soda
pop straws packed neatly together and aligned with the flow axis. A
20 mesh, 25% solidity screen is used to keep the straws from being
carried downstream by flow induced drag forces and at a distance 0.3m
downstream of the honeycomb section a final 30 mesh, 35% solidity
screen is located.

A jet nozzle is connected to the end of the settling chamber.
This nozzle is of fifth order polynomial design, has an exit diameter
of 0.098m, and an area contraction ratio of 10:1. The noz;le was
fabricated from fiberglass cloth and marine polyester resin. The
fabrication procedure was as follows: a polyeurthane mold was machined
to a predetermined matched fifth order polynomial. The fiberglass
cloth, soaked in the polyester resin mix, was then drapéd over the
mold and allowed to harden. After the mold was 1:emoved1 the
imperfections on the inside surface were filled using auto body
finishing putty. Since irregularities on the inner gurface could trip
the boundary layer and increase the turbulence levels at the exit,
great care was taken to keep the undulations on fhe inner surface

small (less than 0.1 mm typically).
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The traverlsing system used is shown in Fig. 3.1.3. The hot—wire
rakes were held in place by the two plexiglass rigs as shown One rig
was free to move az imuthally to realize the correlations in that
direction,

The entire axisymmetric jet facility js centered in a large 5m x
5m x 20m mylar covered enclosure. The enclosure is located in a

larger 7m x 10m x 30m laboratory which houses the computers and other

hardware utilized in the experiment,

3.2 Instrumentation

The transducers used for sensing velocities were hot—wire probes.
The se probes were grouped together on a rake that consisted of four 13
single~wire probes or 4 cross-wires (see Figure 3.2.1). Each
individual sensor was 5§ microns in diameter and had & sensing length
of 1.2 mm giving a length-to—diameter ratio of 220, The wires, 3 mm
in length, were made of tungsten with copper plating utilized on the
jnactive length that was soldered to the prongs. These specially
designed probes were fabricated in the following manner: A déuble—
sided printed circuit board was cut to a form to minimize aerodynamic
interference, The copper printed circuit boards were then etched to
form the appropriate circuit. This consisted of a place ‘to connect a
card—edge comnnector and a position to allow the prongs to be soldered
to the printed circuit board. The prongs were jewelers broaches
manufactured by Vigor-Bergeon. Once these prongs wereé soldered to the
P.C. board they could be bent to achieve the appropriate dimensions
between the promgs. 30 1b. dacron fishing line, glued to the prongs,
was used to stiffen the promgs sO that the sensing elements themselves

would be less susceptible to vibration and sagging.
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Each probe formed one arm of either a Dantec (DISA) 55M10 or
56C16 CTA standard bridge used in conjunction with a Dantec 55M01 or
56C01 Main Unit respectively, The individual bridges were each set to
g8ive a wire overheat ratio of 0.8. Either Sm or 20m long cables were
incorporated in the probe arm of the particular bridge. The response
of each system (1nclud1ng probes, prongs, Printed circuit boards, card
edge connector and cables) to a Square wave test was tuned so that
there was less than 10% overshoot. This allowed for stable Operation
over the bandwidth of interest (DC-6kHz).

The bridge top voltage of each anemometer was conmected to a 8
pole Bessel low Pass anti-aliasing fil ter manufactured by Frequency
Devices, These 848P8L~5 Bessel low~-pass active filters are tunable

over a 200 HZ to 51.2KHz frequency Tange. These units have been

latches which accept the following CMoS compatible inputs: eight
tuning bits (DO-D7), 8 latch Strobe bit (C), and g transition polarity
bit (P). The System has been set Up to operate with (P) tied low so
that the frequencies are latched on the rising edge of the strobe.

The filter tuning follows the tuning equation given below:

fc = 200[1 + D7x27 + D6x26 + D5X25 + D4x24 + D3x23 + D2x22 +D1x21
D0x2°]

where DO—D7 = logic '"0'" or ''1' g4pq f,. = cormer frequency. The

minimum tunable frequency is 200 Hz and the minimum frequency step is
200 Hz. A control module board was designed and built to program the

above filter S,
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The purpose of the control module board is to allow the user to
select the cormer frequency and particular channel, It‘is configured
to operate as follows: The user selects the cormer frequency and
particular channel, and then strobes to set the cormer frequency on
that channel., This operation can be performed from either the front
panel with LOC (for local) selected or from the DEC DR11-C interface
with REM (for remote) selected on the front panel.

Each of the filtered anemometer signals was digitized using a 16
channel, 150 KHz maximum sampling rate, 15 bit, simultaneous sample
and hold A/D converter unit manufactured by Phoenix Data Inc. The
model number of the A/D is DAS6915-10055-1. The A/D converter is
interfaced to a DEC PDP11/84 minicomputer using a DEC DR11-B,W DMA
interface module. A DEC RA81 500 M byte disk drive and a DEC TUS81

high speed tape drive are used for storage of the data.

3.3 Calibration
The hot wires were calibrated using the digital linearizing scheme
detailed by George et al, (1987). 1In its simplest form the velocity

is expressed as the sum of powers of the voltages, that is
u=> A, E® ' (3.3.1)

The principal advantages of this type of expression over the
earlier schemes (Kings law, etc.) are two fold: First of all, linear
least squares can be directly applied to equation (3.3.1) since the
coefficients occur linearly and the principal uncertainty in the
experimentally measured quantities ig U which appears on the left side

of (3.3.1). Second, application of the calibration to measured
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voltage data is straightforward and essentially involves only
recursive multiplication. In this set of experiments the exponent, N,

was chose as 4 so that (3.3.1) becomes
= 2 3 4
U Ao + AJE+ AjE° ¥ A3E + A4E (3.3.2)

From experience in the Turbulence Research Laboratory it bas been
found that there is little to be gained by going beyond the 4th order.

The calibrations of the single wire rakes as well as the cross—
wire rakes were performed in the same jet facility that the
experiments were done in, This was justified because the exit
turbulence intensity of the jet is very low as discussed in Section
3.1. This is important for calibration of hot wires because of the
non linear relationship between bridge top voltage and velocity.

The calibration scheme for the single wire rakes was as follows.
A calibrated pressure transducer was used to measure pressure drop
through the contraction of the jet. The particular rake of probes to
be calibrated was set up so that all of the individual hot-wire
sensors were at the exit of the contraction, The blower RPM was then
varied to achieve the velocity range of interest. The various sensor
voltages and the pressure transducer voltage were digitized for each
particular velocity in the range. With this set up, up to 15 probes
could be calibrated at the same time., The velocity calibration range
covered the entire range of velocities encountered in the experiment,
and was typically 1 m/s — 25 m/s. A flow chart showing the complete
scheme needed to get real streamwise velocity values on disk is shown

in Figure 3.3.1.
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Program HWCAL

Digitizea voltage signals from the hot-wire probes and' the pressure
tranducer while the exit velocity of the jet is changed.

Y

Program CALIB1

Fits polynomial to velocity vs, voltage curve obtained from running HWCAL.

Y

Program RECDAT

Digitizes voltage data and performs a DMA to disk.

Y

Program METRIC

Convert voltages obtained from RECDAT to velocity and write them on the disk.

Figure 3.3.1 Flow chart showing method used to obtain streamwise velocities,
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34 Cross—Wire Calibration

The calibration of the cross—wires utilized the sam'e methods of
Section 3.3 with the addition of an angle calibration scheme.

The cross—wire geometry is shown in Figure 3.4.1. Ang is the

angle between the normals to the wires and B is the angle between U,
and the flow axis. 8P is the misalignment angle which must be
included because of the multiple probe rakes. Only one of the probes
on the rake could be lined up with the flow axis because it is not
feasible to fabricate the probes so that they all line up. In order
to overcome this problem, one probe was chosen (as the reference) to
line up with the flow axis. Any deviations from this reference by the
remaining probes on the rake were then account;ad for by the
misalignment angle.

