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Abstract

Since the work of MILLIKAN (1938), it is well known that scaling: the
velocity in the outer region in a “Velocity Defect” form and the velocity in the
inner region in the “Law of the Wall” form yields a logarithmic profile for the
matched region.

The derivation is strongly based on the so-called “MILLIKAN's argument”,
which enables to derive the veiocity profile in the matched layer by matching the
velocity derivatives. This argument has been.presented in a mathematical form by
GILL (1968). However, none of the assumptions of the so-called GILL’s theorem
have been verified so far. Secondly, MILLIKAN's theory is strongly based on
the “Velocity Defect” or “Reynolds’ number Similarity” form of the velocity in
the outer region. In this work, the consequences and the consistency of a “Strict
Similarity” assumption for the outer region are examined.

A new concept is introduced, the Asymptortic Invariance Principle, so that
MILLIKAN’s argument is not needed. By this mean, it is showed that a Strict
Similarity assumption yields a power law for the matched region, whereas a
logarithmic form for the velocity in the matched region is deduced from a Velocity
Defect form for the outer flow.

Also, by two different derivations, (i) by cutting the boundary layer into three
regions, inner, matched and outer regions, and (i) by using a composite form for .
the velocity, the same expressions are derived for the displacement and momentum
thickness. The momentum integral yields expressions for the x dependence and
fricdon coefficient.

Experimental data of SCHULTZ & GRUNOW (1941), WIEGHARDT &
TILLMANN (1944), KLEBANOFF & DIEHL (1951), SMITH & WALKER
(1958) and PURTELL et al. (1981) are examined. It is seen that in a boundary
layer there are both a logarithmic region and a power law region. The remaining
question is which one dominates the flow at high Reynolds’ numbers. It is shown
for the experimental data available that the velocity, the velocity derivative and the
friction coefficient representations do not exclude the power law or the log law. In
fact, at low Reynolds’ numbers, PURTELL’s data seems to show stronger support
for a power law behavior in the matched layer. At higher Reynolds’ numbers, the
experimental errors, due to the total pressure probe technique used in SMITH &
WALKER, prevent us from drawing any definite conclusions.



Although major errors in the velocity measurements exist, the effect on the
integrated parameters should be reduced. The displacement and momentum
thicknesses of this set of data seems however to indicate that the expressions
derived for the boundary layer parameters are not accurate past their first order.
Incidentally, the same experimental data is also shown not to collapse with the
results obtained by COLES (1956) for the boundary layer thicknesses. It has been
concluded that the experimental data available do not corroborate with either one
of the theories to a satisfactory degree. -

Jt is thought that a finer structure exist in the turbulent boundary layer 50 that
the use of a composite form for the velocity, and, more generally, the concept of
inner and outer regions, as they are commonly accepted, may be questioned.

This work also points out the crude need to update the experimental data

using a hot wire technique in the same range of moderate and high Reynolds’
numbers as SMITH & WALKER’s set of experiments.



INTRODUCTION

Dimensional analysis constitutes one of the major tool in fluids mechanics and
turbulence research. Often however, deductive schemes, sach as the II theorem,
do not yield a single solution. Researchers have then to rely on intuition and
design experiments that will eliminate one or the other solution.

MILLIKAN (1938) considered that the boundary layer is made up of two
regions that have different physics: the inner region, which can be described
by the Law of the Wall, and the outer region that can.be described by the -
Velocity Defect expression. Both regions are overlapping, constituting a “matched
region”. MILLIKAN derived that the velocity in the matched region profile is to
be described by a logarithmic law.

GEORGE (1989) showed that using the II Theorem yields two different
scaling possibilities for the velocity in the outer region of a boundary layer,
i.e. a Velocity Defect form and a Strict Similarity form. Since the work of Van
KARMAN, the latter has been disregarded unanimously. In this work, we will

attempt to investigate the consequences and the consistency of a Strict Similarity
scaling form for the velocity in the outer region.




Chapter 1 MATCHED LAYER: THE
CLASSICAL VIEW

1.1 MILLIKAN’S PIPES AND CHANNELS DERIVATION (1938)

Before we see the derivation of the so-called log-law as it is commonly
derived presently, and as it has first been derived by MILLIKAN (1938), let us
first see contemporary accepted theories. Note that among them, the PRANDTL
and Van KARMAN results gave the same expression for the velocity profile :
as MILLIKAN's derivation. Interestingly enough, MILLIKAN presented these
previous theories as “alternative special cases of [his] formulae”.-

>

1.1.1 Strict Similarity — Reynolds’ Number Similarity

MILLIKAN adopted the Velocity Defect in a form that has been presented by

Van KARMAN (1930), the so-called “Reynolds’ number Similarity”, sometimes

called the “Velocity Defect Law™. It had been shown in previous work that a strict

non-dimensional expression of the velocity in the following form is dependent on

the Reynolds’ number: _
U —

TJE = F>(Y) (1.1.1)

- where the velocity scale, Uy, is the center-line velocity and 3 the non-dimensional
distance from the wall is given by:

G=Y

=1 (1.1.2)

h being the half width of the pipe or channel. It is possible to obtain empirically a
reasonable representation of F> over the entire channel or pipe by a power law:

N S -
F (7~ (7)= (1.1.3)
But n is found to vary with the Reynolds’ number from one-third to one tenth,
see SCHLICHTING (1968) for further information.

Because of this Reynolds’ number dependence, Van KARMAN (1930) looked
for a velocity profile expression independent of the Reynolds’ number. He showed
on experimental grounds thar:

U-0y

-
g

= F(3) (1.1.4)



is the proper similarity form, where ., is the friction velocity defined by:

3u)
r = - . : (1-1.5)
“ v (ay y=0

This expression is not only found to be independent of the Reynolds’ number of
" the flow but is also independent of the wall roughness (see for instance HAMA,
1954). Although Van KARMAN is generally credited with proposing equation
1.1.4, it was first suggested by STANTON (1914).

It is interesting to note that for:

y=1: F(y)=0 (1.1.6)
and for:

Uq

7

y=0: F(y)= (1.1.7)
Thus, the origin point for F (7) depends on the Reynolds’ number if the friction
velocity is not proportional to the center line velocity, which it is not. However,
this dependence can not be seen in a velocity profile in cartesian coordinates.
Later, for boundary layer flow, semi-logarithmic plots of the velocity profile will
give birth to the wake function similarity (CLAUSER, 1956; COLES, 1956).

1.12 The Law of the Wall

Using dimensional analysis, PRANDTL derived that close to the wall the
velocity has the following form: -

v_ (y“’) (1.1.8)

Indeed, the proper scale for the viscous region is the friction velocity, u., a length
scale, 7, can be formed from the viscosity and the velocity scale with:
nur

— =1 (1.1.9)

14



1.1.3 Van KARMAN and PRANDTL theories.

Both theories have in common that:

(i) they are based on closures model for the Reynolds Stress involving a mixing
length concept,

(ii) they are to be valid for the whole width of the channel or the pipe,
(iii) they lead to a logarithmic law for the velocity profile.

Van KARMAN (1930 a, b) derived that the velocity profile is given by:
Ug-U 1

= W(-vIE)+visE) Ao

assuming that the Reynolds’ stress is given by:

uv o, dU | dU
T . =1 dy dy (1.1.11)
where the mixing length, 1, is given by:
au
l=x 72217 (1.1.12)
y

and where x is to be known as Van KARMAN's constant.

Later, PRANDTL (1932) assuming that the mixing length is proportional 10
the wall distance, y:

l=xy (1.1.13)
obtained by mtcgrauon of the Reynolds' stress:
ur X
so that:
-q— = llnh B (1.1.15)
ur X
or, if we write it in a velocity defect form:
Va-U _ -llng (1.1.16)
ur X



1.1.4 MILLIKAN’s Theory

MILLIKAN’s theory is based on the following original assumptions. Close
to the wall the flow can be described by the “Law of the Wall”. In this region,
viscosity and roughness are the basic parameters that govern the flow. However,
far away from the wall, the flow is to be described by the “Velocity Defect Law”,
so that there exist a region, a matched layer, where both laws are valid. As a.
result, MILLIKAN matches the velocity derivatives! of both regions to obtain a
law valid in that matched layer.

From 1.1.8:
1dU 1 daf
4% _ (1.1.17)
u, dy 77dy (y‘l')
where: y y
=2 =17 1.1
ye=s== (1.1.18)
From 1.14:
1dU 1dF
-— ' A1
| wdy Rdg ) (LL19)
Multiplying 1.1.17, 1.1.19 by y yields:
df dF
= =7— (3 1.1.20
Y+3 +(y+) V5 (®) (1.1.20)
Now, if we assume that both sides are independent? and hence equal to a
constant:
df dF 1
— = 1.21
Y+ un (v+) =9 5= (y) X (1.1.21)
we find by integration:
1
Vo in(ys)£d - (1.122)
ur X
or introducing Uy:
- 1
U-Ua_1, @) +D (1.1.23)
Ur X

1

It is interesting to note that only the derivatives of the velocity are to be matched and not the velocity itself.
2

Most authors, TENNEKES and LUMLEY, PANTON,.... state that both sides of 1.1.20 are independent since both
non-dimensionized length, ¥4, . are “independent™ at infinite Reynolds® numbers. Note however that y4 , 7 are obviously

related 10 each other by R.. We will present in a further section a rigorous derivation of MILLIKAN's argument, sce
GILLL (1968).



From 1.1.22 and 1.1.23, we have:

Ya _liy@wy+d-D

ur X

where R, is defined as the ratio of outer to inner length scales:

h

R ==
7

We can rewrite this equation as:

2 _lpg1d-D
Cf x

or using diffsrent notations:

™ | =

InsRs +d-D

el g

where R; is the’ ~Reyndlds’ number given by:

and ¢ is defined as the inner to outer velocity ratio:

(1.1.24)

(1.1.25)

(1.1.26)

(1.1.27)

(1.1.28)

(1.1.29)

Experimentalists sometimes consider that this problem has 4 unknowns
(x, d, D, u-), and work only on the velocity profile. However, equation 1.1.24
reduces the number of equation to 3. In fact, the friction velocity, u, , may be de-
termined independently from experimental measurements. Therefore, the present
author will make a distinction between the friction velocity, u., determined from
logarithmic results, and the actual fricton velocity, u-, given from the shear stress
at the wall, since the latter is not dependent on the validity of any theory but is

only dependent on the experimental measurements.
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1.2 RESULTS FROM THE AVERAGED NAVIER-
STOKES EQUATIONS FOR PIPES

Because one can find simple expressions for the goveming equations of the
fluid motion in pipes, it is worth to investigate that type of flow and gain some
insight that may be useful for the boundary layers case. As we will see, this case
enables valuable simplifications to the equations of motion, simplifications that
have been used in singular perturbation methods. Nevertheless, one should never
forget that pipe flows are different in their features and physics from boundary
layers flow. '

Since we can assume a parallel mean flow.for pipe and channel, the ‘equations’
of motion are, see TENNEKES and LUMLEY (1972):

18P duT ﬂ

= e — - 1.2.
0 p Oz dy v dy? (1.2.30)
10P dv?
0= ——— — — (1.2.31)
pdy dy
The y-momentum equation can be integrated:
ﬂ:’—y) +7(z,y) = 59;5"’—) (12.32)

but, since we assume that all velocity derivatives are independent with respect to '
the streamwise coordinate, we have:

oP dP,
—_—=— = t 1.2.33
E o cons (1.2.33)
The x-momentum equation can therefore be integrated with respect to y:
0= Y% o U _ (12.34)
o dz dy

where u, is the friction velocity. In addition. the total shear stress (p %o +p4.)
must be zero in the middle of the channel or pipe, because of symmetry reasons,
therefore:

ul=—= (1.2.35)




The same result follows also from a force balance on the pipe. The momentum
equation may therefore be written:

1 avuy Y
” ( T +u75) = (1 - h) (1.2.36)

- Now, let us write these equations in both regions of interest, i.e., the near-wall
region and the outer region. At the wall, y = 0, the Reynolds’ stress is zero:

L (ufl-q) 1 (1.2.37)
dy .

At the center-line, y = h, the viscous stress is zero:

;1? (- 7%) = (1 - %) (1.2.38)
A dimensional analysis is done to have both Reynolds’ stress and mean vclocmcs :
in the previous equations. The parameters of the flow are: Ug,h,v, G2 d = or
Ud, h,v,u-. Close to the wall, we expect viscosity, as well as the friction velocity
to be important, therefore, the parameters that govern the flow near the wall are:
v,ur-. SO we write equation 1.2.36 as:

— d(L .
- (1‘;) + (") = (1 - -1_y+) » (1.2.39)
Uy dy+ *

Far away from the wall we can neglect the viscous stress, therefore the important
parameters seem to be: Ug, h, %& Note that u, enter the problem indirectly’
through the pressure gradient. Commonly, see for instance TENNEKES and
LUMLEY, u. is taken as the proper scale for the velocity, and u? is taken as the
proper scale for the Reynolds” stress, so that equation 1.2.36 becomes:

_ u
_ (Z_;) . %:%_)_ ~(1-7) (12.40)

3 From this point of view, the boundary layer has a different dimensional analysis for the outer flow.



1.3 GILL’s THEOREM

MILLIKAN’s theory was the starting point of a new mathematical concept,
the asymptotic expaasions matching processes, which we shall refer to in further
chapters. However. “MILLIKAN’s argument”, i.e., the matching of the velocity
dernivatives, is from a mathematical point of view fragile. GILL (1968) reformu-
lated the problem and MILLIKAN’s argument in a rigorous way. It is interesting
to point out that his three assumptions, although used to derive* second order
asymptotic expansicns, were, to our knowledge, never studied experimentally”.

The problem is to describe the mean flow at high Reynolds’ numbers. i.e.,
to describe the asymptotic behavior of U as R, — co. Let us introduce the
non-dimensional velocity:

w=w(R,7) =2 (13.41)
Ur
and the velocity ar the center-line:
: W(R.)— T —w(R.,l) (1342)

Equating the velocity derivatives in both forms, yields (1.1.20). GILL (1968)
showed that when e left and right-hand side of (1.1.20) is asymptotically of a
certain higher order. the classical laws are obtained.

