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Abstract

This thesis presents a theoretical and experimental study of the turbulent axisym-
metric wake.

In the theoretical part, an equilibrium similarity solution of the far wake was
derived that was found to admit to two different solutions for this low. The high
Reynolds number solution predicts that the flow grows as the cube root of the
distance downstream, whereas the low Reynolds number solution grows as the
square root of the downstream distance. None of these solutions had unambigu-
ously been confirmed in earlier work. The analysis also provided necessary criteria
for when to expect either solution.

In the experimental part, data was obtained by hot-wire anemometry using
arrays of 13 and 15 probes. For the first time, experimental data was proven to
behave like the high Reynolds number equilibrium similarity solution predicted.
These multi-point probe rakes were also used to measure cross-spectra in cross-
sections of the flow from 10 to 150 disk diameters downstream.

The cross-spectra obtained from the measurements were Fourier transformed
in the azimuthal direction and used in the kernel for a proper orthogonal decom-
position (POD). The POD was shown to order the energetic structure in a highly
organized manner, with approximately 56% of the resolved energy in the first
mode. The decomposition revealed that the initial wake region from 10 to 30 di-
ameters downstream was dominated by an azimuthal mode-1 type of motion, but
also that the importance of this mode vanishes as the flow evolves. Instead the far
wake from 30 diameters downstream on was found to be dominated by a mode-2
type of azimuthal motion. This was found to coincide very well with the position
at which the similarity solution became valid. This mode-2 dominance continued
throughout the whole range of the investigation, with virtually no change in the
modal decomposition. The mode-1 was interpreted as a convected structure asso-
ciated to the vortex shedding in the near wake that was just swept by the probes
and dies off downstream, and the mode-2 was postulated to be associated with a
global instability manifested as a slow movement of the whole mean velocity field.

The findings of the experiment triggered new theoretical investigations, and
a re-visit of the classical linear temporal stability analysis. It was found that
the theory permits unstable solutions of mode-0, 1, and 2 kind, contrary to the
previous view that only azimuthal mode-1 can be unstable.
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Chapter 1

Introduction

This is a thesis about turbulent flow and about the tools used to investigate it.
Everyone encounters turbulence almost everywhere, even though most people are
usually not aware of it. Turbulence is perhaps most widely known as the hands-
on experience onboard an airplane when the plane all of a sudden starts jumping
up and down. Most of the time the captain tells the passengers to put on their
seat belts “and by the way, always have it on while seated”. For most people it
does seem strange, living in the twenty-first century and all, that we do not have
the tools to know in advance when a flight might get bumpy. Among all those
instruments and indicators in a cockpit — is there really not one little light that
goes on as a warning? The answer is, well, maybe there is, but it sure is not very
reliable. We cannot anticipate exactly when we will encounter turbulence. This
is a really big problem — and not only when it comes to passenger comfort and
safety in airplanes.

1.1 Turbulence around us

Turbulence is everywhere. In the atmosphere, around vehicles such as cars or
planes, inside vehicles, building ventilation systems, hair dryers, dish washers,
you name it. It is often the cause of the noise we hear when there is a flow. Next
time you are riding a car (not while driving it), try to stick out your head through
the side window. You are most likely to find out that the faster the car goes —
the more the noise.

Turbulent flow makes a great image. The picture below (figure 1.1) is taken
from the Landsat 7 satellite orbiting the earth. It shows an unusually clear image
of clouds forming something called a vortex street above Selkirk island (also known
as Robinson Crusoe island) off the coast of Chile. The weather was just right for
the clouds to form big eddies behind the island. There are a lot more of pictures
like this at http://visibleearth.nasa.gov and http://www.efluids.com.

Scientists with some interest in history like to show a picture of a turbulent
flow by Leonardo da Vinci made around 1500. He was a man who “wore many
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Figure 1.1: Satellite image of clouds above Selkirk Island. Obtained from
http://edcwww.cr.usgs.gov/earthshots/slow/Selkirk /Selkirk

hats”, with many contributions to science. Some say that he was a couple of
hundred years ahead of everyone else, since he is said to have been the first to
separate the mean, large scale, motion of a fluid from the small scale, fluctuating
part. This is a very common approach, even today, to deal with turbulent flow,
and is usually credited to Reynolds (1883). This method is widely known as ‘the
Reynolds decomposition’.

It is often stated in review articles that ‘turbulence is the last great unsolved
problem of classical physics’. A famous story about Albert Einstein goes as fol-
lows: As he lay dying Einstein said that he would like to ask God two questions:
Why relativity, and why turbulence? “I really think,” said Einstein, “He may
have an answer to the first question.”

1.2 What is turbulence?

There is one especially important number to be aware of, that will keep on ap-
pearing throughout this thesis: the Reynolds number. It is a non-dimensional
number defined as Re = UL/v Here, U is a characteristic velocity for the flow,
L is a characteristic length, and v is the kinematic viscosity of the fluid. If this
number is ‘low’, the flow is nice and smooth — laminar. And if this number is
‘high’, the flow is seemingly chaotic — turbulent. Exactly at which critical Re the
transition between laminar and turbulent flow takes place is different for each type
of flow. Traditionally, these values were obtained from laboratory experiments.
Experiments are quite sensitive to even very small disturbances, so researchers
have investigated transition of all kinds of flows for about a century.

There is no precise definition of turbulence. One usually encounters seven
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characteristics of it as listed in the textbook by Tennekes and Lumley (1972). A
few of them are: turbulent flow is random in its nature, and also three-dimensional.
That is, a turbulent flow fluctuates in all directions. Also, it must have (local)
rotation or swirl (called vorticity by fluid dynamicists). Another characteristic is
that there are different length scales involved. This means that there are eddies
of different sizes in the flow all present at the same time. Turbulence enhances
mixing, maybe its most useful property. And finally, it dissipates energy — most
of the energy dissipation in the flow is due to turbulence, in fact.

A major incentive for studying turbulence in an industrial environment is to
make it go away. And if this is managed — problem solved. But most of the time
it is not understood why the fix worked. The natural question that arises is: Why
is it so difficult?

1.3 Why is turbulence so difficult?

Let us consider an example: Take one cubic meter of fluid and stir it into motion.
Let’s stir it quite vigorously. The largest eddy is about the same size as the largest
scale possible, one meter in this thought experiment. If this cubic meter of fluid
is stirred hard enough, the smallest eddy might be a tenth of a millimeter — and
this is the scale at which most of the energy dissipation occurs! To be able to
compute what happens to these very important dissipative little eddies, we need
a computational grid fine enough to capture all the scales. This means we need
10* x 10* x 10* = 10'2 cells to resolve this cubic meter of fluid — for each time
step! And these time steps have to be small enough to capture fast events, which
can have a duration of a millisecond.

One cubic meter of fluid is not much when you want to find out what happens in
a hydro power plant — or around an airplane. Today, the best resolved numerical
simulations have about 10! cells. Certainly, the computer speed can keep on
doubling every 18 months for a long time before we can start talking about only
doing computations. Nevertheless, the ability to do numerical simulations is a
very important tool. Sometimes it is the only tool that can provide an answer.
On the other hand, sometimes only a physical experiment can show us what really
happens. Exploring turbulence is closely related to choosing the right tool for the
problem, and choosing the right problems to study.

This thesis is mostly about experiments on turbulent flows. But it is also
about theory, because an experiment without theory is like walking in an unknown
forest with neither map nor compass. Sometimes an experiment triggers new
developments of the theory, but most of the time it is the theory that suggests
what we want to measure in the first place. And it is only a theory that can help
us understand what we did and whether it all makes sense.
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1.4 The goal

The ultimate goal is to be able to make turbulence go away or come as we please.
That is called control. To be able to control something, we have to know what
to control. It also helps to have an idea of how it got there — so we can make
guesses how to prevent it from doing so, without having to only make blind trial-
and-error tests. In this view, the experiments that will be reported in this thesis
tell us what is in the flow, and the theory tries to at least give us hints as to how
it got there. If we are lucky this will eventually lead us to simplified equations
that will allow us to control it.

In summary, the aim of this research was to investigate and advance towards
a description of how the turbulent fluctuations extract energy from the mean
flow. Insights into this process are invaluable when modelling turbulence, and also
when evaluating whether any specific model contains the essential physics. If the
process of energy transfer from the mean flow to the fluctuations can be described
accurately, it might be one step towards driving a nail into the solid rock that is
loosely called ‘the turbulence problem’. In the turbulence community, it is heavily
debated whether the real problem originates in understanding what happens at
the dissipative (small) scale or whether it is more important to understand how
the energy got there in the first place. This thesis focus on the latter.

1.5 The axisymmetric wake

The axisymmetric wake is an interesting flow to study from many perspectives.
Any three-dimensional object that moves through space creates a wake. If it is
self-propelled, it is a momentumless wake, and if it is towed, it creates a wake
with a momentum deficit. Wakes in general are extremely complex flows that are
not well understood. Therefore, a simplified geometry has to be investigated to
understand the physics.

The most basic form of a three-dimensional wake is the axisymmetric flow
behind a disk or a sphere. Of course, if the flow is turbulent, it is really only
statistically axisymmetric.

1.6 The work of this thesis

This work presented in this thesis mostly concerns the statistically axisymmetric
turbulent wake behind a disk. In early experiments, the disk was actually a
Swedish 5 kronor coin.

Theory

This study has been theoretical as well as experimental. The theoretical part
deals with equilibrium similarity analysis and the background and derivation of
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some specific properties of a technique called ‘proper orthogonal decomposition’
(POD). The study also briefly touches some aspects of linear stability theory. The
POD is an essential part in understanding the flow in this sense, because it is an
optimal way to describe the large scale energy containing structure in terms of
a modal decomposition. This helps understand what really is in the flow, the
building blocks if you wish. Now the question is: How did they all get there? To
try to answer this, the instability of the mean flow is analyzed since the results
are strikingly similar to what is found when the POD is applied to this flow.

Experiments

The axisymmetric wake has puzzled researchers for at least seventy years, since
measured results have been very hard to interpret. The results have actually
been inconclusive or contradictory. It is a very challenging flow to investigate
experimentally (and numerically as well), since it is in some sense very weak. The
mean velocity variations one wants to measure are less than 1% of the free stream
velocity, and the fluctuating velocities are of the same magnitude as the velocity
deficit.

The only measurement technique that is capable of resolving such small fluc-
tuations is hot-wire anemometry. Even this technique has limitations that affect
the accuracy, but it will be shown that there are ways to overcome at least part of
them. In fact, the far axisymmetric wake is at the threshold of what is possible to
measure today using the best wind tunnels and most stable low-noise anemometer
equipment.

The theoretical part of this thesis has been carried out all over the world. It
began in Buffalo, NY, evolved on boats and airplanes, and from endless discussions
and notes on napkins around coffee tables.

The experimental part has been performed at different Swedish institutions;
at Chalmers University of Technology in Goteborg as well as at Royal Institute
of Technology in Stockholm.
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Chapter 2

The history of axisymmetric wake
research

The axisymmetric wake has been under investigation for at least seventy years.
To make a complete survey of all the investigations of this flow is a task that is
overwhelming. In this chapter, the aim is to present a historical review placing
the work done in this thesis into perspective. The survey builds the framework
that leads to our current level of understanding of this flow. And it concludes by
summarizing which important questions are left unanswered.

2.1 Early laboratory experiments

The first published study of the ‘structure’ of the three-dimensional wake was
perhaps that of Marshall and Stanton (1931). They presented photographs of
wakes behind circular disks in water. They used dye to trace flow patterns which
revealed an unsteadiness when Re exceeded about 200. They also concluded that
there was a periodic discharge of a series of rings of vortices.

The sphere wake was studied in a water tank by means of flow visualization
by Moller (1938), who found a spiral vortex in the wake in a certain range of
Reynolds numbers. He presented Strouhal number versus Reynolds number to
quantify the change in frequency of the vortex shedding. The Strouhal number is
defined by:

_ fd
=

where f is the frequency of the vortex shedding, d is the diameter of the body,
and Uy, the free stream velocity.

With the development of hot-wire anemometry, experimentalists were very
ambitious and initially focused on the far wake. Each wanted to be recognized for
confirming the single universal wake of the ‘classical’ theory due to von Karman
and others. None suceeded, which is why this thesis is still possible. The first
complete set of data in the wake of an axisymmetric disk perpendicular to the

St (2.1)

7
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flow was presented by Carmody (1964), who measured mean velocity, turbulence
intensity, Reynolds stress and wake growth in an axisymmetric disk wake at a
Reynolds number (Re) based on the free stream velocity and the disk diameter
of 70,000. Based on these measurements, he stated that the wake was self-similar
15 diameters from the disk, meaning that the mean velocity profiles appeared to
collapse when normalized by the centreline velocity difference and a lateral length
scale determined from the velocity profile itself.

One extensive study was made by Hwang and Baldwin (1966), who measured
turbulence intensities and wake growth for a large span of downstream locations,
all the way down to 900(!) diameters downstream. One serious problem with
both the Carmody (1964) and Hwang and Baldwin (1966) data is that they show
a significant scatter. Also in the sixties, Gibson et al. (1968) investigated the
sphere wake using hot-wires and Pitot tubes, and reported decay of mean and
variance of velocity and temperature down to x/D = 60.

In the sixties, the hot-wire technique was not fully developed, and of course
there were no computers to handle the large amount of data required to provide
undisputable statistics. Hwang and Baldwin (1966) even reported difficulties in
reproducing their own results on a day-to-day basis, and Gibson et al. (1968) noted
that their errors were as large as £10%. Most, however, covered their uncertainties
by simply not showing the important profiles. In fact, these experiments are still
very difficult, even with today’s technology as will be seen later.

2.2 Higher Reynolds numbers and transition

In parallel, flow visualization experiments were performed on low Reynolds num-
ber wakes by Magarvey and Bishop (1961) who studied falling drops up to Re =
2500. They used dye visualization techniques to study the eddy (or more properly,
vortex) structure of the wake, hoping to describe the mechanisms of transition and
to provide limits to when the flow undergoes transition from laminar to turbulent.
This study was followed by Magarvey and MacLatchy (1965), who studied falling
spheres for Re < 500, attempting to describe the manner in which vortices are
released to the free stream.

Later experimentalists pushed the Reynolds number higher and higher. They
probably considered the transition process explained. Part of the reason for this
was the experimental investigation of the stability of the axisymmetric wake by
Sato and Okada (1966), who studied a slender axisymmetric body of revolution.
This body created a laminar wake which was triggered acoustically. Because of the
earlier experimental flow visualization and nearly concurrent theoretical studies,
it was very interesting to find out which azimuthal modes that existed in the flow.
Analytically, Sato and Okada (1966) applied a criteria of Batchelor and Gill (1962)
to their laminar wake velocity profile, and concluded that azimuthal modes 1 and
2 were possibly unstable (Batchelor and Gill (1962) found that only mode 1 can
be unstable for their particular choice of mean velocity profile). They were not
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able to numerically find a solution for mode 2, and their experimental data was
found to be in agreement with mode 1 being the only possible unstable mode. We
shall come back to azimuthal modes and the Batchelor and Gill (1962) criteria
later in this thesis, especially in paper 7.

The vortex structure for a sphere wake at a substantially higher Re was studied
by means of flow visualization by Pao and Kao (1977). They investigated wakes
with Re up to 2 x 10*. The main finding was that without stratification, vorticity
was shed three-dimensionally. Stable stratification resulted in the wake collapsing.
They made a model of the vortex configuration in the wake that has been, and
still is, heavily cited.

The sphere wake was later studied by Taneda (1978), who used the surface
oil-flow method, smoke visualization and a tuft-grid to visualize the flow for Re
up to 10°. He showed evidence of the wake performing a wave motion up to
Re = 3.8 x 10°, and that it forms a pair of streamwise vortices at higher values

of Re.

2.3 Higher Reynolds numbers and far wakes

In 1972, Achenbach (1972) studied the high Reynolds number (up to Re = 6x 10°)
sphere wake, measuring drag, local static pressure, and the skin friction coefficient
to find out how these quantities were changing during transition. The same sphere
was investigated in Achenbach (1974), where hot-wire data was presented. These
data were used to support the model he constructed in the previous paper.

Using hot-wires became more manageable already in the early seventies, and
Uberoi and Freymuth (1970) measured the velocity distribution in the far wake of
a sphere at a Reynolds number of 8,600. They were very precise in their statement
that the wake had become self-similar by 50 diameters downstream, even though
they only measured a few more positions downstream. One curious omission in
their paper is the fact that the streamwise turbulence intensities were presented for
more downstream locations than the mean velocity profiles were shown, indicating
that perhaps things weren’t as clear as they suggested.

Bevilaqua and Lykoudis (1978) investigated the wakes of a sphere and a porous
disk with the same drag and reported that these became self-similar in terms of
mean velocity and Reynolds stress profiles within ten diameters of the sphere and
within twenty diameter of the porous disk — but not in the same manner. That
is, the sphere and the porous disk do not reach the same state of similarity. They
concluded that this result was not consistent with the idea that the turbulence
forgets how it was created, as commonly believed (c.f. Townsend (1956)). This
study was (and still is) largely ignored by those who write textbooks.

A similar, but more extensive experiment was that of Cannon (1991) who
investigated the axisymmetric far wake behind five different wake generators (disk,
sphere and three porous disks with different porosity, all five with the same drag.
The measurements extended over a range of x/D of about 10 to 125. From these
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(w= smoke-wire location)

| | |
0 40 85

Figure 2.1: Four different wakes, Cannon (1991).

data, it was obvious that there is something more than the drag that dictates the
evolution of the flow. Even though all wake generators used had the same drag, the
wakes behaved very differently. This is very pronounced in the flow visualization
images in Cannon (1991), shown in figure 2.1, where even the turbulence eddies
look different. The statistical properties and growth rates of the wakes differ by
as much as a factor of four. Even with this data, some insist that we only need to
go far enough downstream and they will all look alike. Cannon (1991) also found
that it was possible to fit both of the two possible similarity solutions of George
(1989) equally well to the data. It was not clear which was the best, or even if
either flow had reached equilibrium.

The stability of the axisymmetric wake was investigated theoretically by Monke-
witz (1988), who expanded previous studies by investigating a family of wake ve-
locity profiles. He confirmed previous conclusions that azimuthal mode 1 was the
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most unstable — in fact the only one that can trigger absolute instability of this
flow.

2.4 The computer age - back to low Reynolds
numbers

By the nineties, computers had evolved to the point that they started to become
really useful for computing turbulent flows. Kim and Pearlstein (1990) made
a computational study of the transition range for Re < 300 using a spectral
method. They claimed that their result compared well to experimental results.
The instability of the flow behind spheres and disks was also investigated by
Natarajan and Acrivos (1993) using finite-element methods. They disagreed with
Kim and Pearlstein (1990) on how the actual transition from laminar to turbulent
flow takes place, but both agreed that azimuthal mode 1 was the most dominant
feature.

Basu et al. (1992) made a direct numerical simulation (DNS) of the axisymmet-
ric wake for Re = 1,500. The authors claimed that the solution approached the
self-similar state in a slow manner, and the computation was interrupted before
this could be verified.

Johnson and Patel (1999) investigated the flow behind a sphere at low Reynolds
number numerically and experimentally. They proposed a symmetry breaking
mechanism to advance the basic understanding of the steady, non axisymmetric
regime between Re = 210 and 270. At Re = 300, a highly organized periodic
flow was found that was dominated by vortex shedding. Transitional and weak
turbulent flow was shortly thereafter studied by Tomboulides and Orszag (2000),
who confirmed the results of experiment and linear stability analysis. The conclu-
sion that mode 1 was most important was supported by the non-linear dynamical
systems approach by Ghidersa and Dusek (2000).

Very recently, Gourlay et al. (2001), presented the first DNS of the high
Reynolds number (Re = 10,000) ‘late’ wake (which can be directly compared
with the ‘far’ wake). This work was found to be very interesting in the context of
this thesis, and these data are used extensively in paper 5.

2.5 Large scale structures

The large scale, ‘coherent’ features of this flow have not only been studied using
flow visualization, but also by means of phase averaging and conditional sampling
techniques, (Lee and Bearman, 1992; Miau et al., 1997; Perry and Lim, 1978;
Perry and Watmuff, 1981). Most interestingly in the context of this thesis, Roberts
(1973), and later Fuchs et al. (1979) used two hot-wires to measure cross-spectra at
a single radius of the near wake. Fuchs et al. (1979) varied the angular separation
of the probes and were able to decompose the cross-spectra into Fourier modes.
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The azimuthal modal content was then studied at the frequencies that were found
to be eventful. At z/D = 9, they found a strong azimuthal mode-1 peak at a
frequency corresponding to the vortex shedding frequency, but also a peak for
mode-2 at very low frequencies. The mode-1 peak was clearly dominant. Berger
et al. (1990) also conducted a similar investigation, and reported a dominant
mode-1 peak. They did not at all mention mode-2, even though it is clearly
present in their results. Subsequently, Cannon et al. (1993) also measured the
cross-spectra at a fixed radius of the wake, but further downstream, x/D = 27.
They confirmed that mode-1 was dominant.

2.6 Proper orthogonal decomposition, POD

Proper orthogonal decomposition is in essence a structured way of organizing
the azimuthally transformed cross-spectra. Originally introduced to the field of
turbulence by Lumley (1967), it has only recently become heavily utilized, because
of the very large amount of data required. The POD has been applied to many
flows, such as the plane mixing layer by Bonnet et al. (1998), where different
techniques of eddy structure identification methods were compared. This role of
the POD was further discussed in detail by Delville et al. (1999).

The POD orders the energetic structures, and also gives an answer to which
modes are dominant over a whole plane. Thus it is more general than for instance
azimuthal decompositions at a fixed radius. A POD in a plane at a fixed down-
stream position, called ‘slice” POD has been previously applied to the jet mixing
layer Glauser (1987); Glauser and George (1987); Citriniti and George (2000) and
to the far jet Gamard et al. (2002b). These were followed up by Gamard et al.
(2002a) and most recently by Gamard (2002). Much to our surprise, azimuthal
mode-2 was found to dominate the far jet, contrary to previous experiments.

2.7 Equilibrium similarity theory

The work in this thesis actually started with the topic of equilibrium similarity
theory. The idea is that “nature loves balance”. In other words, all the terms
in the governing equations of a particular flow go up and down together as the
flow evolves. If some term does not follow — it either takes over and new balance
is established, or it dies off. The concept was introduced by George (1989), who
studied a family of shear flows like the plane and axisymmetric jets and wakes.
A continuation was presented in George (1995). Already in the first paper, two
possible solutions for the axisymmetric wake were suggested.

The equilibrium similarity has been applied to many flows, such as plane wakes
by Ewing (1995) and Moser et al. (1998), and in extended form to boundary layers
by George and Castillo (1997), to wall jets by George et al. (2000), and to pipe
and channel flow by Wosnik et al. (2000). It is pretty obvious now that flows like
to be in equilibrium similarity. The obvious and unanswered question is why?
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2.8 Unanswered questions

The research mentioned above has left some questions unanswered, which is why
this thesis was possible. Some of the questions are:

1. Does the axisymmetric wake ever become self-similar?
2. Which solution will it go to if it does?

3. Provided the answer to the first question if yes, how far downstream is the
wake self-similar?

4. Will azimuthal mode-1 continue to be the most dominant mode far down-
stream?

In May 2000, these questions were formulated in almost the same way in an
application to a no longer existing source of funding of fundamental research in
Sweden. The application was turned down. Fortunately we were able to proceed
anyway, and all of the questions have been answered in this thesis. Amazingly,
enough new fundamental questions about turbulence have been raised that the
continuation of this research has been funded by the successor agency.
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Chapter 3

Summary of papers

3.1 Papers 1 & 5: Equilibrium similarity

Paper 1 presents the equilibrium similarity theory applied to the turbulent ax-
isymmetric wake. For the first time, it was shown without ad hoc assumptions
that two solutions are theoretically possible: one for high Reynolds number flows
where the wake grows as #'/3 and another for low Reynolds number flows with a
wake growth as /2. In this paper, the theory was applied to experimental data
available at the time, and it was not clear whether any of the solutions applied
anywhere. An intermediate asymptotic solution was presented that provided an
excellent fit to the data.

This paper has been superseded by Paper 5, but is left in the thesis to show
the evolution of the work. As new experimental data became available, presented
in Paper 9, together with the far downstream study of the evolution of the POD,
it became clear that the data analyzed in Paper 1 simply had not evolved far
enough downstream for the initial transients to die off. Also, high Reynolds
number DNS data became available to the authors, which contributed to the
final results presented in Paper 5. Here it is shown that the turbulent disk wake
at a Reynolds number of 26,400 satisfies the high Reynolds number equilibrium
similarity solution, once the flow has had enough downstream distance to evolve.
The necessary distance was found to be 30 diameters. This is characterized by the
flow approaching a state where u'/U, is constant, and when the local Reynolds
number is high enough (> 500).

The high Reynolds number DNS was found to also satisfy these conditions,
but after a certain time, the turbulence intensity ratio diminished, whereafter the
flow slowly evolved towards the low Reynolds number state, again characterized
by a constant value of u'/U,.

15
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3.2 Papers 2 & 3: The near wake

A probe consisting of 13 hot-wires arranged in two rakes were used to obtain
the first POD of the axisymmetric wake for three different downstream positions,
x/D = 10, 30, and 50. The results of this study are presented in Paper 2. It
was found that azimuthal mode 1 dominates the first position. At x/D = 30, it
was found that mode 1 and 2 were equally important, and by x/D = 50 mode 2
seemed to dominate. This was a very surprising result, contradicting all previously
reported.

To ensure that the results were reliable, a sensitivity study was conducted,
where the effect of probe coverage and disk suspension configuration was investi-
gated. The results presented in Paper 1 were confirmed.

3.3 Papers 4 ,8, & 9: The far wake

The investigation of Papers 2 & 3 was extended to cover larger downstream dis-
tances (to /D = 150). Here, the single-point statistics were obtained to provide
a data base of the disk wake evolution. This was used extensively in the study
presented in Paper 5. Paper 4 shows preliminary results from this experiment,
using the POD to extract the energetic structures. The experiment is thoroughly
explained in Paper 9.

The decomposition revealed that the initial wake region from 10 to 30 diame-
ters downstream was indeed dominated by an azimuthal mode-1 type of motion,
but also that the importance of this mode vanishes as the flow evolves. Instead
the far wake from 30 diameters downstream on was found to be dominated by
a mode-2 type of azimuthal motion. This was found to coincide very well with
the position at which the similarity solution became valid. This mode-2 domi-
nance continued throughout the whole range of the investigation, with virtually
no change in the modal decomposition. The mode-1 was interpreted as a con-
vected structure associated to the vortex shedding in the near wake that was just
swept by the probes and dies off downstream, and the mode-2 was postulated
to be associated with a global instability manifested as a slow movement of the
whole mean velocity field.

3.4 Papers 6 & 7: Connection to stability theory

In light of the acquired results, we decided to re-examine some widespread views
regarding coherent structures, linear stability, and the dominant azimuthal behav-
ior of the wake. Especially, we re-examined the temporal linear stability analysis
developed by Batchelor and Gill (1962). Their conclusion that mode-1 is the only
unstable mode in axisymmetric shear flows is purely a consequence of their pos-
tulated ‘far jet’ profile. More realistic profiles for jets as well as wakes, show that
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modes-0, 1, and 2 can be unstable, which is in agreement with our findings in the
wake.
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ABSTRACT

Equilibrium similarity considerations are
applied to the axisymmetric turbulent wake.
Two solutions are found; one for infinite
Reynolds number, one for small Reynolds num-
ber, and both dependent on the upstream
conditions. Neither agrees particularly well
with the data. For both solutions, the local
Reynolds number of the flow diminishes with
increasing downstream distance. As a conse-
quence, even when the initial Reynolds number
is large, the flow evolves from one state to the
other. Intermediate asymptotics is used to pro-
vide a bridge between the two solutions, which
is in excellent agreement with the experimental
data.

INTRODUCTION

The axisymmetric wake is of fundamental
importance since it is one of few flows where
the local Reynolds number decreases as the
flow evolves. Also, the equations of motion
governing the axisymmetric wake contain all
of the important dynamical terms for turbulent
flow away from surfaces. Hence the data from
this flow form an important data base for de-
veloping turbulence models of all types, as well
as for validating DNS and LES simulations.