A form of Champagne-Sleicher Law was utilized to extract the u
and v components of velocity from the cross—wire data. According to
this formula, (Champagne and Sleicher 1967)

Ueff; = U, (aosz()i + ky sin 2¢1)1/2 ‘ (3.4.1)
Ueff, = yu, (coszoz + ky sin 2"2)1/2 (3.4.2)

where Ueff; and Ueff, are the effective velocities seen By probes 1
and 2 respectively, kl and ko are the axial coefficients related to
heat transfer for probes 1 and 2 respectively, and ¢1 aﬂd ¢2 are the

angles between the vector U, and the normals to the respective probes.
Taking equation (3.4.1) dividing by (3.4.2) and then squaring,

the following equation is found:

Ueffy 2 _ (cosz¢1+k1sin2¢1)

(3.4.3)
Ueff, (co sz¢2+k2 sinz(jz)
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Figure 3.4.1 Cross-wire geometry.
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Letting ¢2 = Ang - 01 using trigomometric identities, ,and several

other manipulations, the following quadratic equations in tan ¢1

results:

D tan? 01+Etan01+c=o
where D = (Bkzcosz(Ang) + B Sinz(Ans)"kl)

= (B cosz(Ang) +B sinZ(Ang)kz-l)
E= 2(B(1-k2) cos(Ang) sin(Ang))
'Ueff1 2
and B =(v (3.4.4)
effz

Solving for tan ¢; results in

-E +y/ E2—4DC

2D '

(34.5)

Since the physics of the probe imply that tan 01 must be greater
than zero, the positive root of (3.4.5) is used. If the value under
the square root sign is negative the solution cannot be de.termined.
This sitvation has been termed dropout by Beuther et al. (1987). This
generally occurs in regions of high local turbulence intensity such as
positions on the low speed side of the jet mixing layer where flow
reversals and/or any electronic noijse, digital or analog can result in
values that are not resolvable, The dropout in this expenment was at
most 7% of the total number of data points in any smgle realization,
The se unresolvable points were replaced by the nearest resolvable
point. This method was shown by Buchhave (1978) to bias the spectrum
the least when compared to replacing the unresolvable points with

zeros or the mean value of the particular realization,
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Once §; was solved for, U, and f could be calculated, then the

s

particular velocity components become

U=1U  cos (p+56p) (3.4.6)
V=1"0, sin (p+5p) (3.4.7)

where the sign of 8f depends on the particular probe misalignment with
respect to the reference probe.

The angle calibration was performed in the following manner,
Each probe was placed at 90 deg. to the flow axis and left there. The
calibration for voltage versus velocity was then obtained in the same
manner as for the single wire case discussed in Section 3.3. The
angle calibration was carried out for each probe using the rig shown
in Figure 34.2., First a voltage vs. angle curve was generated.
Second, the voltage was converted to velocity using the previously
obtained voltage versus velocity curve, This resulted in a curve of
velocity vs, angle. This curve was then fitted with a form 1like
equation (3.4.1) in order to obtain k for each wire., Once k was found
for each wire the calibration was complete. It should be noted that k
has been seen to be a function of velocity for velocities less than 1
m/s (Beuther et al. 1987). Over the range of velocities #een in this
experiment however, k was essentially constant. A flow cl\;art showing
the complete scheme used to get u or v velocity values from the

effective voltages is shown in Fig. 3.4.3.

3.5 Sampling Information
One of the major problems with digital sampling is the phenomenon

of aliasing (Otnes and Enochson 1978). 1If, for instance, a sinusoid
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Figure 3.4.2 Rig for performing angle calibration of a rake of cross-wires.
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Progrum HWCAL

Digitizes voltage signals from the cross—wires and the "pressure transducer '
with one of the wires 90 deg. to the flow axis while the exit velocity of
the jet is varied. This must be repeated for the other wire as well.

]

(
Program CALIB1

Fits polynomial to velocity vs. voltage curve obtained from running HWCAL.

Y
Program HWCAL !

Exit velocity of jet held constant while the angle ot the probe with respect
to the flow axis is varied, This generates a voltage vs, angle curve,

Y
Program CROSS

Using information from previous steps to convert voltage vs. angle to
velocity vs. angle.

,
Program ANGLE

Uses velocity vs. angle curve generated using CROSS to compute the various
k's (see equation 3.4.1),

Y

Program RECDAT

Digitize voltage data and DMA to disk.

Y
Program METRICUV

Convert effective voltages obtained from running RECDAT into U and V velocity
components and write them to disk.

Figure 3.4.3 Flow chart showing method used to obtain u and v velocity values
on disk.
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whose frequency f is greater than ome half the samplingl frequency fs,
is sampled at £y it will appear as a lower frequency. Because of this
aliasing problem one should insure that either the sampling rate be
twice the highest frequency in the flow or low pass filter at less
than or equal to one-half the sampling rate. This constraint has been
termed the Nyquist criterion,

In the jet flow under consideration here the highest frequency
can be estimated using the Kolmogorov length scale n to be about 7000
Hz. (i.e., fk=Uc/2m|). This would suggest that the sampling rate
should be about -14,000 samples/sec. However, probe attenuation must
be considered in this experiment, A sensor is only sensitive to
disturbances with spatial scales that are larger than twice the
largest dimension of the sensor. See Figure 3.5.1. Thus for a hot

wire of length_.dw and in a flow of convection velocity Ugr

U
;==
C 2.'0
w
where £, is the effective corner frequency due to the probe acting on
a8 low pass filter., For the probes used in this experiment '?w = 0.0012

m and U, =12 m/s giving

f, = 5000 Hz

This would suggest that the sampl ing frequency shou1¢ be above 10,000
.Hz, This sampling rate was used in an initial experiment. When the
spectra from this initial experiment were examined (see Figure 3.5.2)
the energy content was seen to be small beyond 200 Hz, Since the
thrust of this experiment has been to identify large eddies on an

énergy-weighted basis, anything beyond 400 to 500 Hz was considered
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(b) - Non-resolvable Signal

(a) - Resolvable Signal

Figure 3.5.1 Probe roll-off example.
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negligible as far as its contribution to the large eddies is
concerned. It should be noted that this is well into the kx~5/3 range
of the velocity spectrum. Also, the smallest time scale for a typical
eddy that can be resolved is dictated by the probe spacing and the
appropriate convection velocity (since eddies smaller than this would
not be seen by both probes). If it is assumed that the turbulence
field is frozen then the time scale is approximately equal to At ~
AI/UO where Ar is the probe spacing and U, is the con¥ection
velocity, For the conditions of this experiment At ~ 0,0015 sec., and
the resolvable bandwidth in frequency is approximately I/At or 800 Hz,
As was mentioned in This prompted the low pass filter cut off
frequency to be set at 800 Hz for each filter. All 16 filters were
phase matched to within 1 degree. The sampling rate was then set at 2
kHz which satisfies the above mentiomed constraints (i.e. the signal
should be low-passed at & maximum of one~half the sampling rate),

The number of samples taken per data block was 2048 fof phases 1-
3. This gave a total time record of 1 sec., This 1 sec, record length
gave a bandwidth of 1/T = 1 Hz. 300 such blocks were taken for each
channel of anemometry. In order to insure statistical independence
between blocks, the time interval between blocks was more than two
integral time scales. ,\

