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ABSTRACT

An unique spectral estimator is derived from the interpretation of the
output of the laser Doppler anemometer (operated under conditions of low
seeding density) as an analog signal which is blank much of the time.
This estimator is used in a data processing scheme on measurements
obtained in a turbulent axi-symmetric free jet to calculate the power
spectral density. The results are investigated with respect to the

estimator’s ability to eliminate bias.
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Chapter 1: INTRODUCTION

Most laser Doppler anemometer (LDA) measurements are performed under
conditions of low seeding density using a signal processor capable of
resolving the Doppler frequency of single particles crossing the
measurement volume. Examples of this application include virtually all
wind tunnel experiments, most measurements in gases, and many liquid
flows. By definition, low seeding density means that on the average,
less than one particle is in the measurement volume at a time. In other
words, it is rare that more than one particle is in the measurement
volume and much of the time there are no particles in the measurement
volume. This mode of operation is also referred to as "burst mode" or
"individual realization mode" of operation of the LDA and is the most
common mode of operation of LDA systems. The velocity record obtained
with the LDA operated under these conditions is characterized as

intermittent and stochastic; velocity measurements are the result of

random particle arrivals.

A problem associated with LDA measurements made under conditions of low
seeding density is that statistical calculations based on measured
particle velocities do not necessarily correspond to the statistical
properties of the fluid at the measurement point. This steady and
systematic error in the calculation of statistical results is called
bias. Bias can be defined as the difference between the average value

calculated on the basis of an estimate and the true average value.

More rigorously, assume X(t) is a stationary random process of infinite
duration, for which is known only a single sample function X(t), for

02t2T. On the basis of this sample function, one wishes to estimate



parameters (i.e.:moments) of the random process itself. However, the
estimates are also random since they depend on which particular sample

function is used.

Consider an unknown parameter 6, which one wishes to estimate by the
random parameter 6, The expected value of 6, can be calculated using
the expectation operation, E{ }:

¥B
E{G,}=f9p(9)d6 1.1

where p(6)is the probability density function of s,

It is usually desired that the average value of the estimate £{o.} would
be the quantity to be estimated, 6. When this isn’t the case, the
difference between these two quantities is said to be the bias in the

estimate of o

bias=E{6,}-6 1.2

For this investigation the bias in power spectral density will be
defined as the difference between the averaged biased and unbiased

spectral estimates, 2.2.8 and 2.3.1.

bias,p,= §T(f)b¢ascd - FT(f)unblascd 1.3

This form of bias in LDA measurements is usually referred to as
"velocity bias" and is caused by a correlation between the fluid
velocity and particle statistics. It should be emphasized that,

throughout the text, discussions concerning bias refer to velocity bias,



unless otherwise indicated. This is distinguished from other types of
bias, in particular, the statistical bias usually referred to in

spectral estimation theory.

The problem of bias can be illustrated by the following example.

Suppose an LDA measurement volume is located in a region where seeded
and unseeded fluid cross the measurement volume intermittently. This
would be the case for instance, at the edge of a free jet where the
primary fluid is seeded and the ambient fluid is not. When the unseeded
fluid crosses the measurement volume, realizations of velocity diminish
or disappear. If the entrained fluid moves slower than the seeded fluid
(which will usually be the case in a jet) it is clear that the average
velocity measured by the LDA will be wrong. Since the velocity of
particles is measured, and the slow moving fluid has fewer or no

particles in it, velocity realizations of slow moving fluid are fewer

than velocity realizations of rapidly moving fluid. Therefore, the
ensemble average of particle velocity will not represent the time

average velocity of the fluid at the measurement point.

This example can be generalized and the problem of velocity bias stated
as follows: ensemble averaging measured particle velocities will yield
incorrect time averages of fluid velocity if there is any correlation

between the fluid velocity and the particle statistics. In other words

the sampling process must be independent of the sampled process.

This important problem has long been recognized (cf: McLaughlin and
Tiederman 1972), although the technique for correcting it is still a
subject of debate. The motivation for resolving this problem rests in
its applicability to a wide class of applications: LDA systems operated

under conditions of low seeding density in turbulent flows. In these



applications, the particle statistics are correlated with the fluid
velocity, for example, more particles cross the measurement volume per
unit time at high speeds than at low speeds. When turbulence intensity

is high, the effect of velocity bias may be substantial.