The following observations can be made
from various experiments:

e Different initial conditions affect the
growth rates, contrary to the classical the-
ory which states that all wakes should de-
pend only on the downstream distance,
z, and the drag, 7U26#? This is most
strikingly illustrated by the photographs of
Cannon et al. (1993). Data from Cannon

(1991) (for several different wake gener-
ators that all have the same drag) and
Menut et al. (2000) are plotted in Fig-
ure 1. These show the variation with z
of the transverse length scale defined by

52 — lim i/o (U —U)rdr (1)

o

where U, is the centerline velocity deficit.
The data do not collapse to a single curve,
nor do these source dependent effects van-
ish, even for large Reynolds numbers or
large downstream distance. The curves de-
noted "model” will be explained in a later

section.
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Figure 1: Cross-stream length scale, /6 versus x/60, Can-
non (1991) and Menut et al. (2000).
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e The wake does not in general grow as the
1/3-power of downstream distance, x, as
predicted by the classical similarity the-
ory (c. f., Tennekes and Lumley, 1972). As
noted previously by Cannon, curve fits to
the data agree equally well with both a
cube root and a square root variation, and
not particularly well with either.

e In apparent contradiction, the mean veloc-
ity profiles from all experiments collapse



on a single curve when scaled with center-
line velocity deficit and dy, as illustrated in
Figure 2a.

Figure 2: a) Mean velocities, b) Turbulence intensities, Can-
non (1991)

e And to further confuse the issue, the tur-
bulence intensities do not appear to col-
lapse at all, even for fixed upstream con-
ditions. Figure 2b shows profiles of u2/U?2
for various downstream distances for one
of the screen wakes (the most porous) in
Cannon (1991). In fact, it seems like the
there are two branches; one for the near
wake and one for the far wake.

These observations cannot be explained by
classical similarity analysis, which argues that
the asymptotic wake is independent of its ini-
tial conditions and depends only on the dis-
tance downstream and the drag. Nor can they
be explained by measurement errors. While
the low turbulence intensities of the axisym-
metric wake make measurements far down-
stream difficult, they also insure that the hot-
wire techniques utilized are highly accurate.
At very least the problems presented by wake
measurements are no more difficult than for
grid turbulence, for which hot-wire measure-
ments have long been accepted.

The classical self-preservation approach to
free shear flows was questioned by George
(1989) and (1995), who argued that it was
based on assumptions that were not in gen-
eral valid. He proposed a new methodol-
ogy called equilibrium similarity analysis, and
demonstrated with it that solutions were possi-
ble which depended uniquely on the upstream
conditions. The new theory was in striking
agreement with the nearly concurrent exper-
iments of Wygnanski et al. (1986) for two-
dimensional wakes. These showed dramatic
differences between spreading rates and eddy
structure which depended on the wake genera-
tor.

George (1989) also argued that the axisym-
metric wake would behave similarly. He pre-
dicted that the mean velocity profiles from the

different experiments would be the same, if
scaled by the centerline deficit velocity and ve-
locity deficit half-width, even if the wakes grew
at different rates. This is consistent with the
observations shown in Figure 2a. This result
is very important, since previous researchers
have often used such collapse to argue that
wakes are independent of upstream conditions.
The whole point of George’s analysis, however,
is that the source-dependent differences only
show up in the spreading rate, and the higher
turbulence moments.

In this paper, the analysis of George (1989)
is re-visited, corrected, and extended. It will be
shown that two different equilibrium similarity
solutions for the axisymmetric wake are possi-
ble: one for very high local Reynolds numbers,
and another for very low. Most importantly,
because the local Reynolds number decreases
with distance downstream, the flow will evolve
from one state to the other, no matter how high
the initial Reynolds number of the flow. The
available experimental data is analyzed, espe-
cially addressing the particular points listed
above. Not surprisingly (given the state of con-
fusion regarding it), most of the experiments
are shown to take place in the evolution region
where neither limit applies exactly. An inter-
mediate asymptotics solution for this region is
shown to be in excellent agreement with the
data.

GOVERNING EQUATIONS

The Reynolds averaged x-momentum equa-
tion for the axisymmetric far wake without
swirl reduces to second order to:

Here, the r-momentum equation has been used
to integrate out the pressure. The terms in
curly brackets are usually neglected, but are
retained here.

The momentum equation can be integrated
over a cross-section to yield an integral con-
straint for the conservation of momentum:

Uso / (Uso — U) 2nrdr = n0*U%  (3)
0

where 6 is the momentum thickness.
As noted by George (1995), the momentum
equation alone is not sufficient to determine



the similarity constraints. Even the inclusion
of the kinetic energy equation is not enough
to close the system so that the x-dependence
can be determined. Instead, the individual
Reynolds stress equations have to be inves-
tigated. These, together with the constraint
of continuity on the pressure-strain rate terms
provide the necessary conditions. The compo-
nent Reynolds stress equations for the far wake
are:

u? balance
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where €y, €y, €y, and &, are the components
of the homogenous dissipation.

The Similarity Transformations
We seek solutions on the form (written here

for the momentum equation and u2? equations
only — the others are treated similarly):

U — Uso = Us() f(n, %) (a)
—uv = Rs(x)g(n7 *) (8b>
SF = Ku(ok(n ) (80)

%% = Tu2vtu2v(na *) (8d)
D= P(onn) ()
;m = PP@)pP(n, ) (8F)

cu = Du@)du(n, %) (Sg)

where n = r/d(x) and * denotes a possible (un-
known) dependence on initial conditions.

The Momentum Integral
Substitution of eq. (8) into eq. (3) yields:

U,6> /0 2fndn = Us§? (9)

It follows immediately that if 6 = 0, and Us =

U,:
U, 01>
U [5_] (10)

The Transformed Mean Momentum Equa-
tion

Substituting eq. (8) into the momentum
equation, eq. (2), and rearranging the terms
yields:

5 dU, A
) ] -
[ R, ](ng)’+[ v ](nf’)’
UsUs] Uxd| 1

(11)

where / denotes derivation with respect to 7.
Note that the second order term could have
been retained. To this point the mean momen-
tum equations have simply been transformed
by the separation of variables in eq. (8) so
that all of the explicit z-dependence is in the
bracketed terms. Thus the results are com-
pletely general and no similarity assumptions
have been made (although the form of the so-
lutions has been restricted).

The Transformed Reynolds Stress Equations
Substituting eq. (8) into the transport equa-
tions for Reynolds stresses yields:
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As before, the equations have simply been
transformed by the similarity transformations
so that all the explicit z-dependence is in the
bracketed terms.

EQUILIBRIUM SIMILARITY SOLUTIONS
TO THE TRANSFORMED EQUATIONS
For the particular type of ” equilibrium” sim-
ilarity solutions suggested in George (1995),
the terms in the governing equations must

maintain the same relative balance as the flow
evolves. These ”equilibrium” similarity solu-
tions exist only if the terms within square
brackets have the same x-dependence, and are
independent of the similarity variable, . Thus,
the bracketed terms must remain proportional
to each other as the flow evolves. This is
denoted by the symbol ~ which should be in-
terpreted as ”has the same z-dependence as”!.

For the mean momentum equation, these
equilibrium similarity constraints can be writ-
ten as:

0 dUs dd Ry v
[US dx] - [da;] ~ [UOOUJ ~ [Uma]
(16
Note that there is nothing in the equations or
the theory which suggests that the constants
of proportionality are independent of source
conditions, nor in fact do they appear to be.
This is contrary to the usual assumptions in
self-preservation analysis (c. f., Tennekes and
Lumley, 1972). It is trivial to show that the
relation between the first and second terms of
eq. (16) is satisfied by the momentum integral
result of eq. (10).

The proper scale for —uv is obtained by us-
ing the second and third terms, which yields:

dd
Ry ~ UooUs% (17)
It is immediately obvious how the equilibrium
similarity approach yields a different and more
general result than the classical approach,
where it is assumed without justification that
Rs = U? (c. f., Tennekes and Lumley, 1972).
The same equilibrium similarity hypothe-
sis can be applied to the component Reynolds
stress equations; namely that all of the brack-
eted terms should remain proportional (i.e.,
have the same z-dependence). For example,
inserting eq. (8) into eq. (4) yields after some
elementary calculus that equilibrium similarity
can be maintained only if:

0 dK, db T.0 D,é v
Ky dv ~dr UK, UKy, Usb
(18)
Similar relations arise from the other compo-
nent equations.

All of these relations cannot simultane-
ously be satisfied given the constraints already
placed on Uy, §, and R, from the mean momen-
tum equation. On the other hand a solution is

INote that the symbol ~ has nothing to do with order of
magnitude in this paper.



possible if the viscosity is identically zero, since
then all terms involving the viscosity fall out
of the problem. And also a solution for finite
viscosity is possible if it can be shown that the
production term in the Reynolds shear stress
equation, v20U /dy, is negligible relative to the
leading terms in the equation.

It will be demonstrated below that these are
in fact limiting solutions for very large tur-
bulence Reynolds number, and for very low
turbulence Reynolds number. Note that the
latter solution should not be confused with the
laminar solution, but instead identified with
turbulent flow for which the velocity spectra
do not have a developed k~%/% range. And
by contrast, the high Reynolds number limit
will be a flow which does have an easily appar-
ent inertial subrange in the spectra. Further it
will be demonstrated that no matter how high
the Reynolds number of the drag-producing de-
vice, say Ry = Ux.f/v, the diminishing local
Reynolds number will move the equations (and
the solutions as well) from one regime to the
other.

The Infinite Reynolds Number Solution and
its Limitations

A solution having the same z-variation as
the classical solution can be derived by setting
the viscous terms in eq. (11) to (15) exactly
equal to zero, which corresponds to the limit-
ing solutions at infinite Reynolds numbers. It
is straightforward to show (in the same manner
as George, 1995) that all of the remaining con-
straints can be satisfied. Of particular interest
are the following;:

dé D,d

o~ 1
dr UsK, (19)
Ky~ Ky~ Ky, ~U? (20)
Dy ~ Dy~ Dy, ~U3/5 (21)

The scaling for the dissipation is just what one
should expect for an infinite Reynolds num-
ber solution where the dissipation is completely
controlled by the energetic turbulence (i. e.,
€ < u?/l in the usual notation of texts).

It follows immediately after some manipula-
tion that:

where a = a(x), b = b(x), and x, = (%)
is a virtual origin. This is, of course, the
classical solution with but a single difference
— the dependence of the coefficients on up-
stream conditions, *. This possible dependence
must be acknowledged, since there is nothing
in the equations themselves to suggest inde-
pendence of upstream conditions. The mean
velocity profile, on the other hand, can be
shown to be independent of upstream condi-
tions. This is achieved by incorporating a fac-
tor of [Rs/(UxUs) dd/dz] into the definition of
g so that there are no parameters at all in eq.
(11).

Now it was noted in the introduction that
the cube root solutions simply do not account
for most of the data, and especially the care-
ful data of Cannon (1991). So where might
the problem be? It is easy to show that, un-
like most other free shear flows, this infinite
Reynolds number solution contains the seeds of
its own destruction. The local Reynolds num-
ber, R = Usd/v, controls the relative impor-
tance of the viscous terms in the mean moment
and Reynolds shear stress equations. Substitu-
tion of eq. (22) and (23) into the definition of
R yields:

55* 009 - 4o 71/3
R Usd» U [:c x ] (24)

v v 0

Thus, no matter how large the initial Reynolds
number, Ry, eventually far enough down-
stream it is diminished until the viscous terms
can no longer be neglected. And if the viscous
terms are not negligible, the infinite Reynolds
number similarity solution cannot be even ap-
proximately true.

The Low Re Solution

As noted above, there is another equilbrium
similarity solution to the same set of equations.
The difference is that this time the terms in-
volving viscosity are kept. This produces one
additional constraint:

dd v

dr  Uxd
It is extremely important to note that even
though some of the relations are the same (e.g.,
K,/U? = constant), the constants of propor-
tionality (or more properly, the parameters of
proportionality since they all depend on x) are
most likely different from those governing the
infinite Reynolds number solution.

(25)



There is one problem which at first glance
appears to be quite serious. All of the con-
straints in the Reynolds shear stress equation
cannot be met, in particular the one arising
from the production term, v20U/dy. These
offending terms in fact die off with distance
downstream faster than the remaining terms
in the equation. Therefore, they can also be
neglected in the analysis.

It is straightforward to show that eq. (25)
can be integrated to obtain:

O 1/2 | £ — Zoo 1/2
-Ech/ [ ; } (26)
U, T — Tpo -1
=d 2
o= dna | 27)
where as before ¢ = ¢(x), d = d(x), and

Too = Too(*) is a virtual origin which may be
different than the one obtained above. And as
for the infinite Reynolds number solutions, the
mean velocity profile can be shown to be inde-
pendent of upstream conditions. It is easy to
show that the local Reynolds number continues
to fall with increasing distance downstream:;
hence the approximations improve with dis-
tance downstream.

A solution for moderate Reynolds numbers

Unfortunately, as is clear from the data pre-
sented earlier, most of the experimental data
is between the two limiting solutions. Hence
neither alone describes the data well. Inter-
mediate asympotics, however, offers the pos-
sibility of bridging the gap. The easiest way
to understand what is required is to note the
appearance of the similarity scaling functions
for the dissipation; namely D,, D, and D,,.
As noted above, for the high Reynolds num-
ber solutions, D, ~ U3/§ ~ UsK,/§, while
for the low Reynolds number solutions, D, ~
vU2 /8% ~ vK, /6% This is exactly the kind of
behavior that has long been accounted for by
turbulence modelers.

The simplest intermediate asymptotics solu-
tion which accounts for both the high and low
Reynolds number dissipation limits is simply
their sum. Assume then that:

U; K +8 vK,
1) 52

Then applying the similarity constraints yields:
do { Us K vK, } 0
o

D, =« (28)

dr ;5 TP UK, (29)

After some manipulation this reduces to:

dé AN AN

d$—a<5> +4 <5> (30)
This can be integrated directly to obtain §/6
as a function of x/6.

Figure 1 shows the Cannon (1991) and
Menut et al. (2000) data and the integral of
eq. (30) where the coeffients have been deter-
mined by optimization techniques. The theory
describes the data remarkably well, and also

makes understandable Cannon’s difficulties in
making sense of it.

CONCLUSIONS

The conclusions that can be drawn are that
the initial conditions dominate the axisymmet-
ric wake. The effect of initial conditions shows
up in growth rate and higher moments, see
George (1989). Local Reynolds number effects
are also very important since it goes down as
the flow evolves. This accounts for deviations
from simple power law behaviour of the growth
rate. Simple power laws are only reached in the
limits Re — oo and Re — 0.
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A Proper Orthogonal Decomposition (POD) study of the axisymmetric turbulent wake behind a
disk has been performed using multi-point hot-wire data. The Reynolds number based on the free
stream velocity and disk diameter was kept constant at 28,000. The investigated region spanned
from 10 to 50 disk diameters downstream. The hot-wire data was obtained using two rakes: a seven
wire fixed array and a six wire array azimuthally traversable to span the cross-section of the flow in
increments of 15°. The instantaneous streamwise velocity component data was Fourier transformed
in time and decomposed in Fourier series in the azimuthal direction to form the kernel for the POD.

For all downstream positions, two distinct peaks were found in the first eigenspectrum: one at
azimuthal mode-2 at near zero frequency, and another at azimuthal mode-1 at a fixed Strouhal
number (fd/Us) of 0.126. Both peaks decrease in magnitude as the flow evolves downstream, but
the peak at the Strouhal number 0.126 decreases more rapidly then the one at near-zero frequency,
leaving the latter to eventually dominate. Because of this evolution, the eigenvalues integrated
over frequency show an azimuthal mode-1 dominance at /D = 10 and a mode-2 dominance by
/D = 50. The results are compared to those recently obtained in the axisymmetric far jet, and

the results of previous wake investigations.

I. INTRODUCTION

The turbulent wake behind an axisymmetric object
such as a disk or a sphere has been under investigation
for almost a century. This flow is of considerable practi-
cal importance because of its close relation to many aero-
and hydrodynamic applications. In addition, it is of fun-
damental importance since it is one of the few shear flows
where the local turbulence Reynolds number decreases as
the flow evolves. Also, the equations of motion govern-
ing the axisymmetric wake contain all of the important
dynamical terms for turbulent flow away from surfaces.
Hence the data from this flow form an important data
base for developing turbulence models of all types.

Early experiments on the fundamental features of this
flow focused on the far wake. One pioneering study was
made by Hwang and Baldwin', who measured turbulence
intensities and wake growth for a large span of down-
stream locations, z/d = 5 to x/d ~ 900. Because the
high demands on equipment could not be met at this
time, there was severe scatter in their data; and they even
reported difficulties in reproducing their own results on
a day-to-day basis. More recently, researchers have pri-
marily focused on the early development of the wake or
on its stability?®. An exception was the careful far wake
measurements of Cannon® and Cannon, Champagne and
Glezer”, who found very different results depending on
the wake generator used. Intriguingly, they were unable
to resolve satisfactorily whether the classical similarity

theory applied, a subject addressed in detail by Johans-
son and George®.

The large scale, ‘coherent’ features of this flow
have been investigated by means of flow visualization,
multi-point, phase averaging and conditional sampling
techniques™® !5, These findings have contributed to our
understanding of the process of vortex formation behind
the generator. There have also been discussions about
the randomness and anti-phase characteristics of vortex
structures behind axisymmetric bodies. Most interest-
ingly in context of the present work, Fuchs et al.'® used
two hot-wires to measure cross-spectra at a single radius
of the near wake. This radius varied from r/D = 0.75 at
x/D =3tor/D =0.83atxz/D =9. The angular separa-
tion of the probes was varied in steps of 30°, and the mea-
sured cross-spectra were decomposed into Fourier series
in the azimuthal direction. The azimuthal modal content
was then studied at the frequencies that were found to
be eventful. At z/D = 9, Fuchs et al.!® found a strong
azimuthal mode m = 1 peak in the coherence spectrum
at the natural Strouhal number S,, = f,,D/Us, = 0.135.
They also found a distinct peak at azimuthal mode m = 2
at a near-zero frequency (S2 = 0.005; Figs. 9-11 of their
paper). There was no suggestion, however, that m = 2
was the dominant mode, nor is it found to be so in our
study until much further downstream (Fig. 7 in this pa-

per).

The first of these results was confirmed by Berger et
al.'', who also found the m = 1 peak, but they did not



report any m = 2 peak. This was a curious omission,
since it is clearly present at low frequency in their co-
herence spectra, Fig. 4 (/D =9, r/D = 0.83, disk at
rest) and Fig. 6 (z/D = 6, /D = 0.83, nutating disk) of
their paper, exactly as noted by Fuchs et al.!?. Instead,
they focus on the m = 1, S,, = 0.135 peak, and interpret
this near wake result as a helical vortex structure. From
here on, nothing is mentioned in the literature about the
occurrence of azimuthal mode m = 2, and it has been
presumed until now that azimuthal mode m = 1 is the
most dominant. This is also the result obtained from the
linear parallel stability analysis of Monkewitz*, and the
non-linear dynamical systems approach by Ghidersa and
Dusek®.

Because of the small velocity deficit, the very low tur-
bulence intensities, and the slow decay of the velocity
deficit downstream, the far axisymmetric wake still is
at the threshold of what is possible to measure using
even the best wind tunnels and the most stable low-
noise anemometer equipment. The work reported here
is part of a continuing effort to measure and understand
this flow. In the present work, the evolution of the wake
is studied using a so-called ‘slice’ version of the Proper
Orthogonal Decomposition (POD) technique. The term
‘slice POD’ refers to decomposing the flow field at fixed
downstream locations in the remaining cross-stream co-
ordinates. This method has been previously applied to
the jet mixing layer'6 8 and far jet'® to quantify the
energetics of the POD modes.

II. EXPERIMENTAL SETUP

The experiments were performed in the low-turbulence
wind tunnel at Chalmers University of Technology,
Gothenburg, Sweden. The free-stream streamwise turbu-
lence intensity over the span of velocities related to this
work was less than 0.03%. The measuring cross-section in
the tunnel is 1.80 x 1.25 m? and the downstream length is
3.00 m. Special attention was made to avoid flow block-
age by the wake generator. The disk used had a diameter
of 28 mm, and was suspended with four pairs of wires,
each with the diameter 0.2 mm. The total area ratio be-
tween the object and tunnel cross-section was less then
0.03%. The tunnel velocity was kept constant at 15 m/s
during the experiment, resulting in a Reynolds number
based on the free stream velocity and disk diameter of
28,000.

A total number of 13 hot-wires were used in the two
arrays as shown in Fig. 1. The arrays were used in the
same manner as Glauser and George!” to obtain the two-
point velocity cross-spectra for all combinations of loca-
tions shown in Fig. 2. The measurement grid was chosen
following Glauser and George?®, so as to provide an op-
timum resolution to apply the POD. The upper array of
probes was movable, and traversed from a 15° separation
up to 180° with 15° increments in A#, see Fig. 2. Each
hot-wire probe is numbered and marked by a circle. The

FIG. 1: The probe array and disk in the Chalmers wind tun-
nel.

FIG. 2: The traversing scheme, shown in 30° increments in
A0 for simplicity.

angle separation Af = 135° could not be measured di-
rectly, since the movable probe rake caught the wake of
the suspending wires. Instead, measurements at the an-
gles 130° and 140° were used to estimate this position.
In all, half the cross-section of the wake at a fixed down-
stream position was scanned, and pairs of instantaneous
velocity cross-spectra for a fixed angle separation com-
puted. Note that the cross-spectra corresponding to the
remaining half-plane were available from the azimuthal
symmetry of the flow.

Each single hot-wire, 3 mm long and made of unplated
5 pm tungsten wire, was oriented to measure the stream-
wise component of the velocity. The probes were con-
nected to an AN2000 Constant Temperature Anemome-
ter (CTA) system, and sampled with an IO Tech Wave-
book 516 16 bit sample and hold A/D converter. The
data was low-pass filtered at 2 kHz and sampled at 6
kHz for all configurations, substantially higher than re-
quired by the temporal Nyquist criterion. Measurements
were made simultaneously at all 13 positions. Each block



had 8192 samples, and a total of 300 blocks of data was
taken per probe for each angular probe location, ensuring

a variability of less than 6% for the cross-spectra used in
the POD.

IIT. PROPER ORTHOGONAL
DECOMPOSITION

The POD, a well-known mathematical technique which
appears under several other names as well (e.g., Singular
Value Decomposition, Karhunen-Loeve Decomposition,
Principal Value Analysis), was introduced to the study
of turbulence by Lumley?!. The mathematical aspects
are very well described elsewhere (e.g.,1%1922:23) 5o we
will very briefly point out only the most essential features
and focus on the actual procedure used in this work to
analyze the data.

The core of the POD is a projection of the velocity
field, u;, into a coordinate system, ¢;, optimal in terms
of energy; i. e., maximizing

< (ui, i) >
[|¢l|

This can be shown by calculus of variations to result in
the following integral equation:

[ Ris 6,0 ) = 3640) @)

= (1)

where the kernel, R; ; =< u;(-)u;(-") >, is the two-point
velocity correlation tensor and (-) represents the spatial
coordinates and time, or a subset of these.

If the field has finite total energy, Hilbert-Schmidt the-
ory assures that the solution exists and consists of a denu-
merable, infinite, set of eigenvalues, A("™), and correspond-
ing eigenfunctions, (bgn). For an axisymmetric shear flow
such as a jet or a wake, this is true in the radial direction
at a single downstream location, hence the term ‘slice
POD’.

The modes are ordered so that the first mode contains
most of the energy, and the relation between the kinetic
energy and the eigenvalues is given by:

= [ w.()u () d() = (n)
B [ wuicyde) = ¥a (3)

The axisymmetric wake in question is stationary in
time and periodic in the azimuthal direction. Therefore,
the Hilbert-Schmidt theory does not apply, but the POD-
modes in these directions can be shown to be Fourier
modes, see George?*.

If only the streamwise velocity component at a fixed
downstream location is considered (i. e., i = j = 1), the
following integral equation(s) must be solved:

/ By 1(m, f,r,r';x) %n) (m, fyr'sz)r’ dr’ =
0

A (m, fy2)0 (m, fora)  (4)

where By 1(m, f,r,r’; ) is the two-point velocity correla-
tion Fourier transformed in time and expanded in Fourier
series in the azimuthal direction, the w§”>(m, f,r;x) are
the eigenfunctions, and \(™) (m, f;x) the corresponding
eigenspectra.

In practice, the following steps are taken (following
Glauser and George!”):

1. Measurement of the instantaneous velocity at two
points.

2. Fourier transformation in time and computation of
the cross-spectrum.

3. Repetition of 1. and 2. for many pairs of points.

4. Expansion of the cross-spectra obtained in 2. in
Fourier series in the azimuthal direction.

5. Solution of the remaining eigenvalue problem (in
the radial direction), equation 4 for each frequency
and azimuthal mode number.

Note that this procedure is different than that imple-
mented by Citriniti and George'® and Gamard et al.'?,
since in their experiments the velocity at all grid points
was obtained simultaneously using a 138-wire probe.
Here, only pairs of points were available for the given
rake positions, so the procedure had to be repeated as the
movable rake was rotated through the entire 180°. This
is exactly the procedure used by Glauser and George'”
in an earlier jet mixing layer study.

IV. STATISTICAL RESULTS

In order to ensure the reliability of the data before
performing the POD, first and second order statistical
properties were analyzed. Mean velocity profiles, scaled
by the tunnel velocity, Uy, for the three downstream lo-
cations are shown in Fig. 3. The velocity deficit ranges
from around 9% of the free-stream velocity at x/D = 10,
to about 2% at x/D = 50. The left hand side of the plot
(negative r) corresponds to the fixed array of probes,
and the right hand side (positive r) the movable. These
clearly show one of the main difficulties measuring this
flow using hot-wires: the velocity deficit is very small,
and thus extremely sensitive to the accuracy of the mea-
suring device. These multi-point measurements extended
typically over 8-10 hours because of the many cross-
spectra needed (7 x 7 x 13), thus the data are very much
affected by any drift in the anemometers (primarily as-
sociated with thermal instability of the D.C. offset am-
plifier). The thermal drift problems with the CTA usu-
ally shows up as a calibration error, and is probably the
reason most previous researchers interested in the mean
profiles have used Pitot-tubes. A separate contribution
to the systematic variation in the data is the problem
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FIG. 3: Mean velocity profiles, U/Us, /D = 10, 30 and 50.
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FIG. 4: Turbulence intensity profiles, /D = 10, 30 and 50.
A6 = 15,30,...,180°.

of aligning the arrays of probes to the wake center. Un-
like earlier investigations which used only at most a sin-
gle linear rake, these errors are more obvious here be-
cause of the movable array of probes (i.e., positive r),
and show up as an increased spread of data. Neverthe-
less, the overall quality of the data compare favorably
with those of Cannon®, for example. The mean velocity
profile at /D = 50 around the angle 135° is also clearly
affected by interference from the wakes of the wires sup-
porting the disk. This data was replaced in the POD
calculations by the average of the spectral values at 130°
and 140°.

Root mean square velocity profiles were computed and
a plot covering all angles and downstream positions is re-

produced in Fig. 4. The turbulence intensities, \/u_i2 /Uso,
are very small, from 9% at /D = 10 to below 3% at
x/D = 50. But here, the situation is entirely different
from that for the mean velocity; the thermal drift in the
anemometers is clearly not affecting the fluctuating ve-

locities. This is because even though the anemometer
output voltage was drifting slowly (due to the D.C. off-
set amplifier), the slope of the calibration curve near the
tunnel velocity at which the data was obtained remained
nearly constant. (This was confirmed by repeated re-
calibrations during the experiment.) Thus the fluctuat-
ing velocities for these very low turbulence intensities are
correctly measured. The consequence of not being able
to exactly center the probe rake can still be seen in the
right hand side of the plots. As with the mean velocity
profiles at /D = 50, the support wire wake has grown
enough so that the results from angle 135° are affected
by it.

Power spectral densities were computed for all down-
stream positions as well as rotations of the movable rake.
Fig. 5 shows the PSD’s at /D = 10, 30, and 50, re-
spectively, for the probe rake separation A6 = 180°.
All PSD’s off the center of the wake show a promi-
nent peak at 67 Hz, corresponding to a Strouhal number
(St = fd/Us) of 0.126. This is consistent with Strouhal
number measured by Miau et al.'? in the near wake. The
magnitude of this peak decreases with increased down-
stream position, but is still clearly visible at /D = 50.
From the absence of this peak in the center of the wake,
one can immediately infer that this type of motion, a
very dominant feature of the PSD, can not be related to
an azimuthal mode-0 motion.

V. POD RESULTS
A. Eigenspectra, )\(")(m, f;z)

Eigenspectra were computed for the three downstream
locations by solving Eq. 4 to obtain the distribution
A (m, f;2). Even this simple result from the POD pro-
vides a large amount of information regarding the overall
energy distribution in the flow, and the results can be
viewed from many perspectives. Several of these will be
presented below.