In phase 4 of the experiment, 1024 samples were taken for each
block. It was determined from the previous phases that a one—half
second record length (a bandwidth of 2 Hz) was adequate, The
reduction by one~half of the number of points reduced by one—half the

amount of storage needed and significantly reduced the computation

time required. The time integral soale in this flow is approximately
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equal to 0.0013 sec, so that the number of integral scales per time

record was large for all Ppha ses (typ1ca11y greater than 50).
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CHAPTER 4

INSTANTANEOUS AND MEAN VELOCITY FLOW CHARACTERISTICS
AND SPECTRAI, ANALYSIS ‘

4.1 Instantaneous Velocities

At the high Reynolds numbers of the flow studied here (Reo ~
105). flow visualization experiments show little evidence of the well
organized structures present at lower Reynolds numbers, The reason
for this is not that they are not present (as is evident from the
conditional sampling experiments of Hussain and co—~workers (1986)),
but that the flow is considerably more complex. One can appreciate
the complexity of this flow by examining Figure 4.1,1 where one block
of instantaneous streamwise velocities for seven radial locations are
shown plotted as a function of time, The marked difference in the
amplitude and frequency content of the signals is obvious. Note the
increasing intermittency toward the outer edges and the lack of any
obvious organized events. These plots should convince even the most
skeptical of the need for a statistical approach to turbulence, and to

the search for coherent structures,

4.2 VYelocity Moments Across the Mixing Layer

The mean flow characteristic at x/D=3 are examined and compared
with those of other researchers to insure that the data ‘base is valid.
It should be noted that the following profiles are from a single
az imuthal position, Measurements were taken at twenty~five az imuthal
poéitions at an axial position of x/D=3. The profiles shown are
typical results, the other profiles at different azimuthal positions

being within 8% of these,
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Figures 4.2.1 - 4.2.4 show measurements of the mean velocity, T,
the streamwise and cross-stream ms velocity fluctuations, u',v’, and
the Reynolds stress, uv, respectively as a function of radius, U, v,
and v' have been normalized by the exit velocity, U, and uv by Uezo
The above moments were calculated using more than 1000 statistically
independent samples.

The measurements are compared to those of Hussain and Clark
(1981) in Figures 4.2.5-4.2.7. They used the local momentum thickness
defined as

©

9"*:‘5 (U/U,) (1-U/Uy)dr (4.2.1)

to check for similarity in the jet shear layer, In order to compare
this latest data with that of Hussain and Clark (1981) the momentum
thickness was calculated at x/D=3. The value of Om in our experiment
at x/D=3 was found to be 1.37 cm, corresponding to ©,/x = .046. From
Figures 4.2.5-4.2.7 it can be seen that the various quantities compare

quite well with those of Hussain and Clark (1981),

4.3 Spectral Analysis Technique

As has been mentioned earlier, the goal of this experiment was to
apply and evaluate the Genmeral Orthogonal Decomposition in a high
Reynolds number flow. In order to demonstrate that inde;ed this is a
high Reynolds number flow, & streamwise spectrum at the center of the
mixing layer at x/D=3 is shown plotted in Figure 4.3;1. It should be
noted that this spectrum is not low-pass filtered so that it had to be
sampled at 11 kHz (as was discussed in Chapter 3) in order to avoid
aliasing, This spectrum shows at least two decades of a k_5/3 range

indicating a high Reynolds flow. The rolloff in this case can be
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Figure 4.2.1 Mean Streamwise Velocity at x/D<3 vs. Radius
in the Jet Mixing Layer.
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Figure 4.2.3 RMS Radial Velocity at x/D=3 vs. Radius in
the Jet Mixing Layer.
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Figure 4.2.4 uv at x/D=3 vs Radius in the Jet Mixing Layer.
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attributed to probe filtering as discussed in Chapter 3.

The time 'direction’ in the jet being studied is st;tionary sO
that the gemeral orthogonal decomposition reduces to the harmonic
decomposition in this case. This motivates the use of Fourier
analysis. Since the eigenfunction in the time domain are known, it is
more convenient to directly form the Fourier transform of the incoming
data (via FFT) and compute the space—frequency cross—spectrum than to
work with the space—time cross correlation,

The Fourier transforms of a stationary random signal can be
written as

©

w(f) = [ oi2mfty(t)ar (4.3.1)

e
For the transform to exist in the normal sense u(t) must satisfy
certain conditions such as smoothness and vanishing at infinity.
Stationary random signals do not in gemeral satisfy the conditions
necessary for the transforms to exist, If, however, one aérees to
work in the domain of generalized functions, the infinite length
signal is then approached as the limit of a sequence of functions
whose Fourier {ransforms exist., The Fourier transform of the
stationary random signal is then defined as the limit of the Fourier
transforms of the members of the sequence. Under a cer;ain set of
conditions (v. Lighthill 1964) this limit can be assumed to exist.
Therefore the Fourier transforms of u(t) can be writfen as in equation
(4.3.1) if it is understood that this is the Fourier transform of u(t)

in the sense of gemeralized functions (Lighthill 1964, George 1978,

Lumley 1970)
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It can be shown that a consequence of statiomarity is that the

N
Fourier coefficients are uncorrelated at different frequencies, i.e.

u(f) 2%(£') =0 £ 4 £ (4.3.2)
or  u(f) 3*(£) = 8(f) 5(f-¢) (4.3.3)

where S(f) is the spectrum of the signal u(t) and 8(f-f') is the
delta function,

The random signals obtained in the lab cannot be of infinite
length so that a finite time Fourier transform must be defined (George
1978),

A T/2

U () = '15 o127t 4 (¢)dt.. (4.3.4)

/2
One can view equation (4.3.4) as the product of a finite length boxcar
window i.e. wT(t) (Figure 4.3.2a) and an infinitely long time history
u(t) as shown in Figure 4.3.2b, Therefore, equation (4.3.4) can be
written as |

(e = { u(tywyp 127 tar, (4.3.5)

Using the fact that products in time transform into convolutions

in frequency the Fourier transform of equation (4.3.5) can be written

as
B(£) = (W) S 438
where 5
T/2
Vr(£) =_T§[‘2 Wpct) et2™tar (4.3.7)

From equation (4.3.7) the effective fil ter shape is as seen in

Figure 4.3.3. Because of the convolution of the true transform with
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the window, there is a leakage of spectral information from a single
frequency into a band of frequencies, Since the initi‘#l experiments
showed the effects of this window on the measured speci:rum to be
negligible, no attempt was made to improve on the negative effect of
this window by tapering or selection of a different window (v. Otnes
and Enochson, 1978).

The discrete form of equation (4.3.4) (shifted in time by T/2)
can be written as

A N-1 2nik
uk = At 2‘.0111 exp [J 5 k._o 1)...;N—' (4.308)
1=

where £ =k - 1Tand t = iAt. The discrete transform equation (4,3.8)

was carried out on VAX 8600 computer using a Fast Fourier Transform
algorithm (from Moin at NASA Ames), The Spectra were then computed
using the discrete form of equation (4.3.2) which is (George 1978,

Tan-atichat and George 1985)

4

S, (1,£,0) (4.3.9)

where the overbar denotes ensemble average aad T is the'record length.
In short the process was as follows:
1) Compute Yy using the FFT.