George (1976) and Buchhave (1979) have shown that velocity bias can be
corrected for in LDA measurements by weighting particle velocity by
residence time (the time during which the particle resides in the LDA
measurement volume.) This technique, referred to generally as
“residence time weighting," is based on a mathematical proof in which
the statistical characteristics of particles moving in a Lagrangian
reference are related to the statistical characteristics of the fluid in

a stationary Eulerian reference (Stevenson 1974.)

The only assumption involved in the residence time analysis is that the
particles are statistically uniformly distributed in space. While there
may be other assumptions which may insure the statistical independence
of the particle arrivals and the velocity, this is the only one which
has been discovered to date. All of the models proposed for the
burst-mode signal depend on assumptions about how the particle and
velocity statistics are related (e.g. Edwards 1981, Adrian and Yao

1987).

The validity of residence time weighting has been verified

experimentally in a number of independent investigations (Buchhave 1979,

Capp 1983, Hussein 1988.) .

An example of the residence time weighting algorithm can be given for

illustration purposes. The mean velocity, u. determined using a simple



ensemble average is biased:

- 1
ubinsod=ﬁl u;. 1.4

N
i=1

The residence time weighted mean value & is unbiased:

N
E:U(Ati

— i=1

u unbiased = N 1 * 5
Y at,

i=1
The subscript "i" refers to the ith particle crossing the beam, u, is its

velocity and 4t is its residence time.

An interesting implication of the technique of residence time weighting
is that the discontinuous digital signal is interpreted as a continuous
analog signal: time averages are calculated using integration during
residence times. A spectral analysis algorithm can be derived using a

similar interpretation of the discontinuous digital signal.

The impact of the residence time weighting technique on measurements of
power spectral density of turbulent flows has received little attention.
Only one known previous investigator, Buchhave (1979) has attempted to
implement a scheme to correct for bias in measurements of power spectral
density using residence time weighting. This investigation is an
outgrowth of that work to more completely establish the effects of

residence time weighting on measurements of power spectral density.

The strategy which will be adopted in this thesis is to decouple the
particle statistics from the fluid velocity by uniformly seeding the
environment and treat the discontinuous velocity record as if it were
continuous. Using this interpretation, an estimator for power spectral

density is derived using residence time weighted Fourier coefficients.



This has been described in detail in George (1988). The power spectral
density estimator obtained is used in a data processing scheme on
measurements obtained in a turbulent flow and the results are

investigated to determine the estimator's ability to eliminate bias.

Two conflicting problems affected the algorithm implemented by Buchhave
(1979). On the one hand, a double summation incorporated to calculate
the spectral estimate slowed down the processing time prohibitively,
while on the other, decreasing the block length used (to compensate for
this effect) created oscillations in the measured spectrum (see the

discussion in Section 7.3.)

By incorporating a new algorithm ("The Rapid Recursive Spectral Analysis
Algorithm"); which replaces the double summation by a single summation
(Section 2.2), and implementing a rapid recursive Fourier transform
(Section 4.3), both of these difficulties were overcome. The result is
a fast calculation scheme which processes long blocks of randomly
sampled data quickly, to provide spectral estimates which are free from

velocity bias and oscillations.



Chapter 2: DEFINITION OF TERMS

2.1 Power Spectral Density Estimation Based on the Finite Fourier

Transform

The power spectral density can be defined as the ordinary Fourier
integral transform of the autocorrelation, R(t)of a stationary random

process, u(t).
3(f)=f“R(r)e””"dr 2.1
R(7)=E{u(t)u(t+7)) 2.1.

where E{ )} is the expectation operator.

The power spectral density may also be interpreted as the integral of

the autocorrelation of the Fourier transform of the random process over

all frequencies.
sco= [ Elauainlar 2.1.

a(f)=f_:u(t)e"“"dt 2.1.

From a single sample function of a random process u(t) it is clear that
the Fourier integral transform of u(t) cannot be computed because the

data are not known for infinite time. However, the finite Fourier

transform

T s
&T.(f)=]; u(t)e’? ' dqt 2.1.

can be calculated. Further,

E{ar (Hay.(H) fdtf R(t=t1)e /Oy 2.1,

|



E{ar_(f)a;'_(f)}=T[[:R(T)GIZ””dT—%[:|T'R(T)e/2"”dr] 2.17

where v= t- t', and the integral relation,

T T T
F(t-t")= - .
fodtfo dt F(t-t") f_TF(r)(T lThdT 2.1.8

has been employed. 1In this equation, F(r)is any function of the

variable o

If u(t) is completely random, the second integral in 2.1.7 is finite.