Theorem:

Given that:

(i) 3A, a positive constant, and a differentiable function, f (y. ), satisfying:

f(0)=0 (1.3.43)
and for 0 < y, < RN
dw '
;;: =f(y=)+o (R:'\) as R. — o0 (1.3.44)

(ii) =0, a positive constant, and a differentiable function, F (), satisfying:

F(1)=0 (1.3.45)

¢ See FENDEL (1972) wé AFZAL (1976).
s Perhaps, b the Tirbulence C ity may not have yet accepted GILL's theorem.




and for ;7 <y <1

d .
-‘—1% =F (F)+0(1) as R, - o0 (1.3.46)
(iii) the constants, A, o, can be chosen so that:

l-ac=2 (1.3.47)

Then, there exist fite constants A, B,C, such that as R, — oc:

W=Clhn(R)+A4+0(1) T (13.48)

w=Cln(ys+)+ B+0(1) (1.3.49)
for any y.. (R.) svch that as . — oo:

yy. — o0 and Y= (R:1y+) —0 (1.3.50)

1.4 MILLIKAN'S ARGUMENT EXTENDED TO
TURBULENT BOUNDARY LAYERS

In the fifies, MILLIKAN’s argument was extended to turbulent boundary
layers. CLAUSER :1954, 1956) and COLES (1956), conducting slightly different
approaches ended with similar expressions for the boundary layer parameters
ratios. It seems to ts that COLES’ results, at least as far as the experimental data
computations is concerned, is more precise than CLAUSER’s. It is mentioned that
CLAUSER's work is strongly based on the Velocity Defect form of the velocity .
valid for the wholz width of the boundary layer, whereas the wake function '
analysis by COLES is based on empirical grounds.

1.4.1 CLAUSER’s Analysis (1954, 1956)

CLAUSER (1¢36) extended the log law to turbulent boundary layers. Al-
though he does no: follow MILLIKAN’s argument, he obtains® the same expres-
sions as MILLIKAN being valid for turbulent boundary layers.

[

By a mathemacical more overlooked argument.



He assumed that the inner form is given by the universal Law of the Wall:

U
Z=f (Efﬁ) =f (33,2) (1.4.51)
U, v é
and that the law goveming the motion in the outer region is given by the Reynolds’

number Similarity Law:

u ;TU°° =F (%) (14.52)

So that CLAUSER gets the traditional logarithmic velocity profile:

r 1 v
== Eln (gz,.g) +d (1.4.53)
I
V-Uw _1,, (R,E) +D (1.4.54)
ur X 6

And, again, the skin friction is given by the difference of the two previous -

equations:
cs : X V Cf)

In(R.)+d—D (1.4.56)

¥

CLAUSER finds, from the a survey of the data available, that the constants are:

In(10)
=——" =, 1.4.
X 56 41 (1.4.57)
d=4.9 (1.4.58)
D=-25 (1.4.59)

What is original is that CLAUSER (1954) showed experimentally that the
deviation from the logarithmic law, in both the inner and the outer region, obeys

10



a similarity law in their own respectively non-dimensionalized variables, even in
positive pressure gradient:

1% = [-)lzln (32.%) + c] +h (n%) (1.4.60)
where II is a profile parameter that account for the Reynolds’ number and/or
pressure gradient effects. It is commonly referred to as the form parameter, h
being the wake function. CLAUSER made a re'prescntation of the deviation from
the logarithmic line both in the outer and in theinner’ region availaple. However,
he did not explore all the conscquences of that result.

Secondly, CLAUSER derived expressions for the boundary layer parameters.
The crucial aspect of CLAUSER’s theory is that it is entirely a strict application
of the Reynolds’ number Similarity Law. He therefore does not take into account
his results for the wake function, dependent on the Reynolds’ number and pressure
gradient, and avoids the Law of the Wall physics®. Nevertheless, this assumption
yields consistent results, since the inner region plays a less important influence
than the outer region on the coefficient determination.

Since the ratio of the various thicknesses depend upon the skin friction
coefficient, CLAUSER (1956) formed a thickness parameter, A defined by:

=6/U (14.61)
0
Introducing, the displacement thickness,
7 U
* = —-——\d 14.62
5 / (1 Uw) y (14.62)

0

and the momentum thickness,

TU
- / T (1 — _) dy (1.4.63)
0

It seems that, in CLAUSER s paper (1956), the inner deviation from the logarithmic line has 2 wrong behavior for
y+ < 3, since it is supposed to reach d == —4.9as y3 — 0.

s He uses however the Law of the Wall wo derive the logarithmic velocity profile.

7
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he showed that:

§*
-A—— 7=€ (1.4.64)
b _ 1-G 1.4.65)
K—E( - €) (14.

where

8

U —U\? ,ry '
o= [(*=5) «(%) (1466
0 A 7
The inverse of the shape factor is then given by:

- .si —1-Qe (14.67)

k| =

A strict application of the Reynolds’ number Similarity Law allows us to
calculate the two constants from the experimental data’:

% = 7%—% (%) =36 (1.4.68)
0
G= 7(U°°u" U)z d (-z-) = 6.8 (1.4.69)I
0

Finally, we will mention CLAUSER’s derivation for the shear distribution.
Again, assuming that the whole profile is in aReynolds’ number Similarity form:
U - U o0

u.

=—f () (1.4.70)

and that the Reynolds’ stress is also in a similarity form:

Tt

— =g(%) (14.71)

Tw

3 CLAUSER does not mention how the value of G was obtained, by using the velocity profiles or the boundary layer

parameters profiles, or both.

12



where 7, is the wall shear stress and ¥ is given by:

=12 (1.4.72)
)
CLAUSER (1956) obtained from the continuity equation:
vV d,
z_ (f 7 f) L F(0)=0 (14.73)

And substituting in the boundary layer equation:

U .. 8U 107
Uso ™+ 'a_y‘;% (1.4.74)

he gets the following equation: -

dé( ) [ B 7f ) - ff (17)] =1 (9) (14.75)

which by integration yields the shear distribution:

h(-)——([ £+ /f (C)dC] @+ 75 [yf’-f+f(oo)]@)>

(1.4.76)
The Velocity Defect assumption allows the two expressions in brackets to be
“universal functions”, the shear distribution is proportional to the boundary layer
thickness and is a linear expression of the ratio of the free stream velocity to the
friction velocity:

Ueo

Ur

1_ (1.4.77)
[

1.42 COLES’ Analysis (1956)

Pursuing CLAUSER’s work on the similarity form of the wake function,
COLES (1956) showed empirically that 1.4.60 can be more specifically expressed

g: = [iln (sz'f) - d] + I w (g) (1.4.78)

13



COLES normalized the wake component in 1.4.78, by:

w (0) =0 (1.4.79)

2 1
/ (%) dw = /wd (%) =1 , (1.4.80)
0 0

w(l) =2 (14.81)

giving:

The parameter II which is a distance characteristic of the deviaton from the
logarithmic line is found to be related to the skin coefficient by:

e=lin@w)+d+ 2 (1.4.82)
X X

COLES (1962, p. 56) tabulated the form parameter, II, for different values of
Rs. It interesting to note that for Ry > 5500, II stays constant at a value of:

I =0.55 (1.4.83)

For lower Reynolds’ numbers. the form parameter, II, varies. Based on the
experiments of WIEGHARDT (1944), COLES gives a zero value for 1I for a
Reynolds’ number of Ry = 425. Using 1.4.78, He finds that the form parameter,
1, is related to the displacement thickness and the momentum thickness by the
following relations:

_ (1+1)

&
I 6 x

€ (14.84)

“—f L ol + BII2
-6 _,(+ell+pIY) , (1.4.85)
§ x?

where «, 3 are constants of order unity given by:

A ]

a=24+ /u: (%) In (%) d% ~ 1.600 (1.4.86)

14



1
- % / dy ~ 761 (1.4.87)
0

To conclude, let us rewrite the different thickness ratio, using compact notauons:

i— = & € (1.4.88)
6 x
6 1II 211 -
T (1.4.89)
6 x X
1 211,
—_—=1-— 14.
H I x € (1.4.90)
where the constants are given by
El- = (1+1) (1.4.91)
X X
Hz (1 + ol + ﬂﬂz)
2 = 14.92
x x(1+1I) (142
which, for Ry > 5500 are equal to:
L 378 (14.93).
X
2£ = 6.641 (1.4.94)
x11,

As mentioned in the introduction of this section, the boundary parameters ratio
have the same. expressions, the different constants found by COLES (1956) are
also close to CLAUSER’s constaiits.

We note that in latter work, COLES (1968a) chose an analytical form for the
wake function in the form:

Y\ _ 2 (7Y
w (5) 2sin (2 5) (1.4.95)
and obtains the following results:
g_0ax+m, (1.4.96)
6 X
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6*—0 , 1 . 3 2 52
— = (1+(1?;sn(n))n+§n)F (1.4.97)

where
z

1

Si(z) = /smudu =~z /lnycos (zy)dy (1.4.98)
0 “ 0

COLES (1968a) note that the velocity expressed as in 1.4.78, where the wake

function is given by 1.4.95, has an abrupt change at the outer edge of the layer.

Indeed, the theoretical slope ui,.gl; changes from 1/y to 0, which “ constitutes
an obvious deficiency”.

1.5 CONCLUSION

To conclude this chapter, let us see the four basic ideas on which MIL-
LIKAN’s theory rests:

(1) Law of the Wall for the inner flow,
(ii) Reynolds’ number Similarity for the outer flow,

(iii) Existence of a Matched Region,

(iv) GILL’s Theorem that makes MILLIKAN’s argument legitimate.
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Chapter 2 SOME CRITICAL REFLECTIONS

2.1 THE LAW OF THE WALL — FRICTION
COEFFICIENT MEASUREMENTS

See A.1, Fig. 111 and 172,

() by measuring the skin friction directly, by usi g

he derivative of the momentum thickness in a boundary layer, or measuri

treamwise static pressures in a pipe, (iv) by whar is known as the CLAUSER plot
nethod, i.e., fitting the data in the log region.

All of the above methods have thejr drawbacks and adv.
he skin friction directly supposes that one is able to achj

rethod for the calibration. Often used and less expensive than the skin friction

» unfortunately, for boundary layers,
iy i inner region, because
-hot wire interaction, lack



of precision of the laser technique, etc.). Interestingly enough to this Tespect,
CLAUSER (1956) plots pipe flow experiment points down to the wall, which
may be questionable. (iii) Computing the momentum derivative can also be done
and is done, usually as a checking procedure. This method relies on the velocity
measurements. Moreover, if one wants to compute the momentum loss for a given
flow, one has to measure the velocity profile very regularly along the downstream
axis, which, for calibration purposes, can not always be done. More often done
is the computation of the derivative of the momentum thickness in a batch-wise
fashion, using different flow results. This assumes that there is no initial condition
effects. (iv) CLAUSER’s method is based on the log law results, results that are
questioned here.

KLINE et al. (1967) show clearly that the way of determining the friction
velocity is crucial, and yields different results especially in a pressure gradient
flow. KLINE et al. argued that CLAUSER (1956) determined Van KARMAN’s
constant and the y-intercept of the log law from LAUFER’s (1954) pipe data,
but only from y. > 70. They further argued that if CLAUSER had employed
LAUFER’s channel data, the two methods of determining the friction velocity
would have given the same results.

It seems to us that both methods, the CLAUSER plot and the wall slope
method do not give the same results in general. In fact, we see in KLINE et al.
that there is no order in the way the different profile separate from each other
when plotted in variables based on the friction velocity, u,, determined by a wall
slope method. For that reason, we object to the actual computed values of u, in
KLINE et al. Clearly, a small error in the friction coefficient, u,, gives a random
scatter in the log-region... and thereby explains the attraction of the CLAUSER
plot method.

2.2 LOW REYNOLDS’ NUMBER EFFECTS

There are few people who challenge COLE’s hypothesis and results for the
wake function. However, an important area of controversy is the behavior of
turbulent flow at low-Reynolds’ number. Indeed, the flow is turbulent in the
sense that the fluctuations have a significant energy and a strong effect on the mean
velocity through the Reynolds’ stress they generate. On the other hand, the range
of scales is not sufficient enough for many widely-used theoretical arguments,
which are based on the separation of large and small scales. To this respect,
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COLES (1968a) and SPALART (1988) notices that the theories have been unable
so far to predict the universal Van KARMAN’s —and KOLMOGOROFF’s—
constant(s). Low Reynolds’ number experiments do not tend to support the
universal character of x and d, as well as the behavior of the form parameter
II. SIMPSON (1970), SPALART (1988) and PHILLIPS (1990) find a Reynolds’
number dependence for Van KARMAN's constant, x. Furthermore, PHILLIPS
(1990) obtains results for the form parameter, II. On the other hand, we will
mention in the next chapter PURTELL et al. (1981), who believe that x and d
are not altered for low Reynolds’ numbers.

2.2.1 SIMPSON (1970)

SIMPSON (1970) finds that the Van KARMAN's constant is decreasing for
low Reynolds’ number and he proposes:

x = { 0.40 (%%) " for R < 6000. (2.2.100)
0.40 for Rg > 6000.

to model empirically that variation. Let us note that SIMPSON uses measurements
taken in the outer region, and does not g0 down to the wall.

222 SPALART (1988)
See A.l, Fig. 1.2.
SPALART (1988) simulated numerically a turbulent boundary layer on a

flat plate with zero pressure gradient for four Reynolds’ numbers ranging from

Re = 225 to Ko = 1410. Because of the nature of his work, he encounters

low Reynolds’ number effects. Interesting for us, he compares the mean velocity

profile with experimental data and the theoretical log-law. More interegﬁng, he,

apparently the first, plots the velocity derivatives:

d:
yﬁu;]l-u—+ =g(y+) (22.101)
Y+

which enables seeing the logarithmic region and measuring Van KARMAN’s
constant by seeking the minimum of the previously defined function, g. In other
words, this procedure amounts to seeking the inflection point of the velocity profile
and determine Van KARMAN's constant, x, and the y-intercept of the log-law,
d. He notices that this procedure is sensitive to the noise and may therefore not
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be suitable to experimental data. On the other hand, his simulation shows a low
level of noise. He therefore prefers this method to the questionable “CLAUSER
plot method”.

SPALART notices that at the lowest Reynolds number, R = 300, the region
of local minimum of the g function is narrow and appears to get somewhat wider .
as the Reynolds’ number increases. Moreover, the Van KARMAN’s constant,
the local minimum value, is seen to vary with the Reynolds’ number. SPALART
gives two possible explanations, preferring however the second one:
(1) this phenomena may be reminiscent of SIMPSON interpretation, i.c., at low-
Reynolds’ numbers, there is a log region but Van XKARMAN’s constant varies.
He compares his value to SIMPSON’s expression and finds that his values for Van
KARMAN’s constant (0.32, 0.38 and 0.40) are not as far away from the traditional
Van KARMAN?’s constant (0.41) as the one given by SIMPSON's (0.28, 0.31 and
0.34).
(i) the log layer, because of the very narrow region and the variable Van
KARMAN’s constant does not exist at low values of Reynolds’ number and
appears for £y = 1410.

2.2.3 PHILLIPS (1990)

PHILLIPS (1990) objects to COLES (1956) results at low Reynolds’ num-
ber and has an interesting theory. According to COLES (1956), based on
WIEGHARDT (1944) experiment, IT = 0 for Ry = 425. We note that COLES
(1968a) recognizes that the very use of the logarithmic profile in evaluating the .
displacement and momentum thickness leads to some scatter at low Reynolds’
numbers. 10,

Seemingly, PHILLIPS (1990) derives that:
xc =2 (2.2.103)

He is therefore able to derive two solutions for II, one positive and the other
negative. He quotes SMITS et al. (1983) who found a logarithmic region for
a Reynolds number of Ry = 365, indeed, PHILLIPS derives that the form
parameter, II, is zero for Ry =~ 70.