2) Multiply Ux times its complex conjugate an& divide by T to
get the spectrum,

3) Ensemble average over many (300 typically) independent

spectral estimates as suggested by equation (4.3.9) to obtain

Sk’ The rate of convergence of our spectral estimate (George
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1978) is the same as for any ensemble average (i.e. & ~V’1ﬁ)
where N is the number of independent spectral’ estimates #nd €
is the percent variability of our spectral estimator.
The cross spectra (between different components of velocity and
spatially separated velocity components) were computed using an

equation similar to (4.3.9) written as

2.4
T =§ij(r' r',f,e,e') (4.3.10)

where i and j denote vector components and the prime emphasizes that
the transformed signals come from different spatial points,

As with the standard spectra, these cross—spectra must be block~—
averaged to reduce the variability. The constraints on minimum record
length can be more severe than that for the spectrum and a
significantly longer record may be required for cross—spectra than for
spectra (v. Tan—atichat and George 1985). This can be seen from the
finite time cross—spectral estimator which can be shown to be given by

T/2

= [ -i2nfT[ . T |
e ~_l[/2cij(r)e {1-1%) Jae (4.3.11)

where Cij is the cross—correlation tensor. Unlike the autocorrel a—

tion, the cross-—correlation does not in gemeral peak atu ©=0 and in
fact may have its peak far from the origin, Thus, the record length
must be long enough to insure that the factor (1~ ‘%) ma‘kes a neglig—
ible contribution over any region where Cij differs from zero. Since
the experiments in the jet were performed at one streamwise location
(x/D=3) this record length effect is not severe because the phase
differences across the shear layer and in the azimuthal direction are

small, This results in the cross—correlation peaking near the origin,
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A 20 percent bandwidth digital smobthing filter was then utilized
to reduce the fluctuations even further., This filter did not affect
the phase over the frequency band of interest in this experiment (v,

Oppenheim et al. 1983),

Spectral and Cross—Spectral Results

Spectra of the streamwise and radial velocity fluctuations for
eight radial positions in the jet shear layer (r/D=.13 - r/D=.9) are
shown plotted in Figures 4.3.4 and 4.3.5 respectively. All of the
spectra around the center of the mixing layer and on the low speed
side of the shear layer have at least one full decade of a k"'5(3
range, The reason that the k_5/3 range does not extend further is due
to the effect of the low pass filter described in Chapter 3.

In and near the potential core (r/D=.,13, r/D=.24,k r/D=.35) all
of the various spectra have a maximum away from the origin., As one
pProgresses away from the potential core toward the center of the
mixing layer (r/D=.46) the radial velocity spectrum still exhibit this
maximum away from the origin, The streamwise spectrum; however, now
has its maximum at the origin,

Just to the low speed side of the center of the mixing layer
(r/D=.57) the streamwise spectrum has its maximum at the origin, The
radial velocity spectrum, however, still exhibits a maximum away from

i
the origin, At the remaining positions on the low speed side of the
shear layer (r/D=.68, r/D=.79, r/D=,90) all of the ;'arious spectra
have their maximum at the origin,

The Reynolds stress ¢ross—spectrum between two positions
(r/D=.68, r/D=.79 at 6=0) is shown plotted in Figure 4.3.6. Figure

4.3.6(a) is a plot of the co—spectrum and Figure 4.3.6(b) is a plot of
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the quad spectrum. 4800 such cross—spectra were computed (between all
r, ', O, €' and different velocity components combinakions). This
one example is given to show that the cross—spectra are reasonably
smooth., This indicates that an adequate number of independent cross—

spectral estimates were obtained.
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CHAPTER 5 "
RESULTS AND DISCUSSTON

5.1 Phase 1

one-dimensiona] version of the orthogonal decomposition
which utilizes the one-dimensiona] Cross—-spectra measured in the Jet

can be derived and formulated from equation (2.1.2) a5

f Galn 0 ¥, yap - A(n)(f)ll{n)(r.f) (5.1.1)

where r is the radius in the mixing layer, Using the measured values

of the cross Spectrum, equation (5.1.1) can be solved numerically for

the eigenvalues and eigenfu.nctions.

The Fourier transform of the streamwise velocity can be

reconstructed by

«©

WD =Y o (g 4B, (5.1.2)
n=1
where
2200 = [ %, YD e, £yap. (5.1.3)
The spectrum is reconstructed from
Sz, £) = Y 1(n)(f)lll(n)(',¥)|’. (5.1.4)
n=]

where AD are the eigenspectra,

The Numerical Agproximation

The numerical approximation to €quation (5.1,1) consists
basically of replacing the integral in (5.1.1)

by a suitably chosen

quadrature ryje, Simpson’s one-third rule wag chosen as the
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quadrature rule for its accuracy and simplicity. This can be written

in general as

3 W)@, o, 08, ) = x(n)(f)ﬂ(n)(rj,f),

J=1,2,u,m (5.1.5)
where m is the maximum number of radial locations and W(r;) is a
weighting function, In the present case m = 7, Equation (5.1.5) is
now an algebraic eigenvalue pProblem.
Now the matrix formed from the values of E is complex Hermitian,

That is

where the * now means complex conjugate. However, the weighted matrix
formed by W(ri)I(rj,ri) no longer has this property. It is desirable,
in the numerical solution of eigenvalue problems, to keep the
coefficient matrix Hermitian (Baker 1977). Operating on both sides of
equation (5.1.5) by w(rj)l(z results in the following eigenvalue

problem.

izllwl(z(fj )I(rj )Ty, f) Wllz(ri)] Wllz(ri)t(n)(ri, £)

=2y wl/z(rj)w‘n’(rjf) L (5.1.7)

where now the matrix W(rj)l(zi(rj,ri,f) W(ri)l(z is Hermitian, Since
this matrix is similar to that in equation (5.1.5) they have the same
eigenvalues. The original eigenvectors can be recovered from those

obtained from equation (5.1.6) by operating by W(rj)'l(z. i.e.
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Results of the Orthogonal Decomposition Analysis for Phégg 1

Figure 5.1.1 shows the eigenspectra for the three dominant modes.

*(“)(rj.f) =-we173i-*’t(n)(rj,f) W(rj)'l(z (5.1.8)

These eigenvalues represent the contribution to the total emergy
(integrated across the shear layer) from the various modes, It was

found that the first mode contained about 40% of the total energy.

As was shown earlier (5.1.4), the power spectra at each radial
position can be expanded in a series of the eigenmodes since each mode
makes an independent contribution to the spectrum, Figure 5,1.2 shows
the contributions from the first two modes to the power spectrum at a
position on the low speed side of the mixing layer, It can be seen
from this figure that the contribution to the power spectrum from the
first mode peaks at very low frequency, while that of the second peaks
at a higher frequency. This was found to be the case at the other
radial positions around the center of the mixing layer. In this sense
then, we see that the dominant mode is indeed representative of the
larger scales in the flow.

Figure §.1.3 [using equation (5.1.4) for n = 1,2,3] shows the
convergence of the expansion for this power spectrum, Similar results
were obtained at the other locations. These results shéw that nearly
all the energy is contained in the first three modes,

From the spectral data it might be expected thgt the
instantaneous velocity signal could be represented adequately with
these three modes., After application of equation (5.1.2), this is
indeed seen to be the case (see Figures 5.1.4-5.1.7). Figure 5.1.4 is

a record of the original velocity signal in the center of the mixing
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layer (real ﬁart of its Fourier transform). Figure 5.1.5 shows the
super-position of the 1st mode (n = 1 in equation (5.1.2)) on the
original signal, Figure 5.1.6 shows the first 2 modes. Figure 5.1.7
shows the first 3 modes., As can be seen from Fig, 5.1.7, almost the
entire signal has been reconstructed from the summation of the first 3
modes,

From these results the orthogonal decomposition has been shown to
be remarkably efficient at organizing data and the instantaneous
properties of the random signal have not been lost, only organized.
So efficient has the scheme been at organizing the energy that only a
few terms were needed to completely represent the instantaneous

signal,

5.2 Phase 2

The results from Phase 1 discussed in Section 5.1 were
encouraging. However, because only 7 probes were used to span the
mixing layer it was felt that a grid spacing problem may .exist. In
particular, if more probes were used across the same span would three
terms still be adequate to represent the spectra and instantaneous
signal as was seen in Phase 1?