Therefore, it follows from equation 2.1.1 that,

1iml5{|a7_(f)|2}=3(f) 2.1.9
T-NaT

Therefore, the power spectral density may be recovered from the finite

Fourier transform of the random process u(t) in the limit as T«

Based on relation 2.1.9, a class of power spectral density estimates

Sr(f)=Wg|a,|? 2.1.10
may be introduced where,
a,(f)=fd(t)u(t)e’2"“dt 2.1.11

is a Fourier transform of the data as seen through a data window, d(t).
The data window has the property that d(t) =0 for 0 < t > T, to assure
that unavailable data are not required. Wg is a correction factor, to

be determined.

The mean value of S (f) is given by:



E{Sr(f)}=Iisf:dt’[:dtd(t’)d(z)R(t—t’)e”"’“'") 2.1.12

=f st d(t)d(t-T)dtR(T)e’* " d7 2.1.13

Comparing this expression with the equivalent expression obtained for
the mean value of the spectral estimate obtained using the Blackman

Tukey technique (equation 2.1.1 with a lag window, w,(v) introduced):

E(s-(n)- |

oo

wr(T)R(T)e* " dr 2.1.14
shows that the two equations are identical as long as,
wT(T)=W5f d(t)d(t-t)dt 2.1.15

which is a convolution of the data window with itself.
Since a lag window has the power preserving property that w,(0)=1, the

correction factor Ws can be calculated.

w,(0)=wsf d?(t)dt=1 2.1.16

1
We= 2.1.17

f d?(t)dt
Substituting Wg into 2.1.10, yields:
™ 2
1 .

St(f)=——"—" fd(t)u(c)e'“"dt 2.1.18

f d?(t)dt e

This is the complete expression for the power spectral estimate, S;(f)

calculated on the basis of the Fourier transform of the random process



u(t).

2.2 Derivation of Unbiased Estimator

The time record of a component of the velocity, u(t) of a turbulent flow
as measured by a laser Doppler anemometer system can be accurately
modeled by uo(t)as indicated in Figure 2.2.1. The variables represented
are: velocity component, u; particle residence time, 4t.and absolute

particle arrival time, t;

The subscript "i" refers to the ith particle crossing the measurement
volume during time T, and i = 1, 2, 3, ... N. "N" is a random variable
dependent on the system data rate, and the block averaging time, T. It
will be assumed that the particle moves at the same velocity as the
fluid and that the fluid velocity does not change appreciably over the

measurement volume.

uo(t) is a discontinuous function which only contributes information
about u(t) during the times 4t when a particle is in the measurement
volume. Inserting u.(t)into Equation 2.1.18, and assuming d(t) to be a

boxcar data window of length, T yields:

2
SOT(f)=%l:lfoTuo(t)e’z""dtl } 2.2.1

The Fourier transform in the above expression may be approximated as:

i2rfe,

N
Gor(f)=) u,dt.e 2.2.2
i=]

where the variation of exp(j2rst)over the interval 4t.has been neglected.

10



Gor(f) is the discontinuous counterpart of a,(f)with u(t) replaced by ul(t].
including a boxcar window of length T. Inserting equation 2.2.2 into

2.2.1 yields:

2
j2l!f(
or(f)““ 2.2.3
It has been shown, George (1979) that the relationship between the
second order expected values 3. and 3;is:
Sor(f)=(nV)*S(f) 2.2.4

Where u is the particle number concentration, and V is the measurement
volume size. Using the fact that the average particle number
concentration in the measurement volume is equal to the fraction of
total time particles reside in the volume, uv=Y,4t/T, the unbiased

spectral estimate can be established in terms of measurable quantities.