1 He proposes to correct the displacement expression 1.4.84 by reduci g the Reynolds® ber based on the
displacement thickness by 65:

Be =8 a+mE 2.102)
R X
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2.3 THE MESOLAYER: AN ALTERNATIVE TO THE
TRADITIONAL MATCHED LAYER (LONG, 1981)

LONG et al. (1981) proposed an alternative to the classical logarithmic theory.
In fact, he rejects the overlap process and finds that a new region, the mesolayer,
exists. Let us try to shed some light on that theory.

According to LONG et al., in the classical theory, the viscosity is unimportant
in the outer region, whereas in the inner region, the outer scale is unimportant, so
that in the matched layer both viscosity and outer scale are unimportant. LONG et
al., on the contrary, argue that, as we move from the inner region to outer region
the outer scale is becoming important and the viscosity is becoming unimportant.
Therefore, in the transition region, both viscosity and outer scale are important!?.
To illustrate this point, LONG et al. give the example of mathematicians carrying.
out singular perturbation methods to derive second order behavior in the matched
region using the Reynolds’ number, R., as a perturbation parameter in their
expansion. This perturbation parameter involves both the outer scale, viscosity and
the friction velocity that can be seen as a combination of outer scale and viscosity
effects. Going further, LONG et al. argue that contrary to the classical theory,
the Reynolds’ stress in the overlap region is heavily influenced by viscosity. In
fact, they find apparently that the maximum of the Reynolds stress lies on the
following curve:

v, = 1.89%3 (2.3.104)

Interesting for us, LONG et al. derive expressions for pipes and turbulent
boundary layer ar zero incidence and obtains!? a log-law for pipe flow in the
mesolayer and a power law for boundary layer flow. On physical ground, it is
argued that: «

e= — (R,)" ™ (2.3.105)
Ag

and 1 ,
R, =—(R:) ™ (2.3.106)
By

N The present writer notes that if one follows MILLIKAN's argument, the physics involved in the mawched layer is

Dot used in the matching process, once both inner and outer laws have been defined.
2 The full details of the derivation have not been provided.
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Using the data of SMITH & WALKER, SCHULTZ & GRUNOW and
WIEGHARDT, it is found that:

Ao = 11.86 L (23100)
Bo = 0.0301 (23.108)
s = 0.0635 (2.3.109)

2.4 THE POWER LAW: AN ALTERNATIVE TO THE
LOG LAW (GEORGE, 1989)

GEORGE (1988, 1989) rejects, for boundary layer, the velocity-defect in a
“Reynolds Similarity” form, and thus writes it in a strict similarity form:

= A 2.4.110
v. - F (3) (2.4.110)
Indeed, he argues that the friction velocity is not the proper outer velocity scale,
and takes the free stream velocity, Uy, as outer scale, on the ground that the
overlap layer should include both viscosity and inertia effects. Assuming that:

Yo _ 4 (%)" (.4.111)

he derives that at infinite Reynolds’ number, the velocity profile in the matched
layer is given by a power law, i.e., in inner variables:

U C/[(y\ A

—_— == 24112

Ur A ("7)"' ok ¢ )
and in outer varables:

U L (y\ -

7 = C (5) (2.4.113)

Note that the matching of 2.4.112 and 2.4.113 recovers 2.4.111 thereby demon-
strating the consistency of the derivation. A few remarks need to be made:
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(i) From a physical point of view, the derivation is highly dependent on
two assumptions, 2.4.110 and 2.4.111. Both relations need to be verified exper-
imentally. Indeed, since Van KARMAN’s work (1930), most experiments are
interpreted as supporting the Reynolds’ number Similarity Law.

(ii) From an experimental point of view, it is well known that, fitting the veloc-
ity profile with a power law, leads to a power that is dependent on the Reynolds’
number. It should be noted that experimentalists unaware of the asymptotic ex-
pansions matching concept, have previously determined the exponent by fitting
the whole profile. On the other hand, GEORGE (1989) suggest that the exponent,
v, is characteristic of the matched layer at infinite Reynolds’ numbers. Therefore,
one needs to find v from large Reynolds’ number experiments, and be sure that
the data reflect the true asymptotic behavior. '

(iii) From a mathematical point of view, 2.4.111 is given a priori whereas
it should be an important deduction. Note however that this assumption yields
consistent results!3.

2.5 FRICTION COEFFICIENT EMPIRICAL FORMULAE

There has been numerous attempts to give empirical friction coefficient laws,
MONIN and YAGLOM (1972) have a good summary of those. Let us just point
out some of them.

If one assume the “ one-seventh law”, valid for moderate Reynolds’ numbers,
one may obtain, see SCHILCHTING (1960), BLASIUS’ expression:

¢ = 0.0576 (R,)™* (2.5.114)

which gives a good description of the friction coefficient measurements in the
range: 5.10° < R. < 10°. But, for larger Reynolds’ numbers, the velocity

profile shows an increasing power. As a consequence, the power in the friction .
"‘law is also increasing. Up to a Reynolds’ number of R, = 10°, good agreement
with the data is obtained with FALKNER’s (1943) expression:

¢f =0.0262 (R.) ™ (2.5.115)

B Indeed in the next chapter, it will be seen that 2.4.111 can be derived from a Strict Similarity assumption using the

Asymptotic Invariance Principle.
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. Before we close this section, let us give LUDWIEG-TILLMANN's (1949)
formula which is often used by COLES as a comparison to his expression:

cs = .246 1070678 H p-268 (2.5.116)

This expression is interesting in the fact that it uses the shape factor and the
Reynolds’ number based on the momenmm thickness. Moreover, it gives a
explicit soluble form for each of its variable as function of the other two.

2.6 MATCHED ASYMPTOTIC EXPANSIONS

A number of efforts, TENNEKES (1968), YAJNIK (1970), MELLOR (1971),
BUSH and FENDELL (1972), (1973), (1974), AFZAL and YAJNIK (1973),
AFZAL (1976), LUND and BUSH (1980), have been made to extend the classical
theory to higher orders. In this section, we will attempt to review some aspects
of this work.

- We already have seen that equating velocity derivatives involves a ratio of
inner and outer length scales which is the Reynolds’ number, R,. It is important
to note that this number is the only parameter that enters the description of the
flow, see 1.2.39 and 1.2.40 for pipe flow, the usual Reynolds’ number based on
the outer scale or the outer velocity scale only appears in the influence it has on
R.. It is therefore the (only) perturbarion parameter if one applies a perturbation
method to the flow.

Often to achieve that goal, one needs a “closure” concept, either a closure
model, to the first or the second order, or MILLIKAN’s argument. This is
especially true for boundary layer flow (for pipe, more simple goveming equations
enable some deductions for the inner and outer expansions). Indeed, YAINIK
(1970) assumes that:

—_— — (2.6.117)

. what should indeed be a major deduction.

MELLOR’s (1971) approach differs from the traditional approach, indeed he
considers three region: (i) the viscous region, (ii) the defect layer, what is most
often called the outer region, (iii) the inviscid region, which, argues MELLOR,
is a part of the total problem and has therefore to be taken into consideration.
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He obtains a logarithmic law for the outer asymptote of the viscous layer or the
inner asymptote of the defect layer. Moreover, one may also recognize COLES’
law of the wake as the Velocity Defect from which the common asymptote has
been subtracted. Apparenmtly, MELLOR could only obtain the first order with
this procedure.

BUSH and FENDELL (1972), (1973), (1974) adopt closure models to find
the higher orders: eddy viscosity model in channel and boundary layer flow
(1972), (1974), or energy conservation in channel flow (1973). Later, using eddy
viscosity model, LUND et al. (1980) generalize the POISEUILLE fiow results to
COUETTE-POISEUILLE flow. Intéresting is the fact that they conclude that the
conventional eddy diffusivity . closures are inadequate for this type of flow.

FENDELL (1972) follows MILLIKAN and matches the velocity derivative
to derive second order expressions for pipe flow and turbulent boundary layers.

AZFAL and YAJNIK (1973), considering essentially pipe and channel flow,
assume the general form of the inner and outer expansions of the laminar and
Reynolds’ stress, in the outer region:

Uow = Ur (3) + U3 (¥) + €Us (F) + ... (2.6.118)
Tou = T1(3) + €T3 (T) + €T3 (F) + ... (2.6.119)
in the inner region:
Uin = u3 (Y4+) + eua (y4) + us (y5) + ... (2.6.120)
tin = 1: (y+} — €ty (y+) + €2t3 (y.,.) + ... (2.6.121)
where the perturbation parameter is given by:
€= §Ri* (2.6.122)

We will note in lower case the non-dimensionalized velocity and Reynolds’
stress, and in capitals the non-dimensionalized velocity and Reynolds® stress. For
instance, in the outer region:

Uow = VU (2.6.123)

Ur
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U1 =8 In(1+ Y+) + X (v4) (2.6.127)

U2 = azy, + byln (1 +yy)+ A2 (yy) (2.6.128)
The constants jp, the previous €quations are:

- ¥+
b
0

Uy =8 In @) + A, @) (2.6.130)
Up=-2 4410 (3) + A2 (5) (2.6.131)
y

e, A, is given by:

— 1 - 1
(y) = Un (5) + 2c152,n +a, (y ‘5) -
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Matching the mean velocity, AFZAL et al. get:

%lne =(1+e(—=xb2) +...)

~ur ((A1(0) — A1 (00)) + €(A2(0) — Az (00) — xb2 (A1 (0) — A (00)))+ -)
6133)
where:

x=— (2.6.134)
by

On the other hand, AZFAL (1976), folowing MILLIKAN and FENDELL,
matches the velocity derivative and deduces the Reynolds’ stress. The interesting
point is that he uses MILLIKAN’s argument, in fact GILL’s theorem, to get both
the first order and the second order:

6u1 6

u2 — 3U1 - 3U2 2
—_— e = 2.6.
Y+ B +ey+a++0(ez) Y5y ey6§+0(e) (2.6.135)
To the first order, the classical MILLIKAN form is obtained:
6‘!1.1 6U
y+-6;— +0(e) =y —— 57 + O(e) (2.6.136)

Finally, AFZAL obtains, as y4 — oo:

b
tn = (Al In (y-:-) + by + ;2‘ + ...)
+e(Bay+ + Azln(y4) + dr + .. ) + O (%)

(2.6.137)

and as ¥y — O
=(4A;In(y)+ By = B2§+...)

2.6.138
+e <—-;—2+Azln(y) D; +. ) +O(62) ( )
As in MILLIKAN’s derivation, the skin friction law is obtained by subtracting
the outer form of the expansion in the matched region from the inner form of the
expansion in the matched region.






Chapter 3 ASYMPTOTIC INVARIANCE
PRINCIPLE (A.l.P.)

3.1 ASYMPTOTIC INVARIANCE PRINCIPLE

To see more precisely what is invoived in the derivation of the matched layer
we will derive here the log law in the matched layer assuming a Reynolds’ number
Similarity form for the outer region. We do not consider MILLIKAN’s argument
since GILL’s assumptions have not been studied expenmcnta]ly -

The Asymptotic Invariant Principle (A1P.) is introduced and used to derive
the leading term in the matched region assuming a Velocity Defect or a Strict
Similarity form. It is clear that one needs more assumptions relevant to the
problem considered if one wants to get second order terms. In doing so, the
Asymptotic Invariance Principle might be useful.

By Asymptotic Invariant Principle (A1.P.), we mean that:

1. The velocity forms of both regions are “matched”’4.

2. We derive that “matched” cxpmsion of the velocity with respect to the
perturbation parameter.

3. We derive that “matched” expression of the velocity with respect to an

intermediate matching process type of variables characteristic of the matched
region:

Ye=e() T=r0(c) ey+ (3.1.139)
where ¢ is the perturbation parameter, given here by:
) _

=5 3.1.140

=g (3.1.140)

The following derivations are appropriate for boundary layers with or without
pressure gradient, but may be extended to pipes or channels. We obtain a necessary
condition for this process which practically gives an expression for the friction
coefficient!’.

1«
15

Equate would mathematically be more correct.

We can recover, if we assume a Reynolds’ number Snnilmty the logarithmic result for the friction coefficient or
GEORGE's a priori assumption if a Strict Similarity assumption is made.
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3.2 A. L. P. APPLIED TO A VELOCITY DEFECT

Let us consider a boundary layer on a flat plate, and express the velocity
form in the outer region as:

Ule9) = lo(e) Ur(€) F:{7) + .. (3.2.141)
and in the inner region:
U(e,y=)=u1(e) fi{y+)+ - (3.2.142)

The different scales are, see for instance FENDELL (1972):

Up = U, T (32.143)
Uy =u, (3.2.144)
U = U, (3.2.145)

Following AFZAL (1976), the higher order velocities may be given as power of
the perturbation parameter, but, as we mentioned prcvxously, only the first order
terms are considered in this work.

- The non-dimensionalized length variables are for the outer region:

F= % (3.2.146)
and for the inner region:
yo=2 (3.2.147)
n
where the length scales are §, the boundary layer thickness, and 7, given by:
”:’ =1 (32.148)

The perturbation parameter is given by the ratio of inner to outer scales:

€=

on |3

(3.2.149)



Using an intermediate matching process type of variable!®, Yo, Charactenstic
of the matched region, see COLE (1968), we consider the velocity form in the
maiched layer associated with the limit:

e—0, at yo=0(c) Yy=0(¢€) ey-, fized (3.2.150)
where:
ord{e) Lord(p) <1 or (_é_’ — oo and o — 0) (3.2.151)
\ € €—0 €—0

Let us note that the different velocity and length scales have for a boundary
layer on a flat plate an x dependence. As a matter of fact, the perturbation
parameter for a given flow can be determined as a functon of x and vice versa.
The relationship may be given by an expression relaing the friction coefficient
to the Reynolds’ number based on x. To achieve a perturbation method, the
perturbation parameter is considered to be constant. In a boundary layer, the
perurbation parameter, € = 1/R,, as we move downstream decreases and tends
to zero monotonically. Naturally, the perturbation factor varies, and naturally the
velocity in the matched region reaches irs asymptotic expansion. We argue!” that
it is possible to derive with respect to the perturbation parameter, and match the
derivatives obtained for both regions.