This problem was addressed by performing the same experiment over
again, only now 13 probes were used across the span where 7 had been
used previously, This effectively halved the grid spaci‘ng. The
eigenvalue problem solved was the same as in Phase 1‘: only now m=13 in
equation (5.1.5).

The simplest way to compare the results from Phase 1 and 2 is to
operate on equation (5.1.4) by summing over frequency. Equation

(5.14) becomes as follows
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- m
2 S(x, £) =Z Ya@(o) 1@ (g, 52 (5.2.1)
: n=1

where the left hand side of (5.2.4) is u'% by Parseval’s identity.
This approach will allow the convergence of u? for the two problems to
be compared.

Figure 5.2.1a shows a plot of the LHS equation (5.2,1) with the
contribution of one term from the RHS superimposed on it for the 7
wire case., Figure 5.2.1b shows a plot of the same only now using the
13 wire data. As can be seen by examination of Figure 5.2.1, the
contribution from the first term for the 7 wire case is about 5% more
than that for the 13 wire case.. Remember that the first term in the
expansion is presumed to be the large eddy so that these plots show
the contribution from the large eddy to the turbulent energy. This
small difference (5%) in the energy content of the large eddy (the 7
wire result being higher) between the 7 and 13 wire cases indicates
that 7 wires across the span is adequate, The instantaneous
velocities also converged with 3 terms for the 13 wire case in much
the same manner as the 7 wire case,

The number of grid points needed across a given span of finite
energy is obviously flow dependent. Lumley (1970) showed that the
number of terms in the expansion needed to adequately represent the
instantaneous signals or spectra is given by N { L/L where,,fis an
intensity—-weighted average integral acale and L is the span that
covers the variation of the energy distribution, In the jet mixing
layer N ~ 3,

The fact that 7 wires appear adequate in the jet shear layer

would suggest that there is a spatial sampling theorem (unproven at
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this point) to be concerned with, that is, if 3 terms are needed to
represent the signal then at least 2N+1 grid points should be used.
This suggests that in this particular flow situatiom, 7 grid points

across the span is the minimum needed (v. Adrian (1985)),

5.3 Azimuthal Problem Streamwise Velocity Only — Phase 3

This phase involves adding the azimuthal variation to Phase 1

where the decomposition was utilized for the radial direction, and the
Fourier modes were used for the azimuthal direction and time,

A scalar version of the orthogonal decomposition which utilizes
the streamwise e velocity measurements from the jet can be derived and

formulated as,

jAll (ror'ofo m)w (n) (r',f,m) dr’
=) (g, myy @) (o, &, m) (5.3.1)

where r is the radius in the jet mixing layer and the A11 s are the

complex coefficients defined by equations (2.2.3) and (2.2.4) with
=j=1 because only the streamwise velocities were measured in th1s

phase. Using the measured values of A, equation (5.3.1) can be

solved numerically for the eigenvalues and eigenfunctions,

5.3.1 Results of the Azimuthal Decom osition Analysis - Phase 3
\._L_L\L_I%__

Before examining the results of (5.3.1), the breakdown into
azimuthal modes warrants examination, From (2.2.3) and (2.2.4)

setting i=j=1, (since only streamwise velocities were measured in

phase 3) they become respectively,

1 n
Aia (x, o, £, 0) ==f %..(x, &, £, o) a0 (5.3.2)
: .0
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and

2 n
Ays (r, ', £, m) = ‘;rf ®,, (r, ', £, ©) cos mede, " (5.3.3)
0

The numerical approximation to equation (5.3.3) is as follows:

M/2+1
Ayy (rr,fm) =2 ) @, (x,2',8,0) cos m ((a-1)40) A6 (5.3.4)
' n=1
where
a0 = & (5.3.5)

Substituting equation (5.3.5) into (5.3.4) and mapping M to 2N results

in
N+L m(n—1)n
Ays(r,r',£,m) =2 ¥ @a(z,',£,0) cos ——— (5.3.6)
n=1 N

where N is the number of grid points not counting the symmetry point.

It is advantageous to solve this equation numerically utilizing a
FFT algorithm., The FFT does not do exactly what is needed here so it
must be modified in order to achieve the desired result (Moin, private

communication). The FFT does the following,

2 (n-1) -
) (5.3.7)

A;;(r,r’.f,m) = g}@;;(r,r',f,n)exp M
n=

which can be written as

M M
N 27m (n-—-1) , 2mm (n—1)
Ays(r, o', f,m) = ) §11 cos — o + 12 E:u. sin —
n=1 n=1
(5.3.8)

In order to use the FFT, equation (5.3.8) must look like (5.3.6).

This can be achieved by letting M=2N and setting

Qll(r,r'.f.n) = 0 for n = N+2,....2N
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and realizing that the imaginary part of equation (5.3.8) is zero
because of the symmetry properties °f§u. For phase ‘3, N=15 so that
a8 30 point transform was done for each r,r' and ftequéncy
combination,

If both sides of (5.3.2) and (5.3.3) are summed over f they

become respectively

1
Bl.l. (ro r'l 0) = -;‘f" R11 (1', t'a 9) de (5.3.9)
o
and
2
B, (z, ', m) =—nf" R,y (r, ', ©) cos m6de (5.3.10)
o
where
R11 (1': ', ) = 2 L 281 (1': r!, o, f) = u(rn 90) u(r'. 60 + A@Q)
(5.3.11)
and
Bll (1’, t': m) = ZA;; (1', r, m, f), (5.3.12)

Riy (r, ', ) can be reconstructed from the By, (r, r', m) as,

N-1 :
Ris (1, =, 0) = 20 Bia (r, ', m) cos m@. ' (5.3.13)
m=

It is advantageous to set r = r’, so that B,, and;Ru, can be
prlotted for each radial position in the jet mixing iayer. A sampling
of these is plotted in Figures 5.3.1~-5.3.4,

Figure 5.3.1a shows measurements of R .(g) at a position near the
potential core at r/D = 0.13, There is clearly a strong correlation

over the entire 180° span. The corresponding B,,(m) is plotted in
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Fig. 5.3.1(b). The Oth mode (axisymmetric mode) can be seen to
contain most of the energy indicating a strong ring—like.vcoherentJ
structure at this position,

Figure 5.3.2a shows measurements of R,,(0) at a position on the
high-speed side of the mixing layer at r/D = .26, Again there is a
strong correlation over the entire 180° span. The corresponding
B,y(m) is plotted in Figure 5.3.2b. The first few modes again contain
most of the emergy indicating that there is still a ring-like
structure at this position,

Figure 5.3.3a shows measurements of R,;(0) at a position on the
high speed side of the mixing layer at r/D = «39. The correlation
falls off very rapidly indicating a breakdown of the ring-like
structure at this position, This can be seen by examining By y(m) in
Figure 5.3.3b., The energy is now spread out over many of the modes
when compared to Figures 5.3.1b and 5.3.2b,

Figure 5.3.4a shows measurements of R, ,(0) at a positién in the
center of the mixing layer at r/D = 0.52, Again the correlation falls
off very.rapidly. The corresponding B,,(m) jis plotted in Figure
5.3.4b. An interesting phenomenon occurs at this positiop. Instead
of the first few modes dominating, as in the aforementioned cases,
there is a shift here to the fourth, fifth and sixth mode s.