The eigenspectra, /\(”)(m, f;x), are representations of
how the energy is distributed as function of azimuthal
mode number, m, and frequency, f, at a given down-
stream position, . Therefore their evolution show how
the main characteristics of the flow evolve. Three-
dimensional and contour plots of the eigenspectra for
the first POD mode (n = 1) are presented in Fig. 6
for the three downstream positions covered in this study.
The three pictures are strikingly similar and the gen-
eral features do not evolve with downstream distance.
The energy is concentrated around two separate peaks
in the f-m plane. One is at near-zero frequency for az-
imuthal mode m = 2 and the other for azimuthal mode
m = 1 at a higher frequency, 67 Hz. This second peak
for m = 1 corresponds to a Strouhal number of 0.126.
This Strouhal number does not change with downstream
position, and is exactly the same as the one detected in
the PSD’s off the wake center described in the previous
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FIG. 5: Power spectral densities, A@ = 180° for all probes
at different downstream positions: (a) /D = 10, and (b) 30,
(c) 50.

section. The magnitude of these peaks decreases as the
flow evolves. It is also clear that the peak at m = 1 is
largest at /D = 10, but decreases more rapidly than the
m = 2 peak, leaving the latter the largest by /D = 50.
From these pictures, it is not at all clear what role m = 0
plays. It does not seem to be directly connected to a
specific frequency.

Our results at /D = 10 can be compared to those
of Fuchs et al.'®. They did not use the POD, but
measured cross-spectra only at a single radius of the
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FIG. 6: Eigenspectrum function of azimuthal mode number
(m) and frequency (f) at different downstream positions: (a)
z/D =10, and (b) 30, (c) 50.

near wake as noted in the introduction. At z/D = 3,
they found a strong azimuthal mode m = 1 peak in
the coherence spectrum at the natural Strouhal number
S1 = fuD/Usx = 0.135. Their Reynolds number was
50,000, which explains the higher Strouhal number than
in the present work where Re = 28,000, but fully consis-
tent with the results of Miau et al.'® Higher azimuthal
modes were all of the same order and small compared to
the dominating one. At /D = 9, however, the m = 1



peak was still dominant (at S; = 0.135), but they also
found a distinct peak at azimuthal mode m = 2 at a
near-zero frequency (Sz = 0.005; Figs. 9-11 of their pa-
per). Their Fig. 9 also contains data of Roberts?, which
agrees very well. These results are consistent with our
findings at /D = 10 as seen in Fig. 6a; namely that the
largest peak in A(V) is at m = 1, f = 67 Hz, whereas the
peak at m = 2, f ~ 1 Hz is smaller.

Our findings that mode 2 comes to dominate farther
downstream appear to be new. These cannot yet be cor-
roborated by the measurements of others, since none ex-

ist beyond those cited earlier. And none exist at all be-
yond z/D = 10.

B. Eigenspectra integrated over frequency,
£ (m; z)

The eigenspectra can be integrated over frequency to
illustrate another key property of the POD, its abil-
ity to show how the kinetic energy of the flow is dis-
tributed among the various azimuthal modes. To visual-
ize the energy distribution per azimuthal mode number,
m, we computed for each downstream position the quan-
tity £ (m;2) where:

[y Am, f2) df
) (m; ) = !

Here, the denominator is the total kinetic energy, as de-
fined in Eq. 3. The resulting normalized eigenspectra,
€ (m; 2) are plotted in Fig. 7. Since the flow field is ho-
mogenous in time (stationary) as well as in the azimuthal
direction (periodic), this immediately imposes that the
eigenspectrum, )\(")(m, f;x), is symmetric with respect
to these directions; i.e. A (m, f;x) = A (—m, —f; )
(see Lumley?!). When integrating over frequency, to ob-
tain £ (m; ) according to Eq. 5, it is easy to show that
£ (m;x) are also symmetric in m. Therefore, only pos-
itive m are shown in Fig. 7. From these, it is clear that
at /D = 10, most of the energy lies in the azimuthal
mode m = 1, while at /D = 50, the most energetic
azimuthal mode is m = 2. At the intermediate position,
both modes contain roughly the same fraction of the to-
tal energy. It is also clear that m = 0 is the third most
important azimuthal mode.

The overall behavior is strikingly similar to the results
of Gamard et al.'” in the axisymmetric jet. In the jet,
however, mode 2 becomes dominant by the end of the
potential core (r/D = 6), whereas here mode 2 does
not dominate until /D = 50. This is, perhaps, related
to the much higher turbulence intensity in the jet and
its faster spreading rate. It might be noted that since
m = 2 also dominates at low frequencies at large enough
distance downstream in the jet of Gamard et al.'®, sug-
gesting strongly that this is a natural feature of these
very different flows, and not related to the facility.
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FIG. 7: Eigenspectra integrated over frequency as function
of azimuthal mode number (m) at different downstream po-
sitions: (a) z/D = 10, and (b) 30, (c) 50.

VI. TAYLOR’S HYPOTHESIS AND
INTERPRETATION OF FREQUENCY

So far in this paper, we have used the commonly
adapted notation and presented our results concerning
spectral content as a function of frequency, exactly as
measured. In order to physically interpret the results,
however, it is necessary to distinguish between spatial
and temporal structures. In other words, we must sort



out whether the observed ‘frequency’ represents a true
unsteadiness, or should be interpreted as a ‘wavenum-
ber’ using Taylor’s frozen field hypothesis?®. In the far
axisymmetric wake, the mean velocity deficit between the
free stream and the center of the wake is small, varying
from 10% at /D = 10 to 2% at /D = 50 as depicted
in Fig. 3. Thus the mean velocity gradient is also very
small, as is the turbulence intensity which is of the same
order as the mean velocity differences (see Fig. 4). Thus
the convection velocity can be approximated by the free
stream (or equally well, the centreline) velocity.

These together, according to all the criteria in
Lumley??, imply that for all but the very lowest frequen-
cies, Taylor’s hypothesis is valid. Thus, the peak at 67
Hz must be interpreted as a frozen turbulence field that
is convected by with the wavelength A = U./f = 0.22
m. Even so, this ‘wavelength’ can still arise from vortex
shedding at the wake generator, since the disturbances
generated there will be swept by the probe at approxi-
mately the free stream velocity, thereby yielding the same
Strouhal frequency.

The situation is much less clear for mode 2 which has a
near-zero frequency peak at approximately 1 Hz, since all
the fundamental criteria for Taylor’s hypothesis are vio-
lated. Interpretation as a convected disturbance would
suggest a disturbance 15 m long! This is clearly unphys-
ical, and consistent with the breakdown of Taylor’s hy-
pothesis at this low frequency. It is thus more likely that
the mode 2 disturbance is related to a temporal variation
of the wake itself. For example, one possibility might be a
mode 2 distortion of the mean velocity, which itself pre-
cesses slowly. Clearly, multipoint measurements in the
downstream and cross-stream directions simultaneously
are required to sort this out.

VII. SUMMARY AND CONCLUSIONS

The axisymmetric turbulent wake behind a disk was
studied using a ‘slice POD’ for three fixed downstream
cross-sections of the flow. For all downstream positions,
two distinct peaks were found in the first eigenspectrum:
one at azimuthal mode m = 1 at at a fixed Strouhal num-
ber (fd/Us) of 0.126, and another at azimuthal mode
m = 1 at near-zero frequency. Both peaks decrease in
magnitude as the flow evolves downstream, but the peak
at m = 1 decreases more rapidly then the one at m = 2,
leaving the latter to eventually dominate. Because of

this evolution, the eigenvalues integrated over frequency
show an azimuthal mode-1 dominance at /D = 10 and
a mode-2 dominance by /D = 50. The m = 1 peak can
be associated with a ‘structure’ of frozen turbulence that
is convected downstream. The m = 2 peak clearly is not
a convected disturbance.

Despite being two different flows, the axisymmetric
wake and the jet share many common features, in par-
ticular the mode 2 dominance asymptotically. It is rea-
sonable to expect that the modes in these two flows can
behave the same only if they are governed by similar
equations, whatever they might be. By projecting the
Navier-Stokes equations onto the POD basis functions,
Lumley?! showed that the linearized leading order equa-
tions reduce to the Orr-Sommerfeld equations (for the ap-
propriate coordinate system). Thus it is reasonable to an-
ticipate similarities between the POD decomposed mea-
surements and linear stability analyses. Linear parallel
stability analysis by Monkewitz* as well as the non-linear
dynamical systems approach by Ghidersa and Dusek®
have shown that azimuthal mode m = 1 is the fastest
growing. At this stage, no analysis has suggested that
mode 2 might be the most important. It still might be
possible, however, that a non-linear and/or non-parallel
stability analysis can predict the eventual dominance of
mode-2, and as well explain the similarity between the
eigenspectra presented here and those taken in the ax-
isymmetric jet by Gamard et al.'®.
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ABSTRACT

This paper presents the findings of three experiments us-
ing multi-point hot-wire arrays in the high Reynolds number ax-
isymmetric turbulent wake behind a disk. The purpose of the
multiple experiments was to validate earlier and less extensive
experiments. The ‘slice POD’ was applied to all sets to exam-
ine the effects of array coverage and the disk support system.
The Reynolds number based on the free stream velocity and disk
diameter was kept constant at 28,000. The investigated region
spanned from 10 to 60 disk diameters downstream.

These results confirm the earlier findings. In particular, the
eigenvalues integrated over frequency show a azimuthal mode-1
dominance at x/D = 10 which evolves to a mode-2 dominance
by x/D = 50. For all downstream positions, two distinct peaks
were found in the first eigenspectrum: one for azimutha mode-
2 at near zero freguency, and another for azimutha mode-1 at
a Strouha number (fd/U..) of 0.126. Both peaks decrease in
magnitude as the flow evolves downstream, but the peak at the
Strouhal number 0.126 decrease more rapidly then the one at
near-zero frequency, leaving the latter to eventually dominate.

INTRODUCTION

This is the second in a series of papers on the application
of ‘dlice’ POD techniques to the axisymmetric wake behind a
circular disk. In the first paper (Johansson et a., 2002) the ax-
isymmetric turbulent wake behind a disk was studied using a
‘dlice POD’ for threefixed downstream cross-sections of theflow
(x/D = 10, 30, and 50). For al downstream positions, two dis-

William K. George
Turbulence Research Laboratory
Department of Thermo and Fluid Dynamics
Chalmers University of Technology
Gothenburg, SE-41296, SWEDEN
Email: wkgeorge@tfd.chalmers.se

tinct peaks were found in the eigenspectrum of the lowest (and
most dominant) radial POD mode: one for azimuthal mode-2 at
near zero frequency, and another for azimuthal mode-1 at afixed
Strouhal number (& = fd/U..) of 0.126. (Note that measured
frequency should be interpreted as a streamwise wavenumber us-
ing ks = 2rnf /U., for al frequencies except the very low onesto
properly apply Taylor's hypothesis according to the criteria of
Lumley, 1965.) Both peaks decreased in magnitude as the flow
evolved downstream, but the peak at the Strouhal nhumber 0.126
decreased more rapidly so the latter eventually dominated. The
authors did deliberately not associate a Strouhal number with the
‘near-zero’ frequency, since it was found to be the lowest re-
solved non-zero frequency (0.73 Hz). When integrated over fre-
guency and normalized by the total kinetic energy, it was seen
that the first eigenspectrum accounted for more than 60% of the
energy.

These were surprising findings, especially the evolution to
azimuthal mode-2 far downstream which had not been previously
observed. Fuchs et al. (1979) computed azimuthal cross-spectra
using two hot-wires at a fixed radius in the wake, and found an
azimuthal mode-2 peak at low frequency (& = 0.005). Thein-
vestigation was limited to two positions downstream, x/D = 3
and 9, and mode-1 was found to be dominant at these positions.
Briicker (2001) investigated the wakes behind a sphere and an
axialy oriented cylinder with an elliptic nose and a blunt base
at low Reynolds numbers (up to Re = 1000), and stated that the
results indicated a simultaneous existence of the primary insta-
bility causing the vortex shedding together with a long-wave in-
stability (X = 0.05 for the sphere, and & = 0.03 for the cylin-
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Figure 1. The probe array and disk in the Chalmers wind tunnel

der). He assumed that both of these were associated with an az-
imuthal mode-1 type of motion. It has long been suspected that
there might be a connection between the theory for instability of
laminar wakes (see e.g., Monkewitz, 1988) and the behavior of
fully turbulent high Reynolds number wakes. The stability re-
sults are usually based on the Orr-Sommerfeld equations which
are in turn derived from the linearized Navier-Stokes equations
with parallel flow approximations. The results of such efforts
suggest the emergence of azimuthal mode-1 as dominant, since
it isthe fastest growing disturbance. Therefore the emergence of
mode-2 was quite unexpected. If true, it would seemto imply ei-
ther that non-linearitiesmust dominate, or non-parallel effects, or
simply that such theories may not be relevant to turbulenceat all.
Regardless, the implications of the experimental POD results are
so important that it is of paramount importance that they be con-
firmed to be true beyond all reasonable doubt, before significant
effort is expended trying to explain them. This paper attemptsto
do that by:

1. Increasing the number of measuring locations.

2. Examining the influence of measurement locations with re-
spect to the wake width.

3. Changing the support structure of the disk to alter any modal
excitation by them.

EXPERIMENTAL SETUP

The experimentswere performedin the low-turbulencewind
tunnel at Chalmers University of Technology, Gothenburg, Swe-
den. The free-stream streamwise turbulence intensity over the
span of velocities related to this work was less than 0.03%. The
measuring cross-section in the tunnel is 1.80 x 1.25 m? and the
downstream length is 3.00 m. The tunnel vel ocity was kept con-
stant at 15 m/s during the experiment. The disk was a Swedish
five kronor coin with a diameter of 28 mm. The total area ra-

Figure 2. The traversing scheme, shown in 30° increments in AO for
simplicity

tio between disk and tunnel cross-section was less then 0.03%.
The Reynolds number based on the free stream velocity and disk
diameter was 28,000.

For the earlier experiments and most of the present work
the disk was suspended with four pairs of wires, each with the
diameter 0.2 mm and placed at 90°. The photograph shown in
Fig. 1 shows the experimental setup. Results are also reported
for an aternative suspension arrangement that uses only three
pairs of support wires positioned at 120°.

Two different rakes were used for the present experiments:
the original 13 hot-wire rake used in Johansson et a. (2002), and
a 15 hot-wirerake obtained by extending the sameraketo include
two additional wires. The two arrays hot-wires were used in the
manner of Glauser and George (1987) as shown in Fig. 1. The
arrays were used to obtain the two-point velocity cross-spectra
for all combinations of locations shown in Fig. 2. The mea-
surement grid was chosen following the guidelines of Glauser
and George (1992) to avoid as much spatial aliasing as possible
when making the azimuthal Fourier decompositionsto obtain the
cross-spectra. Of primary concernin thisinvestigation wasto de-
termine whether the previous results were influenced by the grid,
hence the extra probes.

Half the array of probes was movable, and traversed from a
15° separation up to 180° with 15° incrementsin A6, see Fig. 2.
Each hot-wire probe is numbered and marked by acircle. Using
this scheme, half the cross-section of the wake at a fixed down-
stream position was scanned, and pairs of instantaneous veloc-
ity correlations for a fixed angle separation computed. Note that
the cross-spectra corresponding to the remaining half-planewere
availablefrom the azimuthal symmetry of the flow. Thiswasjus-
tified by aninitial test where cross-spectrawere obtained on both
sides of thewake center plane (A6 = 180° in Fig. 2). These cross-
spectrawere impossible to distinguish from each other when the
probe rake was properly centered behind the disk. For the partic-
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ular angle for which the movable probe rake caught the wake of
the suspending wires, the measurements on either side were used
to estimate this position.

Each single hot-wire, 3 mm long and made of unplated 5um
tungsten wire, was oriented to measure the downstream compo-
nent of the velocity. The probes were connected to an AN2000
Constant Temperature Anemometer (CTA) system, and sampled
with an 10 Tech Wavebook 516 16 bit sample and hold A/D con-
verter. The datawas low-pass filtered at 1 kHz and sampled at 4
kHz for all configurations, substantially higher than the temporal
Nyquist criterion. Measurements were made simultaneously at
all positions. Each block had 4096 samples, and a total of 360
blocks of data was taken per probe for each angular probe loca-
tion, ensuring a variability of less than 4% for the cross-spectra
used in the POD.

PROPER ORTHOGONAL DECOMPOSITION

The POD and the manner in which it is used in this investi-
gation was described in detail in Johansson et al. (2002), so only
the most essential features will be reviewed here. Note that the
experimental setup isonly capable of providing the necessary in-
formation to obtain the POD modes, but not the information to
project them back on the instantaneous flow. Thisis because the
latter requires measurement at all positions simultaneously in the
manner of Citriniti and George (2000).

The POD results from a projection of the velocity field, uj,
into a coordinate system, ¢;, optimal in terms of kinetic energy.
If thefield hasfinite total energy, Hilbert-Schmidt theory assures
that the solution exists and consists of adenumerable, infinite, set
of eigenvalues, A(", and corresponding eigenfunctions, " . For
an axisymmetric shear flow such as ajet or awake, thisis true
intheradia direction at a single downstream location, hence the
term ‘slice POD’.

For the axisymmetric wake considered here, the turbulent
velocity field is stationary in time and periodic in the azimuthal
direction. Therefore, the Hilbert-Schmidt theory does not apply
to them, but instead Fourier modes are appropriate. If only the
streamwise velocity component is considered (i. e, i = j = 1),
the following integral equation(s) must be solved:

/°° Bua(m, £, w” (m, 131" dr’ =
0

A (m, ;) (m, f,r:%) (1)

where By1(m, f,r.r’;x) is the two-point velocity correlation
Fourier transformed in time and expanded in Fourier seriesin the
azimuthal direction and v is the corresponding eigenfunction.
Note that y and A are now functions of frequency, f, and
azimuthal mode number, m,

In practice, the following steps are taken (following Glauser
and George (1987)):

=

Measurement of the instantaneous velocity at two points.

2. Fourier transformationin time and computation of the cross-
spectrum.

3. Repetition of 1. and 2. for many pairs of points.

4. Expansion of the cross-spectra obtained in 2. in Fourier se-
riesin the azimuthal direction

5. Solution of the remaining eigenvalue problem in the radial

direction, Eq. 1, for each frequency and azimuthal mode

number.

STATISTICAL RESULTS

The earlier paper of Johansson et a. (2002) details the first
order statisticsfor thisflow, and the difficultiesin obtai ning them.
Theprimary problemisthat thevelocity deficit isvery small (less
than 2% of free stream velocity by the last measuring position),
and thus extremely sensitive to hot-wire drift and calibration er-
rors. Unlike many other free shear flows, the turbulence inten-
sities, Urms/U.., are very small, from 9% at x/D = 10 to below
3% at x/D = 50. As a consequence, the hot-wire anemometer
is clearly the instrument of choice, since virtually no other tech-
nique can resolve these very weak fluctuations.

Power spectral densities were computed for all downstream
positions as well as rotations of the movable rake. These are not
shown, but are identical to those in Johansson et al. (2002). All
PSD’s off the center of the wake show a prominent peak at 67
Hz, corresponding to a Strouhal number (& = fd/U..) of 0.126.
Thisis consistent with Strouhal number measured by Miau et al.
(1997) in the near wake. The magnitude of this peak decreases
with increased downstream position, but is still clearly visible
at x/D = 60. From the absence of this peak in the center of the
wake, one can immediately infer that this dominant feature of the
PSD can not be related to an azimutha mode-0 motion.

POD RESULTS

Eigenspectrawere computed for the three downstream loca-
tions by solving Eq. 1 to obtain the distribution A(m, f;x). Even
this simple result from the POD provides a large amount of in-
formation regarding the energy distribution in the flow.

The eigenspectra, A(m, f;x), are representations of how the
energy is distributed as function of azimuthal mode number, m,
and fregquency, f, at a given downstream position, x. Therefore
their evolution show how the main characteristics of the flow
evolve. Three-dimensional plots of the eigenspectra for the first
POD mode for the four wire supported wake are presented in
Figs. 3 and 4. Here, aso the spectral content in each azimuthal
mode is shown for the first three azimuthal modes(m=0, 1, and
2) for al the downstream distances together with the full spec-
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Figure 3. Eigenspectrum function of azimuthal mode number (M) and
frequency () at different positions: (a) X/D = 10, (b) 14, (c) 18, and (d)
20.

trum to illustrate the portion of the total energy that is captured
by each mode.

As for the earlier results 13-wire results, the pictures are
strikingly similar, showing two dominating events. The energy
is concentrated around two separate peaksin the f-m plane. One

Figure 4. Eigenspectrum as function of azimuthal mode number (M) and
frequency (f) at different positions: (a) X/D = 30, (b) 40, (c) 50, and (d)
60.

is at near-zero frequency for azimuthal mode-2 and the other for
mode-1 at ahigher frequency, 67 Hz. Thissecond peak for mode-
1 corresponds to a Strouhal number of 0.126. This Strouhal
number does not change with downstream position, and is ex-
actly the same as the one detected in the PSD’s off the wake

Copyright © 2002 by ASME
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Figure 5. Eigenspectrum integrated over frequency (as defined in equa-
tion 2) as function of azimuthal mode number (M) at different positions:
(@) X/D =10, (b) 14, (c) 18, and (d) 20.

center described in the previous section. The peak at ‘ near-zero’
frequency does not either seem to change with downstream dis-
tance, even though this has to be investigated further. This is
because the ‘near-zero’ peak lies at the lowest measurable fre-
guency in this experiment, 0.98 Hz.

x/D =30, 15 wire rake,
4 support wires

0.2

0 1 2 3 4 5 6 7 8 9
Azimuthal mode number, m

x/D =40, 15 wire rake,
4 support wires
02f

0 1 2 3 4 5 6 7 8 9
Azimuthal mode number, m

x/D =50, 15 wire rake,
4 support wires
02f

0 1 2 3 4 5 6 7 8 9
Azimuthal mode number, m

x/D =60, 15 wire rake,
4 support wires
02f

0 1 2 3 4 5 6 7 8 9
Azimuthal mode number, m

Figure 6. Eigenspectrum integrated over frequency (as defined in equa-
tion 2) as function of azimuthal mode number (M) at different positions:
(a) X/D =30, (b) 40, (c) 50, and (d) 60.

The eigenspectra can be integrated over frequency to illus-
trate another key property of the POD, its ability to show how
the kinetic energy of the flow is distributed among the various
azimuthal modes. To visualize the energy distribution per az-
imuthal mode number, m, we computed for each downstream
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Figure 7.

position the quantity &(m; x) where:

B JiAM(m, f;x)df
 Zm /i Mm, fix)df

E(m;x) )

Here, the denominator isthe total kinetic energy inthefield. The
resulting normalized eigenspectra, &(m; x) for the four-wire sup-
ported wake using the 15 hot-wire rake are plotted in Fig. 5 and
6. Itis clear that at x/D = 10, most of the energy lies in the
azimuthal mode-1, while by x/D = 50, the most energetic az-
imuthal modeis number 2.

Figure 7 shows same wake at x/D = 50, but using the data
obtained with the 13-wire rake presented in Johansson et al.
(2002). There are only very small differences, one being that
mode 0 is slightly larger for the 15-wire rake. This can be ex-
plained by the fact that this rake covers a larger portion of the
wake. Certainly, this effect is very small.

Figures 8 and 9 shows the same plots for the four and three
wire supported rakes, also obtained using the 15 hot-wire rake at
x/D = 50. Theresults are virtually indistinguishable, suggesting
strongly that the whatever the physical cause of the observations,
it is not a conseguence of how the disk is supported in the wind
tunnel.

Figure 10 shows plots of ru? versusr for all downstream po-
sitions. The total energy in the POD is the integral under these
curves. Clearly as the rake is traversed downstream, progres-
sively more and more of the total energy is not included in the
decomposition (since the hot-wire rake is fixed). (This was one
of the primary reasons for expanding from 13 to 15 wires.) The
lost energy is less than 1% at x/D = 10 but perhaps as much as
20% at x/D = 60. As Fig. 6 makes clear, the evolution from az-
imuthal mode-1 peak to a peak at mode-2 takes place between
x/D = 30 and 40. Beyond x/D = 40 thereis virtually no change
in the eigenspectra, even though progressively more of the en-
ergy islost. This suggests strongly that the outside energy does

0.25

x/D =50, 15 wire rake,
4 support wires
0.2

333882

R LR LR LR R
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Figure 8.
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Figure 10.

not affect the eigenspectra (at least in the lower modes). Thisis
consistent with the lack of observed differences between the 13
and 15-wire arrays.

The investigation was very recently expanded to further
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downstream distances and is presented in Johansson and George
(2002). In this paper, experimentsin a different wind tunnel us-
ing different anemometers, with the coin replaced with a disk
machined in acrylic with the diameter 20 mm is presented. To
maintain a constant Reynolds number with this smaller disk, the
velocity was increased. The eigenspectra integrated over fre-
quency, £, are in perfect agreement to those presented in this
paper, ensuring that an eventual asymmetry of the coinis not the
cause of the mode-2 dominance.

CONCLUDING REMARKS

Threedifferent‘slice POD’ investigationsare reported of the
axisymmetric turbulent wake behind a disk. Two different hot-
wire rake configurations were used: a 13 hot-wire rake and a
15 hot-wire rake covering a larger area of the flow. Also two
different supporting methods were used: one a four wire support
system, the other a three wire support system. The results were
essentially independent of rake, flow coverage or wake support
system. Theresults confirm the earlier observations of Johansson
et a. (2001), but with a much more extensive data base.

For all downstream positions, two distinct peakswere found
in the eigenspectrum of the lowest (and most dominant) radial
POD mode: one for azimuthal mode-2 at near zero frequency,
and another for azimuthal mode-1 at a fixed Strouhal number
(fd/U..) of 0.126. Both peaks decrease in magnitude as the flow
evolves downstream, but the peak at the Strouhal number 0.126
decreased morerapidly so the latter eventually dominated. When
integrated over frequency and normalized by the total kinetic en-
ergy, it was seen that the first eigenspectrum accounts for more
than 60% of the energy.

Asnoted by Johansson et al. (2002), theresultsare strikingly
similar to recent POD results for the far axisymmetric jet ob-
tained with 138 hot-wires presented in Gamard et al. (2002). In
particular, azimuthal mode-2 dominates the far downstream de-
velopment. The main difference from thejet results are that peak
at the non-zero frequency scales with the local Strouhal number
for the jet, but remains fixed in frequency for the wake.
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1 Introduction

The Proper Orthogonal Decomposition (POD) technique has recently become
very popular for investigating the energetic structures of turbulent free shear
flows. This is because the POD can describe the energetic structures of such
flows with only a few modes. It has become popular only recently because of
the development of high-speed computers that can handle massive amounts of
data; in particular the large quantity of two-point velocity correlations required
to produce the kernel for the POD.

This paper is part of an ongoing investigation of the disk wake using a ‘slice’
version of this technique. The developing region /D = 10 to 50 was presented
in Johansson et al. [4]. This was followed up with a sensitivity study of the POD
by Johansson and George [5] where the influence of wake generator support and
spatial resolution was evaluated. The POD was proven to be extremely robust
and insensitive to external disturbances (such as the wakes of supporting wires).
In this paper, the investigation is extended to cover downstream distances all
the way to /D = 150 to study the far downstream development of the POD
modes.

2 Experimental Setup

Unlike the earlier experiments which were conducted at Chalmers University of
Technology, these experiments were conducted in the Minimum Turbulence Level
(MTL) wind tunnel at Royal Institute of Technology, Stockholm, Sweden. The
free-stream streamwise turbulence intensity over the span of velocities related
to this work was less than 0.02%. The measuring cross-section in the tunnel is
0.8 x 1.2 m? and the downstream length is 7.0 m. The tunnel velocity was kept
constant at 20.5 m/s during the experiment.



2 Far downstream development of POD modes in a turbulent disk wake

The disk was made of plastic with a diameter of 20 mm, and the Reynolds
number based on the free stream velocity and disk diameter was 27,000. The
investigated region spanned from 30 to 150 disk diameters downstream. A total
number of 15 hot-wires were used in two arrays. The probes were used to obtain
the two-point velocity cross-spectra in the manner of Glauser and George [3]
for all possible combinations of probe locations. The upper array of probes was
movable, and traversed from a 15° separation up to 180° with 15° increments
in Af. Half the cross-section of the wake at a fixed downstream position was
scanned, and pairs of instantaneous velocity correlations for a fixed angle sep-
aration computed. The measurement grid was chosen following the guidelines
of Glauser and George [2] to avoid as much spatial aliasing as possible when
making the azimuthal Fourier decompositions to obtain the cross-spectra. The
cross-spectra corresponding to the remaining half-plane were available from the
azimuthal symmetry of the flow.

3 POD

The POD results from a projection of the velocity field, u;, into a coordinate
system, ¢;, optimal in terms of energy. If the field has finite total energy, Hilbert-
Schmidt theory assures that the solution exists and consists of a denumerable,
infinite, set of eigenvalues, A, and corresponding eigenfunctions, gbz(-n). For
an axisymmetric shear flow such as a jet or a wake, this is true in the radial
direction at a single downstream location, hence the term ‘slice POD’.