T _
S+(f)=—=———|8er ()|’ 2.2.5
N
i=] i
N N ) _
Se(f)m et > Zu,.u,.At,.At,.e’"’(" ) 2.2.6

(T au) &

inj

Rearranging terms yields:

Se(f)=—=——( Y Su.u,at, a0’ +Zu atly  2.2.7

}: At inj

The second term on the right hand side of the above expression
represents a false constant shift in the magnitude of the spectral

estimate caused by the contribution to the autocorrelation of ue(t) for

11



the delay time during which the particle is still in the measurement
volume, Buchhave (1979.) Subtracting this term and renormalizing the

constant T/yat yields:

) 2
([ Ywatde”™" | =Y (w,4t,d,)’) 2.2.8

T
(Y at)=-> azy 14 1

Where d; is the (boxcar) data window. This expression is the unbiased

Se(f)=

spectral estimate used to calculate the power spectral density, Sr.iuce
using the technique of block averaging:
M

1
3‘T=1—M—Zsm 2.2.9

me=)

where Sy, is the spectral estimate S, calculated from the mth block of

data.

Note that (except for the renormalized denominator in 2.2.8) Equation
2.2.7 and 2.2.8 are identical, i.e.: they both calculate the unbiased
spectral estimate S;(f). However, an important difference between these
two equations is apparent; Equation 2.2.7 incorporates a double
summation, whereas 2.2.8 incorporates a single summation. It is clear
that the single summation will be computationally faster than the double
sum for evaluating S,(f). A unique aspect of the preseﬁt work is the
incorporation of the single sum expression, rather than the double sum,

(as was previously used, Buchhave 1979) to accelerate data reduction.

£

12



2.3 Biased and Unbiased Estimators

The spectral estimate derived in Section 2.2 utilizes residence time
weighting in the calculation of the Fourier coefficients and has been

shown by George (1976) to be unbiased.

An analogous expression has been derived, Thompson (1971) for spectral
estimation from randomly sampled data which does not include residence
time weighting to correct for velocity bias. This spectral estimate

will be referred to as the "biased" estimator.

2

=Y (ud)y 2.3.1

T j2n 1t
S‘r(f)biaso’da'm{ Zu‘idiel "

Notice the similarity in form to equation 2.2.8. This expression is the
biased spectral estimate used to calculate the power spectral density

57(f)eacea using the technique of block averaging.

2.4 FFT Representation of Power Spectral Density

The Fast Fourier Transform provides an alternative method of calculating
spectral estimates. The FFT requires equispaced samples taken at
intervals which are determined independently from the process being
sampled and cannot, therefore, be used directly on randomly spaced LDA
data. It can, however, be used to calculate unbiased spectral estimates
from analog instruments (i.e.: hot wires,) when used in conjunction with

an A/D converter. In terms of the variables previously defined, the

spectral estimate calculated by the FFT algorithm is:

j2nft,

StCerr= w1 L e’ 2y 2.4.1

13



This expression is the unbiased spectral estimate used to calculate the
power spectral density 3:(f); from the hot wire anemometer output using

the technique of block averaging.

2.5 Variance of the Spectral Estimate

The variance of the spectral estimator defined as:
var{S ()} = E{S2(H}-EXS () 2.5.1
has been derived by Gaster and Roberts (1977) for randomly sampled data,

the result shows that as T -«

2\ 2
varS-,(f)}-)(S(f)+U-V—) . 2.5.2

Where S is the true power spectral density of u(t), v=n~N/T is the

average data rate, and o is the standard deviation.

g?=(u(H-u)? 2.5.3

By rearranging terms, we can arrive at an expression for the relative

error, e.

e2=v——————ar<37(”}=(1+ o )2 2.5.4

S*f) vS(f)

This expression differs from the equivalent result obtained for
continuous signals by the appearance of the second term on the right
hand side. Since the spectrum is assumed to drop as frequency
increases, the effect of sampling is to increase the relative error of
the spectral estimate with frequency. Note also that relative error

decreases with increasing average data rate.

14



The above expression for relative error was derived for the biased
spectral estimator 2.3.1 and is only valid in the limit as T -« The
asymptotic unbiased estimate S; can be shown to have a spectral variance

which reduces to the same expression, George (1976), Buchhave (1979.)

Block averaging reduces the relative error of the mean spectral

estimate. The governing relation is:

62=Uar{§7(f)}

SEEETT 2.5.5

where "m" is the number of blocks used to calculate the mean value.