The other three positions in the mixing layer, z/D =. 0.65, /D =
0.78, and r/D = 0.91 where measurements were taken ares not shown
because Ry, and Byy at these positions exhibit the same basic

characteristics as those in Figures 5.3.4a and 5.3.4b.
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5.3.2 Results of the Orthogonal Decomposition - Phase 3

The inhomogenous problem was solved using Lumley's Orthogonal
Decomposition, For each mode number/frequency combination equation
(5.3.1) was solved numerically using the measured values
Au(r,r',f,m). The numerical approximation to equation (5.3.1) was
discussed in section 5.1,

The first 3 eigenspectra for modes 0 and 1 are shown plotted in
Figures 5.3.5 and 5.3.6. The first eigenspectrum for each of the two
modes is seen to dominate, These results are consistent with those
obtained from phases 1 and 2. It is useful to look at the amount of
énergy contained in the first eigenspectrum of mode O, ).(1)(f.0)
compared to that contained in all the modes combined. The ratio of

interest is

ZA(I)(f’ 0)/ 22;‘(1)@, m). (5.3.14)
' m

complex, This result in conjunction with those from Section 5.3.1
suggests that the eigenspectra of certain of the remaining modes
(i.e. modes 1,4,5,6) need also be included to give a phySically
realistic assessment of what is happening, :

An additional interesting result can be seen by examining Figures

5.3.5 and 5.3.6, The peak of the first eigenspectrum for mode O,

corresponds to an exit Strouhal number equal to 0.45, This is
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(1980). This is higher, however, than the value of 0.3 which is given
by some authors (Crowe and Champagne, 1971). When exa;lining Figure
§.3.6, however, the first eigenspectrum for mode 1, A._(l)(f.l), is seen
to peak around 50 Hz which corresponds to an exit Strouhal number of
0.25. This would suggest that the Strouhal number of 0.3 represents
an average over the first few azimuthal modes. If so, the orthogonal
decomposition used here would seem to have a real advantage over the
earlier techniques in that it can distinguish clearly these phenomena.
For the sake of comparison to the initial experiments discussed
in sections 5.1 and 5.2 a brief review of that problem is given below.
The eigenvalue problem that was solved is
R
[ 11 (r, e, 008®),0) art = A@) (@) (q, £ (5.3.15)
o : .
where &, js the cross-spectral temsor.
From the genmeral Hilbert—Schmidt theory ®,, can be reconstructed

from the eigenvalues and eigenfunctions solved for in (5.3.15) by
Boa(nr,f) = Y AP0 §®) (2, 6)* @) (e, gy, (5.3.16)
n I

Note the difference between equations (5.3.1) and (5.3.15). In
(5.3.1) the integral eigenvalue problem is performed using the
azimuthal coefficients A,, ohtained from the breakdown of &,,(r, o',
£, ) versus its azimuthal modes, The problem :in (5.3.15),
however, is performed over %,,(r, r', £f) since the az imuthal
dependence had not been obtained at the time phase 1 was performed.
The eigenspectra computed from (5.3.15) are shown plotted in

Figure 5.3.7. A similar dominance of the first eigenspectrum
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(compared to Fi‘gures 5.3.5 and 5.3.6) is observed here also. Although
no obvious analytical relationship exists between the first
eigenspectrum from the radial-onmly probiem [x‘”(f)] and the first
eigenspectrum from the radial and azimuthal problem,[;‘(l)(f, m)] it is

still instructive to compare them by looking at the following ratio,

) 2y 2) A, w). (5.3.17)
m

In other words, by adding the azimuthal dependence, has more of the
total energy been gained or did the initial experiment lump all the
energy into k(i)(f)? In this case the ratio in (5.3.17) is
approximately equal to 0.9, This would suggest that the initial
problem did contain most of the azimuthal variation, only that it was
mapped somehow, to the lower dimensional problem. These results are
consistent with those of Moin (private commumication).

A further comparison can be made between the two experiments.
From the general Hilbert-Schmidt theory it can be shown that the
complex coefficients can be reconstructed from the eigepvalues and
eigenvectors in the following manner,

N
Ayy (n,r,f,m) = Y A(n)(fam)W(n)(r.f.m)W(n)f(r.f.m) (5.3.18)
n=1 .
Also, by examining (5.3.16) and setting r = r' the cross spectrum
reduces to ;
N v

®1 (r,r, ) = Y AWOUD (@09 ®)(r, ), (5.3.19)

n=1

If both sides of (5.3.18) and (5.3.19) are summed over £, and n

is set equal to 1, the following ratios can be derived,
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Zx(x)(f,m,u(x)(,,f,mn(z) *(r,£,m)/ 2 Ai: (r,r, £, m) (5.3.20)

and

2x("(fw(‘>(r.f)w(‘) *(x, f.)/é ® i (mannf). (5.3.21)

For the Oth mode the ratio in (5.3.20) gives an indication or the
contribution of the 1st term (obtained now from the inhomogeneous
problem) to the total emergy in the Oth mode. From Figure 5.3.5 an
idea of the value of (5.3.10) for the Oth mode can be obtained. The
solid line represents the denominator and the dashed line the
numerator. Approximately 85% of the total is seen to be contained in
the first term. It must be remembered, however, that the results of
(5.3.20) must be interpreted along with those of (5.3.14) for the
azimuthal problem. This combination gives a total contribution to the
energy of at most 20% for the large eddy if only the Oth mode is used
for its definition, From Fig. 5.3.y the contribution ot the large
eddy (the ratio in 5.3.21) can be seen to be about 40% for the initial
problem, This discrepancy in the two problems would suggest that the
orthogonal decomposition is more efficient in the inhomogenous
direction (across the shear layer) than the harmonic deoémposition
applied in the azimuthal direction. This would suggest:that the
prevailing view of the large eddy as an axisymmetric vo;‘tex be
modified somewhat. Instead of only using the Oth azimuthal mode,at
least the 4th, 5th and 6th modes should be included in the definition.
This would increase the energy content of the big eddy, and give a
more realistic physical view of it, This is not surprising in light

of the discussion in Section 5.2 concerning the number of terms needed
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in a particular direction (of finite emergy) to represent the original
kernel of the integral. '

For the azimuthal direction a typical integral scale is Z~ 20
deg. while the span of finite emergy is L=360 deg. so that the number
of terms neeaed is

360 deg.
N o — o - 313,
7 20 deg.

This indicates that possibly as many as 18 terms would be neeued
in the azimuthal direction to represent the kernel as opposed to only
3 being needed in the strongly inhomogeneous direction across the
shear layer.

The spatial sampling theorem suggested in Section 5.2 implies
that at least 2N+1 grid points be used in a particular direction to
minimize spatial aliazing. Imn light or the above discussion of the
az imuthal pfoblem where N~18 it was felt that the results from phase 3
were slightly aliased since only 16 grid points over 180 deg. were
used (30 grid points over 360 deg.). As a result of this in pnase 4,

25 azimuthal positions were used over a span of 180 deg. (48 grid

points over 360 deg.) in order to satisfy this constraint.

5.4 Azimuthal Problem Streamwise and Radial Velocity — Phase 4

These experiments extended the work discussed in section 5.3 to
include the radial velocity components, It should be noted that all
of the previous phases (excluding phase 2) are included in this final
experiment,

A version or the orthogonal decomposition whicn utilizes the

streamwise and radial velocity measurements from the jet can be



formulated as

P— a—t
—

[ [~ _
A11(r;r'.fam) Ajs(x,r',f,m) llg_n)(r'.t,m)

dr’
A21(ror.a f,m) Azz(r, r',f.ﬂ IjQ('n)(r',f,m)
3 e 1,01
= 2@ (£, m) (5.4.1)

¥ (e t,m)

where r is the radius in the jet mixing layer and the A's are the

complex coefficients defined by equations (2.2.3) and (2.2.4). Using
the measured values of Allf A12f Ay; and Ay, equation (5.4.1) can be
solved numerically for the eigenvalues and eigenfunctions as discussed

in section 5.1.