For the axisymmetric wake considered here, the turbulent velocity field is sta-
tionary in time and periodic in the azimuthal direction. Therefore, the Hilbert-
Schmidt theory does not apply to them, but instead Fourier modes are appro-
priate. If only the streamwise velocity component is considered, the following
integral equation(s) must be solved:

/Oo Bl,l(m7 f; T, 7’/; x) gn) (ma fa T/; x)rl d’f’/ = )\(n) (ma f7 50)1/)1 (m7 f7 L ’JZ) (1)
0

where By 1(m, f,r,r’; ) is the two-point velocity correlation Fourier transformed
in time and expanded in Fourier series in the azimuthal direction, and 1 is the
corresponding eigenfunction. Note that 1) and A are now functions of frequency,
f, and azimuthal mode number, m, More detailed descriptions of the POD and
the actual computational procedure can be found in Johansson et al. [4].

4 Results

The eigenspectra can be integrated over frequency to illustrate a key property
of the POD, its ability to show how the kinetic energy of the flow is distributed
among the various azimuthal modes. To visualize the energy distribution per
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azimuthal mode number, m, we computed for each downstream position the
quantity £(m;x) where:

_ ff)‘(m,fQI)df
TS A fadf

Here, the denominator is the total kinetic energy in the field. The resulting
normalized eigenspectra, £(m;x) are plotted in Fig. 1.

£(m; x) (2)
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Figure 1: Eigenspectrum integrated over frequency as function of azimuthal
mode number (m) at different downstream positions.



4 Far downstream development of POD modes in a turbulent disk wake

It is clear from this picture that the most dominating azimuthal mode at
x/D = 30 is azimuthal mode number 1. But the importance of azimuthal mode
1 decreases as the flow evolves downstream, and it becomes the third most
important mode behind mode 2 and mode 0 by /D = 110. The picture hardly
changes at all beyond x/D = 110. Note that mode 0 stays nearly constant and
the slight decrease is due to the fact that the hot-wire probes do not cover as
much of the wake at the farthest downstream position, a matter that is addressed
in Johansson and George [5].

5 Summary and Conclusions

This study confirms the earlier results of Johansson et al. [4]. In particular, it
makes clear that mode 1 does not dominate the energy of the far downstream
wake. Instead, mode 2 does. In fact, it is the evolution of the eigenspectrum
from mode 1 to mode 2 dominance that characterizes the evolution from near
wake to far wake.

The present results are also strikingly similar to results obtained recently in
the axisymmetric jet by Gamard et al. [1]. Despite being two different flows, the
axisymmetric wake and the jet share many common features. It is reasonable to
expect that the modes in these two flows can behave the same only if they are
governed by similar equations, whatever they might be.
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Equilibrium similarity considerations are applied to the axisymmetric turbulent wake, without
the arbitrary assumptions of earlier theoretical studies. Two solutions for the turbulent flow are
found: one for infinite local Reynolds number which grows spatially as '/3; and another for small
local Reynolds number, which grows as /2. Both solutions can be dependent on the upstream
conditions. Also, the local Reynolds number diminishes with increasing downstream distance, so
that even when the initial Reynolds number is large, the flow evolves downstream from one state to
the other.

Most of the available experimental data are at too low an initial Reynolds number and/or are
measured too near the wake generator to provide evidence for the z'/% solution. New results,
however, from a laboratory experiment on a disk wake and direct numerical simulations (DNS) are
in excellent agreement with this solution, once the flow has had large enough downstream distance
to evolve. Beyond this, the ratio of turbulence intensity to centreline velocity deficit is constant
until the flow unlocks itself from this behavior when the local Reynolds number goes below about
500, and the viscous terms become important. When this happens the turbulence intensity ratio
falls slowly until the z*/2 region is reached.

No experimental data is available far enough downstream to provide unambiguous evidence for
the z'/? solution. The prediction that the flow should evolve into such a state, however, is confirmed
by recent DNS results which reach the 22 at about 200,000 momentum thicknesses downstream
After this the turbulence intensity ratio is again constant, until box-size affects the calculation and

the energy decays exponentially.

I. INTRODUCTION

The axisymmetric turbulent wake is a flow that has
puzzled researchers for more than a half-century, since
measured results have been either inconclusive or con-
tradictive. In order to evaluate experimental data in the
context of similarity analysis, a “complete” set of mea-
sured data is needed. Here, the term “complete” refers
to the following necessary set of quantities: at least mean
velocity and turbulence intensity distributions across the
flow and the wake width. Fig. 1 shows a sketch of the
axisymmetric wake together with the coordinate system.
Uy denotes the free stream velocity, U, = Uy — U the
centreline velocity deficit, and § a measure of the wake
width.

FIG. 1: Axisymmetric wake coordinates and definitions.

The axisymmetric wake is a challenging flow to mea-
sure because of the small velocity deficit, the slow decay
of the velocity deficit downstream and a turbulence in-
tensity of the same order as the deficit. In fact, the far
axisymmetric wake still is at the threshold of what is pos-
sible to measure today using even the best wind tunnels
and the most stable low-noise anemometer equipment.
Also, unlike many other free shear flows for which the lo-
cal Reynolds number remains constant or increases down-
stream, in the axisymmetric wake it drops slowly. Thus
viscous effects continuously become more important un-
til eventually they may dominate (if the flow extends far
enough downstream). These varying viscous effects, to-
gether with the many very different possibilities for the
structure of the near wake from different generators, con-
siderably complicates interpretation of the data. The
goal of this study is to use equilibrium similarity theory
to sort out these different effects and isolate the regions
in which they dominate or in which they can be ignored.

II. HISTORICAL REVIEW

The first complete set of data in the wake of an ax-
isymmetric disk perpendicular to the flow was presented
by Carmody', who measured mean velocity, turbulence



intensity, Reynolds stress and wake growth in an axisym-
metric disk wake at a Reynolds number (Rp) based on
the free stream velocity and the disk diameter of 70,000.
Based on these measurements, the wake appeared to be
self-similar 15 diameters from the disk, meaning that the
mean velocity profiles appeared to collapse when normal-
ized by the centreline deficit and a lateral length scale
determined from the profile itself. The disk wake was
also investigated by Hwang and Baldwin?, who measured
turbulence intensity and wake growth rate at up to 900
diameters downstream distance from the body. They
did not, however, present centreline mean velocity de-
cay. Both the Carmody! and Hwang and Baldwin? data
show a significant scatter, presumably due to the limita-
tions of the anemometers used at that time. Uberoi and
Freymuth® measured the sphere wake at Rp = 8,600
and stated that the wake achieved self-similar behavior
at 50 diameters downstream, although they only mea-
sured a few more points further downstream. Bevilaqua
and Lykoudis? investigated the wakes of a sphere and
a porous disk at Rp = 10,000 with the same momen-
tum deficit (drag), and reported that these become self-
similar in terms of mean velocity and Reynolds stress
profiles within ten diameters of the sphere and within
twenty diameter of the porous disk — but not in the
same manner; i.e., the sphere and the porous disk do not
reach the same state of similarity. They concluded that
this result was not consistent with the idea that the tur-
bulence forgets how it was created, as commonly believed
(c.f. Townsend®).

A recent extensive experiment was reported by
Cannon® who investigated the axisymmetric far wake be-
hind different five different wake generators (disk, sphere
and three porous disks with different porosity), all having
the same drag and Reynolds number based on the mo-
mentum thickness of Ry = U,.0/v = 3,500, where Uy, is
the free stream velocity, v is the kinematic viscosity, and
6 is the momentum thickness defined by:

6? = lim %/ UUs —U)rdr (1)
r—ooUs Jo

This corresponds to values of Rp of 13,000 for the solid
disk, 14,000—17,000 for the screens, and 21,500 for the
sphere. The measurements extended over a range of z/6
of about 35 to 500. There were no conclusions about
when the flow achieved self-similar behavior, and in fact
it was not obvious that the turbulence intensities ever
did.

During the last decade, researchers have primarily fo-
cused on the early development of the wake behind dif-
ferently shaped axisymmetric bluff bodies, among them,
Ilday el al.”, Ostowari and Page®, Portiero and Perez-
Villar® and Sirviente and Patel'?. All conclude that the
wake becomes similar in mean velocity but the turbu-
lence intensity profiles do not collapse. The initial evolu-
tion has also been studied numerically by Basu et al.'!,
who made a Direct Numerical Simulation (DNS) of the
axisymmetric wake for Rp = 1500. The authors claimed

that the solution approached the self-similar state in a
slow manner, but the computation was interrupted be-
fore this could be verified. From all the data referred to
above, it is impossible to conclude whether the axisym-
metric wake in general becomes self-similar at all, and if
it does, when.

Very recently, Gourlay et al.'?, presented the first DNS
of the high Reynolds number (Rp = 10,000) ‘late’ wake
(which can be directly compared with the ‘far’ wake).
The simulation did not resolve a wake generator, but
started from a Gaussian velocity profile consistent with
a laminar wake (c.f. Townsend® or Schlichting!®) with
superimposed random noise. The simulation ran to very
large times which corresponded to very large downstream
distances, about z/D =~ 4 x 10° or /0 ~ 3 x 105! This
is almost three orders of magnitude larger than any ex-
isting laboratory experiment. The accuracy of the statis-
tics is limited, however, since only an azimuthal aver-
age for each time (or position downstream) can be com-
puted from the simulation. Gourlay et al.'? did not either
make any statements on when or if the wake became self-
similar. There was a brief comparison to the results of
classical similarity analysis to check the reliability of the
numerical data. These DNS results will be used exten-
sively below.

Even more recently, the axisymmetric disk wake from
/D = 10 to 60 was studied with the proper orthogonal
decomposition (POD) technique by Johansson et al.'4.
This work was extended to cover downstream distances
up to x/D = 150 by Johansson!516. The latter provided
values of the mean velocity, streamwise velocity fluctua-
tion profiles, and wake width that will be cited below.

The following observations can be made from all the
experiments listed above:

e Different initial conditions affect the growth rates,
contrary to the classical theory which states that
all wakes should depend only on the downstream
distance, z, and the drag, 2mpUZ 62 (Townsend®,
Tennekes and Lumley'”). Here, p is the fluid den-
sity, U the free stream velocity, and 6 the mo-
mentum thickness defined in Eq. (1). This is most
strikingly illustrated by the flow visualization pho-
tographs of Cannon et al.'®. Data from Carmody!,
Uberoi and Freymuth?, Bevilaqua and Lykoudis?,
Cannon®, Gourlay et al.'?, and Johansson'®16 are
plotted in Fig. 2. (The data of Gourlay et al.'?
cover much larger /0 than shown here, and will
be discussed later.) These show the variation with
x of the transverse length scale (wake width) de-
fined by;

52 — lim _/O (U — U) rdr @)

where U, is the centerline velocity deficit. The data
shown clearly do not collapse to a single curve inde-
pendent of the wake generator. Note that the data
by Bevilaqua and Lykoudis* are for two generators
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with the same drag, and that the data by Cannon®
is for five generators with approximately the same
drag. These source dependent effects do not seem
to vanish, even for large Reynolds numbers or large
downstream distance.

e In apparent contradiction, the mean velocity pro-
files from all experiments collapse onto a single
curve when scaled with centerline velocity deficit
and §,, as illustrated in Figs. 3 and 4 for the data

of Cannon® and Johansson

15,16 " respectively. The

other references show just as good a collapse.

e The turbulence intensity profiles presented by
Carmody' and Cannon® do not collapse at all, even
for fixed upstream conditions as shown in Fig. 5
for the data of Cannon® for the porous disk with
o = 0.70. Here, very large downstream distances,
up to /6 > 500, are covered. By contrast, Fig. 6

shows profiles of u

!
max

/U, for various downstream

distances for the disk wake of Johansson!'®16. Here,
the turbulence intensity profiles seem to indeed col-
lapse, but not before x/6 ~ 200.

e Finally, curve fits to the screen wake data by
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FIG. 5: Turbulence intensity profiles for the porous disk with
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Cannon® indicate that square root and cube

root downstream dependencies describe the wake
growth equally well.

Clearly, there is much remaining to be explained. These
issues cannot be reconciled simply by attributing them
to measurement errors alone. Not all investigators could
be incompetent, and in fact the internal consistency of
the data suggests the opposite (e.g., momentum conser-
vation, etc.) Nor are the problems presented by wake
measurements more difficult than for grid turbulence for
which hot-wire measurements have long been accepted.

The classical self-preservation approach to free shear
flows was first questioned by George'??°, who argued
that it was based on assumptions that were not in general
valid. He proposed a new methodology called equilibrium
similarity analysis, and demonstrated with it that solu-
tions were possible which depended uniquely on the up-
stream conditions. The new theory was in striking agree-
ment with the nearly concurrent experiments of Wyg-
nanski et al.?! for two-dimensional wakes, which showed
dramatic differences between spreading rates and eddy
structure which depended on the wake generator.

George'® also argued that the axisymmetric wake
would behave similarly. He predicted that the mean ve-
locity profiles from the different experiments would be
the same, if scaled by the centerline deficit velocity and
velocity deficit half-width, even if the wakes grew at dif-
ferent rates. This is consistent with the observations
shown in Figs. 3 and 4. This result is very important,
since previous researchers have often used the collapse
of mean velocity profiles alone to argue that wakes are
independent of upstream conditions. The whole point of
George’s analysis, however, is that properly normalized
mean velocity profiles always collapse, and the source-
dependent differences only show up in the spreading rate
and the higher turbulence moments. This is clearly ob-
served as noted above.

George'® was unable to resolve whether the asymp-
totic axisymmetric wake would evolve as § ~ z!/3 or
as 6 ~ x'/2. In fact, he showed from ad hoc assump-
tions about the dissipation that both solutions were con-
sistent with the equations, depending on the Reynolds
number. It did not appear to be possible, however, to
decide which, if either, would be observed, or whether
the flow would evolve from one to the other. Or even
if such an evolution occurred, which would be observed
first. As the careful experiment of Cannon® described
earlier makes clear, these questions are still very much in
doubt.

In this paper, the analysis of George!? is re-visited,
corrected, and extended. It will be shown without ad hoc
assumptions that two different equilibrium similarity so-
lutions for the axisymmetric wake are possible: one for
very high local Reynolds numbers, and another for low.
Most importantly, because the local Reynolds number
decreases with distance downstream, the flow will indeed
be shown to eventually evolve from the high Reynolds
number state to the lower, no matter how high the initial

Reynolds number of the flow. And if the initial Reynolds
number of the flow is too low, the high Reynolds num-
ber solution will not be observed at all. The available
experimental and numerical data is analyzed, especially
addressing the particular points listed above. Not sur-
prisingly (given the state of confusion), most of the labo-
ratory experiments are shown to take place in the evolu-
tion region. The direct numerical simulation of Gourlay
et al.'? is the only case where both the high and low lo-
cal Reynolds number solution are found, since it is the
only investigation that covers far enough downstream dis-
tances with high enough initial Reynolds number.

IIT. EQUILIBRIUM SIMILARITY ANALYSIS

The necessary equations to study are: the momentum
equation, conservation of momentum, continuity, and the
individual transport equations for Reynolds stresses in
cylindrical coordinates. These are summarized in Ap-
pendix A, since they are not easily available in standard
texts. In the spirit of George!®2°, we seek solutions of the
form (explicitly written here for the momentum equation
and u? equations only — the others are treated similarly):

U—-Usx = Us(m)f(nv *) —Uv = Rs(x)g(n7 *) (38')

%F = Ku(x)ku(n, *) %% = Tu21;tu2v(777 *) (Sb)
2O p(alpuln ) = PP @)D (1, %) (30)
0 0z = Ly (T )PulT], pp —tu Do 15

u = Du(x)du(n, %) (3d)

where n = r/§(z) and * denotes a possible (unknown)
dependence on initial conditions. Note that two different
sets of solutions will be found below, so the symbols will
have different meanings depending on which is being dis-
cussed. Since each regime is discussed separately there
should be no confusion.

For the particular type of “equilibrium” similarity so-
lutions suggested in George?, the terms in the govern-
ing equations must maintain the same relative balance as
the flow evolves. These “equilibrium” similarity solutions
exist only if the terms within square brackets have the
same z-dependence, and are independent of the similar-
ity variable, . (Thus, the bracketed terms must remain
proportional to each other as the flow evolves.) This is
denoted by the symbol ~ which should be interpreted as
“has the same z-dependence as”. (Note that the symbol
~ has nothing to do with “order of magnitude” in this
paper.)

For the mean momentum equation, these equilibrium
similarity constraints reduce to:

0 dU, dé R, v 0
U, dx dx UsoUs Usd
There is nothing in the equations or the theory which
suggests that the constants of proportionality are inde-




pendent of source conditions, nor in fact do they appear
to be. This is contrary to the usual assumptions in self-
preservation analysis (c. f., Townsend??, Tennekes and
Lumley'™). Tt is trivial to show that the relation be-
tween the first and second terms of Eq. (4) is satisfied by
the momentum integral result of Eq. (B2).

The proper scale for —uv is obtained by using the sec-
ond and third terms, which yields:

R, ~ UOOUS% (5)
It is immediately obvious how the equilibrium similarity
approach yields a different and more general result than
the classical approach, where it is assumed without jus-
tification that Ry = U2 (c. f., Tennekes and Lumley!7),
with the coefficient determined by the conditions for a
point source of drag.

The same equilibrium similarity hypothesis can be
applied to the component Reynolds stress equations;
namely that all of the bracketed terms should remain
proportional (i.e., have the same z-dependence). For ex-
ample, inserting Eq. (3) into Eq. (A4) yields after some
elementary calculus that equilibrium similarity can be
maintained only if:

SRy d5 TS Db v
K, do " de " UsK, " UxK, Usxd

Similar relations arise from the other component equa-
tions.

All of these relations cannot simultaneously be satis-
fied given the constraints already placed on Us, §, and R,
from the mean momentum equation. A solution is possi-
ble, however, if the viscosity is identically zero, since then
all terms involving the viscosity fall out of the problem.
And also a solution for finite viscosity is possible if it can
be shown that the production term in the Reynolds shear
stress equation, v29(U — Uy, )/0r, is negligible relative to
the leading terms in the equation.

It will be demonstrated below that these are in fact
limiting solutions for very large local Reynolds number,
and for very low local Reynolds number. Note that the
latter solution should not be confused with the lami-
nar solution, but instead identified with turbulent flow
for which the velocity spectra do not have a developed
k=5/3 range (see George??). And by contrast, the high
Reynolds number limit applies to a flow which has an
easily apparent inertial subrange in the spectra. Fur-
ther it will be demonstrated that no matter how high
the Reynolds number of the drag-producing device, say
Ry = Us0/v, the diminishing local Reynolds number
downstream will cause the equations (and the solutions
as well) to slowly evolve from one regime to the other.

IV. THE INFINITE REYNOLDS NUMBER
SOLUTION

A solution having the same z-variation as the classical
solution can be derived by setting the viscous terms in

Eq. (B4) to (B8) exactly equal to zero, which corresponds
to the limiting solutions at infinite Reynolds numbers.
It is straightforward to show that all of the remaining
constraints can be satisfied. Of particular interest are
the following:

ds D6
dr U K, (7)
Ky~K,~K,~U? (8)
Dy~ Dy~ Dy, ~U3/5 (9)

Note that this is the solution obtained by George'? by as-
suming the dissipation relation of equation 9. The scaling
for the dissipation is just what one should expect for an
infinite Reynolds number solution where the dissipation
is completely controlled by the energetic turbulence (i.
e., e < u?/l in the usual notation of texts).

It follows immediately after some manipulation that:

O T — X, 1/3
Us T — o 23
Ly feo w

where a = a(x), b = b(x), and x, = z,(*) is a virtual
origin. This is, of course, the classical solution with
but a single difference — the dependence of the coeffi-
cients on upstream conditions, *. This possible depen-
dence must be acknowledged, since there is nothing in
the equations themselves to suggest independence of up-
stream conditions. The mean velocity profile, on the
other hand, can be shown to be independent of upstream
conditions. This is achieved by incorporating a factor
of [Rs/(UxUs)dd/dx] into the definition of g so that
there are no parameters at all in Eq. (B4), as noted by
George!?.

V. BOUNDS ON THE VALIDITY OF THE
INFINITE REYNOLDS NUMBER SOLUTION

It was noted in the introduction that the cube root so-
lutions simply do not account for most of the data, and
especially the careful data of Cannon®. So where might
the problem be? Firstly, even if the Reynolds number
of the wake generator is high enough for the flow to be
nearly inviscid, as required for the similarity theory to be
valid, it clearly can only apply after the transients from
the wake generator have died off. Coincident with this,
the turbulence intensity ratio, /Uy, must also reach a
constant value, as demanded by equation 8 above. Note
that appropriate choices for the similarity parameters K,
and Ug are Uy = U, and K,, = u’?mn, the centreline ve-
locity deficit and maximum of the mean square stream-
wise fluctuating velocities respectively.

The ratio u,,../Us, is plotted in Fig. 7 versus x/6 for
the data of Johansson'®16, Bevilaqua and Lykoudis?, and
Cannon®. There is a large uncertainty as to whether the
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data of Bevilaqua and Lykoudis* and Cannon® reach a

horizontal line. Note that the data of Cannon® for the
screen with 0 = 0.70 is based on Fig. 5 and the data
of Johansson'®16 are obtained from Fig. 6. The data
from Johansson!'®16 tends to fall onto a line, at least
after /0 ~ 120. The error bars indicate an uncertainty
in the data of 4%. This error originates primarily in
the difficulty of estimating the centreline mean velocity
difference, since the mean velocity data is affected by
drift in the anemometer calibration. This is discussed in
detail in Johansson et al.'*. There is no doubt, however,
that the flow is still developing until at least /6 = 120
(/D = 30), beyond which it appears to have settled in
to an equilibrium similarity state.

This conclusion can be compared to the findings of the
POD studies of Johansson and George?? (see also George
et al.?*), who showed that the POD modal distribution
was changing until /D = 50 (z/6 ~ 184). The en-
ergy distribution went from an azimuthal mode 1 domi-
nance at /D = 10 to an azimuthal mode 2 dominance by
/D = 50, with both modes being equally important at
x/D = 30. Beyond z/D = 50, the decomposition hardly
changed at all. Therefore, even though the turbulence
intensity seems to have settled in by x/6 ~ 120, the no-
ticeable overshoot between /6 ~ 120 and 200 should not
be left unnoticed. Other quantities, such as the growth
rate must be taken into account before specifying the ex-
act location of the start of the equilibrium range. Uberoi
and Freymuth?® concluded that their sphere wake became
self-similar after /D = 50 (corresponding to z/6 ~ 300
in their case). Given the difference in initial conditions,
there are no particular reasons that the these two flows
should develop in exactly the same way, either initially
or far downstream.

Secondly, it is easy to show that, unlike most other free
shear flows, this infinite Reynolds number solution con-
tains the seeds of its own destruction. The local Reynolds
number, R = U, /v, controls the relative importance of
the neglected viscous terms in the mean momentum and
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Reynolds shear stress equations. Substitution of Egs.
(10) and (11) into the definition of R yields:

R

_ U0, _ Uy {x—wo}l/:g ~ Ry {x—xo]l/g

0 0

(12)
Thus, no matter how large the initial Reynolds num-
ber, Ry, eventually far enough downstream it is dimin-
ished until the viscous terms can no longer be neglected.
And if the viscous terms are not negligible, the infinite
Reynolds number similarity solution cannot be even ap-
proximately true. This is illustrated in Fig. 8, using the
data of Johansson'®'¢, Carmody', Cannon®, Uberoi and
Freymuth®?, Bevilaqua and Lykoudis?, and Gourlay et
al.'2. Clearly the local Reynolds numbers in the experi-
ments drops drastically as the flow evolves downstream,
so eventually the viscous terms become important, even
if initially negligible.

The effects of the changing local Reynolds number, R,
can also be clearly seen in the one-dimensional velocity
spectra of Uberoi and Freymuth?® shown in Fig. 9. As
noted by George?’, high Reynolds number solutions ap-
ply only if there is a clear inertial subrange in the power
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spectrum. This insures that the energy and Reynolds
stress scales of motion are effectively inviscid. For R =
1600, this is clearly the case, with about two decades of
inertial subrange. By R = 400, the existence of an iner-
tial subrange is questionable, and by R = 100 it is clearly
gone.

The approximate lower limit for the high Reynolds
number solution of R = 500 is indicated on Fig. 8 by the
horizontal shaded line. None of the data below this line
satisfy the conditions for the high Reynolds number so-
lution. Also shown in Fig. 8 by the vertical shaded line is
the approximate boundary of the transient (or near wake)
region for the disk as described above. Clearly most of
the experimental data do not satisfy the conditions for
the high Reynolds number solution to apply. Before ex-
amining in detail those that do, the low Reynolds number
solution will be developed below.

VI. THE LOW RE SOLUTION

As noted above (and by George!?), there is another
equilibrium similarity solution to the same set of equa-
tions. The difference is that this time all the terms in-
volving viscosity are kept, in both the mean and Reynolds
shear stress equations. This produces one additional con-
straint of the mean momentum equation (Eq. B4):

i& v
der  Ugd

(13)

It is extremely important to note that even though some
of the relations are the same (e.g., K, /U2 = constant),
the constants of proportionality (or more properly, the
parameters of proportionality since they all depend on
*, the unknown details of the initial conditions) are most
likely different from those governing the infinite Reynolds
number solution.

There is one problem which at first glance appears to
be quite serious. All of the constraints in the Reynolds
shear stress equation cannot be met, in particular the
one arising from the production term, v20(U — Uy,)/0r.
This offending term dies off with distance downstream
faster than the remaining terms in the equation, in fact
as ~7/2 compared to =52 for the rest. Therefore, it
can also be neglected in the analysis since it does not
survive asymptotically (exactly like the Reynolds stress
convection terms in the outer boundary layer analysis
of George and Castillo®®). But since the difference in
decay as = 7/2 and x~5/2 is very small, it clearly will take
a considerable distance downstream to reach this new
state of equilibrium. Moreover, it will be very difficult to
recognize from J, and U, alone.

It is straightforward to show that Eq. (13) can be in-
tegrated to obtain:

(14)

(15)

where as before ¢ = c¢(x), d = d(x), and Z,, = Too(*)
is a virtual origin which most likely is different than the
one obtained above. Unlike the infinite Reynolds number
solutions, the mean velocity profile cannot be shown to
be independent of upstream conditions because of the
additional term in the momentum equation. Note that
the mean profile is not the same as for the high local
Reynolds number wake, at least in principle, because it
is a solution to different equations involving viscosity.

It is easy to show that the local Reynolds num-
ber continues to fall with increasing distance down-
stream; therefore the approximations improve with dis-
tance downstream. Moreover, since the viscous stresses
and Reynolds stresses both decay as z—3/2, the flow will
never relaminarize but will remain a low local Reynolds
number wake forever.

An important clue as to if and when this low Reynolds
number solution regime applies is the constancy of the
ratio, K, /U2, or in the data the constancy of the ratio
Winaz/Us. This is exactly the same condition applied
above to identify the high Reynolds number region, so if
the constant is the same for both high and low Reynolds
number solutions, it will be extraordinarily difficult to
tell them apart since they differ by only z!/2 / z'/3. For-
tunately, the intensity ratios appear to differ significantly
as will be seen below, so it is quite easy to decide where
the infinite Reynolds number region ends and where the
visous one begins, at least for the Gourlay et al.'? data.

VII. IDENTIFICATION OF THE DIFFERENT
REGIMES FROM DATA

A necessary condition for any data to be considered is
that momentum is conserved. For the near wake this re-
quires inclusion of the non-linear term in equation 1; but
for all positions of interest here, momentum conservation
reduces to:

Uyd2 = Usof?. (16)

All of the experimental data appear to satisfy this re-
quirement, as does the DNS data of Gourlay for x/6 >
500. Moreover, as noted above, for similarity to be valid
the ratio u';mqz /U, has to be constant. The constant may
be, in principle at least, different for the high and low
Reynolds number regions. In fact, it is the constancy or
lack of constancy of u/,,q4./U, that most easily identifies
the various similarity solution regimes.

As noted above, only a few of the many sets of ex-
perimental data actually satisfy the conditions for the



infinite Reynolds number solution to apply. Only the
experimental data of Johansson'®!® and the DNS data
of Gourlay!'? will be considered further here. Of these,
only the DNS data completes the evolution to the low
Reynolds number solution.

A. A High Reynolds Number Experiment

The Johansson data were taken in the MTL tunnel
of the Swedish Royal Institute (KTH), Stockholm using
rakes of 15 hot-wires. The disk was 20 mm in diame-
ter and the flow speed was 20.4 m/s, corresponding to
Reg = 7,300. The 7m long test section and very low tur-
bulence background turbulence intensity permitted mea-
surements downstream to /D = 150, or /0 = 552. The
experiment is described in detail in Johansson'®16. The
mean velocity and turbulence intensity profiles have al-
ready been shown in figs. 4 and 6 respectively. Fig. 10
summarizes all the remaining important parameters men-
tioned above for the full picture of the high local Reynolds
number similarity region for the disk wake.