From 3.2.142, and 3.2.141, we get to the first order:

w1 () fr (—(—lym) = Uo () + U1 () Fi (2(e) o) (32.152)

We derive equation 3.2.152 with respect to y,:

’ [ ET’ ' (€ rr i S
i) L2 (8dy) =9 e F et 62159
We derive 3.2.152 with respect to e

i@ A (D) +u OS2 @wh (20) o5
= Ua () + U1Fi (e () ve) + Ur () 2 (€) wFi{e(e)w,)
16 This following derivanon without the use of the matched variable, 34 keads w 2 contradiction, which scems nanural

considering the matching process theory.
17 Note that we do pot argac on mathematical grounds.
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considering 3.2.153, 3.2.154 simplifies to:

u, (€) fi (-“-’L:lw) ! ('6)% (!;('Efl%) f (g(:)y") (3.2.155)
= Ug (€) + Uy (€) F1 (e (€) ve)

which simplifies when applying 3.2.152:

' { /ol o
u, () fi (9;%) - (e)é‘ e__)y) £ ( (:)ye\)
‘ (3.2.156)

~vi(9+ 20 (w @A (-"-‘—)-y) - U0(9)

(- o (400) - (420 (42

or

|

(3.2.157)

finally:

1 vy Uy

. ’ ’ U: Ul r
y+f (y+) —% (;’% - %lul) (o) f (y+)+% (—° - —l—li‘i> (=0 (32.158)

By assumption, the asymptotic profile, fi (y+), cannot depend on x, therefore the
x-dependent coefficients are proportional to each other. So that, 3.2.158 becomes

: 1
y-f (y+)—m fy+) — o =0 (3.2.159)

where the constants are defined by:

v _ U\ ot
(m U1> () = (3.2.160)
and
Uy Ulo 11
0 _-170 == 2.161
(ux Ulul) () Xi € (3:2.161)
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We can integrate the right hand side of 3.2.160, and get:
2L (€) = Ayem (32.162)
U,

Using 3.2.162, 3.2.161 can be written:

UyUy - UsUs o n
i (g=-2 32.16
( U2 )( ) =% (3.2.163)

which can also be integrated:

ﬂ(e) ={_’%ln(f)+-51 iffn=0

—ﬁte’" + A, else (3:2.164)

In outer variables, 3.2.154 and 3.2.153 also yield:

21(0) (U0 () + U3 (9 Fa (2(we) ~ U (97 (e () F (e(€) %)

= Ug (€) + Uy (€) F (o
o(¢) 1(€) F1(2(€)yp) (3.2.165)
or

—0(€)yoFi (e(€) o) + € (:—i - U‘) (€) Fi(e(e)yo) +

Uo LO_;
=€l = —— €
(Ul i1 ul) (9
which gives finally:

TF (@) —¢ (ﬁ - gl) () F1(y)—e (E— - 2‘1“1) (=0 (3.2.167)
Ul L1 U

(3.2.166)

11
or expressed with the proper constants:
! 1
TR@) -nA®@®) - = 0 (3.2.168)
(4

where

1o (Efg _ _E.“_l) (=2l (32.169)



We choose to find our solutions by considering two cases depending on the
existence of 7).

First case: v, = 0:

We have:
uy =U; (3.2.170)
and
r_1_1 (3.2.171)
Xi Xo X
where % is given by:
1
©ho=-tn@+m (3217)
U] X
The equations for the profile are:
' 1
v+ filys) = = =0 (32.173)
= =y 1
vH () - > =0 (3.2.174)
which give the following solutions:
1 .
filus) = 2 (v+) +du (3:2.175)
S .
R (y) = ;ln (y) +D; (3.2.176)
Combining the two solutions yields:
' 1 S
w) (; In (y+) 4 dl) =Upg+U; (;ln(-fi) + D]) (3.2.177)
giving:
dy— D)= E (3.2.178)



Second case: 73 > 0 or 11 <0
We can derive 3.2.159 and 3.2.168 with respect to y;:

yofi (¥+)— 7 f1(y=) =0

§F (3)-nF 3) =0
So that the solution to 3.2.159 and_ 3.2.168 are:

a; 1
Hly)=a(ys) ——
T1Xs

A®=CE" - —
Y1Xo
Combining the two solutions yields here:
N ul ] -—\M L.l
auiy; — 7—— =Up + C1U;y (y) -

1Xi T Xo

1
A2 + (_—) AEm +(Cr—adh) (@ =0

Xim

There are two independent parameters in this equation, therefore:

4,=0
Ay
Xi

61.41 = Cl

However, 4; = 0 is a degenerate case. Therefore, we have:

A2=—=—=0
Xi X0

(73]
W

(3.2.179)

(3.2.180)

(3.2.181)

(3.2.182)

(3.2.183)

(3.2.184)

(3.2.185)

(3.2.186)

(3.2.187)

(3.2.188)

(3.2.189)



And, the matching conditions reduce to:

Then, the solutions are:

fily+) =c(y:)™

A(y) =Cm)"
where:
(5] A1 = C]

3.3 A COMMENT

(32.190)

(32.191)

(32.192)

(32.193)

(32.194)

dt is extremely striking that the matching conditions found for the power
law are analogous to the relations expressing the ratio of the. KOLMOGOROFF

scales to the big eddies scales:

1
w=(7)

(33.195)

where ng and vyx are KOLMOGOROFF length and velocity scales and u, [, are
representative of the big eddies. If we express the different ratios as function of
the Reynolds’ number representative of the big eddies,

!
Ry =— .. (3.3.196)
14
we have:

=3

=gy (3.3.197)

ZK _ gy (3.3.198)
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and the ratio of time scales is:

;—_Rl

o=

.
ri (3.3.199)

where + is KOLMOGOROFF time scale and 4 is the time scale representative
from the big eddies.

To conclude this topic, we express our velocities and length scales ratios in
the same way as KOLMOGOROFF’s ones:

% =R, (3.3.200)
f’]t. =R, ™ (3.3.201)
[« =]

3.4 CONCLUSION

Assuming an Velocity Defect form for the velocity in the outer flow:
U(e,y+) =v1(€) fi(y+) + - (3.4.202)
and in the inner region:
U(e,y) =Uo(e) + Ui (e) A (¥) + - (3.4.203) -
where the velocity scale are:

u =U; = u, (3.4.204)

Up =Ux (3.4.205)

and applying the Asymptotic Invariance Principle yields that the leading tem in
the matched region is given by a log-law'®:

Yo _1y, (1> +E (3.4.206)

uy X €

B From now on, the constants notation is simplified



1
fl (y+) = ; In (y+) +d+ ... (3.4.207)

A= iln @) +D (3.4.208)

whcre:

d—-D=FE (3.4.209)

On the other hand, with a Strict Similarity assumption for the outer region:

Uley+) =uva(e) f1(ys+) + .. (3.4.210)
and for the inner region:

U(e,3)=Us(e) L (¥) + ... (3.4.211)
where the velocity scales are:

u; = ur (3.4.212)

U, =Ux (3.4.213)

it is easy to apply the AIP. in the same way as done for the Velocity Defect and
show that the leading term in the matched region is given by a power-law: '

%.’— = 4 (3.4.214)
1

(=) =c(ys) +.. (3.4.215)
@ =CE +.. (3.4.216)

where:
cA=C (3.4.217)



Chapter 4 BOUNDARY LAYER
PARAMETERS RATIOS, X-DEPENDENCE
AND FRICTION COEFFICIENT

We derive in this chapter some relations between the boundary layer param-
eters §” and # using a power law as being the leading term in the matched layer.
Two derivations yielding the same result will be presented. The second one, fol-
lowing GECRGE (1989), based on an expression for the composite velocity is
very efficient in this respect. A more piimitive, but nevertheless mathematically
presentable, derivation is done first.

We note that explicit expressions are obtained for the x dependence and
friction coefficient, which is essential to the experimentalists!®.

4.1 FIRST DERIVATION

We assume that the outer edge of the inner region moves as the inner scale,
and that the inner edge of the outer region moves as the outer scale. We will pick
(kn) “in” the marched layer, i.e, we assume that the leading term in the matched
expansion is reached for y+ > (kn). Similary, we pick (K'é) “in” the matched
layer, so that the leading term in the matched region is reached for ¥ < (K§).
Assuming an overlap, we have to the first order:

uy f (y+) 0<y. <k
u={uey -+ =U,C@F) +.. k<ysond F<SK (41218
Ui F(9) K<y<l1

4.1.1 Displacement thickness
The displacement thickness is given by:

& %/ (1 - —-) (4.1.219)
0

See for instance in the nex: chapeer, the problem of expressing the friction cocflicient as a function of local vanables.
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breaking the integral into three pieces:

k K o

& U u u

bl 222 ) a4y 4 — = \)d7- =

6 6/(1 1u1>_y_ —L/(l Ul)dyJ-/(l U>dy (41220
0 K

ke

or . .
5 k K oo
F=<[(1-2r60)de+ [-ceMazs [a-Fane
0 ke K
(4.1.221)
Let us note:
(1-K)—Ix = / (1- F(7))d7 (4.1.222)
/.
I = / f(y+)dy+ (4.1.223)
0

and notice that:

/ (1-C(@)7)d7 = K — ke) - ﬁ; (cE™ —c(kg™!)  (81229)

so that 4.1.221 becomes: 7
& CK¥ 1 v+l [ N7 uy
—_— =11 — Il = R 1.
- [1 (1_7 ,I1\>} ,e[1+7(0(k) (e)") 7 h| 41225)
or, using the marching conditon:
& CR— c (k)™ 0
—=1{1- — L= 4.1.226
é [1 (1-7 +IK>]+[1+‘7 H o ( )

or equivalently:

% - Io) + [In - Ij] Ae? (4.1.227)
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introducing:

1-Io= / (1- F(7))dy (4.1.228)
0
In-Ir= / (vl — f(y+)) dys+ (4.1.229)
0

4.12 Momentum thickness

Let us do the same with the momentum thickness:

6
0

9 k K oo
u; u U u u u - u uw\ ,_
b [ Vg o[- ag+ [2(1-2)d
5 ° Uiy (1 Uﬂu) y+-L./U1 (1 Ux) y+/U1 (l U1> Y
0 K

(4.1.231)
We note
k
Jy = / £ (v+) dys+ (4.1.232)
-
o0 L )
(1-K)-Jk= / (1-Fi(g)dy (4.1.:233)
X
and notice that:
7 1
X 1__“_>d—=__ CK™7 — C (ke)"™
ZUI( ) *? “‘7( (ke) ) (4.1.234)
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So that 4.1.231 becomes:

0 u) 2
5 6711"-6<U1> Jk+IK—JK
1

b (CIK”’ - C(ke)”“) -

2 prl+2e _ 2 2v+1
o (c’k C? (ke)™")

1+2y

(4.1.235)
or

0 CK1+'7 J 02K1+2‘7
£= () - (e )]

st () et ()

(4.1.236)
or more synthetcally:
b - [Io = Jo) = Un — I1) A" + (I — J] A2} (4.1.237)
which gives to the second order:
0 .
3= [Io — Jo) — [In - I} Ae*? (4.1.238)
where:
[« o}
Io-Jo= / (F(®) - F*(3))dy (4.1.239)
v\2 2
Jn=-Jr= / ((cy+) -f .(_y_+)) dy.. (4.1.240)
J s
4.1.3 Shape factor
From 4.1.227 and 4.1.237, we can deduce the shape factor:
f_1_.,
& H (4.1.241)

+[(1= Jo) + [Un = I 2 1 [(1 = To) + U — I A
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or

1 ].—JO J]]‘—J] 2 24=1 III_II

= =-1 1+ A% AT (4.1.242)

T +1—Io —rl_JO-le /1+1_IOAe (4.1.242)
isolating the leading term yields:

1 Io-Jo 1-JolIn=-Ir, .01 In—=Jr,3 9941 . -

H = 1 — Io 1— Io 1 —Io .-16 —_ r—jo—A € T e (4.1.24-)
which gives to the second order: N

L. foJdo_(1=Jo)Un—11) ,4n (4.1.24%)

H ™ 1-Io (1-—1'0)2

4.2 SECOND DERIVATION

Following GEORGE et al. (1989), we express the solution valid in the
matched layer as a composite velocity, i.e., the sum of the outer and the inner
solutions minus the common part, here the power law, which we express for
convenience in inner variables:

u=U1F(y) +u (f(y+) - cyl) + ... (4.2.245)
The displacement thickness is given by:
5' (e o] (==}
— - u
5= /(1 - I'"(y))d!y—eb—,.l1 / (f (y+) — ev]) dys (4.2.246)
0 0
giving as a result:
5 .
~ = - Ioi+[In - Ii] AeTH! (4.2.247)

The momentum thickness is on the other hand given by:

= 0/ (F @) + -;}—11 (£ (e9) - dﬁ)ﬁ)) (4.2.248)

0
5

- u - -\ -
(1-F&)- 2 - e ) a3
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or

%: /F(y)(l —F(y))dy+e%‘;/(f(y+)—C(y+)’) dy-
0

~2erk / F (%) (£ (v2) - e(v)7) dvs (42249)

—€ (%%) /(f (y+) - q(y,-.)")’ dy+
0 .

For the third integral, we can say that in the region where the inner function, {, is
different from the asymptotic power law, i.e., in the very inner region, the outer
funcdon , F, reaches its asymptotic state, i.c., a power law:

oo

U—l / y+ (f (y+)—C(y+)") dy+
o (42.250)

~ 2 < )2 7C(y+)" (f Ey+) —e(y+)7) dy-
] :

From which it follows that we find the same result, 4.1.237, as previously:

0

7= Io — Jo] = [In — IN| Ae"™* + [Jn, — Jp] A2 (42.251)

4.3 X-DEPENDENCE, FRICTION COEFFICIENT

In a zero pressure gradient flow, the momentum integral is:

gg - %c, (43.252)
or dR £
m" = AR, (43.253)



With our expression of the momentum thickness, 4.2.251, 4.3.253 becomes:

ez ) dX -5
([Io —Jol + ﬁ [Jr = Jdn)(Rs) " ) d"i = A’R; '
(o~ Jo) (Re) + T 101 - Tn] (Re)™= ) s = 42,
1+ 04 p)
1+3 [Io Jo! (?‘26) = +[Jr - JJI] (Re} 7 = 4 (Rz — Re,)
1+ _——
T3, L (1o — Jo] Rs + [J1 — Jn] (Rs) = (Rz Rz,)

4.4 SUMMARY-REMARKS

Let us rewrite our equations as follows:

=[1-Io)Rs + In - I1)

I T
=Io-JolRs—[In—-In)+[Jnn = JriR; ™"

1+ .1 =
X {To - Jol 75 ()™ — 17 ~ Jri 3 (R
= Rz - 32::0
or equivalently:
147 (Lo \TE L (e
T+, 10~ ol (Aﬁ’) Un =J13 (A2 2
= Rz - Rzo
where:

oy

|
)

8 1l
-

i

lo~Joi= [F@ 1 -Fa)ds
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(4.3.255)
(4.3.256)

(4.3.257)

(4.4.258)

(4.4.259)

(4.4.260)

4.4.261)

(4.4.262)

(4.4.263)



U =1 = [ (e} = £ (us) dus (44.264)
0

0

[(In-Ji= / ((¢y3',)2 - 5 (y+)) dy, (4.4.265)
o
The shape facior is given by:

1 [I -~ Jo] [1 —Jo] _ [I "II] [Tz "JII e
- [f— Io] [1-1Io] R [ [111_ Io] [11_ Jo] R+ J
(4.4.266)

which gives a simpler expression to the second order:

1 _do-Jo} [1-Jo]lIn -1
H ™ 1~Io 1- Io]2

®;! (4.4.267)

Note that all the expressions in brackets are positive, since for the whole
boundary layer:

F@@)>C®@) (4.4.268)

F(ye) <c(y+) (4.4.269)

As mentioned by GEORGE (1989), COLES results forecast that the shape
factor goes asympiotically to 1. Also, the ratios of the conventional boundary
layer thickness to the displacement and momentum thickness is asymptotically
undefined.