5.4.1 Results of the Azimuthal Decomposition Analysis — Phase 4

Before looking at the results of the orthogonal decomposition in
the inhomogeneous direction (equation 5.4.1) the breakdown into
azimutha:l modes will be examined as was done in section 5.3.

Equations similar to those written in section 5.3 are also written for
A1y, Agq and A22‘_ (since the radial velocity was measuréd in addition
to the streamwise) hence the corresponaing R121 Ry1, Rpp, By2.,Byp and
Byse In this phase however, N=24 in equation (5.3.8) so that a 48

point transform was performed for each r,r' and frequency combination.

It is useful to examine in detail the azimuthal correlations for
which r = r' so thatB,,, B,,, Ry, BRyy, etc. can be plotted for each

radial position in the jet mixing layer. Selected examples of these
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are plotted in Figures 54.1 — 54.8. The following progression
across the jet mixing layer begins near the potential core and

progresses towards the low speed side of the shear layer.

he High Speed Side of the Mixing Laver

Figure 54.1a shows measurements of Rll(e) at a position near the
potential core at r/D=0.13, There is clearly a strong correlation
over the entire 180 deg. span. The corresponding Bll(m) is plotted
in Figure 5.4.1(b). The Oth mode (axisymmetric mode) can be seen to
contain most of the emergy indicating a strong ring—like structure at
this positiox:. This is the same result seen in section 5.3.

Figure 5.4.2(a) shows measurements of Rzz(e) at the same radial
position as above, The radial correlation is seen to go to zero at 90
deg. and then becomes negatively correlated. The corresponding Bzz(m)
is plotted in Figure 5.4.2(b). The 1st mode can be seen to dominate
in this case. This would indicate either that the ring-like
structures flap back and forth or that they are tilted slightly. This
was also seen by Long and Arndt (1985) from pressure measurements in
an axisymn;etric jet.,

Figure 5.4.3(a) shows measurements of R12(°) at the same radial
position as the above. There is clearly a strong correlhation over the
entire 180 deg. span much the same as was seen in Figure 5.4.1.

Figure 5.4.3(b) shows the corresponding B12(m)'

The Center Region of the Mixing Layer

Figure 5.4.4(a) shows measurements of Rll(e) at a position
on the high-speed side of the shear layer at r/D=0.35. The

correlation falls off much more rapidly than that seen in Figure
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v
54.1(a) indicating the presence of substantially smaller scale
turbulence. The corresponding B i(m) is plotted in Figure 5.4.4(b).
The Oth mode again dominates but in a&dition there appears another
peak around the 4th, 5th or 6th mode. This result was also seen in
phase 3,

Figure 5.4.5(a) shows measurements ot Rzz(e) at the same radial
position as the above at r/D=0.35. This correlation does not go
negative like the B, did in Figure 5.4.2(a). The corresponaing B,,(0)
is plotted in Figure 5.4.5(b). Here the Oth mode comes into play
along with the 1st mode as opposed to what was seen in Figure 5.4.2(b)
where only the 1st mode dominated.

Figure 5.4.6(&} shows measurements of R12 at the same radial
position as the above at r/D=0.35. An interesting thing happens here
in that the correlation falls off very fast indicating the
predominance of the small scale structures at this position. This is
also seen by examining B12(0) shown in Figure 5.4.6(b) where the
breakdown versus azimuthal modes is seen to be broaﬁ band with no
distinct peaks, This is quite distinct from the core region where the
Reynolds stress is dominated by the Oth mode. The R17(©) and Blz("‘)
at r/D=.46 show_ much the same characteristics as those at r/D=0.35.

Figure 5.4.7(a) shows measurements of Rll_(e) at a position just
to the high speed side of the center of the mixing layer, at r/D=.46.
The correlation falls off very rapidly, The corresponding By,(m) is
plotted in Figure 5.4.7(b). An interesting phenomenon occurs at this
position. Instead of the Oth mode dominating as was seen in Figures

5.4.1 and 5,5.4, there is a shift here to the 4th, 5th and 6th modes.
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Figure 5.4.8(a) shows measurements of Ry,(®) at a position just
to the low-speedAside of the center of the jet shear lay‘er at
r/D=0.57. Note that there is measurable correlation seen. The
corresponding B,,(m) is shown in Figure 5.4.9(b). Note the preference
for the 4th, 5th and 6th modes. Contrast these with those from Figure

5.4.6.

The results for Ru(e)f B11(0), Rp;(6) and Bpy(0) at r/D=0.7 are

much the same as those shown in Figures 5.4.7 and 5.4.5 respectively,
Ry 2(0) and B;,(8) were the only correlations to show significant
changes from r/D=.46 as seen by comparing Figures 5.4.6 and 5.4.8.
The remaining correlations at the other positions in the mixing
layer, r/D=0.68, r/D=0.79 and r/D=0.9 exhibit the same basic features

as the correlations shown above.

542 Results of the Orthogonal Decomposition — Phase 4

The inhomogeneous problem was solved using the Orthogonal
Decomposition. For each mode number frequency combination equation
Ss4.1 was solved numerically using the measured values of
Ayl f,m), Ajo(r, o', f,m), Ay (x,2',£f,m) and Ay (r,r', f,m). The
numérical app‘ronm‘ation to.(5.4.1) was discussed in section 5.1.

The first three eigenspectra for modes 0 through 8 ﬁre shown
plotted in Figures 5.4.9 - 54.,17. The first eigenspectrum for each
mode is seen to dominate (this was the case for the rem;ining modes
also) indicating that one term is adequate for the description of the
large eddy in the inhomogeneous directions. This is the same result
seen in the earlier work discussed in sections 5.1 — 5.3.

The azimuthal mode-number—dependent Strouhal number noticed in

section 5.3 is also seen here by examining Figures 5.4.9 and 5.4.10.
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54.3 Phase an —.Discussion

The preterence for the 4th, 5th and 6th modes as seen in Figures
5.4.7 and 5.4.8 and in section 5.3 is intriguing, A 6th-lobe
preference (although weak) was seen by Sreenivasan (1984) at a
position closer to the potential core at x/D=1, A detailed stability
analysis for vortex rings has been carried out by Widnall and Sullivan
(1973). From this analysis the number of preferential lobes is seen
to depend on the circulation as well as on the ratio of the vortex
core radius to the ring radius, Under certain combinations of the
above conditions they noticed a 6th—1lobe preference. Thus 6th—1lobe
preference noticed here is not inconsistent with the results from
Widnall and Sullivan (1973).

An additional proint of considerable interest is the fact that the
I—IV— azimuthal correlation are strongly correlated near the poteutial
core (see Figure 54.3), become broadband &8s one proceeds toward the
center of the mixing layer (see Figure 5.4.6), and then become more
correlated as one proceeds toward the outside of the shear layer (see
Figure 5.4.5). This indicates either that the incoherent turbulence
is convected toward the center of the large structure, or is generated

there.