2.6 Data Windows

In Section 2.1, a class of spectral estimates was defined (2.1.10) which
introduced the concept of data windows. A data window can be viewed as

a device which allows calculating the Fourier integral transform,

a(f)=f_:u(t)e"””‘dt 2.6.1

from a sample record of finite length. The effect of the data window,
d(t) on the estimate &,(f)can be investigated, after a brief statement

of the convolution theorem.

The convolution theorem states that the Fourier integral transform of
the product of two time functions is equal to the convolution integral
of the Fourier integral transforms of the two-rfunctions in the frequency

domain. Mathematically, this may be expressed as follows.

[ nwawe ai= [Rrracs-ryar 2.6.2

15



Where A(f)and §(f) are the integral Fourier transforms of h and g,

respectively.

(= [Cawe™ @ A= [Tawe e 2.6.3

From the definition of the estimate of the Fourier transform of u(t),

aT(f)=f_:d(t)u(t)ez""dt 2.6.4

by the convolution theorem:

'/::d(t)u(t)ejz”"dt=f-:c“1(f)a(f-f’)df' 2.6.5

where a(f)is the true Fourier integral transform of u(t). The effect of
the data window is to alter the estimate a,(f)by an amount which could
be calculated using Equation 2.6.5. This relationship can be used,
therefore, to find data windows whose Fourier transform a(f) which, when
convolved with the true Fourier integral transform, provide an estimate

of the Fourier transform, a,(f), which is close to the true value, a(r).

16
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Chapter 3: EXPERIMENTAL FACILITY

An experimental procedure was conducted to measure the power spectral
density of a turbulent flow using a laser Doppler anemometer system and
an axi-symmetric free jet. Following is a description of the hardware

used and a discussion of relevant experimental considerations.

The following components comprised the majority of the hardware used in
this investigation: jet, seeding, enclosure, LDA optics, LDA signal
processor, interface and computer. Various extra hardware was used, at
one point or another, for comparison and testing. This included: a
Dantec model 55M Series Constant Temperature Anemometer, a Phoenix A/D
converter, PDP-11/73, VAX, and micro-VAX computers, a Nicolet
Semi-Ubiquitous FFT Spectrum Analyzer, a Dantec 55L90a Counter Processor
and 55N10 Frequency Tracker, a Wildfire Buffer Interface, and hot wire
calibration facility. See Figure 3.1.1 for a picture of the

experimental facility.

3.1 Jet

An axi-symmetric free jet was manufactured for this investigation. It
consisted of a blower at one end attached to a long plexiglass tube
(11.2 cm inner diameter, 50 cm length) which was filled with flow
straighteners to reduce the turbulence intensity at the jet exit. The
jet exit velocity was fixed at 17.76 m/s with less than 0.5% turbulence
intensity. The jet exit diameter of 2.8 cm and air kinematic viscosity
of 15 x 1075 m?/% produce a Reynolds Number of'approximately 30000.
Measurements were carried out 10 diameters downstream of the jet exit,

on the centerline and at various radial positions.

18



3.2 Seeding

Seeding for the air was provided by glycerine smoke produced using a
variable power heating rod inserted into a beaker of liquid glycerine.
The glycerine particle diameter is estimated to be in the range 1-5

microns.

The seeding density in the facility could be controlled using the
variable power heating rod. By increasing power to the heating rod, the
concentration of glycerine smoke increased. The variable seeding
density provided an adjustable system data rate in the range 0.5-20 kHz.
Most measurements were carried out with a mean data rate of
approximately 5 kHz. This value was selected as the maximum data rate
at which continuous data collection could be accomplished with a
relatively constant data rate at off-axis positions. See Figure 3.2.1

for a picture of the seeding generating equipment and the free jet.

The size and the mass of particles used to trace the flow can limit the
highest frequency which can be measured. The particles operate in
Stokes' regime and can be shown to respond like a first order filter
with an attenuation frequency dependent on particle size. For the
glycerine/water particles used in the size range of 0.1 - 1.0 um the

frequency response is estimated at 10 kHz in air, Buchhave (1979).

Another aspect of the LDA seeding principle which may limit frequency
response is the finite duration of time it takes particles to cross the
measurement volume. The maximum spectral resslution corresponds to the
inverse of the average particle residence time. For the present
investigation the average residence time is approximately Sus which

corresponds to a frequency response of 200 kHz.