On the other hand, we see that in our equations, the first order terms, [1 — Ip)
and {Ip — Jo), are only given by the outer behavior, the higher order terms,
Iy — I1] and [J; — Jg), are given by the difference of the leading term in the
matched region, the power law, and the inner behavior. The present theory does
not forecast the values of the different constants.



Chapter 5 EXPERIMENTAL DATA

5.1 EXPERIMENTS DESCRIPTION

In this section we will present a brief description of the experimenial data
that have been used. '

5.1.1 SCHULTZ and GRUNOW(1941)

SCHULTZ and GRUNOW (1941) determined the friction coefficient in two
ways: momentum loss computations from velocity profiles and a floating element
device measurements, i.c., the friction resistance was also measured directly
on a rectangular test plate mounted movably in a sector of thé principle plate.
SCHULTZ & GRUNOW noticed the latter method proved to be more accurate.
Note that the same floating element method was used by KEMPF (1929). The
edge of the principal plate was greatly curved to insure that the transitional region
was situated on the leading edge. Furthermore, to insure the formation of a
new friction layer on it, a slot was provided below this edge through which the
friction layer of the blower chamber wall exhausted. Three surface were explored:
a built-up plywood plate, a puttied, polished, and lacquered surface of high power
metal airplane and a thick metal panel. SCHULTZ and GRUNOW deduced the
following value of Van KARMAN's constant and y-intercept of the log law:

—593, d=407 (5.1.270)

Ll

Let us note that these profiles are defined by a relatively small number of
points, none of which lay in the viscous layer. As a consequence, computed values
for the integral parameters are strongly affected by the choice of the extrapolation
scheme for the different integration computations. More practically, no tabulated
data are available in SCHULTZ and GRUNOW (1941), requiring the data to be
" determined from the graphs.
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5.12 WIEGHARDT and TILLMANN (1944)

WIEGHARDT and TILLMANN (1944, see also, for tabulated data, COLES
et al., 1968) measured velocity profiles over a flar plate. The boundary layer was
tripped, a blunt nose at the leading edge fitted with a small trip wire constituted the
tripping device. The model was a waxed-plywood plate with a slightly undulating
surface. Data were obtained using a rake instead of a single probe. This technique
fixes the relative positions of the data points, and also avoids some effects of
drift in tunnel conditions by speeding up the data-taking process. However, the
data might have been subject to more wall interference than usual. The tunnel
turbulence level was about 0.25%.

Finally, note that no friction coefficient was given by the authors, however,
COLES (1968) did provide?® values for the friction coefficient using log law
results. Also, in this experiments, no points from the viscous region were obtained

so that, here too, the integrals parameters depend on the model chosen for the
viscous sublayer.

Pl

5.1.3 KLEBANOFF and DIEHL (1951)

KLEBANOFF and DIEHL (1951) investigated how to tip and artificially
thicken turbulent boundary layers. Various devices were used such as rods,
screens, and distributed roughness to force transition of the laminar boundary
layer. Distributed roughness in the form of sandpaper was found to be the
most useful to trip and thicken the turbulent boundary layer.. KLEBANOFF
and DIEHL compared velocity profiles at various streamwise stations and found
that the profiles approached an asymptotic state as the distance from the tripping
device was increased. The development was verified by measurements of intensity
and spectra. In this experiment, no points in the viscous layer were obtained, nor
were tabulated data for the velocity provided. .

5.1.4 SMITH and WALKER (1958)

The velocity profiles through the boundary layer and the friction coefficent on
a smooth flat plate having zero pressure gradient were measured. The boundary
layer was tripped by air ejection. The test plate was a mild steel polished to a fine
finish. Although there were a few scratches, it is thought that they had little or

B To this respect, it is i ing to note that PURTELL et al. used as 2 comparison of their own friction coefficicnts
the values computed by COLES that they am’bnle(pWElGHARDTndm.MANN.
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no effect on the flow. The test plate used was mounted between a pair of vertical
plates to which was attached an auxiliary plate to insure a zero pressure gradient.
The AMES 12-foot pressure tunnel of the variable-density type was used. The
turbulence level is said to be very low.

The mean velocity was determined using a wide rectangular total-pressure tube
and a static-pressure orifice in the plate located at the same longitudinal location.
Note that no cormrection was made to account for the apparent displacement of the
tube resulting from the total-pressure gradient through the boundary layer. Also,
no correction was made to the velocity profiles to account for turbulence effects.

SMITH and WALKER (1958) measured the local surface shear stress by two
techniques: the first was a floating-element device, whereas the second was a
PRESTON tube (i.c., a calibrated total-pressure tube, mounted on the surface
of the wall). The floating element device calibration showed good repeatability.
Note that the measured data were corrected to account for change of temperature
of the unit. In addition, the momentum loss was computed to give the average
skin-friction coefficient.

The data is said to agree with those of KEMF and SCHULTZ and GRUNOW
up to a Reynolds’ number of R. = 45. 10°. The skin friction coefficient
determined by the PRESTON tube produced lower values than the ones given
by the floating element device, which led SMITH and WALKER to state that
the PRESTON tube needed to be recalibrated?!. They concluded, however, that
the PRESTON tube appears to be an inexpensive and accurate measurement
device for wall stress measurements. Furthermore, the average skin friction
coefficient, computed from the momentum loss, was 4% lower than the local
friction coefficient, given by wall-shear stress measuring devices. We point out
that the four stations where the skin fricion was measured were 2.5 in. behind the
velocity profile measurements station. SMITH and WALKER also investigated
the log law, their constants are: ‘

=35.0. d=17.15 (5.1.271)

which differ substantially from values that have been given in earlier work.

We believe that the disagreement can only come from inaccuracies in the
measurement of the shear stress and/or failure to take into account total pressure

B PATEL (1965) obtained the same conclusion and proposed a recalibration.

49



tube displacement corrections. LANDWEBER (1960) has re-analyzed SMITH
and WALKER'’s velocity measurements using MCMILLAN’s displacement and
turbulence corrections and has seemingly shown that the true values of the
constants must be different than the one quoted by the authors.

5.1.5 PURTELL, KLEBANOFF .and. BUCKLEY (1981)

PURTELL et al. (1981) investigated the behavior of a turbulent boundary ~
layer at low Reynolds’ numbers. The time averaged velocity and turbulence
variables were measured with a constant temperature hot wire anemometer. The
" boundary layer was tripped, and at the higher speeds, thickened by a region of
distributed roughness at the leading edge consisting of No. 4 floor-sandpaper.
" The two dimensionality was checked by examining the variation of the local
mean velocity U in the spanwise direction.

The friction coefficient was obtained from the momenwmm loss, computed
graphically from measurement of ¢ at various x locations, and from the wall
slope of the velocity profile computed graphically at z = 2.69 m for R¢ > 1340.
According to PURTELL et al., the maximum difference, inferred by the two
methods was about 5%, and no trend was seen?2. For the lower Reynolds’
numbers, Ry < 1340, the friction coefficient values seem to be less reliable
but, again according to PURTELL et al., they agreed well with values computed
from the logarithmic law. For 5 > 1340, the relative difference of the wall
stress with the friction velocity given by the logarithmic results is said to be-
less than 5%. Low Reynolds’ number effects were also checked, however the
behavior of the Van KARMAN’s constant as presented in SIMPSON’s formula
implied, according to PURTELL et al., values for the wall stress which did not
agree with the measured ones. Therefore it was concluded that the log law, as
given by COLES (i.c., a truly constant value of the Van KARMAN’s constant
and the y-intereept of ‘the log law) is valid at low Reynolds’ numbers.

5.2 VELOCITY PROFILES

See A2

We first plotted the friction coefficient, boundary layer thicknesses and veloc-
ity profiles from SCHULTZ & GRUNOW, and KLEBANOFF & DIEHL. Rapidly,

22 1t is not known however which method was finally taken.
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it appeared to us that the procedure used was inadequate. Indeed for the velocity,
the points were recorded graphically in inner and outer variables, which not only
introduced an extra noise, but it also made, since there is no clear substructure
to the data, the exploitadon of the data tedious and empirical, i.e. it was hard to
know or estimate the profile parameters, friction coefficients and boundary layer
thicknesses, for a given profile. In fact, no tabulated form of the data is given
in those two papers. "

As a consequence, we needed a set of velocity profile data available in
tabulated form and that covers a large range of high Reynolds’ numbers (we are
indeed looking for an asymptotic behavior). A thorough investigation of the skin
friction behavior seemed also to be necessary, since it represents, so to speak, the
closure to our problem. In addition, we hoped to obtain velocity measurements
near the wall (y4+ < 10). :

It appeared that no experiment at moderate Or large Reynolds’ numbers
exhibited the viscous sublayer behavior. However, at low Reynolds’ numbers,
PURTELL et al. provided measurements down t0 y4 = 3. Tabulated data of 11
profiles were given by PURTELL (prvate communication to W.X. GEORGE). In
addition, we used SMITH and WALKER’s data which not only provides a wide
range of moderate and high Reynolds’ numbers velocity profiles (80) but also a
complete investigation (about 350 points) of the friction coefficient behavior in
the same Reynolds number range (1.4310° < R, < 43.10°). Because the fricion
coefficient is not given by WEIGHARDT and TILLMANN for their experiment,
we did not use that set of velocity profiles or COLES’ friction coefficient.
However, we did use the computed values of the boundary layer parameters
since these were based directly on the velocity measurements. WIEGHARDT
and TILLMANN’s set of data overlap on the higher part of PURTELL’s set and
the lower part of SMITH and WALKER’s set. i

5.2.1 PURTELL (1981)

We plotted the velocity profiles in inner variables, as well as in a Strict
Similarity form and in a Reynolds’ Similarity form. For reasons discussed
further, in outer variables, we only plotted the velocity profiles corresponding to a
Reynolds number of: Ry = 1340, 1840, 3480, 5100. As far as the inner variables
representations of the velocity are concemed, we plotted individually the different
profiles in semi-logarithmic and logarithmic coordinates. The log law, as given
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by COLES, is shown on the same plots. Moreover, we also compared the profiles
with the power law, where the power has been obtained by a method which is to
be described later. We remind the reader that all the parameters were tabulated
for each profile, and that the friction coefficient cited was not obtained with a
- measuring device but was deduced from the near wall velocity measurements
and/or log law resuits. ’
Inner variables: See A2, Fig. 2.12.-, Fig. 22.2-

Let us first look at the behavior of the velocity profiles as given by COLES’
expressicn. Striking is the fact that all the profiles in mmer variables fall, so to
speak, perfectly onto the same curve, i.c., COLES’ log law line.

On the other hand, in a logarithmic coordinate axis, the matched layer seem to
exhibit a power law behavior. The power has been determined using the velocity
derivative function, g, defined in the previous chapter:

d
g(ys) =veg® (52272)
Y+

Moreover, since an asymptotic state should be reached in the imner region, as
the Reynolds’ number increases, we chose to fix the same origin for the different
profiles, ie., y; = 45, uy = 14.55. It appears that the velocity profiles are
in pretty good agreement with that log law line. We conclude that such an

approximation gives a good modelization of the profile for this range of Reynolds’
number.

Note that three profile, R = 1340, 1840, 3480, exhibit a characteristic
behavior, an horizontal slope, very near the wall, for y. =~ 2. We interpret
that phenomena as showing the limits of the measurement device, since for this
set of data, we went the closest to the wall. In addition, since they have the most
points, these three set of data, with the last one, R = 5100, are thought to be
the most precise and are therefore plotted.

More interesting, it is seen that in logarithmic axis, although the viscous
layer behavior is respected, indeed the points, for the most defined profile, follow
a straight line of slope 1, these points however are not aligned with the origin
point. We plotted the theoretical first order viscous behavior near the wall. For the
whole set of profiles, the data near the wall are always below this theosetical line.
Moreover, no general trend is seen with increasing Reynolds’ pumbers. This,
with the fact that the velocity profiles fall extraordinaryly well onto the log law
line, indicates clearly that PURTELL et al. only used COLES results to obtain
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the wall shear stress. If one believes that the measurements points are correct,
one has then to conclude that the friction velocity is overestimated.

See A.l, Fig. 14.-

To know if the measurements down to the wall are incorrect, or if the friction
coefficient are to be corrected, we reprocessed PURTELL’s velocity profiles with
the friction velocity estimated from the wall slope, taking an average value of the
slope in the region were the points were aligned on a straight line in a logarithmic
coordinate system (i.e., approximately 3 < y; < 9). We plotted the whole set of
profiles in the inner variables computed with the friction velocity given by the wall
slope, also, we compared the friction coefficient with SMITH and WALKER’s
set of measured data.

For the velocity profiles, it appears, as in KLINE et al., that: (i) there is a log
region having approximately the same slope, although the y-intercept have higher
values, (ii) the profiles do not appear in an orderly way with increasing Reynolds
number, which leads to the conclusion that the computed values of the friction
coefficient are not consistent among themselves.  To this respect, the plot of the
friction coefficient as a function of the Reynolds’ number exhibits clearly that
inconsistency. However, the four profile that are supposed to be the most precise,
may appear to be consistent. On that plot, the y-intercept is shown to increase
slowly. If we consider the velocity derivative function , g, we see that the local
minimum is reached lower and lower, which implies that the Van KARMAN’s
constant is increasing.” It is also thought that this behavior should make the
y-intercept constant, d, decrease, which contradicts the behavior observed. We
conclude that, when going down to the wall, a wall-measuring device interference
takes place that biases the measurements strongly, preventing from computing
the wall slope. This seriously questions the validity of such a procedure without
wall-hot wire interaction corrections.

Outer variables: See A2, Fig. 23.2.-, Fig. 2.4.2.-

We plotted the velocity profiles in both a Strict Similarity form and a
Reynolds’ number Similarity form, as proposed by Van KARMAN. Because of
the range of the Reynolds’ numbers, one clearly sees what is commonly inter-
preted as COLES’ wake function, where the form parameter, II, increases with
the Reynolds’ number. On the other hand, in logarithmic axis, if one accept the
idea of the power law, it-is"seen that the same behavior emerges. Indeed, the
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maximum deviation decreases with the increasing Reynolds’ numbers. However,
because the power region is nearer to the outer flow than the log region, the
maximum deviation from the power line is seen to be smaller than the maximum
deviation from the logarithmic line.