The turbulence intensity normalized by the velocity
deficit at the centerline is constant beyond z/0 ~ 120.
The local Reynolds number is above 500, even at the fur-
thermost downstream position. The plot of (6, /6)3 ver-
sus 2/ is linear, as is the plot of (U./U,)3/2, exactly as
required by the high Reynolds number similarity results
of equations 10 and 11 respectively. Linear regression
yields values for the constants as: a = 1.14, b = 0.77,
T, = —2.40.

B. Recent High Reynolds Number DNS

The DNS data of Gourlay et al.'? covers very large
downstream distances as mentioned in the introduction,
and both high and low Reynolds number regimes can be
observed. The original data was presented as a func-
tion of non-dimensionalized time, tU/L, where the refer-
ence velocity U = 1 and reference length L = 1. When
converting to downstream distance, x/0, it was first as-
sumed that tU = z, and the velocity profiles were then
integrated according to Eq. 1. All results presented here
are plotted versus z/6 to facilitate comparison with the
experimental data.

In Fig. 11, the turbulence intensities of Gourlay et
al.'2 are shown. Two regions of constant normalized
turbulence intensity can be observed: one for 1,000 <
x/0 < 8,000 approximately (see insert), and the other
for 200,000 < /6 < 600,000 approximately.

This wake clearly reaches the first equilibrium similar-
ity region much further downstream than the disk wake
of Johansson'®'® considered above. This might be re-
lated to the level of turbulence intensity which is much
lower (almost a factor of two) than the disk wake re-
sults. (Note that the turbulence intensity is even lower

for the porous screens of Cannon® shown in Fig. 7.) Be-
cause of the low turbulence intensity of these flows, it
is possible it takes such large downstream distances for
the flow to reach equilibrium because the time scale of
the energy-containing eddies, J. /v’ is correspondingly in-
creased. Figure 12 summarizes the important parameter
variation for the first region identified above.

The turbulence intensity normalized by the center-
line velocity deficit begins to drop slowly after z/6 =
8,000, which is about where the local Reynolds number
has reached the previously suggested threshold of 500.
Clearly, this region should be identified with the high
Reynolds number solution. As for the disk data, both
(6,/0)® and (U,/Us,)~3/? are both linear over the same
range for which the intensity ratio is constant, and be-
gin to deviate about when the intensity ratio begins to
drop and the Reynolds number drops below the threshold
value. Regression fits of equations 10 and 11 yields values
for the constants of: a = 0.84, b = 1.44, and z, = 2006.
These are quite different from the values above for the
disk wake above, making clear the effect of different ini-
tial conditions.

Fig. 13 shows the normalized mean velocity deficit pro-
files for this portion of the Gourlay data. Also shown on
the plot is the best fit line to the mean velocity deficit
data of Johansson shown in fig. 4. These should be ex-
actly the same according to the similarity theory, since
any differences should show up only in the growth rate
and the magnitude of the Reynolds stress; and they are,
but only at x/6 = 1030. The differences may be due to
the scatter in the DNS data because of the limited sta-
tistical sample. Alternatively, perhaps the mean velocity
profile is affected somewhat earlier than the turbulence
intensity ratio by the lower local Reynolds number of the
DNS data. The low local Reynolds number similarity re-
gion can only identified in the DNS data of Gourlay et
al.*2, the second region of constant intensity ratio iden-
tified above. The important parameters are shown in
Fig. 14.

The local Reynolds number is well below the thresh-
old for the high Reynolds number solution to be valid, so
clearly the low Reynolds number solution is appropropri-
ate. Thus is it is not surprising that the plots of (4. /6)>
and (U,/Us)~! are remarkably linear. Regressive fits of
equations (14) and (15) yield values for the constants of
¢ =190, d =028, 2,, = —3.0 x 10°. Note that the
high value for the virtual origin is consistent with the fact
that this region does not begin until ¢, /6 ~ 33! In fact,
instead of a virtual origin, it might be more appropriate
to think of it as a starting value for ¢,/6 when the low
Reynolds number equilbrium similarity region is begins.

Figure 15 shows the normalized mean velocity deficit
profiles for 1.96 x 105 < x/0 < 8.41 x 10°.

The collapse is remarkable. Also shown is the curve fit
to the Johansson data. Clearly these are different, con-
sistent with the fact that the mean momentum equation
is different because of the presence of the viscous stress.
Also shown is the exponential eddy viscosity profile de-
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veloped in Appendix C. Note that this is not the same
as the laminar solution, first because the ‘turbulent vis-
cosity’ is about 15 times the fluid viscosity. Also, the
turbulence intensity ratio is non-zero and plays a signifi-
cant role in the flow evolution.

Finally, fig. 16 shows a linear-linear plot of the Gourlay
data for all values of /6. Also shown are the curve fits
discussed above for the high and low Reynolds number
regimes. The figure makes clear how truly far down-
stream these DNS data really go, and also what a small

portion of the total is the truly high Reynolds number
part of it. It is also clear why, in the absence of the the-
ory developed herein, why previous experimenters have
had such difficulty making sense of their data.

C.

Summary of Data Analysis

Based on the results of the similarity theory stated
above, the evolution of the axisymmetric wake flow can
be described as following:

e In the vicinity of the wake generator, the “near
wake” region, the flow does not obey the equations
governing the equilibrium similarity state presented
in Appendix A, since one or more assumptions in
their derivation are violated. In other words, the
flow is in non-equilibrium.

e Giving the flow time (or downstream distance) to
adjust, the assumptions underlying the equilibrium
similarity equations become justified. When the
flow has reached the “far wake” region, charac-
terized by the ratio vu2/U, being constant, and
provided that the initial local Reynolds number,
R = U,d./v, (that decrease downstream) is still
is large enough, the flow will behave like it is in
equilibrium with &, ~ 2'/3, and U, ~ 2=2/3. For
the disk wake of Johansson'®16, this was found to
happen when x/6 =~ 120. For the DNS simula-
tion of Gourlay et al.'? this was true after about
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2/6 ~ 1,000.

e When the local Reynolds number, R, drops below a
critical value, the flow is forced from its equilibrium
similarity state by the leading order viscous term.
Most notable is that the ratio vu2/U, decreases.
This adjustment continues for an extremely long
distance downstream. The critical value of R for
the beginning of this decline is seen to be about 500,
consistent with the disappearance of the inertial
range in the spectrum noted earlier.

e After sufficient time, the flow has readjusted into a
different equilibrium state, with different governing
equations including the leading order viscous term.

Here, Vu2 /U, is again constant, and now the flow
now grows like 8, ~ 2'/2, and the velocity deficit
decays like U, ~ x~!. This region was only found
in the DNS simulation of Gourlay et al.'? at about
r/0 ~ 2 x 10°.

o After x/0 ~ 5 x 10°, the turbulence intensity drops
again, and seems to decay exponentially. This is
a behavior found in other simulations when the
computational or experimental box-size is too small
(e.g., by Moser et al.?6 and George and Wang?7).
Shortly thereafter, the momentum integral ceases
to be constant.

VIII. CONCLUSIONS

Equilibrium similarity considerations can be applied to
the axisymmetric turbulent wake, without the arbitrary
assumptions of earlier theoretical studies. Two solutions
for the turbulent flow are found: one for infinite local
Reynolds number which grows spatially as z'/3; and an-
other for small local Reynolds number, which grows as
z'/2. Both solutions depend on the upstream conditions.
For both solutions, the local Reynolds number of the flow
diminishes with increasing downstream distance. As a
consequence, even when the initial Reynolds number is
large, the flow evolves downstream from one state to the
other.

Most of the available experimental data were at too
low an initial Reynolds number and/or were measured
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too close to the wake generator to provide evidence for
the 21/3 solution. New results, however, from a labora-
tory experiment on a disk wake and DNS are in excellent
agreement with this solution, once the flow has had large
enough downstream distance to evolve. Beyond this, the
ratio of turbulence intensity to centreline velocity deficit
is constant until the flow unlocks itself from this behav-
ior when the local Reynolds number goes below about
500. When this happens the turbulence intensity ratio
falls slowly until the '/ region is reached.

No experimental data is available far enough down-
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FIG. 16: Cross-stream length scale, d./6 versus /6, data of
Gourlay et al.'?.

stream to provide evidence for the z!/2 solution. The
prediction that the flow should evolve into such a state,
however, is confirmed by recent direct numerical simula-
tion (DNS) results which reach the z'/2 at about 200,000
momentum thicknesses downstream, after which the tur-
bulence intensity ratio is again constant until box-size
affects the calculation.

The conclusions that can be drawn are that the ini-
tial conditions and local Reynolds number effects domi-



nate the axisymmetric wake. Thus previous speculations
that near wake effects persist far downstream are cor-
rect. Moreover, contrary to popular belief, this effect is
consistent with a proper similarity analysis. The effect
of initial conditions does not show up in the normalized
velocity profiles, but in growth rate and higher moments,
exactly as the theory predicts.
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APPENDIX A: GOVERNING EQUATIONS

The Reynolds averaged xz-momentum equation for the
axisymmetric far wake without swirl reduces to second
order to:

0 10, _ 10 0

Here, upper case letters denote averaged quantities and lower
case letters represent the fluctuating part. A bar over the
quantity denotes an ensemble average. The viscous term is
usually neglected, but retained here.

The momentum equation can be integrated over a cross-
section to yield an integral constraint for the conservation of
momentum:

Uoo/ (Uso — U) rdr = 6°UZ, (A2)
0

where 6 is the momentum thickness.
The equation of continuity for the mean and instantaneous
velocities are:

1 0w
+ (rv) + 90 0 (A3)

As noted by George?®, the momentum and continuity equa-
tions alone are not sufficient to determine the similarity con-
straints. Even the inclusion of the kinetic energy equation is
not enough to close the system so that the x-dependence can
be determined. Instead, the individual Reynolds stress equa-
tions have to be investigated. These, together with the con-
straint of continuity on the pressure-strain rate terms, provide
the necessary conditions. The component Reynolds stress
equations for the far wake are:
u? balance

0 (L2 w2 w_vy- L2 (Ll
Uoo%(iu)f uvaT(U Uso) - (r2uv)

pou 107,10 1.0 (15| _
+p3m paxpu+yr8r{rar (2u fu (A4)

v2 balance

8 (15\ 19 (1
UOO% (EU ) T ror (TQU )
1

vw?  pov 0 __ 8{18(1—)}
+ — = = =PV —=— (rzv? | — ey
or | r

w? balance

0 (1— 19 ([ 1—3\ ww?
G2 =Y (o) =8
U°°ax (Qw ) ror (TZMU ) r

uv balance
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where €y, €y, €w, and €y, are the components of the homoge-
nous dissipation.

APPENDIX B: TRANSFORMED EQUATIONS
1. The Momentum Integral
Substitution of Eq. (3) into Eq. (A2) yields:
Us6° /OO fndn = Us0? (B1)
0
It follows immediately that if 6 = . and Us = U,:

e 2

2. The Mean Momentum and Reynolds Stress
Equation

Substituting Eq. (3) into the momentum equation, Eq.
(A1), and rearranging the terms yields:

(5] - ) 2 ] o
s dx b U Us n U6 n
(B3
where ' denotes derivation with respect to n. To this point
the mean momentum equations have simply been transformed
by the separation of variables in Eq. (3) so that all of the
explicit z-dependence is in the bracketed terms. Thus the
results are completely general and no similarity assumptions
have yet been made (although the form of the solutions has
been restricted). Using Eq. (B1), Eq. (B3) can be rewritten

[ o =[] e [] ot e

Substituting Eq. (3) into the transport equations for
Reynolds stresses yields:
u2-equation

e el
- [Bae| g, [ 2
- {PT 3—} n(py) + [%} ka;)/ — [Du]du (B5)
v2-equation
ot [ -
- T(ﬂ ("t;S)/ + {Tvgz} L




w2-equation

K, UssKuw d§] .,
[Umﬁ} ’“w*{ 5 @} oy =
_ {T’U/LUQ} (ntuwz)/ _ |:va2:| t’U’LU2
5 n 0 n
vK,y, (nkiu)/
+[ 52 ] ) — [Dw]dw (B7)
uv-equation
dRS UooRs d5 r_ KUUS !
oo |5 E e =[5 e
T’U’U2 (ntuv2)/ |:Tuw2:| t’LL7JJ2
—_ + + Pu'u Puv
{ 6 } n 4 n [Puo]

- [B] ooy - [ ] o8 - [BE 2] oy

_ {%} (@)_ [Dus]dus  (BS)

As before, the equations have simply been transformed by
the similarity transformations so that all the explicit -
dependence is in the bracketed terms.

APPENDIX C: A SOLUTION FOR A CONSTANT
EDDY VISCOSITY MODEL

A solution of the momentum equation with the viscous
term included (Eq. Al) can be obtained if an eddy viscos-
ity assumption is made. Let

10, . 10 ( 0
,;5(1%1;) —VT;a(Tg(U*Uoo)> (C1)

Using Eq. (C1) and applying the similarity transformation,
Eq (3), the governing equation in similarity form becomes:

14

where 7 = v+vrp. Grouping the terms in square brackets, set-
ting k = (Uscd/v) 96 /0x, results in the following differential
equation:

(kn’f+nf') =0 (C3)

The boundary conditions are f(0) = 1, f(co) = 0, and f'(0) =
f'(00) = 0. Assuming that f(n) goes to zero faster than a
polynomial, the solution is given by:

fln) = e *7°72 (C4)

Defining 0 = d«, Eq. (B1), gives:

/OOO fmndn =1 (C5)

which is satisfied if k = 1. Then, the actual value of the eddy
viscosity is given by:

vr :Uooé*d—é* —v

(Co6)

From the low local Reynolds gumber solution, Eq (14),
we have 0.dd./dr = c2/2R9, which finally results in vy =
Uooc2/2R9 — v. The value of vy can be estimated using the
curve fit to the simulation of Gourlay et al.'?. In this sim-
ulation, ¢ = 1.90, Us, = 1 m/s, Ry = 1240, and v = 10~*
m?/s, so vr = 1.35 x 1073 m?/s. Thus vr/v = 13.5, and
this value is maintained throughout the low local Reynolds
number similarity regime.

As noted by Johansson'®'®, the simple exponential of the
eddy viscosity solution is not a good fit to the high Reynolds
number profile data, since it is too narrow near the centerline
and falls off too slowly at large radius. Instead a curve was
fitted to the data of the form:

Fn) = (14 an® + bytyel—en =41 (€7

where a = 0.049, b = 0.128, ¢ = 0.345, and d = 0.134. This
curve is shown in Figs. 4, 13, and 15.
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ABSTRACT

Recent applications of the “slice POD’ to the axisymmetric
turbulent wake and jet are reviewed, and the results used to pro-
vide a critique of commonly held views about these flows. It is
argued that the so-called ‘coherent structures’ are simply artifacts
of the source conditions, and have little to do with the far down-
stream development of these flows. Also, experimental evidence
is presented for the possible presence of Townsend’s large eddies,
eddies whose primary role is to warp the mean motion. Finally,
classical linear stability analysis which ‘predicted’ that only az-
imuthal mode-1 could be unstable for these flows is shown to be
deficient, with the result that at very least modes-0, 1 and 2 could
be important, consistent with the experiments.

INTRODUCTION

It has been more than a half century since Townsend and his
co-workers (v. Townsend, 1956) postulated the existence of large
eddies. These were believed to be rather passive structures of
very large scale containing 10 to 20% of the energy. The primary
evidence for their existence were two-point velocity correlations
at large separations.

Starting in the early 1970’s and continuing for the next two
decades, the turbulence community’s attention was riveted on the
search for coherent structures. In contrast with the large eddies
of Townsend, these ‘coherent structures’ were believed to be re-
sponsible for most of the energetics of turbulence. Some even
went so far as to claim that the study of turbulence, and especially

Chalmers University of Technology
Gothenburg, SE-41 296, SWEDEN
E-mail: jope@tfd.chalmers.se

Chalmers University of Technology
Gothenburg, SE-41 296, SWEDEN
E-mail: gamard@tfd.chalmers.se

using averages, made no sense without explicitly accounting for
coherent structures. There are numerous reviews of the coherent
structure literature, all of which together summarize the impor-
tant observations, and none of which show how this knowledge
can be incorporated into a turbulence model. This absence of a
mathematical theory has left the concept of ‘coherent structures’
in limbo — everyone more or less believes they exist, no one
knows what to do about them.

Originally posed as a means to objectively identify
Townsend’s large eddies, the Proper Orthogonal Decomposition
(POD) was introduced by Lumley (1967). Early applications
were limited by the lack of sufficient correlation data, but the
POD hecame viable with the advent of computers in the labora-
tory and DNS. Leib et al. (1984) showed the first reconstructions
of time signals in a cross-section of a jet mixing layer, and il-
lustrated dramatically the dynamic possibilities presented by the
POD. Subsequent applications using rakes of hot-wires (Glauser
and George, 1987) and DNS (Moin and Moser, 1989) made it
clear that the POD was indeed a useful way to capture the dy-
namics of shear flow turbulence.

But the POD is not limited to merely reducing data. Unlike
the subjective approaches generally employed in coherent struc-
tures research, it also could be used for carrying out dynamic
calculations using reduced versions of the Navier-Stokes equa-
tions. The contribution of Aubry et al. (1988) using a Galerkin
projection of the measured POD eigenfunctions onto the Navier-
Stokes equations for the near-wall region of channel flow was the
beginning of a flood of applications to the POD using dynamic

Copyright © 2002 by ASME



systems theory (v. Holmes et al., 1996).

There have been a number of recent papers reporting the
application of POD techniques to turbulent free shear flows in-
cluding the plane mixing layer (Delville et al., 1999, Ukeiley et
al., 2001), the plane jet (Gordeyev and Thomas, 2000), the ax-
isymmetric jet mixing layer (Citriniti and George, 2000, Jung et
al., 2002), the far jet (Gamard et al., 2002), and the axisymmetric
wake (Johansson et al., 2002). This paper begins by summariz-
ing some of our recent results from two axisymmetric shear flows
— the turbulent jet and the wake behind a disk.

AN OVERVIEW OF THE POD

At the core of the theoretical and experimental application
of the POD is the replacement by deterministic functions of
the instantaneous random flow which have maximal projection
on it. These deterministic functions (or eigenfunctions) are ob-
tained either analytically or empirically from the resulting inte-
gral equation, the kernel of which is the two-point correlation
of the velocity itself. The original field can be recovered by
summing together (or integrating over) the contributions of each
eigenfunction and its random coefficient, the latter determined by
projecting each eigenfunction onto the instantaneous field (ex-
actly like the determination of coefficients in ordinary Fourier
analysis). This sequence of operations is often collectively re-
ferred to as the POD, but this is a misnomer as will be shown
below, since strictly speaking only the inhomogeneous problem
leads to a “proper” (in the sense of ordered) decomposition.

The two flows considered below (the turbulent axisymmetric
wake and jet) are both stationary in time and homogeneous, peri-
odic in the azimuthal direction. The POD integral equations can
be immediately solved in these directions to yield Fourier modes,
continuous in temporal frequency, f, and discrete in azimuthal
mode number, m, (George, 1988). The streamwise direction is
problematical, since it is neither homogenous nor of finite total
energy. Hence in the absence of other considerations, the eigen-
functions will be determined by how the domain is truncated.
Fortunately, the similarity of the two-point Reynolds stress equa-
tions resolves the problem for the flows considered here, and the
streamwise eigenfunctions can be shown to be harmonic func-
tions of the variable Inx. This was first noted by Ewing and
George (1995), and has been discussed in some detail by George
(1988, 1999).

In general it is easier to proceed if the field is first decom-
posed using the known eigenfunctions, then the POD applied to
this transformed field in the remaining inhomogeneous variables.
Experimentally it is almost impossible (at the moment) to mea-
sure an entire field simultaneously, so the applications below uti-
lize the “slice-POD’ — the POD applied to a single cross-section,
X. Thus the problem becomes to seek empirical eigenfunctions
which optimally project a deterministic function, ¢;i(m, f,x;r),
onto the transformed random velocity field, G;(m, f,x;r). The

variables m, f, and x are essentially parameters. In general there

are an infinite number of eigenfunctions, q)i(”), which are solu-
tions to the integral equation:

Jo© @ip(m, %m0l (m, £, 1) r dr’ (1)

= A" (m, £,x6" (m, f,x1) 2

where @j; is the cross-spectral tensor.

The decomposition is optimal in the sense that the lowest
order eigenfunction contains the maximum possible amount of
energy. Moreover the total “energy spectrum” at a cross-section
is the sum of the eigenvalues; i.e.,

A (m, f,x) 3)

Ms

E(m, f,x) =

n=1

These can in turn be summed over all frequencies and azimuthal
modes numbers to recover the total energy in a cross-section as
shown below. In practice the number of eigenfunctions is limited
by the finite number of resolved points of the kernel.

THE RECENT OBSERVATIONS

Johansson et al. (2002) report applications of the ‘slice’
POD using rakes of hot-wires at various downstream cross-
sections of the axisymmetric wake behind a disk at a Reynolds
number based on diameter and free stream velocity of 28,000.
Jung et al. (2002) and Gamard et al. (2002) report similar appli-
cation of the slice POD using 138 hot-wires in the axisymmet-
ric jet with nearly top-hat source conditions at source Reynolds
numbers ranging from 40,000 to 157,000. In both experiments
the first radial POD mode contains approximately 60% of the
resolved streamwise energy (about 40 % of the total streamwise
energy), and only it will be of interest herein. Of primary interest
will be the eigenspectrum of this first POD mode which shows
how the energy of the cross-section is distributed with azimuthal
mode number, m, and temporal frequency, f; i.e., A (m,f).
Note that the variable f is considered to be continuous, while
m s integer and positive only for the eigenspectra considered.

The eigenspectra can be integrated over frequency, f, to
obtain the distribution of energy with only the azimuthal mode
number, m. If this is normalized by the total energy at the cross-
section the result is:

E)(l)(m) _ o AD(m, f)df

= Am(m @

where M is the highest resolved azimuthal mode. Figure 1 is
compiled from Jung et al. (2002) and Gamard et al. (2002), and

Copyright © 2002 by ASME
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Figure 1. ENERGY DISTRIBUTION FOR THE LOWEST ORDER POD
MODE. AXISYMMETRIC TURBULENT JET.

shows the downstream evolution of this first azimuthal eigen-
spectrum, &) (m) for the jet.

The azimuthal mode distribution in Fig. 1 at x/D = 2 shows
a dominant peak at mode-0, and a distribution of energy centered
about mode-6. As the distance from the exit plane is increased,
mode-0 diminishes and the center of the distribution moves to
lower values, from mode-5 at x/D = 3 (as noted by Glauser and
George, 1987 and more recently Citriniti and George, 2000) to
only a distribution around mode-2 by x/D = 6. After X/D = 6,
the distribution shows no further evolution, coincident with the
fact that the mean centerline velocity has approximately reached
near similarity behaviour (about x/D =~ 10). Also the ratio of
centerline rms velocity to the mean centerline velocity is con-
stant shortly after this evolution is complete, and the mean veloc-
ity profiles and turbulence intensity profiles begin to collapse as
well. Obviously the diminishing value of mode-0 and the emer-
gence of the mode-2 peak both reflect (or are responsible for) the
process by which a top-hat profile evolves into a self-preserving
jet.

Figure 2 from Johansson and George (2002 b) (and Jo-
hansson et al., 2002) shows a similar azimuthal mode evolution
for the axisymmetric wake behind a disk. For the near wake,
at x/D = 10, mode-1 dominates, exactly as reported by others
(Fuchs et al., 1979, Berger et al., 1990). But by x/D = 30, the
energy in mode-2 is nearly equal to that in mode-1. By x/D =50,
mode-2 dominates, as it does for all positions downstream.
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Figure 2. ENERGY DISTRIBUTION FOR THE LOWEST ORDER POD
MODE. AXISYMMETRIC TURBULENT WAKE.

Like the jet, the emergence of this mode-2 dominance corre-
sponds also to the emergence of the similarity state, particularly
evident in the normalized turbulence intensity which does not
approach a constant until about x/D =50 — 70. The implica-
tions of this for attempts to study axisymmetric wakes are pro-
found, since most attempts seldom measure much beyond this
point (e.g., Cannon, 1991, Uberoi and Freymuth, 1970) due to
the extremely low turbulence intensities and limited wind tunnel
lengths.

THE EIGENSPECTRA AS FUNCTIONS OF mAND f.

It is important to first discuss what the variable f means,
or more precisely, what it does not mean. Experimentally it is
the frequency (or temporal variation) observed by the measur-
ing apparatus. Unfortunately its interpretation as space or time is
complicated by the fact the turbulence is being convected by the
probes while it is also evolving in time. The so-called “Taylor’s
frozen field hypothesis” assumes that convection dominates evo-
lution, so temporal variations can be interpreted as spatial vari-
ations. For the wake where u’/U < 10%, Taylor’s hypothesis is
certainly valid, at least for all but the very lowest frequencies.
For the far jet though, u’/U > 25% always, so Taylor’s hypothe-
sis can be applied only for the small scales, and it is not possible
to interpret unambiguously the large scales.

Figure 3 shows three-dimensional plots of the first eigen-
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Figure 3. FIRST EIGENSPECTRUM, A (m, f,X), FOR THE DISK
WAKE AT VARIOUS X/D. a) 30, b) 50, ¢) 90, AND d) 150.

spectrum, A(Y(m, f,x), for the disk wake at x/D = 30, 50, 90
and 150. The most striking feature is the clear separation of
the frequency content of the various modes. Only mode-1 has
a peak at a non-zero frequency. The other eigenspectra (of which
mode-2 is predominant) all resemble the usual broadband one-
dimensional spectra of turbulence which peak at zero frequency
(usually due to aliasing from the unresolved directions). The
eigenspectra have not been normalized, so their heights decay
downstream as the wake itself decays. But even from just these
four plots it is obvious that mode-1 dies more quickly than the
other modes, and especially mode-2. In fact, the reason for the
behaviour of the normalized azimuthal mode number plots above
(Fig. 2) is clearly not that mode-2 is increasing its contribution,
but that mode-1 is fading more rapidly.

Figure 4 shows plots of the total energy and mode-1 alone as
a function of frequency for the same downstream positions. Most
striking is that the peak frequency of the band which contains
most of the energy for mode-1 does not evolve downstream, but
is fixed. Moreover its contribution to the total energy is clearly
diminishing downstream, as noted above. Thus the primary con-
tribution of mode-1 clearly does not scale in local shear layer
variables, but is instead determined only by the Strouhal number
of the near wake. It seems apparent that the primary contribu-
tion to mode-1 has been convected in from the near wake, and is
virtually independent of the local shear layer of the wake.

By contrast, the behaviour of mode-2 is quite different. Fig-
ure 5 shows mode-2 normalized by the energy remaining after
the energy from mode-1 is removed. These data have been plot-
ted as wavenumber spectra using Taylor’s frozen field hypothe-
sis. Note first of all the remarkable ‘notch’ in mode-2 (all the

—— x/D=30
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————— x/D =90
128 W T x/D =150 B
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Figure 4. THE TOTAL ENERGY AND MODE-1 ALONE AS A FUNC-
TION OF FREQUENCY AT x/D = 30, 50, 90 AND 150.

Figure 5. MODE-2 AT x/D = 30,50,90 AND 150, NORMALIZED BY
THE ENERGY REMAINING AFTER THE ENERGY FROM MODE-1 IS
REMOVED. THESE DATA HAVE BEEN PLOTTED AS WAVENUMBER
SPECTRA USING TAYLOR'S HYPOTHESIS.

way to zero!) for the position closest to the disk at exactly the
frequency where mode-1 is dominant. Clearly mode-1 is sup-
pressing the development of mode-2 at the dominant frequency.
As the wake develops downstream, this notch fills in, and except
for the very lowest wavenumbers (for which Taylor’s hypothesis
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is of doubtful validity), these data collapse wonderfully in shear
layer variables. Thus, once the contribution of mode-1 has been
removed, the rest of the turbulence behaves exactly as might be
expected from an equilibrium similarity wake. This is certainly
not the case if mode-1 is not removed, which explains the frus-
trations of many authors in trying to explain their measurements
for this flow.

One additional observation can be made. There is a very in-
teresting problem presented by the lack of collapse of the spectra
for mode-2 at very low wavenumbers (or perhaps just low fre-
quencies). These very large scales clearly satisfy Townsend’s
idea of the large eddies. They contain about 5 - 10 % of the
energy and do not appear to interact with the main motion. Inter-
estingly, if these data are NOT normalized as wavenumbers, but
simply by the energy present at all mode numbers with mode-1
removed, they collapse without any scaling of the frequency axis
at all. So what is their role, if any? This is not at all clear as
of this writing. One possibility is that they simply slowly twist
the mean flow. If so this could account for the remarkably high
local turbulence intensity for this flow for which at the centerline
U /(U —U) 2 110%! In effect, the mean profile is simply being
moved around by this very large and slow modulation. There is
some evidence for this in the azimuthally averaged instantaneous
DNS profiles of Gourlay (2001).