5.4.4 A Proposed Mechanism

The previous discussion suggest the following mechai,nism for
turbulence production which consists of four stages.; These four
stages are shown in Figure 5.4.18, Vortex ring-like concentrations
arise from an instability of the base flow, the induced velocities
from vortices which have already formed providing the perturbation for

those which follow. These pairs of rings then behave like the text-

116



"uot3onpord 9ousTNgINg jo sefeis 4 pesodoag ay,

8

(})

” \2)

o~

<

"8T°§°g auandrg

(€)
- (L)

117



book example; or inviscid rings, the rear vortex ring overtaking the
vortex ring ahead of it, the rearward vortex being reduced in radius
and the forward are beiﬁg expanded by their mutual interaction., The
rearward ring is stabilized by the reduction in its vorticity (by
compression) thus the predominance of the Oth mode on the high speed
side (core region). The forward ring has its vorticity increased by
stretching as it expands in radius. This narrowing of its core while
the radius is expanding causes the vortex to become unstable (as in
the Widnall-Sullivan mechanism mentioned above), thus the predominance
of the 4-6 modes from the center of the shear layer outwards. The
‘continued effect of the rearward vortex onm the forward one and the now
highly distorted ring interaction with itself, accelerates the
instability until its vorticity is now entirely in small scale
motions, in effect an energy cascade from modes 4—6 all the way to
dissipative scales, This incoherent turbulence is swept from the
outside where it has been carried, back to the center of _the mixing
layer as the still-intact rearward vortex passes, It is this
collecting of the debris, both small-scale vorticity and fluid
material, which has been recognized as ""pairing'. Thus pairing is
not a mechanism as has often been claimed, but simply a phenomenon
which marks the end of the life cycle of a large eddy,' The entire
process is repeated as a new rearward vortex overtakes and
destabilizes the one ahead of it,

The above sequence is consistent with all of the
observations of this experiment and those of others (v. Hussain 1986).
The only missing piece of information is to experimentally establish

the sequencing of the events, a task for a future decomposition which

118



will include the streamwise—variable dependence (i.e. x).
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CHAPTER 6
CONCLUSION

The orthogonal decomposition has been shown to be remarkably
efficient at organizing data (ie. 7 x 7 grid appears adequate), and
the instantaneous properties of the random signal have not been lost,
only organized. So efficient has the scheme been at organizing the
energy that only a few terms in the inhomogeneous direction were
needed to completely represent the instantaneous signal.

The orthogonal @ecomposition is seen to require only 3 terms to
represent the kernel of the integral in the inhomogeneous direction
(across the shear layer) while the harmonic decomposition applied in
the azimuthal direction requires considerably more terms. This would
suggest that the prevailing view of the large eddy as an axisymmetric
vortex be modified somewhat. Instead of only using the Oth azimuthal
mode, at least the 4th, 5th and 6th modes should be included in the
definition, This would increase the energy content of the big eddy,
and give a more realistic physical view of it,

The basic features of the azimuthal large structure obtained in
phase 4 were the same as those obtained with the streaqwise only
correlation (phase 3). In particular the strong correlation and
dominance of the Oth mode near the potential core and the preference
for the 4th, 5th and 6th modes elsewhere. This would imply that, as
far as the-large scale structure is concerned, that the streamwise
azimuthal correlations would be an adequate description. The addition
of the Reynolds stress and radial azimuthal correlations, however,

give additional insight into what is happening across the shear layer,
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in particular the mechanism of the breakup of the structure.

The eigenspectra extracted using the data base from phase 4 show
the same basic characteristics as those extracted from the streamwise
only decomposition, The shapes of the particular eigenspectra are
essentially identical. The only measurable difference between the
eigenspectra is in their respective amplitudes, those from the latest
data being higher. This is to be expected because the eigenspectra
are essentially the total energy integral across the shear layer, and
with this latest data there is the additional contribution to the
total energy from the v component of velocity.

A mechanism for the life cycle of coherent structures and for
turbulence production in the axisymmetric jet mixing layer has been
proposed which accounts for the observed phenomena and is amenable to
dynamical analysis using the equations of motion., It will be
interesting to see if the details can in fact be confirmed by a direct
application of the decomposition to the equations of motion. If so,
we may at long last have a detailed example of how Reynolds stress
acts to remove energy from the mean flow and distributes it to all

scales of motion,
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CHAPTER 7
Recommendations for Further Study

Up to this point in the discussions there has not been an attempt
to demonstrate how to reconstruct the large eddies in physical space,
When the stationary variable time is transformed to frequency using
the Fourier transform the visibility of the structure in the Fourier
domain depends on the bandwidth of the random coefficients calculated
from equation (5.1.4) (v.Arndt and George (1973)). For low Reynolds
number flow there are only a few dominant Fourier modes so that the
structure is visible or distinct, however, with high Reynolds number
flow there are many Fourier coefficients, Since the lifetime of the
egroups” is inversely proportional to its bandwidth, the actual
structure becomes more fleeting as the Reynolds number increases.
Therefore there is a need for some method to organize or sequence the
occurrence of these structures in a high Reynolds number f1ow. Lumley
(1967, 1970) suggested using the shot noise decomposition to overcome
this problem.

The shot noise effect can be illustrated by the randomly varying
intensity of a flow of electrons from cathode to anode in a vacuum
tube. The signal produced by this stream of electrons is random in
nature, The arrival of a single electron at the anode would, however,
result in a signal characteristic of an individual even;. The signal
which results from the arrival of many electrons at ;andom times is
then a random superposition of these characteristic signals, It can
be seen then that, whiie the overall signal is indeed random, it is
composed of chartacteristic signals which are deterministic ;nd occur

at random times., The shot noise decomposition provides one means of
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determining the nature of bypothesized individual events from
measurements of the spectrum of the random signal, ’

In extending these ideas to a homogeneous or stationary turbulent
flow field it is supposed that the random velocity field is composed
of characteristic signals or ‘eddies’, occuring at random times in a
stationary flow (or at random positions in a homogeneous flow), Upon
randomly superposing (or sprinkling the flow with) these eddies the
random velocity field is realized,

These concepts were applied to the time direction using the
streamwise velocity measurement from phase 1 (Glauser et al. 1987)
where a zero phase reconstruction of the supposed large eddy was
rerformed (see Figure 7.1). . The phase relationship or sequencing of
the structure is unobtainable from second order statistics. Lumley
(1980) suggested using the bi-spectrum, (Rosenblatt (1966)) to achieve
the desired sequencing.

Herzog (1986) has shown, however, that within the domain of the
shot noise expansion, there does not exist a description of a typical
eddy and its distribution of strength in space and time which
represents all third order statistics (in particular ofvthe bi-
spectrum) of the random coefficients associated with th; dominant
eigenmode. He was able though to restrict the functional form of the
phase relationship among the Fourier modes by utiliziné requirements
of real values and symmetry of the large eddy so that the influence of
different phase relationships could be investigated, Herzog found
that the assumption of zero phase led to the most compact form of the

velocity field of the eddy. Any introduction of a moderate phase

shift between the Fourier modes lead to attenuation of the eddy but
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did not change its geometric shape,

In an attempt to deal with the phase problem Aub.ry et al,
(1986) suggests a slight modification to the original ‘orthogonal
decomposition that leaves the random coefficients (v, equation
(5.1.3)) as a function of time, This alternative €xpansion can then
be substituted in the Navier—Stokes equations i.n order to recover the
phase information carried by the coefficients, This approach has been
implemented by Aubryet et al. (1986) with some success using the
eigenfunctions of Herzog (1986)., 1t would be interesting to impl ement
these concepts using the eigenfunctions obtained from the jet, and
such studies will be carried out in the future,

To this point it has been assumed that the coherent structure is
& unique event, However, the discussion in Section 54 (of a possible
mechanism) would suggest that these structures interact with one
another (how much interaction is still an open question) implying that
in order to model the dynamics properly these interactione must be
accounted for. The best way to obtain more quantitatiire information
about the interaction of these structures would be to repeat the
experiment, only now adding the streamwise variation, '.Ilus would give
the complete space time evolution of these structures. How to
properly sequence these interacting structures is not obvious but

i

perhaps an eduction scheme somewhat like that suggested by Hussain
(1986) used in conjunction with a velocity field reconstructed form of

the orthogonal decomposition may be fruitful,
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