522 SMITH and WALKER (1958)

A wide range of Reynolds’ numbers has been recorded (3005 < Ry < 48290).
As far as the boundary layer parameters are concemned, we used all 80 profiles
parameter. We plotted the friction cogfficien, given for each profile (as a function
of all the flow parameters). However, these points do not lie for the different x-
locations on the same curve. This is explained by the fact that the stations where
the velocity was taken are further upstream than the stations where the friction
coefficient was measured. SMITH and WALKER had to use some interpolation
scheme to express the friction coefficient in local variables, which seemingly
produced slightly different results for the different stations. We believe therefore
that it was necessary to record the “root” set of measured friction coefficient,
given as a function of the Reynolds’ number R.. Although all the measurements
were recorded, we only show the sets that exhibited the less noise (made up

of 167 and 53 points). The same procedure for the velocity was used as with
PURTELL'’s set of data.

We choose here only to plot four characteristic profiles, Ry =.
5680, 18340,37190,44750. The lowest and the highest profiles in SMITH &
WALKER'’s set have not been taken, since they do not exhibit 2 smooth behavior
for the velocity derivative. Moreover. the last profile boundary layer parame-
ters are clearly underestimated when compared to the whole set. The lowest

Reynolds’ number that was taken corresponds to the highest Reynolds’ number
for PURTELL’s set of data.

Inner variables: See A.2, Fig. 2.1.1.-, Fig. 22.1.-

The profiles were plotted individually in a logarithmic coordinate system, as
well as in a semi-logarithmic coordinate system. The profiles were compared in a
semi-logarithmic coordinate system with the log law as given by COLES (1956).
‘We point out that the first profiles, taken from the lowest station, ¢ = 15.75 in.,
show a good agreement with the data. However, the other profiles do not follow -
the same behavior. In fact, the measored points are above COLES’s log law
line. which. as mentioned previously, led SMITH and WALKER to conclude that
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COLES'’ constants are not valid. We already discussed that matter in the previous
section, arguing that the velocity measurements given by SMITH and WAKLKER
have measurements errors due to total pressure gradient and turbulence effects.

In a logarithmic coordinates system, the velocity profiles were compared with
the power law where the power was given by the same method as the one used
for PURTELL’s data. We point out that we did use the same origin point as for
PURTELL'’s data. It appears that the data points are higher than the power line.
Two reasons can be, put forward: (i) displacement and turbulence phenomena that
alter the velocity values or, from another point of view, (ii) the origin point for
the power law may be varying with the Reynolds’ number. In fact, the power
law region is reached for higher values of the distance from the wall, as the
Reynolds’ number increases. We believe that both factors have to be considered.
Nevertheless, this series of plot does not contradict our method of computing the
exponent of the power law, based on the velocity derivative, since the slope of
the profile is seen to be the same as the one given by the log law line.

Outer variables: See A2, Fig. 23.1.-, Fig. 24.1.-

Note in Strict Similarity variables the increase of the exponent for the power
law as the Reynolds’ number increases. Interesting is the fact that, in a semi-
logarithmic coordinate system, the wake function seems to vary with the increasing
Reynolds’ number, which is contradictory to COLES’s analysis, where the form
parameter does not change for R > 5500. Here again, we can not be affirmative
until the previously discussed corrections are applied if sach corrections are
possible.

5.23 SCHULTZ & GRUNOW (1941), KLEBANOFF
& DIEHL (1951)

Inner variables: See A2, Fig. 2.1.4.-, Fig. 2.15.-,Fig. 224.-, Fig. 2.25-

Four velocity profiles from SCHULTZ and GRUNOW and four velocity
profiles from KLEBANOFF and DIEHL have been plotted. In a semi-logarithmic
coordinate axis, it appears that, for both set of data, the points lie generally close
to the log law line. On the other hand, the points in a logarithmic axis are also
more or less aligned. However, as mentioned in the introduction, the noise is too
important to deduce any further information.

Outer variables: See A.2, Fig. 2.3.4.-, Fig. 244.-,Fig. 245.-
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Two remarks can be made. First, we clearly see the noise due either to
the measurements or to the fact that points were taken graphically. Second, the
Reynolds’ number range is very narrow, which explains the fact that, in a Strict
Similarity form, the power is practically not varying. Moreover, in a Velocity
Defect form, the profile is only changing slightly.

5.3 VELOCITY DERIVATIVES REPRESENTATION

See A3

PURTELL’s set of velocity profiles tanght us that it is difficult to estimate
the friction velocity without any a priori knowledge of the result. SPALART,
however, showed that for direct numerical s1mu1anons it is easy to plot a velocity
derivative function:

du+
—_— 3.27
Y+ . g(y+) (5.3.273)

and deduce afterward Van KARMAN’s constant.

Note that the g axis is only affected by the dimension of u.4, and thus the
determinarion of thc friction velocity. On the other hand, the x-axis has the
dimension of y.., and thos is affected by the determination of the friction velocity
and the viscosity. However, if one plots g as a function of the velocity, both
axis have the same dimensions (of the velocity scale). The g function can also
be expressed in outer variables as a function of the non-dimensionalized outer
velocity. Moreover, this plot enables not only to see the logarithmic region,
which correponds to a straight horizontal line, but also the power law region,
which is a straight line going through the origin point.

The velocity derivatives were computed with a 3 points expression for the
derivative, using a regular Taylor expansion for the velocity. 2 and 5 points
expressions were studied but it appeared that the 3 points expression had the best
compromise for noise reducdon and accuracy.

5.3.1 PURTELL (1981)
See A3, Fig. 3.1.2.-, Fig. 3.22.-

The inner region, the log and power region, and the wake region are clearly
seen. It is also pointed out that the wake region shows a similarity behavior.
Note thar there is quite some noise but nevertheless the essential features of the
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jifferent regions are present. Clearly, it is seen that there is a power law region
which is located after the local minimum region, or the log law region.

See A3, Fig. 3.12.-; A1, Fig. 13

The exponent of the power law was obtained by fitting a curve through the
points that seem to belong to the power law region. In fact, as mentioned earlier,
he values of the power obtained by this method are in good agreement with the
velocity plots. Although the results may be refined, the exponent versus the local
Reynolds’ number, R;5, shows a satisfactory consistency for the 11 profiles frcm
PURTELL et al. and the 14 profiles from SMITH & WALKER.

Note that the profiles corresponding to the Reynolds’ numbers Ry =
1840, 3480, and to a certain extent the one corresponding to Ry = 5100, show a
good behavior, due to a low noise level and a larger amount of points. The profile
corresponding to Rp = 1340 unfortunately contains two noisy points of opposite
signs in the matched layer, which generates an important scatter in the derivative.

The velocity derivative in inner varibles was also plotted. For different
Reynolds’ numbers, the inner region exhibit a similarity behavior. The viscous
region was compared with SPALART darta. The first line represents points going
from y; = 0 to y,. = 10, the four points are given for y; = 10,20, 30,40.
It is seen that, between 10 < y. < 40, the velocity derivatives deduced from
PURTELL’s data are slightly overestimated, reaching a peak at y; = 8 and
dropping abruptly afterward. This behavior is explained by the wall-measuring
device interaction.

PURTELL’s set of data seem to show stronger support for a power law than a
log law. In fact, the local minimum is included in a very narrow region, especially
for R = 3480. We remind the reader that we are plotting the velocity derivative
as a function of velocity; if plottied against y, we would see larger domains for
the log and the power law region.

5.3.2 SMITH and WALKER (1958)

See A3, Fig. 3.1.1.-, Fig. 32.1.-

The same computations as before were conducted for SMITH and WALKER's
set of data. We see, however, a different behavior than for PURTELL’s set of
data. In outer variables, this set seems rather to support the log law than the power
law. Indeed, the region of local minimum, although very Rarrow, is broader than
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the region tangent to a line going through the origin point. Note that the wake
region behaves more smoothly than for PURTELL'’s set of data. Moreover, we
see that the most important noise occurs in the log region. The wake region, on
the other hand, is varying very slowly and shows also a similarity behavior.

In inner variables, it is seen that the viscous layer is not present which is not
obvious when considering only the velocity profile. Even more, when comparing
these measurements in inner variables with some data taken from SPALART, the
first points of SMITH & WALKER simulate, so to speak, a viscous behavior.
This fact reinforces our conviction that SMITH & WALKER’s data are unreliable -
near the wall and that the total head probe is unable to measure points in the
viscous layer or the lower pant of the matched fayer.

5.4 DETERMINATION OF THE INTEGRALS

From the boundary layer parameter ratios and the friction coefficient equations
seven unknowns appear:

Xi=l-Io)= [(-F@)d7 (5.4.274)
_ (¢
Xs =llo-Jol = [ (FG)(1 - F @47 (5.4.275)
J '
X, ={In—-1In]= / (c(y+)" = f(y+)) dys (5.4.276)
J
712 2
Xe=lUn-J1= / ((3)? - £ (3-)) s (54.277)
0
1
Xs = (5.4.278)
X7=Rz (5.4.279)
We choose to define the last unknown as the following function of v: =~ =
X = 13 (5.4.280)
2y
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These unknowns appear in the following equations:

Ré- = X1325 + X, (5.4.281)
2
Ro = X3R5 — Xy + X Ry 00 (5.4.282)
X5 _ 1 - uﬁ_o_—-; I 1 . .
R, = —-—Yg—-X;;ls (R)F1 — Xy X5(Rs)¥X-1 + X7 (5.4.283)
Xe—1_ A N A
R: = X, X3 X5 (As—‘?—) - X3 X5 (Xs;) +~ X7 (5.4.284)

5.4.1 From velocity integrals

The leading term in the displacement and momentum thicknesses expressions,
X; and X3, due only to the outer forms, were determined. We took for this
purpose two profiles from SMITH and WALKER at high Reynolds’ numbers,
that exhibited a good behavior for the velocity derivative function, and extended
the power region down to the wall. We remind the reader that the Reynolds’.
numbers taken for the computations may not be characteristic of a true asymptotic
behavior. The following results were obtained: - ) |

X1 =0.128 ‘ (5.4.285)

X;=0103 (5.4.286)

One may think that the same procedure can be applied to X2 and X,,
respectively the difference between the inner form of the velocity, i.e.. the Law of
the Wall, and the leading term in the matched region, i.c., the power law, and the
difference between the same terms squared. An attempt was made in this sense,
and will be described in the next section. But we can already state that these
two constants are highly dependent on the value of the asymptotic power and the
location (y,U) where the power law is reached.
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5.42 From the boundary layer parameter and
the friction coefficient

We chose to use a Gaussian Least Square Differential Correction algorithm
(GLSDC) to determine these equations. We first briefly explain the algorithm.

Let us note X, the vector of unknowns to be determined, and Y the vector
of the measurements, the ovedine indicates that the vector of measurements is
considered to be noisy. We note Y, the noise-free measurements vector. Y is
a funcdon of X:

Y = F(X) (5.4.287) .
We note A the Jacobian of F:
oF
== 4.
A % (5.4.288)

At the kt* jteration, we compute:

-1
AXpy = (ATWA) ATW (AY:) (5.4.289)
where W is a weight matrix and AY; is given by:

Ay =Y -Y; (5.4.290)

with Y; being the measurements vector computed from X} . This enables us to
determine a new value for X:

Xk-'.-l - X); + AX&.{.I (54.291)

We chose to define the measurement vector as such, for 1 <1 < p:

Y = R (i) = Re- (Rs) T (54292)

(being given by 5.4.281),
Yip = R (i) = Rp (Rs;) (5.4.293)

(being given by 5.4.282),
Yiczp = R (i) = Rz (Rs) (5.4.294)
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(given by 54.283). and for 1 < j < m:

Yj,-.sp =R;(j) =R: (ij) (5.4.295)

(as given by 5.4.284). We note p, m, being respectively the number of velocity
profiles and the number of fricion measurements taken into account. We give
here the non-zero components of the Jacobian. For1 < i < p:

A(i,1) = Ry (5.4.296)
A(1,2) = Rs; (5.4.297)
A(i+p,2)=-1 (5.4.298)
A +p,3) = Rs; (5.4.299)
A(i+p,4)=- (as,i)-"‘:“’ (5.4.300)
1 —_—

A +p,6) = —————— In (Re;) X¢ (Rs,i)” 7D (5.4.301)

(¢ + p,6) 2 (Xs 1) (Res) 4(6')

_ X,
A(i+2p,3) = X‘X, ! Xs (see,.-)f‘*? (5.4.302)

Ag
Al +2p,4) = X5 (Re:) ™ (5.4.303)
. Xs -1 i - Fe ey |
A(i+2p,5) = X X3 (R&i) e . (&53)’ s=t) (5.4.304)
6
1 N X,
A(i+2p,6) = 35 XoXs (Rs) T
6
1 Xe -1 6
- — X3X;5 In (Rg;) (Rs:) > 4.305
1 1
e X, X5 In (Re) (Re) T
2 (X, 1) s (Res) (Rsi)
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A(i+2p,7)=1 (5.4.306)
and for 1 < j < m:

A +3p,3) = Af{ X, (Xses T (5.4.307)
6
A(G+3p,4) = X5 (Xses;) 7 (5.4.308)
. . S Xe—-1 . o -x. 1., ,. -1
A(j +3p,5) = (1 — Xs) }6 X3 (Xseps " = 5K (Xs o) "
(5.4.309)
) 1 - -
A(j +3p,6) = X2 X3Xs (Xsep.
F
_ _ 4.31
T _Eﬁ_’__]; X3X5 In (.Ys ij) (.‘:3 c,-..-) X 543 0)
AG - T
AGG+3p,7) =1 (5.4.311)

GLSDC applied to the full expressions of the boundary layer parameters, .
x-dependence and friction coefficient '

We used the GLSDC algorithm applied to the full sxpressions of equations
5.4.281, 5.4.282, 5.4.283, 54.284. 79 profiles parameteTs (the highest Reynolds’
number has been excluded) were taken for the first tbree equations and 167 friction
coefficient points were taken for the last one. The weight matrix is chosen such
that the friction Coefficient equation has the same overall weight as the other
three equations. It is assumed that initial condidor effects and wipping bias can
be neglected especially in the x-depence equation

The following results were obtained:

X; = 0.14075 (5.4.312)

X3 = 0.10277 (5.4.313)
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X, = —936.02 (5.4.314)

X, = —2834.3 (5.4315)
X5 = 152.05 (5.4316)
X7 = —419235. - (5.4317)
and
v =13.18 (5.4318)

Notice that the sign of both X, and X, are not correct. In addition, the value
of X, is too high. A simple least square applied to the displacement and the
momentum thicknesses gives:

Rs- = 0.1257 N5 + 2414. (54319)

Rs- = 0.0999 R; + 1462. (5.4320)

which indicates clearly that the constant in the momentum thickness has the same
sign as in the displacement thickness. The representation of the displacement
thickness clearly shows that because we constrain both constants to have opposue
signs, the slope of the displacement thickness is found to increase. '

Enabling the X, constant to have different values in the two equations 5.4.281
and 5.4.282 vields the folowing results:

X, = 0.12742 {5.4321)
X; = 0.10277 (54322)
Xy = —2837.7 (5.4323)
Xs = 152.05 (54324)
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X7 = —420323. (5.4.325)
and
| ~=13.18 (5.4.326)

The constant in the displacement thickness equation comes out to be:

X, =1966.3 (54327)

whereas the constant in the momentum thickness equation is:
X, = -2033.7 v (5.4.328)

which gives an overall positive sign for the constant in the momentum thickness
equation. Moreover, X; has a value closer to the value obtained by integration
of the "velocity profile. :

GLSDC applied to the expressions of the boundary layer parameters,
x-dependence and friction coefficient only keeping the linear terms

‘ Since X» and X, have unacceptable values, we considered only the linear
terms in both the displacement and momenmm equations and therefore the x-
dependence and friction coefficient equations. Furthermore, we allowed the two

constants to be different, 5.4.281, 5.4.282, 5.4.283 and 5.4.284 are transformed
nto:

Rse = XuaRs + 21 (54.329)
Rp = X3R5 — Z22 (5.4330)
1+ 1439
Re = 31/ X3 Xs (Rs) 57 + Xz (5.4.331)
_ 1+ : cf -5
Re= 155 Xa Xs (xs : ) + X7 (54.332)

The following constants were obtained:

X; = 0.12742 (54.333)
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X3 =0.10336 (5.4.334)

X5 =152.00 (5.4.335)
X7 = —490757. (5.4.336)
v=13.18 (5.4.337)
Zy =1966.3 (5.4.338)
Zyy = —695.11 (5.4.339)

We will see that a good agreements with the experimental data is obtained in
this case. )

5.5 BOUNDARY LAYER PARAMETERS REPRESENTATIONS

See A4
See A4, Fig. 4.1.-

Boundary layer parameters of SMITH & WALKER, PURTELL and.
WIEGHARDT and TILLMANN are plotted. The friction coefficient, given by
SMITH and WALKER in the velocity profile parameters table, as a function of
the Reynolds’ number, R, was plotted. As mentioned previously, the fricdon
coefficient in this plot shows some scatter depending on the x-location.