Finally, it is worth commenting on what the usual condi-
tional sampling approaches to coherent structures would have
(and have) focused on for this flow. The most coherent ener-
getic motion is the transient mode-1, and this is indeed what such
studies have yielded. But this is the least important part of the
problem for the far wake. Similar considerations apply to the jet
as well where the most apparent coherent feature of the flow has
seemingly nothing to do with the far jet’s evolution, but is simply
dying off.

USING THE POD WITH THE NAVIER-STOKES EQUA-
TIONS

One of the advantages the orthogonality of the functions is
that they can be easily used to decompose the continuity and
Navier-Stokes equations themselves. There are two possible
routes:

1. The eigenfunctions, ¢;, can be assumed known (usually from
experiment like those outlined above) and a hierarchy of dy-
namical equations can be developed for the time dependent
interactions of the coefficients which turn them on and off.
An example of this for free shear flows is the recent paper
by Ukeiley et al. (2001). These approaches need to find
some way to dissipate the energy which is transferred to
small scales not included in the model.

2. Alternately, the orthogonality of the coefficients can be used
to develop equations for the eigenfunctions themselves. If

the non-linear terms are included, this approach suffers from
the same closure problem of the Reynolds averaged equa-
tions. As first noticed by Lumley (1967), there is no closure
problem if the equations are linearized. But, of course, lin-
earization precludes mode interaction.

Obviously it would be nice if the second approach could be
used to establish the eigenfunctions, and the first to analyze how
they interact. There is some reason to hope that this might be
possible. For example, both Ukeiley et al. (2001) and Rempfer
and Fasel (1994) note the close relation between the eigenfunc-
tions derived from linear stability considerations and those in a
plane mixing layer and boundary layers respectively.

The linear approach offers a particular advantage in that
there is more than one hundred years of rather sophisticated
mathematics and experience to help us understand what the re-
sults mean. This is especially true for free shear flows where
much can be learned by analysis, without the difficulties of in-
terpreting numerical results when many parameters are varying.
At the same time, it is important to re-examine each result in
turn, to be certain that the assumptions and conclusions previ-
ously derived for the instability of laminar flows are applicable
to their turbulent counterparts. One such analysis will be exam-
ined below, and it will be shown that at least some features of the
flows above can be explained when the differences in base flow
between laminar and turbulent are accounted for.

WHAT CAN LINEAR THEORY TELL US?

There have been suggestions for many years that linear anal-
ysis based on the mean profile might account for features of both
turbulence wakes and jets (c.f. Michalke, 1965, 1984). From the
perspective of the POD, this is no surprise since the linearized
POD equations and the stability equations are the same. There-
fore the results should be equally applicable — if the correct
problem has been analyzed!

For the statistically axisymmetric flows considered here, the
linearized POD equations are exactly those originally considered
by Batchelor and Gill (1962). These authors considered only
temporally growing disturbances, and it fell to Michalke (1964)
to extend the analysis to spatially growing disturbances. All au-
thors appear to agree that while azimuthal mode-0 may dominate
during the early top-hat portion of the jet or wake, it is azimuthal
mode-1 that dominates the far wake or jet. In fact, it is widely be-
lieved that Batchelor and Gill “proved” that ONLY mode-1 could
be unstable. Moreover, experimental studies of ‘coherent struc-
tures’ of axisymmetric free shear flows have routinely confirmed
the dominance of mode-1. There is little evidence that this view
has been challenged until now. Obviously in view of the results
reported above, either linear stability analysis is irrelevant, or the
‘mode-1 only’ belief must be proved wrong. It will be demon-
strated in the following paragraphs that the ‘mode-1 only” belief
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is in fact false.

In brief, Batchelor and Gill assumed a base flow which
is an axisymmetric parallel shear flow. Unlike parallel two-
dimensional shear flows, there is no counterpart to Squires theo-
rem, so fully three-dimensional disturbances must be considered.
Moreover, in the absence of walls, these flows are inviscidly un-
stable, so the effects of viscosity can be neglected, certainly at the
Reynolds numbers of interest here. Linearization, and Fourier
decomposition in time and azimuthal coordinate led them to the
following equation (equation 2.16 in Batchelor and Gill, 1962)
for the radial dependence of the velocity disturbance amplitude:

d r d(rG)
u _C)§{m2+oc2r2 dr } ®)

d ru’

where o is a wavenumber in the streamwise direction (since the
flow is assumed parallel in x), c is the speed of the disturbance,
and as above m is the azimuthal mode number. Note that tak-
ing c to be complex means that the disturbance will grow expo-
nentially in time if its imaginary part is negative. The critical
layer occurs when U = ¢;, and neutral disturbances will corre-
spond to ¢; = 0. The counterpart to equation 5 for parallel shear
flows is the famous Rayleigh equation for inviscid parallel shear
flows which can be found in most fluids texts. (Note that spatially
growing disturbances require a real phase speed and a complex
wavenumber, but the mathematics are not as simple or elegant as
for the temporal case from which our point can be more easily
made.)

Now Batchelor and Gill were presumably interested only in
the instability of laminar jets. We are interested in turbulence —
in particular turbulence which is statistically axisymmetric and
for the moment, homogeneous in x. Thus we will consider the
mean velocity profile U(r) to be the base flow, and analyze its
stability to small disturbances around it. For our purposes G
is exactly ¢§”)(m, o) where each POD radial mode satisfies the
same equation — assuming the decomposed equations have been
linearized. Obviously non-parallel effects and non-linear effects
may be of interest, but perhaps less so if the primary energy trans-
fer from mean flow to turbulence is captured by the parallel linear
analysis.

In parallel with the derivation of the famous inflection point
criteria of Rayleigh and Fjgrtoft, Batchelor and Gill divide equa-
tion 5 by U — ¢, multiply by the complex conjugate of rG, sub-
tract the complex conjugate of the entire equation, then integrate
from r = 0 to infinity to obtain the quite simple result:

2 A
cl/0 |02|Qdr =0 (©)

= Batchel‘or and Gill (‘1962)
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Figure 6. DIFFERENT ANALYTICAL VELOCITY PROFILES. INSERT
SHOWS THE MAXIMUM OF M AS A FUNCTION OF p, FROM EQUA-
TION 15

where g(r) =rG(r)/(U —c) and

U/
Q(r) = m (7

Obviously either g must be identically zero (no disturbance at
all), or Q' must change sign for some finite and non-zero value of
r. This is the axisymmetric counterpart of the famous Rayleigh
inflection point criterion.

Azimuthal mode-0

Now Batchelor and Gill argue that mode zero disturbances
cannot grow in the “far jet’. Figure 6 shows several profiles which
are commonly used to describe jets and wake deficits. Batchelor
and Gill used what they referred to as the “far-downstream jet
profile’ by which they mean:

U/Ue=[1/1+r%? (8)

It is easy to show by differentiation and substitution into the def-
inition of Q that Q = constant for m= 0. Thus no mode-0 dis-
turbance can grow, hence their conclusion (but only valid for this
profile!).

Another profile commonly used for wakes (in fact the exact
viscous and eddy viscosity solution) is the simple exponential
given by:

U /U = exp[—cr?] 9)
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It is easy to show that the same is true for this profile as well: the
m= 0 mode is stable.

By contrast, Batchelor and Gill do argue that a top-hat pro-
file, like that found near the entrance of a jet, does satisfy the
conditions for mode-0 to grow. But they state without qualifica-
tion that profiles which are slowly varying with r do not.

Now the profile given by equation 8 is indeed the ‘far-
downstream jet’ solution to the boundary layer equations for a
laminar jet. And it is also the eddy-viscosity similarity solution
of the Reynolds averaged equations for a turbulent jet. But as
shown by Hussein et al. (1994), it places too much weight at
large values of r so that when the constants are chosen to satisfy
the momentum integral, the entrainment is badly over-estimated.
From careful fits to their LDA and flying hot-wire profiles, Hus-
sein et al. recommended a profile for the far jet of the following
form:

U/Uc= (1+ar®+br*)exp[—cr?] (10)

It is easy to show, again by substitution and differentiation,
that this profile does indeed have an interior inflexion point, even
for m= 0, because of the additional terms before the exponen-
tial. The same is true for the similarity wake profile suggested by
Johansson and George (2002 a) which is given by:

U/Uc = (14ar?+br*)exp[—cr? — dr] (11)

Therefore, it follows immediately that the mean velocity profiles
for these two turbulent flows do satisfy the necessary condition
for mode-0 disturbances, even far downstream. This is certainly
contrary to popular belief which has focussed attention almost
entirely on mode-1, the so-called helical mode. But it is, of
course, consistent with all the observations above, where mode-
0 is present for all values of x/D, exactly as one should expect
from the measured mean velocity profiles.

The upper limit on which modes can grow

A necessary condition for unstable disturbances is that Q
have an inflection point; i.e., Q" = 0. It is straightforward to
show that this is possible only if there is a non-zero and finite
value of r, say r = rg, satisfying:

(m? — 0r2) /(P 4 o?r2) = —ru" Ju’ (12)

If so, then r =r¢ is the location of the critical layer.

Because of the Batchelor and Gill deductions, it has been
commonly believed that modes higher than mode-1 cannot be
unstable. What does not seem to be realized is that thisresult is

entirely based on the assumed ‘far-jet downstream profile (equa-
tion 8)'.

To see this, consider Batchelor and Gill’s equation 5.14
which is given for m# 0 by:

O nepre

where B = o/m and N2 is the positive-valued function defined
by:

r d ru’
e e e I

Now Batchelor and Gill argue from equation 14 that neutral
disturbances with ¢ = U(r¢) can not exist unless the azimuthal
mode number, m, satisfies:

m? < max, gN?(r, B) (15)

In other words, the highest azimuthal mode number must be less
than the square root of the highest possible value of N2.

From its definition in equation 14, it is clear that it is rea-
sonable to expect the maximum value of N2 to depend on the
velocity profile. For the “‘far downstream jet profile’ of Batchelor
and Gill, equation 8, the maximum value of N2 is 2.73. There-
fore the largest value of the azimuthal mode number satisfying
the inequality of equation 14 is m = 1, hence the Batchelor and
Gill deduction that m= 1 is the only unstable disturbance (but
only for their assumed profile).

Other profiles produce different values of N2. The simple
exponential of equation 9 produces N2 = 4.70, so m=2 is a
clearly a possibility for unstable solutions. In fact, mode-2 solu-
tions can be unstable by this criterion for all of the turbulent jet
and wake profiles considered above. Of particular interest is the
profile of Monkewitz (1988) shown in Fig. 6 for various values
of p. This family of profiles evolves from the top-hat forp>> 1
to the exponential for p = 1. The figure insert shows the max-
imum of m according to equation 15 as a function of the shape
parameter, p. The rapid rise with increasing p suggests that all
values of m are possible in the limit, exactly as observed in the
near jet measurements.

SUMMARY AND CONCLUSIONS

This paper began by summarizing our recent results from
two axisymmetric shear flows — the turbulent jet and disk wake.
Both showed a surprising evolution downstream to an energy
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distribution which peaked at azimuthal mode-2. The comple-
tion of the evolution to azimuthal mode-2 predominance corre-
sponded almost exactly to the evolution from a state dominated
by the initial conditions to the final similarity state. The findings
are surprising because it has long been believed that azimuthal
mode-1 would dominate the dynamics, both because of previous
experiments and the believed relevance of linear stability theory.
These findings for the jet are consistent, however, with the exper-
iments of Ukeiley et al. (1999), the recent noise measurements of
Kopiev (2000), and et al. (1999), and the subsequent DNS/POD
results of Freund and Colonius (2002). Further confirmation of
these results will be discussed in Johansson and George (2002 b)
and Gamard and George (2002).

Obviously such startling results demand explanation, espe-
cially since they contradict previous ‘coherent structure’ experi-
mental results, and appear to contradict the well-established re-
sults of linear stability theory as well. We have attempted to deal
with both. First we have argued that the mode-1 events believed
to dominate the wake are simply decaying transients convected
downstream from the source. As such they play little to no role
in the far downstream evolution, however coherent they may ap-
pear to be. Second, we have demonstrated that theory which ar-
gued for such mode-1 disturbances, while applicable to laminar
jet flows, was too restrictive for turbulent flows. By considering
the effect of more general mean profiles on stability, both mode-
2 and mode-0 as well as mode-1 could be shown to contribute to
the downstream energetics.

Most importantly we have attempted to provide a recon-
ciliation of all the ideas mentioned in the introduction — pas-
sive large eddies with little energy, dynamic coherent structures
(passed downstream from the source), the POD, and the rele-
vance of linear stability theory.

The title of this paper asks a question: “How has coher-
ent structure research contributed to our understanding of tur-
bulence?” Clearly it has generated a lot of excitement over the
past two decades, and it has certainly enhanced our recognition
of the beauty and complexities of turbulence. But aside from this,
the message of this paper is that it has not contributed much, at
least from the perspective of understanding the dynamics of the
flow. In fact, given that such research (at least for these axisym-
metric flows) has mostly confirmed theoretical ideas which were
wrong (e.g., the dominance of mode-1), it might be argued that
the contribution of such studies was negative. Such is probably
the ultimate fate of all experimental techniques which are not
at the outset based on ideas that are derived from or lead to the
Navier-Stokes equations. By contrast, in spite of their complex-
ity, the POD and properly applied stability theory have increased
our understanding.

Perhaps the lesson is that the turbulence problem is not easy.
So why should we expect the solution to be? The great solid
mechanician James Bell once said: “Experimentalists sort the-
ories” (personal communication to WKG). A corollary might

be: “An experimentalist is lost when there are no theories to
sort.” Unfortunately this means experimentalists need to know
at least enough about theories to sort them. Hopefully this paper
provides an incentive to both theoreticians and experimentalists
alike.
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The classical temporally evolving linear stability analysis of Batchelor & Gill (1962)
is reexamined using different mean velocity profiles more representative of the actual
behavior of axisymmetric turbulent free shear flows. It is found that the widely accepted
belief that azimuthal mode-1 is the only unstable mode in the far region is not true
in general. In fact, azimuthal modes 0 and 2 also satisfy the necessary condition for
instability, consistent with recent Proper Orthogonal Decomposition experimental data.

1. Introduction

Recent turbulence experiments (Jung, Gamard, George & Woodward 2002b; Gamard,
George, Jung & Woodward 2002; Johansson, George & Woodward 2002) and DNS simu-
lations (Freund & Colonius 2002) using Proper Orthogonal Decomposition (POD) tech-
niques in axisymmetric free shear flows show a dominance of azimuthal mode-2 at the
end of the initial transient. These results challenge the long history of results from the
different linear stability theories developed over the last 50 years, which suggest that
only azimuthal mode-1 can be unstable downstream. Either such linear theories are not
relevant to turbulence, or this particular prediction is wrong.

This paper re-visits the linear analysis of Batchelor & Gill (1962) and shows that the
mean velocity profile they considered was not appropriate for turbulence. When more
realistic profiles are substituted into their criteria for neutral disturbances, the results
are consistent with the recent POD results, suggesting that linear stability theory may
be indeed appropriate in understanding how turbulence gets energy from the mean flow.

2. The Batchelor and Gill necessary conditions for instability

In brief, Batchelor & Gill (1962) looked at the temporally growing instabilities to
infinitesimal disturbances of an axisymmetric parallel shear flow. Unlike parallel two-
dimensional shear flows, there is no counterpart to Squires theorem, so fully three-
dimensional disturbances had to be considered. Moreover, since these flows are inviscidly
unstable, in the absence of walls, the effects of viscosity were neglected. Linearization,
and Fourier decomposition in time and azimuthal coordinate led them to the following
equation (Equation (2.16) in Batchelor & Gill 1962) for the radial dependence of the
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FI1GURE 1. Different analytical velocity profiles.

velocity disturbance amplitude rG(r):

W -od { r___drG) } _(U-0G - erL‘i (L> 0 (@21

dr | m2+a2r?2 dr m2 + a?r?

where a is a wavenumber in the streamwise direction (since the flow is assumed parallel
in x), ¢ is the speed of the disturbance, and m is the azimuthal mode number. Note
that taking c¢ to be complex means that the disturbance will grow exponentially in time
if its imaginary part is negative. The critical layer occurs when U = ¢,, and neutral
disturbances will correspond to ¢; = 0. The counterpart to equation (2.1) for parallel
shear flows is the Rayleigh equation for inviscid parallel shear flows. Note that Batchelor
and Gill did not consider spatially growing disturbances, nor will they be considered
herein (although similar considerations may apply to them as well).

In parallel with the derivation of the inflection point criteria of Rayleigh and Fjgrtoft,
Batchelor & Gill (1962) divided equation (2.1) by U — ¢, multiplied it by the complex
conjugate of rG, subtracted the complex conjugate of the entire equation, then integrated
from r = 0 to infinity to obtain the quite simple result:

) h 2 Id =Y, .
c /0 lg7|Q'dr =0 (2.2)
where g(r) = rG(r)/(U — ¢) and
U/
U= (23)

Obviously either g must be identically zero (no disturbance at all), or @' must change
sign for some finite and non-zero value of r for a non-zero disturbance amplitude to be
possible. This is the axisymmetric counterpart of the Rayleigh inflection point criterion.
Similar considerations also led them to a Fjertoft-type condition, but that is not of
interest here.
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3. Azimuthal mode-0

Now Batchelor and Gill argue that mode-0 disturbances cannot grow in the ‘far jet’.
Figure 1 shows several profiles which are commonly used to describe jets and wake
deficits. Batchelor and Gill used what they referred to as the ‘far-downstream jet profile’
by which they mean:

U/U. =[1/1+7r%? (3.1)
It is easy to show by differentiation and substitution into the definition of @) that @ =
constant for m = 0. Thus no mode-0 disturbance can grow, at least for this profile.

Another profile commonly used for wakes (in fact the exact viscous and eddy viscosity
solution) is the simple exponential given by:

U/U, = exp [-77] (3.2)

It is easy to show that the same is true for this profile as well: the m = 0 mode is stable.

By contrast, Batchelor and Gill argue that a top-hat profile, like that found near the
entrance of a jet, does satisfy the conditions for mode-0 to grow. But they state without
further justification that profiles which are slowly varying with r are stable .

Now the profile given by equation (3.1) is indeed the ‘far-downstream jet’ solution to
the boundary layer equations for a laminar jet. And it is also the eddy-viscosity similarity
solution of the Reynolds averaged equations for a turbulent jet. But as shown by Hussein,
Capp & George (1994), it places too much weight at large values of r so that when the
constants are chosen to satisfy the momentum integral, the entrainment is badly over-
estimated. From careful fits to their LDA and flying hot-wire profiles, Hussein et al.
(1994) recommended a profile for the far turbulent jet of the following form:

U/U, = (1 +ar* + br4) exp [—cr?], (3.3)

where ¢ = 0.1212, b = 0.2815, and ¢ = 1.11.

It is easy to show, again by substitution and differentiation, that this profile does indeed
have an interior inflexion point, even for m = 0, because of the additional terms before
the exponential. The same is true for the similarity turbulent wake profile suggested by
Johansson & George (2002) which is given by:

U/U. = (1 + ar® + br) exp [—cr? — dr?], (3.4)

where a = 0.04907, b = 0.1276, ¢ = 0.3448, and d = 0.1339.

Therefore, it follows immediately that the mean velocity profiles for these two turbulent
flows do satisfy the necessary condition for mode-0 disturbances to be unstable, even far
downstream. This is certainly contrary to popular belief, but is consistent with the recent
POD observations mentioned above (Jung et al. 2002b; Gamard et al. 2002; Johansson
et al. 2002; Freund & Colonius 2002), where mode-0 is present for all values of z/D,
exactly as one might expect from the measured mean velocity profiles.

4. Azimuthal modes > 1

As for the upper limit on which azimuthal modes can grow, Batchelor & Gill (1962)
showed that a necessary condition for unstable disturbances is that () have an inflection
point; i.e., Q" = 0. It is straightforward to show that this is possible only if there is a
non-zero and finite value of r, say r = r., satisfying:

(m? — a?r?)/(m? + a*r?) = —rU" /U’ (4.1)

If so, then » = r. is the location of the critical layer.
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FIGURE 2. Mean velocity profile at 5 positions downstream of an axisymmetric jet. Open symbols
are the measured velocity of Jung, Gamard, George & Woodward (2002b), while the lines are
the corresponding matching velocity profile from equation (4.5). The upper insert shows the
maximum value of N following equation (4.3).

Batchelor and Gill then deduced that modes higher than mode-1 cannot be unstable
for the ‘far jet’. What does not seem to be widely understood is that this result is
entirely based on the assumed ‘far-jet downstream profile [equation (8.1)]’. Moreover,
their conclusions are not valid for profiles of turbulent jets and wakes.

To see this, consider Batchelor and Gill’s equation (5.14) which is given for m # 0 by:

rdii {ﬁ@} = [m? — N2(r, B)]rG (4.2)

where 8 = a/m and N? is the positive-valued function defined by:
T d rU’
U(re) =U(r)dr |1+ 3272

Now Batchelor and Gill argue from equation (4.3) that neutral disturbances with
¢ =U(r.) can not exist unless the azimuthal mode number, m, satisfies:

N*(r,B) = (4.3)

m? < mazx, 3N*(r, B) (4.4)
In other words, the highest azimuthal mode number must be less than the square root
of the highest possible value of N2.

From its definition in equation (4.3), it is clear that it is reasonable to expect the
maximum value of N2 to depend on the velocity profile. For the ‘far downstream jet
profile’ of Batchelor and Gill, equation (3.1), the maximum value of N? is 2.73. Therefore
the largest value of the azimuthal mode number satisfying the inequality of equation (4.3)
ism=1.

But, other profiles produce different values of N2. The simple exponential of equa-
tion (3.2) produces N2 = 4.70, so m = 2 is a clearly a possibility for unstable solutions.
Profiles from equation (3.3) for the jet, and equation (3.4) for the wake, produce values
of N? = 5.97 and 19.60, allowing a maximum mode number of 2 and 4 respectively.
Thus, mode-2 solutions can be unstable by the criterion of equation (4.4) alone for both
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the turbulent jet and wake profiles considered above. Again this is consistent with recent
POD observations of the ‘far jet’ and ‘far wakes’ where the peak in the azimuthal energy
is at mode-2.

Figure 2 shows the mean velocity results in the axisymmetric jet mixing layer recently
reported by Jung et al. (2002b,a) as a function of z/D, the distance from the jet exit.
The Reynolds number was 78,400 (based on jet exit velocity and diameter) and the mean
profile at the exit was a top-hat, except for the thin boundary layer. Also shown fitted
to these data are the profiles adapted from Monkewitz (1988) as:

ur) 1
Uexit 1+ (exp(er?) — 1)*°

(4.5)

The parameter p determines the shape of the profile, which evolves from the ‘top-hat’
for p — oo to a decaying exponential for p = 1. The figure insert shows the maximum
values of N according to equation (4.4) as a function of the shape parameter, p, and
the corresponding value of z/D. Clearly the range of azimuthal modes which satisfy the
necessary condition for instability increases as the jet exit is approached. Also, azimuthal
mode-2 is the limiting value at the end of the potential core. These observations are
consistent with the POD results (Jung et al. 2002b,a) that the energy distribution in the
mixing layer is bimodal, with a strong peak in mode-0 near the jet exit which diminishes,
and a second peak at mode-6 at 2/D = 2 which evolves to a peak at mode-2 by /D = 6.

5. Summary

We have proved that the widespread belief that linear temporal stability theory only
predicts a dominance of azimuthal mode-1 after the transient region is not correct, since
this result is highly dependent on the mean velocity profile chosen. The results are in
general agreement with the recent experimental (Jung et al. 2002b; Gamard et al. 2002;
Johansson et al. 2002) and DNS (Freund & Colonius 2002) POD results showing a dom-
inance in the far region of azimuthal mode-2.

Ounly the temporal analysis of Batchelor & Gill (1962) have been revisited. Much has
been learned about stability since then. It would seem that a case can be made for
reexamining other analyses as well, especially those involving spatially growing distur-
bances and non-parallel mean flows. It may well be that they can provide a more realistic
description of fully turbulent flow than currently believed possible.

The authors are grateful to Professor J. Bergh of Chalmers mathematics department
for his input regarding the analytical aspects of this work.
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The high Reynolds number axisymmetric wake behind a disk has been studied from
10 < z/D < 150 (36 < z/0 < 552) using a rake of 15 hot-wires. The disk had a
diameter of 20 mm, and the Reynolds number based on the free-stream velocity was
26,400. Mean velocity profiles, root mean square profiles, and power spectra are presented.
By using regression techniques to fit the velocity profiles it was possible to obtain accurate
velocity centreline deficit and transverse length scale to even the furthermost downstream
position. Beyond the initial region which extends to /D = 30, the data are in excellent
agreement with the high Reynolds number equilibrium similarity solution.

1. Introduction

The axisymmetric far wake is a very challenging flow to investigate experimentally,
since the velocity differences of interest are very small. A sketch of the axisymmetric
wake together with the coordinate system used in this study is shown in figure 1. The
mean velocity deficit at the centreline is here defined as U, = Uy, — U . The Reynolds
decomposition is applied, and averaged values are denoted with upper case letters, and
fluctuating quantities with lower case letters. It has been found experimentally that U,
falls rapidly downstream from about 10% of the free stream velocity at /D = 10 to
about 1% of the free stream velocity at the farthest downstream position (z/D = 150)
in this experiment. The root mean square of the fluctuations, u’, is of the same order as
the velocity deficit, i.e., v’ /U, = 1. These low levels place extreme demands on the wind
tunnel itself, both in terms of its length and flow quality. Moreover, this rules out the use
of most laser based techniques, like laser Doppler anemometry (LDA), or particle image
velocimetry (PIV) which simply do not have enough resolution. The only measurement
technique that is capable of resolving such weak fluctuations is hot-wire anemometry, but
this technique also has accuracy limitations. These are recognized here, and a method to
account for them is provided.

2. Basic equations

The Reynolds averaged z-momentum equation for the axisymmetric far wake without
swirl reduces to first order to a balance between the advection of the deficit and the
radial gradient of the Reynolds stress:

0 10,
Uoo% (U—-Ux) = 2 (ruv) . (2.1)
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FIGURE 1. Axisymmetric wake coordinates.

The viscous term has been neglected, since only high Reynolds number flows are of
interest here. (Note that Johansson, George & Gourlay (2002a) consider also viscous
solutions to this equation.)

The momentum equation can be integrated over a cross-section to yield an integral
constraint for the conservation of momentum:

Uoo/ (Uso — U) rdr = 0*UZ2. (2.2)
0

where 0 is the momentum thickness. This equation is satisfied to within a few percent
beyond z/D = 10.
A convenient choice for the transverse length scale is

62 = lim i/ (Uso — U) 7 dr. (2.3)
0

o

The advantage of this choice is that it satisfies equation (2.1) exactly: i. e.,

Upd2 = U0, (2.4)

3. Historical review

Using hot-wire anemometry, Carmody (1964) presented the findings of an experiment
on a circular disk oriented perpendicular to the flow at a Reynolds number based on the
disk diameter and free stream velocity (Re) of 70,000. He presented mean velocity, root
mean square fluctuations, and Reynolds stress profiles, as well streamwise as wake growth.
Shortly thereafter, Hwang & Baldwin (1966) presented measured turbulence intensities
and wake growth for a large span of downstream locations, /D = 5 to 2/D = 900 behind
various circular disks. Curiously, they did not present the centreline mean velocity decay.
The reliability of the hot-wire technique was discussed thoroughly in their paper, but
the accuracy in terms of a percentage was not given. Both sets of data show significant
scatter, most likely closely linked to the capability of the hot-wire anemometers used at
that time. Hwang & Baldwin (1966) even reported difficulties in reproducing their own
results on a day-to-day basis.

Gibson, Chen & Lin (1968) presented mean velocity and turbulence intensity profiles
for a sphere wake at a Reynolds number of 65,000 using hot-wires and Pitot tubes. The
investigation covered only downstream distances to /D = 60, but they stated that the
root mean square fluctuations of the velocity was of the same order as the mean velocity
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deficit to within the accuracy of the experiment. They credited this finding to Cooper &
Lutzky (1955) who made an experiment on a disk wake.

Uberoi & Freymuth (1970) measured the sphere wake at a Reynolds number of 8,600.
Their investigation covered a downstream distance up to /D = 150, but their presented
results of the mean velocity deficit only go to /D = 100. They did, however, claim that
their data behaved according to the classical cube root solution, if the virtual origin was
chosen appropriately. But they showed no downstream variation of either the centreline
deficit or wake width, and showed only two collapsed profiles at /D = 50 and 100.