The plots of Rs-vs.Rs and Rgvs.R¢ shows a very good agreement between the
different sets of data. However, a scatter appears in the shape ratio behavior, i.e.,
the ratio of the displacement thickness over the momentum thickness. Moreover,
the shape factor of WIEGHARDT et al. is seen to be underestimated. As every
experiment used has its own tripping and thickening procedure, no information
can be obtained when plotting the Reynolds’ number based on x, ., against the
Reynolds’ number based on the conventional boundary layer thickness, Rs. The
friction coefficients of PURTELL et al., SMITH & WALKER and SCHULTZ and
GRUNOW, as a function of a local variable, 5, shows a good agreement in the
overlap of the different sets.
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5.5.1 Verification of COLES’s analysis
See A4, Fig. 42.-

We have plotted SMITH & WALKER'’s data with COLES’ expression for
the boundary layer parameter as well as for the friction coefficient. Note that
because we are only interested in the asymptotic behavior and because there is
some argument as far as the low Reynolds’ number behavior is concerned, only
the behavior for an constant shape parameter:

I =055 (5.5.340)

ie., for Ry > 5500, was represented. -

We first note that, generally, see for instance COLES et al. (1968), only
the shape parameter and the friction coefficient is shown in the literature. And,
in fact, both the shape factor and the friction coefficient show a relatively good
agreement with the data, although we may think that the log law result for the
shape factor is not decreasing enough at high Reynolds number. However, it is .
striking that, although the shape factor exhibits a good behavior, the momentum
and displacement thickness are both strongly underestimated. One may explain
that scatter by the lack of rigor in the definition of the conventional boundary
layer thickness, ;. However, if such an argument is made, it has also to be
made for the friction coefficient plot that does not exhibit such a scatter.

5.5.2 Power law verification

We represented the power law results for the boundary layer thicknesses and
the friction coefficient for: :

0 < R5 < 500000 (5.5.341)

Undoubtedly, the results from the asymptonc power law should be chﬁcd at
high Reynolds’ numbers only.

See A4, Fig. 43.-

As mentioned in the previous section, if all the terms in the boundary layer
parameters equation are kept, the boundary layer displacement thickness yields a
too high value for [1 — Ip}. This is clearly seen in the boundary layer thickness
plot. It follows that the shape factor is overestimated.

See A4, Fig. 44.-



If only the linear term in the momentum thickness expression are kept (the
same terms being used in the friction coefficient and the x-dependence equations),

consistent results with the boundary layer parameters, x-dependence and friction
coefficient data are obtained.

5.6 INNER AND OUTER EXPANSIONS

See Al, Fig. 15.-

We were interested to give the inner and-outér form of the velocity. It appears
in the boundary layer parameters calculations that, contrary to the traditional way
of representing both forms, the matched temm, i.e., the power law, is naturally
subtracted from the inner form, i.e., the Law of the Wall, and the outer form, i.e.
the Strict Similarity form, is not altered and gives the asymptotic value of the
shape factor. We therefore represented the outer form with its extension into the
matched layer and the inner form where the leading term in the matched layer
was subtracted. _

It is thought that if one combines these two representations in a composite
velocity form, a variable power law where the exponent is Reynolds’ number
dependent may be obtained. However, we are afraid that this procedure, ‘if
successful, may be used as being a valid argument. The present author strongly
objects to these “velocity curve fit argument™ . A representation of the velocity
derivatives exhibits more accurately the measurement technique deficiencies and
consequently enables isolating more effectively the physics of the flow. Integral
quantities, which minimizes the noise (if it is not biased), independent friction
coefficient measurements, or two point velocity measurements are more valid
variables to be used. Nevertheless, we have represented both inner and outer
form to have a better grasp of the physics involved in the different regions.

We have taken the outer form two profiles from SMITH & WALKER at
high Reynolds’ numbers. The velocity derivative exhibited for these profiles a
nice smooth similarity behavior. We cut the velocity derivative at the point of
tangency with the power law, at [//U,, = 0.75, and used the asymptotic power
line in the matched region. An asymptotic value of 1/12.67 was chosen for the
exponent. Both velocity profiles exhibited remarkable similarity.

<]

1t has boen seen, in the velocity profile representations, that both a Jog law and a power law are potential candidate
f"ﬁeleadingtamintbemnched:g;im.ifmatism. Howevez, this may not be admitted if one only Jooks at the
velocity profile in semi logarithmi¢ axis.

67



For the inner region, since no measurement is going down to the viscous
layer without wall interaction, we choose to use SPALART data, which exhibit a
high degree of similarity in this region. The points were connected in a velocity
derivative representation. The mean profile was then obtained by integration.
From SPALART, were chosen the following points:

(y4 =0 uy=0 y+%%:-=0 2%(y+d;+)=1
ye =10 uy =80 y.S==535 2 (y+d;+) =0

{ yp =20 uy =11.67 y+§§3 =4.0 (5:6.342)
yy =30 uy =13.10 y+3'yi: = 3:12

| ys =40 uy =13.75 y. 92 =2.69

A fifth order polynomial, for 0 < y+ < 10, was found to verify all six first

constraints:
489_1_3_'_21.1_4 87 1 5

50000 31+ T 3125 41¥*+ ~ 100000 51
The terms in the series seem to be altenated, which makes an estimation of
higher terms impossible. However, it is seen that the use of the velocity derivative
enables to have an estimation of the velocity expansion at the wall.

The next points were joined either using a second or third order polynomial.
The last point, where the inner form reaches the power law was chosen to be:

du.;

Y+ = 8000 y..a—y— =2.25 (5.6.344)

P(ys)=y+ — (5.6.343)

The arbitrariness in the choice of the last point, and in the choice of the connecting
curve, should be minimized in the velocity profile since, in the integration scheme,
g (y4) is divided by y4. The true behavior of the inner form, however, is highly
dependent on the asymptotic power and the last connecting curve, which has the
major contribution in the estimation of {Ij; — I 1) and [Jp; — J1)-
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Chapter 6 CONCLUSION

This conclusion is articulated around three points:
1. The ALP. applied to a Velocity Defect form for the outer flow yields
a logarithmic law in the matched region, if applied to a Strict Similarity
assumption, a power law for the matched region is obtained.
2. Velocity derivative representations show that both a logarithmic law region
and a power law region exist. We have now to find out which one dominates

the physics of the flow asymptotically.

3. The measurement errors due to the total pressure probe technique prevent
us from drawing any definite conclusion.

Furthermore, suggestions and remarks are made for future work.
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1.

In light of what has been done, both a logarithmic and a power law appear
to be valid candidates for the leading term in the matched expansion, if such a
process is legitimate.
Using the Asymproric Invariance Principle, we have shown that:
— A Velocity Defect. forin for the outer flow yields a logarithmic law in.the
matched region. '
— A Suict Similarity assumption yields a power law in the matched region.
The questions that remain to be answered are the foilowing:
—From a mathematical point of view, which expression for the outer form of the
velocity is more legitimate, a Velocity Defect or a Strict Similarity?
—Or, from an experimental point of view, is the power law region or the
logarithmic region to dominate the physics of the flow at high Reynolds’ numbers?
2

From SPALART direct simulations, we have seen that Van KARMAN’s
constant is found to vary slightly at low Reynolds’ numbers. On the other hand,
for moderate Reynolds’ numbers, the power of the velocity profile is shown to
vary substantially. This can not however be an argument to ban the power law
as a candidate for the leading term in the matched expansion.

If we consider the velocity profiles, both laws appear to give a reasonable
description of the profile in the matched layer. The friction coefficient can also
be described accurately by both laws. The most information is learned however
from the velocity derivatives. Undoubtedly, we see from a velocity derivative
representation that both a power law region and a logarithmic law region exist.
PURTELL’s most defined profiles, seem even to indicate that a power law may
be more appropriate than a log law as the leading term in the matched region.

3. - ‘

Because it contained a large range of moderate and high Reynolds’ numbers,
SMITH & WALKER (1958) velocity measurements, taken with a total head tube,
were used. The viscous layer (0 < y4 < 20) of the velocity derivative profile
should be independent of the Reynolds’ number. It is found that the lower part
of SMITH and WALKER’s data does not corroborate with the viscous layer
behavior as recorded by SPALART.

The total head probe technique is therefore questioned, since the viscous layer
behavior is not obtained. The matched layer measurements may be altered by this
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device imperfections. We notice that it is fortunate for the logarithmic law theory
that most experiments used to support that theory were actually conducted with a
impact tube technique, which seems to create artificially a logarithmic behavior.

LANDWEBER’s work (1960) on SMITH and WALKER data has already
been mentioned. COLES (1968a) has an interesting discussion about the impact
tube technique: and the corrections schemes used sometimes. COLES finds a
significant disagreement between the log law and the experimental data in the
first 10 to 15%, of the profile nearest the wall. He explains this scatter by wall
interference and-local turbulence effects, and consequently excludes that part of
the profile in his least square computation of ¢;, II and é for a given profile.
More interestingly, although he does not deny the existence of both kind of
errors, he objects using the corrections schemes: “Firstly, I do not approve of an
uncritical application of the YOUNG-MAAS correction for displacement effects;
and secondly, I do not know how to estimate errors in impact-probe measurements
of mean velocity when the local rurbulence level is high”. According to COLES
(1968a), trying to correct these effects to obtain the viscous layer behavior is
probably useless. Moreover, it is pointed out that the corrections depend on the
probe geometry (round of rectangular). '

We have therefore to conclude that the total pressure tube deficiencies prevent
us from drawing any definite conclusion as to the nature of the matched layer.

If we assume that the integral quantities, displacement and momentum thick-
ness, are less influenced by measurement errors, those quantities should constitute
more reliable parameters to take into account. But, as it has been seen in the pre-
vious chapter, both laws, the log law as presented in COLES analysis, and the
power law using a composite form for the velocity are unable to predict to a
satisfactory degree the flow parameters data used in this present work. We have
therefore, after having examined critically our experimental data, to reconsider
the theoretical analysis and its foundations.

If the integrated quantities are to be accurate enough for our purpose, the
use of the composite velocity for the power law result is strongly questioned.
Since only the boundary layer thicknesses are not verified, and since the friction
coefficient data and x dependence seem to agree to a satisfactory degree, we
conclude that the use of the composite form of the velocity may not be suited
to our problem. The traditional approach, inner and outer expansion, with a
matched region may also be questioned.
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Some remarks...

Note that we did not use any singular perturbation scheme as such. Indeed,
only the first order in the velocity derivative is considered. No assumptions
have been made concerning higher orders. Moreover, the Asymptotic Invariance
Principle, introduced in this work, yields a result consistent with MILLIKAN’s
theory. _

Also, we may point out again the lack of experimental verification for the
mathematical results that have been given in the literature. We already mentioned
that GILL’s assumptions have not been studied experimentally. In addition, for
second order theories, we note that the leading term in the matched region is given
in a Velocity Defect form without further justifications. Moreover, no work has
been done computing the boundary layer parameters using a composite form for
the velocity, and comparing the results to existing experimental data, and a fortiori
no work has been done on the x-dependence of the boundary layer parameters

and friction coefficient. ’

-. and further suggestions

The discrepancy in the displacement and momentum thicknesses may indicate
that a finer structure exists in the boundary layer, so that the use of a composite
form for the velocity may be too crude a tool that does not reflect the whole
structure of the boundary layer. Recent advances in mathematics, one may think
of a triple deck method for a singular perturbation method or other more effective
techniques, such as the Intermediate Asymptotics Method, may provide a better
insight into the physics of a turbulent boundary layer.

We can only regret that the advantages of the hot wire technique have not been
used to provide a more accurate description of the flow near the wall. Although
we have seen that there is some wall interferencé in PURTELL’s experiments,
only the very viscous layer is affected, approximately 0 < y4+ < 10, for the range
of Reynolds’ numbers used. It is expected that at higher Reynolds’ numbers,
the viscous layer can not be described by the same accuracy as in PURTELL’s
set of profile. Nevertheless, compared with a total pressure tube technique, the
interaction with the wall will be significantly reduced.

Finally, since Direct Simulation allows so far only to compute low Reynolds’
number flow, we can only hope that an experiment similar in the Reynolds’
number range to those of SMITH and WALKER, is conducted using a hot wire
probe. This would constitute valuable material for future turbulence research.
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Fig. 1.1.1 On the determination of the Jriction coefficient:

from KLINE et al. (1967).
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Fig. 1.1.2 On the determination of the friction coefficient:
from KLINE et al. (1967).
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Fig. 1.2 Velocity derivative from Direct Simulation:
from SPALART (1988)
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1410 -~ log law L'~ = log(y")/0.41+5: +. R, = 617 (Erm et al. 1985): O. R, = 1368 (Murlis ef ol.
1982). (a) U~: (b) y~dU~/dy".
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Fig. 1.3 Power behavior

13-0 1 1 1 ! ] ] i ! O [] ! ) ] i
+
11.0—+ 4
+ -
I +
+ + N
+
8.00— - + 4
+
L + .
+
L 4+ + -
7.004+ OO 4
o ~ PURTELL |
oo : ~
SMITH ond WALKER ]
3
9 J
500 L 1 ! i 1 1 3 'l 1 1 i i 1 1 1
0.000E+00 0.125E+06 0.250z+06 0.375E+06 0.500E+06

(U_INF = DELTA) / NU

81



Fig. 1.4.1 Velocir profiles obtained with a wall slope determined shear stress.

Purtell et al.. Rth = 465, 498, 700, 1000,
1340, 1370, 1840, 2840, 3480, 4090, 5100.
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Fig. 1.4.2 Velocity profiles obtained with a wall slope determined shear stress:
Purtell er al.. Rth = 1340, 1840, 3480, 5100.
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Fig. 1.4.3 Fricrion coefficient obtained with a wall slope determined shear

stress.

Purtell et al., with friction coefficient as given by SMITH & WALKER.

)E"02 T ) L T T T 1 11 T K] T
JE-02 — -
-o -
-0z, -
i o)} 1

O
L + o
- o . ]
4
H
0 + -
+* .
O -
o %‘3&;
C W-’-’F 4
.H-*-h-‘;- +

+ 4
O ﬁ#—l-.H__*_

. 1] L 1 1 1t 1 1 1 1 i

i ]
1C ¢ 10 3

(U_INF = DELTA) / NU
84



Fig. 1.5.1 Inner expansion of tne velocity derivative
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Fig. 1.5.2 Inner expansion of the velocity
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Fig. 1.5.3 Ower expansion of the velocity derivative
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Fig. 2.1.1.1.1 Velocity in inner variables with log law-
Smith & Walker. Rth = 3005, 3815, 5680, 8175, 13040, 18340, 22510, 26510,
. 32280, 37190, 39800, 42610, 44750, 48290.
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Fig. 2.1.1.1.2 Velocity in inner variables with log law:

Smith & Walker. Rth = 5680, 18340, 37190, 44750.
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Fig. 2.1.1.2.03 Velocity in inner variables with log law:
Smith & Walker. Rth = 5680.
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Fig. 2.1.1.2.06 Velocity in inner variables with log law:
Smith & Walker. Rth = 18340.
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Fig. 2.1.1.2.10 Velocity in inner variables with log law:
Smith & Walker. Rth = 37190.

32-0 ] i iialll! 1 . 8 crrid 1 1 T ¢ Vo1 i -1
Py
| +
+
I +
+
26.5—
21.0—+
15.5—

Rth = 37180. = -

10.0 ] I 1 l’ll'% [l . | - !l,lli L 1 11 1 1tt! - 1
10° 10 ? 10 ° 10 ¢
Y+



Fig. 2.1.1.2.13 Velocity in inner variables with log law:
Smith & Walker. Rth = 44750.
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Fig. 2.1.2.1.1 Velocity in inner variables with log law:

Purtell et al.. Rth = 465, 498, 700, 1000, 1340, 1370, 1840, 2840, 3480,

4090, 5100.
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Fig. 2.1.2.1.2 Velocirty in inner variables with log law:

Purtell et al.. Rth = 1340, 1840, 3430, 5100.
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Fig. 2.1.2.2.05 Velocity in inner variables with log law-

Purtell et al.. Rth = 1340.
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Fig. 2.12.2.07 Velociry in inner variables with log gy
Purtell et al.. Rith = 1840,
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Fg. 2.1.2.2.09 Velocity in inner variables with log law-
Purtell et al.. Rth = 3480.
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Fig. 2.1.2.2.11 Velociry in inner variables with log law:
Purtell et al.. Rth = 5100.
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Fig. 2.1.4.1 Velocity in inner variables with log law:

Schultz & Grunow
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Fig. 2.1.5.1 Velocity in inner variables with log law:
Klebanoff & Diehl
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Fig. 2.2.1.1.1 Velocity in inner variables with power law:

Smith & Walker. Rth = 3005, 3815, 5680, 8175, 13040, 18340, 22510, 26510,

32280, 37190, 39800, 42610, 44750, 48290.
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Fig. 2.2.1.1.2 Velocity in inner variables with power law:

Smith & Walker. Rth = 5680, 18340, 37190, 44750.
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Fig. 2.2.1.2.03 Velocity in inner variables with power law:

Smith & Walker. Rth = 5680.
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Fig. 2.2.1.2.06 Velocity in inner variables with power law:

Smith & Walker. Rth = 18340.
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Fig. 2.2.1.2.10 Velocity in inner variables with power law:

Smith & Walker. Rth = 37190.

i IBREBLELERAI 1 i 1T 17 ViTy L 1 IRELLERAA] L
X '_FFHHH-I-H—
2
+
4
4t
+'F’. e
-Fg-* '
F .
T ’
+F e
- + 7 g
+ e
.,.
-,.’
+
r'd
7 Rth = 37190.
i L1 1 1 11! 1 1 S 1 1 Lt 11111 [
| | |
10 10 2 10 3 10 *
Y+

108




Fig. 2.2.1.2.13 Velocity in inner variables with power law:

Smith & Walker. Rth = 44750.
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Fig. 2.2.1.2.10 Velocity in inner variables with power law-.

Smith & Walker. Rth = 37190.
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Fig. 2.2.1.2.13 Velocity in inner variables with power law:
Smith & Walker. Rth = 44750.
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Fig. 2.2.2.1.1 Velocity in inner variables with power law:
Purtell et al.. Rth = 465, 498, 700, 1000, 1340, 1370, 1840, 2840, 3480,
4090, 5100.
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Fig. 2.2.2.1.2 Velocity in inner variables with power law:
Purtell et al.. Rth = 1340, 1840, 3480, 5100.
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Fig. 2.2.2.2.05 Velocity in inner variables with power law:
Purtell et al.. Rth = 1340.
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Fig. 2.2.2.2.07 Velocity in inner variables with power law:

Purtell et al.. Rth = 1840.

i L IR LR LR} ¥ . LR BRI 1] « 8V TPy 1 LI SRR

o

|
o
i

Rth = 1840.

|oo 1 11 1. 311141 I it 1 131111 1 1 1 1.1 58121 1 1.1 8t 1311

]
10 ° 10 101 10 ? 10 ¢
’ Y+

113



10 !

10°

Fig. 2.2.2.2.09 Velocity in inner variables with power law:

Purtell et al.. Rth = 3480.
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Fig. 2.2.2.2.11 Velociry in inner variables with power law-
Purtell et al.. Rth = 5100.
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Fig. 2.2.4.1 Velocity in inner variables with power law:
Schultz & Grunow

40 Y T L S I | T T | S N A R BRA T T T<r T T 11

30 L - .

20 | -
Rds = 9505.
Rds = 10375::"
Rds = 13873.
10 ¢ ! 1 1 11111 1 | S T N B W ! TER T T N W |
10 10 2 10° 10 ¢

Y+

116



Fig. 2.2.5.1 Velociry in inner variables with power law-
Klebanoff & Diehl
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Fig. 2.3.1.1.2 Velociry Defecr.
Smith & Walker. Rth = 5680, 18340, 37190, 44750.
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Fig. 2.3.2.1.2 Velocity Defect:

Purtell et al.. Rth = 1340, 1840, 3480, 5100.
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Fig. 2.3.4.1 Velocity Defect.
Schultz & Grunow
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Fig. 2.4.1.1.2 Stzrict Similarity:
Smith & Walker. Rth = 5680, 18340, 37190, 44750.
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Fig. 2.4.2.1.2 Strict Similarity:
Purtell et al.. Rth = 1340, 1840, 3480, 5100.
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Fig. 2.4.4.1 Strict Similarity:
Schultz & Grunow
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Fig. 2.4.5.1 Strict Similarity:

Klebancff & Diehl
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A.3 VELOCITY DERIVATIVE REPRESENTATIONS
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Fig. 3.1.1.1 Quter variables:
Smith & Walker. Rth = 5680, 18340, 37190, 44750.
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Fig. 3.1.1.2.03 Outer variables:
Smith & Walker. Rth = 5680.
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Fig. 3.1.1.2.06 Outer variables:
Smith & Walker. Rth = 18340.
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Fig. 3.1.1.2.10 Outer variables:
Smith & Walker. Rth = 37190.
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Fig. 3.1.1.2.13 Outer variables:
Smith & Walker. Rth = 44750.
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Fig.. 3.1.2.1 Outer variables:
Purtell et al.. Rth = 1340, 1840, 3480, 5100.
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Fig. 3.1.2.2.05 Outer variables:
Purtell et al.. Rth = 1340.
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Fig. 3.1.2.2.07 Owter variables:
Purntell et al.. Rth = 1840.
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0 FUINID)

(Y/DELTA) + D(U/U_INF)/D(Y/UELIA)

Fig. 3.1.2.2.09 Ouwter variables:
Purtell et al.. Rth = 3480.
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Fig. 3.1.2.2.11 Outer variables:
Purtell et al.. Rth = 5100.
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Fig. 3.2.1.1 Inner variables:
Smith & Walker. Rth = 5680, 18340, 37190, 44750.
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Fig. 3.2.1.2.03 Inner variables:
Smith & Walker. Rth = 5680.
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Fig. 3.2.1.2.06 Inner variables:
~ Smith & Walker. Rth = 18340.
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Fig. 3.2.1.2.10 Inner variables:
Smith & Walker. Rth = 37190.
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D ol A

8.00

Fig. 3.2.1.2.13 Inner variables:
Smith & Walker. Rth = 44750.
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Fig. 3.2.2.1 Inner variables:
Purtell et al.. Rth = 1840, 3480, 5100.
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Fig. 3.2.2.2.05 Inner variables:
Purtell et al.. Rth = 1340.
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Fig. 3.2.2.2.07 Inner variables:
Purtell et al.. Rth = 1840.
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Fig. 3.2.2.2.09 Inner variables:
Purtell et al.. Rth = 3480.
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Fig. 3.2.2.2.11 Inner variables:

Purtell et al.. Rth = 5100.
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A.4 BOUNDARY LAYER PARAMETER AND
FRICTION COEFFICIENT
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Fig. 4.1.1.0 Displacement thickness:
Smith and Walker, Purtell, Wieghardt & Tilimann.
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Fig. 4.1.2.0 Momentum thickness:
Smith and Walker, Purtell, Wieghardt & Tillmann.
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(DELTAs / THETA)

Fig. 4.1.3.0 Shape factor:

Smith and Walker, Purtell, Wieghardt & Tillmann.
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Fig. 4.1.2.0 Momentum thickness:
Smith and Walker, Purtell, Wieghardt & Tillmann.
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(DELTAs / THETA)

Fig. 4.1.3.0 Shape factor
Smith and Walker, Purtell, Wieghardt & Tillmann.
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Fig. 4.1.3.0 Friction coefficient in local variable:
Smith and Walker, Purtell, Schultz & Grunow.
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Fig. 4.1.4.0 X dependence:
Smith and Walker, Purtell, Wieghardt & Tillmann. -
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Fig. 4.1.6.0 Friction coeffucient as a function of x:
Smith and Walker, Schultz & Grunow.
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Fig. 4.1.6.1.1 Friction coeff.cient as a function of x:

Smith and Walker (53 points).
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Fig. 4.1.6.1.2 Friction coeffcient as a function of x:
Smith and Walker (167 points).
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Verification of COLES’ results:
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Fig. 4.2.1.1.1 Displacement thickness:
Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.
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Fig. 4.2.1.2 Displacement thickness:
Purtell et al.
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Fig. 4.2.13 Displacement thickness:
Wieghardt and Tillmann.
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Fig. 4.2.2.1.1 Momentum thickness:
Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.
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Fig. 4.2.2.2 Momentum thickness:
Purtell et al.
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Fig. 4.2.2.3 Momentum thickness:
Wieghardt and Tillmann
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DELTAs / THETA

Fig. 4.2.3.1.1 Shape factor:

Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.
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DELTA* / THETA

Fig. 4.2.3.2 Shape factor:

Purtell et al.
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Fig. 4.2.3.3 Shape factor:
Wieghardt and Tillmann.
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DELTA+ / THETA

Fig. 4.2.3.2 Shape factor:

Purtell et al.
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CF, as given by Purtell
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Fig. 4.2.4.2 Friction coefficient in local variable:
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Fig. 4.2.4.4 Fricrion coefficient in local variable:

Schultz and Grunow.
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Verification of the power law results, with the full expressions derived for

the boundary layer parameters, x-dependence and friction coefficient:
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Fig. 4.3.1.1.1 Displacement thickness:
" Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.
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Fig. 4.3.2.1.1 Momentum thickness:

Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.
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DELTA+ / THETA

Fig. 4.3.3.1.1 Shape factor:

Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.
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CF, os given by Smilh & Wolker
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Fig. 4.3.5.1.1 X dependence:
Smith and Walker.
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Fig. 4.3.6.1.1 Friction coefficient as a function of x:

Smith and Walker (53 points).

0.600E-C2

0.500E-02+

0.400E-02—-..

0.300E-02—

0.200E-02 —

1 ) I T N I | 1 1 L1 1 1111

10 *

10 ¢
( ULINF =« X )/ NU

174



Verification of the power law, with only the linear term
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Fig. 4.4.1.1.1 Displacement thickness:

Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in. 51.75 in.
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Fig. 4.4.1.2 Displacement thickness:
Purtell et al.
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Fig. 4.4.1.3 Displacement thickness:
Wieghardt and Tillmann.
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Fig. 4.42.1.1 Momentum thickness:
" Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.
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(U_INF + THETA) / NU

Fig. 4.4.2.2 Momentum thickness:
Purtell et al.
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. Fig. 4.4.2.3 Momentum thickness:
Wieghardt and Tillmann,
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DELTAs / THETA

Fig.\4.4.3.1.1 Shape factor:

Stiith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.
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DELTAs / THETA

Fig. 4.4.3.2 Shape factor:

Purtell et al.
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(DELTA+ / THETA)

1.60

Fig. 4.4.2.3 Shape factor:
Wieghardt and Tillmann.
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ClF, os given by Smilh & Walker

Fig. 4.4.4.1.1 Friction coefficient in local variable:
Smith and Walker. x = 15.75 in, 27.75 in, 39.75 in, 51.75 in.

:6005“52 ! T T T T T 1 1 l! T ¥
L x = 15.75 in i
s x = 27.75 in |
0.5002-C2— x -= 39.75 in 1
. x = 51.75 in i
0.400E-02

T

~0.3006-02—

- £.200E-C2

10 * 10 *
(U-INF = DELTA) / NU

185



Fig. 4.4.4.2 Friction coefficient in local variable:
Purtell et al.
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Fig. 4.4.4.4 Friction coefficient in local variable:
Schultz and Grunow.
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(UZINF s X) / Ny

Fig. 44.5.1.1 X dependence:
Smith and Walker.
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Fig. 4.4.6.1.1 Fricrion coefficient as a function of x:
Smith and Walker (53 poinis).
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