In none of these experiments (Carmody (1964); Hwang & Baldwin (1966); Gibson et al.
(1968)), was the conservation of momentum addressed. This was, however, thoroughly
investigated by Cannon (1991). He examined both the integral and differential mean mo-
mentum equations, and showed that his mean velocity and Reynolds stress data satisfied
both for five different wake generators (disk, sphere and three porous disks with different
porosity). The common denominator of these flows was that they had the same drag,
which is why conservation of momentum was important. The Reynolds number based on
diameter varied between 13,000 for the solid disk, 14,000—17,000 for the screens, and
21,500 for the sphere. The measurements extended over a range of /D of about 10 to
125. Unfortunately, however, it was not clear that any of the wakes achieved a region
downstream where ' /U, appeared constant.

Johansson, George & Woodward (2002b) studied the axisymmetric disk wake using a
rake of 13 hot-wires in order to obtain two-point cross-spectra in cross-sections of the
flow from x/D = 10 to /D = 50. These two-point cross-spectra were then used in the
kernel of a proper orthogonal decomposition to extract the energetic features of the flow
in a manner similar to Part 2 of this paper. They noted that their mean velocity profiles
were affected by thermal drift of the anemometers. The centreline mean velocity deficit,
U,, was about 3% of the free stream velocity at the farthest downstream location.

The present investigation extends this study to a greatly increased distance down-
stream (to x/D = 150) using a different facility. Here the influence of the thermal drift
in the anemometers is even more pronounced, because of the smaller centreline deficit
and accompanying low turbulence intensity. A thorough investigation of the accuracy
of the measured data and a method of handling such small velocity difference flows is
presented here. By using regression techniques to fit the profiles and using momentum
conservation as a requisite condition, it is shown to be possible to obtain reliable results
much further downstream than previously possible.

The data described here have been used by Johansson et al. (2002a), together with
the extensive DNS data of Gourlay et al. (2001), as a part of a general reanalysis of
axisymmetric wakes. Their equilibrium similarity considerations showed the existence of
two similarity regimes, both possibly retaining an asymptotic dependence on upstream
conditions. Criteria were established there for when the initial transients die off, when the
high Reynolds number solution might be expected, and when the low Reynolds number
solution might emerge. Almost none of the earlier experiments described above satisfy
these criteria. Both the data described here and the DNS data, however, show evidence
for the high Reynolds number solution. Only the DNS data, though, evolves far enough
downstream for the low Reynolds number solution to emerge.
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FIGURE 2. Wind Tunnel MTL at KTH, from Johansson (1992)

D (mm) 0 (mm) Us (m.s™!) T (°C) v (m*. s7') p (kg. m™%)
20 5.43 20.1 204 15.2x107°6 1.189

TABLE 1. Summary of experiment variables.

4. Experimental Setup
4.1. Facility

The experiment presented in this paper was performed in the MTL wind tunnel located
at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The MTL tunnel
shown schematically in figure 2, is of closed loop type and is very suitable for measuring
low turbulence intensity flows like the axisymmetric wake because of its relatively long
test section and high flow quality. The streamwise free-stream turbulence intensity is
lower than 0.03%, and the cross-stream turbulence intensities are less than 0.06%. The
tunnel has a temperature uniformity in the test section of +0.2°C. The test section has
an area of 1.2 x 0.8 m? and the downstream length is 7 m. Further characteristics of the
tunnel can be found in Johansson (1992). The tunnel walls can be adjusted in order to set
the desired pressure gradient, but for this experiment they were in the same configuration
described by Osterlund (1999) for which the pressure gradient was very close to zero.

The wind tunnel velocity was monitored using a Pitot tube connected to a Furness
FCO510 electronic manometer. The manometer was equipped with an absolute pressure
sensor and a temperature sensor to provide the value of the velocity via the RS232 port
directly to the computer. The velocity was monitored throughout the experiment and
kept constant at 20.1 m/s £0.05 m/s, resulting in a Reynolds number based on the free
stream velocity and disk diameter of 26,400. The measurement was automated using the
integrated traverse and wind-tunnel speed control of the MTL.

4.2. Probe configuration

The sensing device was composed of two rakes consisting of 15 hot-wires in total. The pri-
mary reason for using rakes of probes was to be able to compute the numerous two-point
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cross-spectral quantities as described in Part 2 of this paper. Fortunately, the simultane-
ous measurement at many points made it possible to overcome the intrinsic limitation of
the instrumentation. The rakes and probes, shown in figure 3a, were constructed in-house
at the Turbulence Research Laboratory of Chalmers. The rakes were made of steel wing
profiles with a maximum thickness of 10 mm and a chord of 25 mm. The lower rake is
fixed, while the upper can be rotated around the axis of the centre probe. The rotation
allows an angular separation of the rakes between 15° and 335° with an accuracy of +1°.
The probe holders were fixed to the wings and were made of brass telescopic tubing with
an outer diameter of 4 mm. At the end of the probe holder, the probe body was attached.
The probe body consisted of a brass tube with an outer diameter of 3.2 mm, contain-
ing a ceramic tubing with an outer diameter of 2.4 mm for prong insulation. Inside the
ceramic tube, 0.4 mm steel piano wires were used as prongs, protruding 8 mm from the
ceramic tube. The ends of the prongs were sharpened in order to reduce the effects of
the prongs on the sensing wire. The total distance between the movable steel wing and
the sensing wire was 195 mm. The sensing wire was made of tungsten with diameter 5
pm (Sigmund-Cohn, Mt. Vernon, NY) and length 3 mm.

4.3. Anemometers and data aquisition

The anemometers consisted of a five channel AA Lab Systems AN1003 constant tempera-
ture anemometer that was available at KTH. For the remaining channels, nine DANTEC
Miniature-CTA 54T30 were used. The differing thermal drifts of these anemometers con-
siderably complicated their use, as will be discussed in detail later.

The data was digitized using an 10 Tech Wavebook 516 16 bit 1 MHz sample and hold
A/D converter, with an expansion module to enable 16 channels simultaneous sample
and hold, connected to the computer via a fast parallel port PCI board. For the power
spectra measured at downstream locations /D = 30, 50, 70, 90, 110 , 130, and 150, the
signals were sampled at 4 kHz, consistent with the wire length cut-off, Uy, /l,,. This cut
off the spectra well into the inertial subrange which was intentional since the primary
purpose of the experiment was to apply the POD to determine the evolution of the energy
containing scales. Measurements were made simultaneously for all 15 probes. Each data
block had 4096 samples, and a total of 360 blocks of data was taken per probe for each
angular probe rake location. This large amount of data yields a variability of the power
spectra at each radial position of 1.08%.

For the single point statistics, mean velocity and rms velocity, separate scans of the
flow were made for the downstream locations /D = 10, 20,..., 150 using fewer blocks. For
these runs, no spectral quantities were evaluated, so the sampling frequency was reduced
to 1 kHz and only 60 blocks of 1000 samples were taken. This gives a statistical uncer-
tainty of the mean velocity of at most 0.1% (for the nearest downstream position where
u' /U =~ 10%). For the root mean square of the fluctuations, the statistical uncertainty is
around 0.6%.

4.4. Disk suspension

The disk had a diameter of 20 mm, a thickness of 2 mm with sharp edges, and was made of
acrylic. It was suspended with three pairs of steel wires, each with the diameter 0.2 mm.
The disk was placed one meter into the measuring section to allow for probe calibration
upstream of the disk, and to avoid the continuing acceleration of the flow near the
contraction. The mounted disk in the test section is depicted in figure 3, which also shows
the rake of probes downstream of it. The disk was centered by adjusting the tension of the
supporting wires. By using pairs of support wires, the planar orientation of the disk could
also be adjusted, since the tension of each support wire could be set individually. The final



6 P. B. V. Johansson and W. K. George

@20 mm

800 mm

@0.20 mm

o —
-
¢ —
-
-
N
-
Y-~
-~
fe
.~
‘-
ey

‘ 1200 mm

FIGURE 3. (a) Probe rake and disk, and (b) disk suspension in the cross-section in the MTL
wind tunnel at KTH

tuning of the disk centering was achieved by several preliminary test measurements, where
the velocity field was measured for all available angular positions of the movable rake. The
disk was moved based on the input from these velocity measurements and the procedure
was repeated until a satisfying result was achieved. For reasons that will be discussed
in detail later, the centering was not performed using mean velocity distributions only,
but instead the centering was based on obtaining reasonably similar profiles of ' and
power spectra for locations on either side of the plane Af = 180° (i.e., it was moved until
the v’ values and the power spectra compared favorably for the angular separations of
A = 120° and Af = 240°). (See figure 4 for the definition of the separation angle.) At
the same time, it was ensured that the flow was indeed axisymmetric within experimental
accuracy.

The effects of the disk support wires were of considerable interest in ensuring that the
energy distribution of the POD modes were not affected by them. In Johansson et al.
(2002b), four pairs of support wires were used. With such a configuration of support
wires, the disk centering is easier, but it also creates a problem. Four pairs of support
wires precludes some angular positions for the movable probe rake to be used without
the velocity measurements being affected by the wakes of the supporting wires. The
symmetry of the flow cannot be used to overcome this problem. The effect on the POD
modes of the disk suspension method is further discussed in Part 2 of this paper. In
the three-support wire configuration used throughout this investigation, the wakes of
the support wires did not affect the velocity measurements at any angular position of
the movable probe rake, since the asymmetrical positioning of the support wires allowed
replacement of the Af = 90° measuring position by the one at Af = 270°.

4.5. Spatial resolution

The arrays were used in the same manner as Glauser & George (1987) and Johansson
et al. (2002b) to obtain the single point statistics and two-point velocity cross-spectra
for all combinations of locations shown in figure 4, 7 x 7 x 12 x 15 = 8,820 in total at
1, 260 different positions. The measurement grid was originally chosen so that the angular
resolution was acceptable for obtaining azimuthal Fourier transforms of the cross-spectra.
This aspect is further discussed in Part 2. The movable array of probes was traversed
from a 15° separation up to 180° with 15° increments in Af. The 15° separation was
chosen since it is approximately half the azimuthal integral scale, a methodology recently
confirmed to be adequate by Gamard et al. (2002) in a jet, using both rakes of probes like
these here, and also a 139-hot-wire array of very long wires especially designed to reduce
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FIGURE 4. Map of traverse scheme, shown in increments of Af = 30°.

spatial aliasing. The numbering of the probes is shown in figure 4, with each hot-wire
probe marked by a circle. The radial spacing of the probes beginning at the center probe
numbered 0 at » = 0 was 93, 80, 67, 54, 41, 28, 14, (mm) for probes numbered 1 to 7 on
the movable rake, and -14, -28, -41, -54, -67, -80, -93, (mm) for the probes numbered 8
to 15 on the fixed rake. Negative values of r are used for separating the probes on the
fixed rake from those of the movable. Probes 0, 1, 3, 5, and 6 were connected to the
AN1003 anemometer channels, while the others were connected to the DANTEC 54T30
anemometers.

The mean velocity and rms profiles were obtained with the rakes kept at the angular
separation of Af = 180°. To add more points in the velocity profiles, the rake was
traversed in the direction of positive r an amount of 5 and 10 mm for these data sets.

5. Single point statistics
5.1. The mean velocity

Obtaining the mean velocity profiles was by far the most difficult part of this entire
experiment. The accuracy of the results of an experiment using hot-wires is very sensitive
to the reliability of the calibration, but this is not the major source of error in this
investigation. Here, fourth-order polynomials were used to map the voltage output of the
anemometer into velocity, as discussed by Shabbir & George (1994). (Because of the low
turbulence intensity, u’'/Us, any lower order polynomial would probably have worked
just as well, as long as the range of velocities encountered was not outside the range of
calibration.) The relative error of the calibration was less than +0.02 % over the range
of velocities in the actual measurement.

The primary source of difficulty in the experiment was the thermal drift of the anemome-
ters, especially from the offset amplifiers. This problem is easily overlooked when measur-
ing flows with large velocity differences, e. g., a boundary layer or a jet, but is immediately
obvious in a ‘weak’ turbulent flow like the axisymmetric wake. This was previously noted
by Johansson et al. (2002b), who stated that this mainly affected the mean velocity, leav-
ing the root mean square of the velocity unaffected. This problem is more pronounced
here than in the earlier study because the distance downstream is greater (150 disk di-



8 P. B. V. Johansson and W. K. George

Anemometer AN 1003 Anemometer DANTEC 54T30
—— Calibratioﬁ 17:25 ‘ ; ‘ A —— Calibratioﬁ 17:25 ‘
-<- Calibration 20:27 + -<- Calibration 20:27
5 -+ Calibration 23:44 i 2.67 —+ Calibration 23:44

N
u
o

—
=3
=

Anemometer voltage (V)
NI
q1 %)

Anemometer voltage (V)

IN
>

2.35

15 20 25 30 15 20 25 30
Reference velocity (m/s) Reference velocity (m/s)

FIGURE 5. Calibration curves for (a) AN1003 and (b) DANTEC 54T30. Calibrations before, in
the middle, and after for two downstream positions of measurement.

ameters vs. 50) and the mean velocity deficit along with the turbulence intensity is much
lower. (1% in the present vs. 3% in the previous study.) Part of the problem was solved
by setting the troublesome anemometer offsets to zero, but the anemometers still drifted.

Figure 5 shows two typical calibrations for both types of anemometers (AN1003 and
54T30) used. The different times correspond to calibrations before, in between, and after
the experiments at two downstream positions. Although the differences in calibration
before and after are slight, this difference is significant compared to the mean velocity
deficit. This most certainly is the reason for the scatter of profiles in previous investiga-
tions (or perhaps even their complete absence from many). One significant advantage,
however, is that equation (2.4) must be satisfied at and beyond x/D =2 10 (i. e., momen-
tum is conserved).

The method applied here to overcome these difficulties is presented in detail in Ap-
pendix A. The method considers data sets from all measured positions at a given down-
stream location simultaneously. It assumes only that the anemometers drift together
(which was certainly true for the mini-Dantecs), so that the measured profile shifts uni-
formly in time. The method can be summarized as:

(a) A hypothesis of a general velocity profile is made. This profile has only a single
length scale, J,, and velocity scale, U, = Uy, — Ugp, both assumed unknown for each
profile.

(b) This profile is regressively fitted to each velocity profile at every downstream lo-
cation for both rakes, requiring only conservation of momentum.

Since the rake does not unambiguously cover the whole wake for the furthest down-
stream positions, the mean velocity deficit must be treated as an unknown quantity, but
is linked to the transverse length scale through the conservation of momentum, equa-
tion (2.4). The method also provides as a bonus the necessary scaling parameters: the
velocity deficit scale, U,, and the wake width, J,. The evolution of these quantities is
summarized in table 2.

The resulting corrected mean velocity profiles, normalized with the free stream velocity
for the downstream positions /D = 10, 20, 30, 40, and 50 are shown in figure 6. Also
shown next to the plots of the mean velocity deficit are the corresponding normalized
turbulence intensities which will be discussed in the next section. The mean velocity
deficit decreases rapidly initially, from about 9.5 % at /D = 10, to 2.2 % at /D = 50.
The points in the velocity profiles associated with negative r were obtained from the fixed
rake. Here, all the probes were connected to the same brand of anemometers (DANTEC).
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z/D Ucr Us Unmae Umae/Uo s  Uslu/v
10 18.15 1.95 1.67 0.86 17.46 2234
20 19.11 0.99 1.02 1.03 24.45 1595
30 19.41 0.69 0.77 1.11 29.25 1334
40 19.54 0.56 0.63 1.12 32.48 1201
50 19.63 0.47 0.54 1.13 35.41 1102
60 19.68 0.42 0.47 1.12 37.48 1041
70 19.72 0.38 0.43 1.11 39.37 991
80 19.75 0.35 0.39 1.10 41.12 949
90 19.78 0.32 0.36 1.10 42.82 911
100 19.80 0.30 0.33 1.10 44.31 880
110 19.82 0.28 0.31 1.10 45.97 849
120 19.84 0.26 0.29 1.11 47.47 822
130 19.85 0.25 0.28 1.12 49.13 794
140 19.86 0.24 0.26 1.08 49.53 788
150 19.87 0.23 0.25 1.06 50.37 774

TABLE 2. Downstream variation of measured quantities. Velocities in m/s and 0, in mm.

The probe labelled 1 in figure 4 shows least agreement to the curve fit. This probe was
connected to one of the AN1003 channels, which is the main reason for it behaving
differently, because of the different characteristics of the anemometer. Note that the
velocity differences are extremely small. The difference in velocity measured by probes
1 and 2 is 0.4% of the free stream velocity. The same trend is seen for probes 1, 3, 5
and 6, which are also connected to AN1003 anemometers. But clearly, it is probe 1 that
deviates the most. The solid lines in the figure shows the curve fit explained in Appendix
A. All profiles show very good agreement to this fit. The centering of the rake is seen to
have been performed in a satisfactory manner. Note that the right side of the measured
positions, positive 7, extends to larger radius than the curve for negative r, since the
entire probe rake was traversed to two positions in the positive r direction (5 and 10
mm) to fill out the profiles as mentioned in section 4.5.

The further evolution of the mean velocity profiles for /D = 60 to 150 is shown in
figures 7 and 8. For these positions, the mean velocity deficit continues to fall, from 2%
at ©/D = 60 to about 1.1% at xz/D = 150. The curve fits continue to be in very good
agreement with the measured points, especially for negative r. As noted above, probe
1 continues to be off the curve. The probe rake centering is still found to be accurate,
ensuring that the flow direction in the wind tunnel test section is uniform within the
accuracy of the experiment, so no re-centering of the probe rakes was found necessary.
For the later positions, it is clear from the curve fits that the outermost point is not
located in the free stream. Hence, the curve fit is essential in the estimation of the mean
velocity deficit.
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The normalized mean velocity deficit profiles, (Us, — U(r))/U, are plotted versus r/d,
in figure 9. In this figure, all profiles obtained with the probes on the fixed rake (negative
r) show a remarkable collapse. The previously identified problematic probe 1 in the outer
part of the movable rake shows least agreement to the profile. In fact, the points measured
by this probe seem to fall on a curve of its own, slightly elevated from the curve that ties
all the others together. It would be very tempting to just shift these points to fall on top
of the curve fit (or omit this data entirely). Also, the increased scatter for positive r is
due to probes 1, 3, 5, and 6 that are connected to AN1003 anemometers, which have a
different thermal drift characteristic than those of 54T40.

Figure 9 also gives an indication of why previous experiments show large scatter in the
mean velocity profiles (if they show profiles at all), since the largest deviation in figure 9
is only 0.4% of the mean velocity. If a probe rake had not been used, the accuracy would
have been even more seriously affected by the anemometer drift, since the profile would
have been obtained by traversing a single probe through the wake. If the traversing were
made at random positions spanning the wake, the thermal drift of the anemometers would
have shown up as increased scatter in the profiles. Or if the traversing were sequential,
the profiles would have been significantly skewed. The measurements of very small mean
velocity differences in the wake are indeed very difficult to make correctly, but made
possible in this experiment by simultaneously measuring with a number of probes and
many nearly identical anemometers.

6. Streamwise variation of scaling parameters

The scaling parameters obtained through the regressive fit described in Appendix A,
the centerline mean velocity deficit, U,, and the lateral wake width, ¢, clearly provide
the collapse of the mean velocity profiles as shown in figure 9. The streamwise variation of
the mean velocity deficit is shown in figure 10. It is clear that U, decreases monotonically
and in a smooth manner. The solid line shows the high Reynolds number equilibrium
similarity solution discussed below in equation (8.2).
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FIGURE 11. Downstream evolution of the lateral wake length scale, §./6, vs. z/D.

In figure 11, the streamwise evolution of the lateral length scale, §., defined by equa-
tion (2.3) is shown. It is seen from this figure that 4, grows monotonically from about
360 (17 mm), or slightly less than the disk diameter at /D = 10, to about 90 (50 mm)
or 2.5 times the disk diameter at #/D = 150. The solid line shows the high Reynolds
number equilibrium similarity solution discussed below in equation (8.1).

These two scaling parameters, U, and ., can be used to obtain the local Reynolds
number of the flow, R = U,d,/v. The downstream variation of the local Reynolds number
is shown in figure 12. Clearly it decreases with downstream distance, which distinguishes
this flow from most other free shear flows where the local Reynolds number either in-
creases or remains constant. In fact, it is this decreasing local Reynolds number which
is the reason for the existence of two different equilibrium similarity solutions for the
axisymmetric wake, one for high and one for low Reynolds number, v. George (1989)
and Johansson et al. (2002a). The dashed line in the figure marks the value of the local
Reynolds number where the high Reynolds number equilibrium similarity solution ceases
to be valid, and viscous effects drive the flow to its other turbulent state as discussed
in detail by Johansson et al. (2002a). In this experiment, the local Reynolds number
falls from 2234 at x/D = 10, to 774 at ©/D = 150, which is well above the suggested
threshold of 500 below which the high Reynolds number solution does not apply.
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7. Turbulence intensity profiles

The reason for the RMS velocity not being so sensitive to the thermal drift of the
anemometers can also be seen in figure 5. Although the curve has shifted from one time
to another, the slopes are nearly unchanged. For such weak fluctuations, the fluctuating
velocity is proportional to the fluctuating voltage times the derivative of the function
that relates voltage and velocity (see Perry (1982) for a more detailed discussion). Thus
the fluctuating part of the velocity is hardly affected at all, while the mean is seriously
compromised. But there remains a problem for the turbulence intensities, since the rms
values must be divided by the centerline mean velocity deficit, which is the least ac-
curately determined quantity. It is the constancy (or lack thereof) of u'/U, that is the
surest indicator of a similarity scaling regime, so even the establishment of flow regime
is prisoner to the drift problem.

The root mean square of the fluctuations, v/, is shown for the downstream positions
of z/D = 10, 20, 30, 40, and 50 in figure 6. Here, u’ is normalized by the centerline
mean velocity deficit determined above. As with the mean velocity profiles, the radial
direction is left unscaled to show the profile width in physical dimensions. As is clear
in figure 6, the hot-wire array almost covers the whole wake, since the tails of v’ /Uy,
goes to a value just below 0.1%. The tunnel free stream turbulence intensity with an
empty test section is reported by Johansson (2002) to be less than 0.03%. Figure 6
further supports the indications provided by the study of the mean velocity profiles in
the previous section that the rakes were properly centered. The slightly higher peak value
on the right hand side is really due to one probe. The probes that prevent the profiles
from being really smooth are actually the ones numbered 0, 1, 3, 5, and 6, all connected
to AN1003 anemometers. But the effects of the different anemometers are not at all as
pronounced as for the mean velocity profiles. There is also another possible cause of the
higher turbulence intensity on the upper side, and that is if the disk was not absolutely
aligned with the wind tunnel cross-section.

Figures 7 and 8 show the downstream evolution of the turbulence intensities between
60 < /D < 150. Here, the peak values (as well as the centerline values) of v’ /U, have
reached a constant level, and remain constant for all the remaining measured downstream
positions. The profiles eventually start to show more scatter, but it must be noted that
the ratio of u//Us has dropped to below 1.3% at /D = 150.

The normalized turbulence intensity profiles for all downstream locations are shown
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in figure 13; i.e., u'/U, vs. r/d.. These profiles collapse quite well for all downstream
positions greater than about 2/D = 30. This is remarkable, considering the difficulties
in obtaining correct mean velocity profiles using the different anemometer systems de-
scribed above. Clearly, thermal drift of the anemometers has very little direct influence
on fluctuating quantities. This is especially important for Part 2 of this investigation
which uses the cross-spectra in conjunction with the proper orthogonal decomposition.
The downstream evolution of the maximum of the normalized turbulence intensities
is shown in figure 14. Here, it is further highlighted that the ratio u'/U, approaches a
constant value which is reached approximately at /D = 30. This ratio remains constant
throughout the downstream positions covered in this experiment. This is of considerable
importance in establishing the existence of the high Reynolds number equilibrium simi-
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larity regime as noted below. The presented points are the average of the peak values from
either side of the centerline shown in figure 13. The error bars indicate an uncertainty of
+2%, which cover both peak values.

8. High Reynolds number similarity solution

The high Reynolds number similarity theory of George (1989) and Johansson et al.
(2002a) predicts that the evolution of the scaling parameters U, and 4, should behave
as:

6* T—x

7 =al=]"” (8.1)
Us z—x,12/3

o = b1 (8.2)

The latter suggest this theory should apply only after the initial transient has decayed and
only as long as the local Reynolds number is greater than 500 (i.e., R = U,d./v > 500).
They further suggest that the best measure of when the initial transients have died off is
when u'/U, = constant, as required by application of the equilibrium similarity theory
to the kinetic energy equation. From figure 14, it clear that this condition is satisfied for
/D > 30 for this experiment. Moreover, from figure 12, R > 500 for all downstream
positions. Therefore, if any data should be in agreement with the high Reynolds number
solution, this data should.

It is. The solid lines on figures 9 and 11 show fits of equations (8.1) and (8.2) to the
experimental data. Clearly the agreement is excellent. Linear regression yields values for
the constants as: a = 1.14, b = 0.77, and x, = —2.40 where the virtual origin must be
the same for both data sets to satisfy the momentum constraint a?b = 1. Even a stronger
indication of the agreement between theory and data is provided by the plots of (J./60)>
versus /0 and (U./U,)~%/? in figure 15. These plots do not depend on a virtual origin,
but clearly are linear for z/D > 30.

The collapse of the mean velocity and intensity profiles in figures 9 and 13 is further
confirmation of the equilibrium similarity theory. Note, the curve fits used for the re-
gressive fits to the velocity profiles did not assume similarity, but optimized the choice
of parameters for each position downstream. But the equilibrium similarity theory also
predicts that the individual curves described in Appendix A should collapse, and to an
excellent approximation they do.
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9. Power spectral densities

Power spectral densities were obtained for downstream positions of /D = 50, 70, 90,
110, 130, and 150. As mentioned in section 4.3, these data were obtained from a much
more extensive data set. The downstream evolution of the power spectra for each radial
position in the wake covered by the fixed hot-wire rake is shown in figure 16. The power
spectra for each radius shown in figure 16 are the averaged values of the probes located
on the same radius of the fixed and movable rake. It is clear from these figures that the
peak at the Strouhal number 0.13 is visible at all off-center spectra for all downstream
positions. Thus, this structure remains in the flow for a substantial distance downstream.
It is noticeable also, that the frequency is not changing at all with downstream distance,
confirming the findings of Cannon et al. (1993) that this is truly a convected structure.
A peak at this frequency does not at all appear in the spectra at the centerline (a certain
confirmation of a properly centered disk).

Using the obtained scaling parameter ¢, and applying Taylor’s frozen field hypothesis,
with the convection velocity taken as the free stream velocity, the spectra at the centerline
was normalized. This is shown in figure 17. Here, it is very clear that this collapses
the spectra for high wave numbers. Taylor’s hypothesis is not in general valid for low
wave numbers, as pointed out by Lumley (1967), but it is remarkable how different the
spectra are for low wave numbers. It is not at all clear from this single point statistical
investigation what causes this behavior. This is investigated further in Part 2 of this
paper using multi-point statistics and POD.

Finally, a very clear inertial subrange is visible, especially in figure 17. This is exactly
as predicted by Johansson et al. (2002a), who argued that the existence of such an
inertial subrange in the spectrum was a necessary condition for the applicability of the
high Reynolds number solution. Because of the wire roll-off and sampling rate, it is not
clear how far this inertial subrange extends. This experiment was originally designed to
capture the large scale, energy containing scales, which is the reason for the spectra being
cut at relatively low wave numbers. If the high wave number dissipative range were to
be investigated, much shorter hot-wires must be used to increase the resolution.

10. Summary

In this paper, the high Reynolds number wake behind a disk has been investigated using
rakes of hot-wire probes. The initial Reynolds number was 26,400. The measurement
downstream range was 10 < /D < 150 (36 < /0 < 552). It was found that in spite
of the limitations imposed by anemometer drift, the accuracy of mean velocity profiles
can be substantially improved by using regression techniques to fit the simultaneous data
from rakes of hot-wires to a predicted profile shape.

A number of open questions from earlier investigations have been resolved. It has
also been shown that the turbulence intensity ratio «'/U, truly does reach a constant
value. This happens once the initial transients have settled, which can take a substantial
distance downstream (/D > 30 in this investigation). Moreover, it has been shown
that this flow satisfied all necessary conditions for the high Reynolds number equilibrium
similarity analysis of Johansson et al. (2002a) to apply, most notably that the local
Reynolds number be greater than 500 throughout the entire experiment, that the spectra
exhibit an inertial subrange, and that u'/U, has reached a constant value. Indeed the
data and theory are in excellent agreement.
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Appendix A. Correction for anemometer drift

The correction method for taking the thermal drift of the anemometers into account
applied in to the data presented in this paper were performed in the following steps:

(a) A general curve is fitted to the velocity profile at each downstream position using
a regressive scheme. The theory of laminar wakes (c.f. Schlichting (1968)) states that
the laminar wake velocity profile is of the form exp(—r?). This profile was found to
undershoot the data points near the center and fall off too slowly for large r. Instead,
a more general curve that could better account for the actual behavior of the data was
needed. The jet velocity profile was previously fitted by Hussein et al. (1994), but their
jet profile was found to also undershoot the data in the near-center region. Instead, the
following curve form was adapted:

Ups —U(r) = (Uss — Ucr) (1 + Car® + ... + Cpr™) exp(—Dar? — Dar). (A1)

Here, n is an integer multiple of 2. Only multiples of 2 were of interest in this application
since the velocity profile is symmetric. The sufficient order of the polynomial was found
to be n = 4. Uy, denotes the apparent free stream velocity that will deviate from the
correct free stream velocity, Uy, because of the thermal drift of the anemometers. Thus,
the free parameters of the curve fit are Uy, Ca, C4, D2, and Dy, while Ucr and U(r) are
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the values obtained from the experiment. Note that Uy, simply shifts the whole velocity
profile up and down.

(b) The curve fit for each position (that covered the wake enough to permit an estimate
of the momentum from a direct integration of data) was integrated to check whether the
flow conserved momentum. This was found to be the case already from the first measured
downstream position, z/D = 10.

(¢) Since the flow was found to conserve momentum, the link between the velocity
deficit scale and the lateral length scale was known. This relation, U,62 = U,.6?, had to
be satisfied at all downstream locations. Hence, the curve fit was modified to be valid for
all downstream positions simultaneously, by rewriting equation (A 1) as:

Ups=U(r) = (Uss = Ucr) (1 + A(r/6.)* + B(r/8.)*) exp(=C(r/8,)*=D(r/d,)*). (A2)

Here, A, B, C, D are now constants common for all the velocity profiles. A regressive
scheme was used to fit also equation (A 2) to the measured profiles, with the added
constraint of momentum conservation. This resulted in values of §, for all the downstream
locations, from which the velocity scale, U, could be computed. The values for the general
profile constants were found to be: A = 0.049, B = 0.128, C' = 0.345, and D = 0.134.
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The high Reynolds number axisymmetric wake behind a disk has been studied from
x/D = 30 to z/D = 150 using the proper orthogonal decomposition (POD). It was found
that the energetic structure of the axisymmetric wake can very efficiently be described
in terms of POD modes. The first radial (or lowest order) POD mode has 56 % of the
energy. Two major features dominate the eigenspectra, which manifest themselves as two
major peaks. The first peak is an azimuthal mode 1 peak at a frequency corresponding
to the Strouhal number of the near wake. The second is an azimuthal mode-2 peak at
near-zero frequency. The mode-1 peak dies off faster than the mode-2 peak, so that the
far wake is dominated by the latter.

This evolution from azimuthal mode-1 dominance in the near wake to mode-2 domi-
nance in the far wake corresponds closely to the approach to equilibrium similarity. Once
azimuthal mode-2 becomes equally important as azimuthal mode-1 (after /D = 30 or
x/6 = 110), the ratio of turbulence intensity to centerline velocity deficit is constant, the
mean deficit and turbulence intensity collapse in similarity variables, and the wake grows
as /3.

1. Introduction

The structure of the three-dimensional wake was perhaps first studied by Marshall &
Stanton (1931). They presented photographs of wakes behind circular disks in water.
The dye trace revealed un unsteady pattern when the Reynolds number based on the
free stream velocity and disk diameter, Re, exceeded about 200. They also concluded
that there was a periodic discharge of a series of rings of vortices. The sphere wake was
also studied by flow visualization in a water tank by Méller (1938), who found a spiral
vortex in the wake in a certain range of Reynolds numbers.

Flow visualization experiments were performed on low Reynolds number wakes by
Magarvey & Bishop (1961) who studied falling drops up to Re = 2500. They used dye
visualization techniques to study the vortex structure of the wake attempting to describe
the mechanisms of transition and to provide limits to when the flow undergoes transition
from laminar to turbulent flow. This study was followed by Magarvey & MacLatchy
(1965), who studied falling spheres for Re < 500, attempting to describe the manner in
which vortices are released to the free stream.

The vortex structure for a sphere wake at a higher Re was studied by Pao & Kao
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(1977). They investigated wakes with Re up to 2 x 10%. The main findings were that
without stratification, vorticity was shed three-dimensionally, and that stable stratifica-
tion resulted in the wake collapsing. Based on their observations, they made a model of
the vortex configuration in the wake.

The sphere wake was later studied by Taneda (1978), who used the surface oil-flow
method, smoke visualization and a tuft-grid to visualize the flow for Re up to 10°. He
showed evidence of the wake performing a wave motion up to Re = 3.8 x 10°, and that
it forms a pair of streamwise vortices at higher values of Re.

For a general axisymmetric parallel shear flow, Batchelor & Gill (1962) studied tempo-
rally growing instabilities and arrived at a criteria for which azimuthal modes that can
possibly be unstable. They applied their criteria to a ‘far’ jet profile and concluded that
their specific choice of velocity profile only permitted azimuthal mode 1 to be unstable.

An experimental and analytical investigation of the stability of the axisymmetric wake
was made by Sato & Okada (1966), who studied a slender axisymmetric body of revolu-
tion. Analytically, Sato & Okada (1966) applied the criteria of Batchelor & Gill (1962)
to their laminar wake velocity profile, and concluded that according to this criteria, az-
imuthal modes 1 and 2 could possibly be unstable. They were not able to numerically
find a solution for mode 2, and their experimental data was found to be in agreement
with mode 1 being the only unstable mode.

The stability of the axisymmetric wake was also investigated theoretically by Monke-
witz (1988), who expanded previous studies by investigating a family of wake velocity
profiles. He confirmed previous conclusions that azimuthal mode 1 was the most unstable,
and in fact the only one that can trigger absolute instability of this flow.

Numerically, the transition was studied by Kim & Pearlstein (1990), who used a
spectral technique to create a base flow that was disturbed by axisymmetric and non-
axisymmetric disturbances and studied the linear stability. Their main finding was that
azimuthal mode 1 was the most unstable. This was followed up by Natarajan & Acrivos
(1993), who used finite-element methods to numerically study the transitional stages of
spheres and disks. They did not agree with Kim & Pearlstein (1990) on the manner
which the wake passes through the initial stages of transition, but they confirmed the
conclusion that mode-1 was the most unstable. This was also found by Tomboulides &
Orszag (2000) as well as by Ghidersa & Dusek (2000).

Johnson & Patel (1999) investigated the flow behind a sphere at low Reynolds number
numerically and experimentally. They proposed a symmetry breaking mechanism to ad-
vance the basic understanding of the steady, non axisymmetric regime between Re = 210
and 270. At Re = 300, a highly organized periodic flow was found that was dominated
by vortex shedding.

The large scale, ‘coherent’ features of this flow have not only been studied using flow
visualization, but also by means of phase averaging and conditional sampling techniques,
(Lee & Bearman 1992; Miau et al. 1997; Perry & Lim 1978; Perry & Watmuff 1981).
Most interestingly in context of this paper, Roberts (1973), and later Fuchs, Mercker
& Michel (1979) used two hot-wires to measure cross-spectra at a single radius of the
near wake. Fuchs et al. (1979) varied the angular separation of the probes and were able
to decompose the cross-spectra into Fourier modes. The azimuthal modal content was
then studied at the frequencies that were found to be eventful. At z/D =9, they found
a strong azimuthal mode-1 peak at a frequency corresponding to the vortex shedding
frequency, but also a peak for mode-2 at very low frequencies. The mode-1 peak was
clearly dominant. Berger, Scholz & Schumm (1990) also conducted a similar investigation,
and reported a dominant mode-1 peak. They did not at all mention mode-2, even though
it is clearly present in their results.
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Subsequently, Cannon, Champagne & Glezer (1993) investigated the axisymmetric
wake, in part by means of flow visualization. They showed that the wakes from five
different wake generators (sphere, disk, and three screens of different porosity) behaved
very differently. They also performed an azimuthal decomposition of the velocity field at
a fixed radius of the wake at /6 = 105 for the disk and one of the screens, and concluded
that azimuthal mode-1 was the dominating feature. They further suggested this might
be connected to the vortical structures seen in the flow visualization photographs. They
also noted that these vortical structures were still present at considerable downstream
distances.

The proper orthogonal decomposition (POD) is in essence a structured way of orga-
nizing the azimuthally transformed cross-spectra. Originally introduced to the field of
turbulence by Lumley (1967), the POD has been applied to many flows. One recent ex-
ample is the plane mixing layer by Bonnet et al. (1998), where different techniques of
eddy structure identification methods were compared. This role of the POD was further
discussed in detail by Delville et al. (1999). The ‘slice’ version of the proper orthogo-
nal decomposition (POD) technique was first applied to the jet mixing layer by Glauser
(1987); Glauser & George (1987); Citriniti & George (2000) and to the far jet by Gamard
et al. (20020).

Johansson, George & Woodward (2002) recently investigated the near wake of a disk
(to /D = 50) using the ‘slice’” POD technique. It was found that azimuthal mode-1
dominated the eigenspectra until /D = 10. This was not surprising in view in view of the
many earlier investigations, After this position, however, the magnitude of both modes
decreased, but azimuthal mode-1 fell much more rapidly than azimuthal mode-2. They
were equally important at /D = 30, after which the dominance was overtaken by mode-
2. The emergence of and eventual dominance of mode-2 was not expected. No theories
had predicted this, nor had azimuthal mode-2 ever been observed to be of importance
experimentally. Similar behavior was observed, however, almost simultaneously in the
high Reynolds number axisymmetric jet by Gamard et al. (2002b) and subsequently in
the low Reynolds number DNS simulation of the same flow.

The temporal linear parallel stability theory of Batchelor & Gill (1962) has recently
been re-visited by Gamard, Johansson & George (2002a), who found that the conclusion
of Batchelor & Gill (1962) that azimuthal mode 1 is the only possible unstable mode is
directly related to the particular choice of the mean velocity profile. Indeed, the profile
selected by Batchelor & Gill (1962) only allows mode 1 to be unstable, but the very same
analysis applied on a more realistic profile for the far jet or wake reveals that azimuthal
modes 0, 1, and 2 can be unstable.

Our previous experiments were carried out in the Chalmers wind tunnel. In view of
the surprising nature of the results and their theoretical implications, it was deemed
highly desirable to repeat the experiments in a longer facility of superior flow quality.
The results reported here extend downstream a factor of three past the earlier study. Also
several additional studies were made to evaluate the effects of array coverage, number
of probes, and even the manner in which the disk is suspended in the flow. These are
included in the Appendix.

2. Experimental Setup

The experiment was performed in the MTL wind tunnel at KTH. The experimental
setup and single point flow characterization are described in Part 1 of this paper. Detailed
characteristics of the tunnel can be found in Johansson (1992). Here, only the issues
directly related to the POD are discussed.



4 P. B. V. Johansson and W. K. George

FIGURE 1. Map of traverse scheme, shown in increments of Af = 30° for simplicity.

2.1. Disk suspension

The disk used had a diameter of 20 mm, was made of acrylic and was suspended with
three pairs of wires, each with the diameter 0.2 mm. The disk was placed one meter
into the measuring section to allow for probe calibration upstream of the disk. Previous
experiments reported by Johansson et al. (2002) used four support wires instead of three,
and a discussion about differences in the final result is found in Appendix B. There were
none observed.

2.2. Spatial resolution

The arrays were used in the same manner as Glauser & George (1987) and Johansson et al.
(2002) to obtain the two-point velocity cross-spectra for all combinations of locations
shown in figure 1. The measurement grid of 7 x 7 was chosen following Glauser & George
(1992), so as to provide the minimal resolution to apply the POD. This requires that
in order to avoid spatial aliasing, the number of azimuthal measurement positions must
be at least greater than the number of modes needed to describe the energy in the flow.
Similar considerations apply in the azimuthal direction where the number of angular
increments must be greater than twice the number of azimuthal modes required (since
the eigenfunctions are in general complex); for this experiment estimated as 12.

The maximum radius of the rakes (R in equations 3.2 and 3.4) is also important, and
must span enough of the flow so that the POD results are independent of it. Since the
rake is fixed, but the wake grows, the relative coverage varies downstream. Appendix A
contains an evaluation of the effects of varying coverage on the results reported below.
The effect is very small for the range of variation in these experiments.

The upper array of probes was movable, and traversed from a 15° separation up to
180° with 15° increments in A6, see figure 1. Each hot-wire probe is numbered and
marked by a circle. The angle separation Af = 90° could not be measured directly, since
the movable probe rake caught the wake of the suspending wires. Instead, measurements
at the opposite position 270° were used. In all, half the cross-section of the wake at a
fixed downstream position was scanned, and pairs of instantaneous velocity cross-spectra
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for a fixed angle separation computed. Note that the cross-spectra corresponding to the
remaining half-plane were available from the azimuthal symmetry of the flow, verified
through extensive tests reported in Part 1 of this paper.

3. Proper orthogonal decomposition
3.1. An overview of the pod

At the core of the theoretical and experimental application of the POD is the replace-
ment by deterministic functions of the instantaneous random flow which have maximal
projection on it. These deterministic functions (or eigenfunctions) are obtained either
analytically or empirically from the resulting integral equation, the kernel of which is the
two-point correlation of the velocity itself. The original field can be recovered by summing
together (or integrating over) the contributions of each eigenfunction and its random co-
efficient, the latter determined by projecting each eigenfunction onto the instantaneous
field (exactly like the determination of coefficients in ordinary Fourier analysis). Note that
this projection and reconstruction requires that all points be measured simultaneously,
which was not possible in this experiment. Thus only the eigenspectra and eigenvectors
can be produced using rakes of probes as employed herein.

The turbulent axisymmetric wake is both stationary in time and homogeneous, periodic
in the azimuthal direction. The POD integral equations can be immediately solved in
these directions to yield Fourier modes, continuous in temporal frequency, f, and discrete
in azimuthal mode number, m, (George, 1988). The streamwise direction is problematical,
since it is neither homogenous nor of finite total energy. Hence in the absence of other
considerations, the eigenfunctions will be determined by how the domain is truncated.
This problem is avoided in this study by only applying the POD to cross-sections of the
flow, and treating the streamwise position, x, as a parameter. This particular version of
the POD is sometimes called the ‘slice’” POD.

In general it is easier to proceed if the field is first decomposed using the known
eigenfunctions, then the POD applied to this transformed field in the remaining inho-
mogeneous variables. Thus the problem becomes to seek empirical eigenfunctions which
optimally project a deterministic function, ;(m, f,z;r), onto the transformed random
velocity field, @;(m, f,x;r). The variables m, f, and = are essentially parameters. In
general there are an infinite number of eigenfunctions, zbl("), which are solutions to the
integral equation:

I Big(m, foar, eyl (m, o) ! dr (3.1)
= A (m, £,2)0™ (m, f,2;7) (3.2)

where B; ; is the cross-spectral tensor and R is the limit of the domain.

The decomposition is optimal in the sense that the lowest order eigenfunction contains
the maximum possible amount of energy. Moreover the total “energy spectrum” at a
cross-section is the sum of the eigenvalues; i.e.,

E(m, f,x) = Z A (m, f, ) (3.3)

These can in turn be summed over all frequencies and azimuthal modes numbers to
recover the total energy in a cross-section as shown below. In practice the number of
eigenfunctions is limited by the finite number of resolved points of the kernel.
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3.2. This application

If only the streamwise velocity component at a fixed downstream location is considered
(i. e., i = j = 1), the following integral equation(s) must be solved:

R
/ Bia(m, for, s 2)p™ (m, for's2)r’ dr' = A (m, f;2)0™) (m, £, 2) (3.4)
0

where R is the limit of the domain, By 1(m, f,r,7’; ) is the two-point velocity correlation
Fourier transformed in time and expanded in Fourier series in the azimuthal direction,
the (") (m, f,r; z) are the eigenfunctions, and A" (m, f; x) the corresponding eigenspec-
tra. (Note that the w%n) of equation 3.2 is not in general the same as ¥("), since the latter
is produced from a scalar decomposition.) The eigenspectra, () (m, f;x), are represen-
tations of how the energy is distributed as function of azimuthal mode number, m, and
frequency, f, at a given downstream position, z. Therefore their downstream evolution
shows how the main characteristics of the flow evolve.

It is important to first discuss what the variable f means, or more precisely, what it
does not mean. Experimentally it is the frequency (or temporal variation) observed by the
measuring apparatus. Unfortunately its interpretation as space or time is complicated by
the fact the turbulence is being convected by the probes while it is also evolving in time.
The so-called “Taylor’s frozen field hypothesis” assumes that convection dominates the
temporal evolution, so that temporal variations can be interpreted as spatial variations.
For the wake where u'/U < 10%, Taylor’s hypothesis is certainly valid, at least for
all but the very lowest frequencies. Thus the proper interpretation of the frequency
in this experiment, for all but the very lowest frequencies, is as a wave number, k =
27 f /U, where U is the local mean velocity. Because of the interesting problem at very
low frequencies of the eigenspectra presented later in this paper, and the questionable
applicability of Taylor’s hypothesis for them, the data have been left in terms of the
primitive variable, f.

In practice, the following steps are taken to implement the POD in this experiment:

(@) Measure the instantaneous velocity at two points.

(b) Fourier transform in time and compute the cross-spectrum.

(¢) Repeat step (a) and (b) for many pairs of points.

(d) Expand the cross-spectra obtained in (b) in a Fourier series in the azimuthal
direction.

(e) Solve the remaining eigenvalue problem in the radial direction, equation 3.4, for
each frequency and azimuthal mode number.

This is exactly the procedure used by Glauser & George (1987) in an earlier jet mixing
layer study and in an earlier version of this investigation of the axiaymmetric wake by
Johansson et al. (2002).

4. POD results

The distribution of the resolved energy in the POD modes are summarized in table
1. After z/D = 50, the first (radial) POD mode accounts for about 56 % of the total
resolved energy, the second for about 19 %, the third about 10 %, and the rest the
remainder. Clearly the lowest order POD mode dominates the energetics of the flow.
This was expected from the Hilbert-Schmidt theory which applies to this direction, and
produces order and proper results (the lowest order has the most energy, the next the
next most, etc.). For most of the rest of this paper, it is this lowest order POD mode
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A Energy

/D n=1n=2n=3n=4n=5n=6 n=7 (107° m?*.s7?)
30 63.1 176 104 5.6 23 068 0.3 22.649
50 59.6 172 10.1 6.0 3.8 2.2 1.1 16.114
70 574 175 102 6.2 4.3 2.9 1.6 12.694
90 559 184 103 6.3 4.4 3.0 1.6 11.020
110 559 188 105 6.1 4.3 2.8 1.6 9.4162
130 56.7 18.6 104 6.0 4.0 2.7 15 8.2688
150 56.7 19.1 10.2 6.0 4.0 2.6 1.3 7.1374

TABLE 1. Relative percentage per POD mode number, and total turbulent kinetic energy
resolved.

(n = 1) and its associated eigenspectrum, A" (m, f), which will receive most of the
attention.

4.1. The eigenspectra as functions of m and f.

Figure 2 shows three-dimensional plots of the first eigenspectrum, A()(m, f, z), for the
disk wake at /D = 30, 50, 70, 90, 110, 130 and 150. The most striking feature is the
clear separation of the frequency content of the various modes. Only mode-1 has a peak
at a non-zero frequency. The other eigenspectra (of which mode-2 is predominant) all
resemble the usual broadband one-dimensional spectra of turbulence which peak at zero
frequency (usually due to aliasing from the unresolved directions). The eigenspectra have
not been normalized, so their heights decay downstream as the wake itself decays. But
even from just these seven plots it is obvious that mode-1 dies more quickly than the
other modes, and especially mode-2. In fact, the reason for the behavior of the normalized
azimuthal mode number plots below (figure 7) is clearly not that mode-2 is increasing
its contribution, but that mode-1 is fading more rapidly.

This can be seen another was as illustrated in figure 3. The value of A(Y)(m, f) for
which it has a local maximum is plotted as a function of downstream distance for each
of azimuthal modes 0, 1, and 2. Clearly azimuthal mode-1 is dying off faster than the
others, at least for the first 100 or so diameters downstream.

The downstream evolution of the azimuthal modes is even more clearly in figure 2.
Here, slices of the surface plots in figure 2 are shown for fixed azimuthal mode numbers
m =0, 1, and 2 as a function of frequency. As in figure 2, the eigenspectra have not been
normalized.

Figure 5 shows plots of the total energy and azimuthal mode-1 alone as a function of
frequency for the same downstream positions. Most striking is that the peak frequency
of the band which contains most of the energy for azimuthal mode-1 does not evolve
downstream, but is fixed. Moreover its contribution to the total energy is clearly dimin-
ishing downstream, as noted above. Thus the primary contribution of azimuthal mode-1
clearly does not scale in local shear layer variables, but is instead determined only by the
Strouhal number of the near wake. It seems apparent that the primary contribution to
azimuthal mode-1 has been convected in from the near wake, and is virtually independent
of the local shear layer of the wake.

By contrast, the behavior of azimuthal mode-2 is quite different. Figure 6 shows az-
imuthal mode-2 normalized by the energy remaining after the energy from azimuthal
mode-1 is removed. These data have been plotted as wavenumber spectra using Taylor’s
frozen field hypothesis. Note the remarkable ‘notch’ in azimuthal mode-2 (all the way to
zero!) for the position closest to the disk at exactly the frequency where azimuthal mode-
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x/D =30 x/D =50
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x/D =110 x/D = 130
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f (Hz)

FIGURE 2. Eigenspectrum function of azimuthal mode number (m) and frequency (f) at
different positions: (a) /D = 30, (b) 50, (c) 70, (d) 90, (e) 110, (f) 130, and (g) 150.
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FIGURE 3. Maximum values of A.

1 is dominant. Clearly azimuthal mode-1 is suppressing the development of azimuthal
mode-2 at the dominant frequency. As the wake develops downstream, this notch fills in,
and except for the very lowest wavenumbers (for which Taylor’s hypothesis is of doubtful
validity), these data collapse wonderfully in shear layer variables. Thus, once the contri-
bution of azimuthal mode-1 has been removed, the rest of the turbulence behaves exactly
as might be expected from an equilibrium similarity wake. This is certainly not the case
if azimuthal mode-1 is not removed, which explains the frustrations of many authors in
trying to explain their measurements for this flow.

4.2. FEigenvalues integrated over frequency

The eigenspectra can be integrated over frequency, f, to obtain the distribution of energy
with only the azimuthal mode number, m. If this is normalized by the total energy at
the cross-section the result is:

€W ) = _Jo X Hdf

oo JoT A (m, f) df

where M is the highest resolved azimuthal mode. Figure 7 shows the evolution of the
eigenspectra integrated over frequency as a function of the azimuthal mode number. For
the near wake, at /D = 10, azimuthal mode-1 dominates, exactly as reported by others
(Fuchs et al., 1979, Berger et al., 1990). But by /D = 30, the energy in azimuthal
mode-2 is nearly equal to that in azimuthal mode-1. By /D = 50, azimuthal mode-2
dominates, as it does for all positions downstream. The difference between modes 0 and
1 far downstream is too small to be certain which is the largest, since the slight variation
may be due to the differing areas covered by the probe arrays as the wake grows (as
discussed in Appendix A).

(4.1)

5. Discussion

As presented above, the axisymmetric wake is dominated by two major features, az-
imuthal modes 1 and 2. Initially, azimuthal mode 1 clearly dominates the modal decom-
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FIGURE 6. Mode-2 at x/D = 30, 50,90 and 150, normalized by the energy remaining after the
energy from mode-1 is removed. These data have been plotted as wavenumber spectra using
Taylor’s hypothesis.

position. This mode dies off rapidly and no longer dominates the flow after 2/D = 30.
Even so, it continues to be visible in the modal decomposition for all positions covered
in this study. This is consistent with the power spectra presented in Part 1 of this pa-
per, and also the findings of Cannon et al. (1993), who stated that this feature remains
in the wake for very large downstream distances. In their azimuthal decomposition at
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x/0 = 105, they actually noticed mode 1 to be the most prominent mode. But it must
be noted that this decomposition was made at a single radial position in the wake. Only
the POD takes the whole cross-section of the flow under consideration.

One additional observation can also be made from figure 3. There is a very interesting
problem presented by the lack of collapse of the spectra for azimuthal mode-2 at very
low wavenumbers (or perhaps just low frequencies). These very large scales clearly satisfy
Townsend’s idea of the large eddies. They contain about 5 - 10 % of the energy and
do not appear to interact with the main motion. Interestingly, if these data are NOT
normalized as wavenumbers, but simply by the energy present at all mode numbers with
mode-1 removed, they collapse without any scaling of the frequency axis at all. So what
is their role, if any? This is not at all clear as of this writing. One possibility is that
they simply slowly twist the mean flow. If so this could account for the remarkably high
local turbulence intensity for this flow for which at the centerline u'/(Us — Ucr) =~
110%. In effect, the mean profile is simply being moved around by this very large and
slow modulation. There is some evidence for this in the flow visualizations of Taneda
(1978) who observed wave-like behavior of the wake. Also, in the azimuthally averaged
instantaneous DNS profiles of Gourlay (2001), some of the profiles appeared to be slightly
off-center, consistent with both observations above.

It is also worth commenting on what the usual conditional sampling approaches to
coherent structures would have (and have) focused on for this flow. The most coherent
energetic motion is the transient azimuthal mode-1, and this is indeed what such studies
have yielded. But this is the least important part of the problem for the far wake. Similar
considerations apply to the jet as well where the most apparent coherent feature of the
flow has seemingly nothing to do with the far jet’s evolution, but is simply dying off.

Like the jet, the emergence of this mode-2 dominance corresponds also to the emergence
of the similarity state, particularly evident in the normalized turbulence intensity which
does not approach a constant until about /D = 30 — 50. The implications of this
for attempts to study axisymmetric wakes are profound, since most attempts seldom
measured much beyond this point (e.g., Cannon, 1991, Uberoi and Freymuth, 1970) due
to the extremely low turbulence intensities and limited wind tunnel lengths.

These results are also very interesting in view of the temporal linear parallel stability
theory, since Gamard et al. (2002a) found that the conclusions of Batchelor & Gill (1962)
that only azimuthal mode 1 can be unstable was much too restrictive. Indeed, the profile
selected by Batchelor & Gill (1962) only allows mode 1 to be unstable, but the very same
analysis applied on a more realistic profile for the far jet or wake reveals that azimuthal
modes 0, 1, and 2 can be unstable.

6. Conclusions

The high Reynolds number axisymmetric wake behind a disk has been studied from
x/D = 30 to x/D = 150 using the proper orthogonal decomposition (POD). It was found
that the energetic structure of the axisymmetric wake can very efficiently be described in
terms of a few POD modes with the first radial POD mode containing approximately 56
% of the energy. Two features dominated the eigenspectra, and these manifest themselves
as major peaks. The first peak is an azimuthal mode 1 peak at a frequency corresponding
to the Strouhal number of the wake. The second is an azimuthal mode-2 peak at near-
zero frequency. The mode-1 peak dies off faster than the mode-2 peak, so that the far
wake is dominated by the latter.

This evolution from azimuthal mode-1 dominance in the near wake to mode-2 domi-
nance in the far wake corresponds closely to the approach to equilibrium similarity. Once
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mode-2 becomes equally important as mode-2 (after /D = 30 or /0 = 110), the ratio
of turbulence intensity to centerline velocity deficit is constant, the mean deficit and
turbulence intensity collapse in similarity variables, and the wake grows as z'/3.
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Appendix A. Effect of array coverage

Figure 8 shows same wake at /D = 50, but using the data obtained with the 13-wire
rake presented in Johansson et al. (2002). There are only very small differences, one being
that mode 0 is slightly larger for the 15-wire rake. This can be explained by the fact that
this rake covers a larger portion of the wake. Certainly, this effect is very small.

Figure 9 shows plots of ru? versus r for all downstream positions. The total energy in
the POD is the integral under these curves. Clearly as the rake is traversed downstream,
progressively more and more of the total energy is not included in the decomposition
(since the hot-wire rake is fixed). (This was one of the primary reasons for expanding
from 13 to 15 wires.) The lost energy is less than 1% at /D = 10 but perhaps as much
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as 20% at ©/D = 60. As figure 7 makes clear, the evolution from azimuthal mode-1 peak
to a peak at mode-2 takes place between z/D = 30 and 40. Beyond x/D = 40 there is
virtually no change in the eigenspectra, even though progressively more of the energy is
lost. This suggests strongly that the outside energy does not affect the eigenspectra (at
least in the lower modes). This is consistent with the lack of observed differences between
the 13 and 15-wire arrays.

Appendix B. Effect of disk support wires

Figure 10 shows the same plots for the four and three wire supported rakes, also ob-
tained using the 15 hot-wire rake at /D = 50. The results are virtually indistinguishable,
suggesting strongly that the whatever the physical cause of the observations, it is not a
consequence of how the disk is supported in the wind tunnel.
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