19



3.3 Enclosure

The room in which the experiment was performed was very large. 1In order
to insure uniform seeding and a sufficiently high seeding density, the
experimental facility was enclosed by plastic sheets. The facility so
obtained measured approximately 5m x 5m by 2m height and the jet was
placed such that the measurement section was located near the center of
the enclosure. The plastic sheets are evident in Figure 3.1.1. As a
safety precaution, a "gas mask" was used when working in the highly
seeded enclosure, see Figure 3.3.1.

The seeding generator was allowed to run continuously during the

measurements to assure a high seeding density of statistically uniformly

distributed particles.
3.4 LDA Optics

The laser Doppler anemometer used was a He-Ne based single channel
system with frequency shift configuréd in forward scatter. The front
lens focal length was 310 mm and the beam separation 50 mm which combine
to yield a calibration factor of 3.12 ms™! / Mhz. Laser power was 10

mw. The forward scatter configuration contributed a ten fold higher
data rate compared to that obtained in backscatter. Beam expansion of
1.95 X was used. The optical specifications listed yield a measurement
volume dimension of: .16 x .16 x 1.3 mm (on-axis component.) The
orientation of the LDA measurement volume relative to the jet is

indicated in Figure 3.4.1.

3.5 LDA Signal Processor

Measurements were taken using a Dantec model 57N10 Burst Spectrum
Analyzer (BSA) signal processor interfaced to an IBM AT compatible

computer. This signal processor determines the Doppler frequency using
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a hard-wired FFT technique. The BSA also measures the particle arrival
and residence times. The conventions used by the BSA for measuring and
representing these measured values is described in the Dantec 57N10
Burst Spectrum Analyzer Instruction Manual. They will be summarized

here.

The Doppler frequency fj is resolved over the operating bandwidth BW
("span") by a binary number, V,,,. V., depends on the record length (or
number of samples used by the signal processor to perform the FFT on)
by:

1.SBW 1.5BW
% Ve TR
2 2 L

fop=f.- 3.5.1

where, f_, is the center frequency, R; is an integer equal to: 0, 1, 2, 3,
when the number of samples selected (record length,) R, is: 8, 16, 32,
64, respectively. This expression shows that velocity resolution
increases with increasing record length and that the maximum resolution

(14 bits) is obtained when R, is equal to 64.

The BSA also determines the particle residence time and arrival time.
The residence time is measured using an accumulator incrementing at a
clock frequency equal to half the processor's sampling frequency. The
sampling frequency f,, is bandwidth dependent, f, = 1.5 BW . The
residence time is represented by a 12 bit binary number. The arrival
time measurement is absolute. It is made using a free-running 14 bit
register incrementing at frequency, F, equal to the sample interval (or
sample frequency divided by the record length,) F,. £,/ R;. The

arrival time is represented by a 14 bit binary number.
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As can be seen by examining the above relations, a trade-off exists
between Doppler frequency resolution and arrival and residence time
resolution. For this investigation a compromise was made, sacrificing
velocity resolution to achieve greater time resolution. The bandwidth,
BW was fixed at 8 Mhz and the record length, R, maintained at 32. This
yields a sample frequency, f, of 12 Mhz, an arrival time clock frequency
F, of 375 kHz, (2.6us resolution), a residence time clock frequency of 8
Mhz, (125 ns resolution), and Doppler frequency resolution of

8 Mhz / 2 13 (approximately .001 MHz.) Data was collected while varying
the arrival time clock frequency to see what effect the changing arrival

time resolution had on the results.

The frequency response of a laser Doppler anemometer system is usually
limited by the signal processor. The BSA signal processor works on a
digital principle able to measure step-changes in velocity; it has
infinite slew rate and therefore can be considered to have near-infinite

frequency response or dynamic range.

3.6 Interface and Computer

The BSA signal processor comes equipped with an industry standard IEEE
interface. This was interfaced to the IBM AT compatible computer via a
National Instruments PC IIA GPIB Interface. The drivers for these
interfaces are included in the standard software supplied by the
manufacturers. The maximum data throughput for the IEEE interface is
specified at 300 kb/s which translates to 50 ksamples of data/s. Each

sample consists of 6 bytes.

The computer was equipped with 640 kb RAM, 8087 floating point chip, 1.2
Mb floppy disk drive, 20 Mb hard disk, and EGA graphics adapter.
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Software was written in Ryan-McFarland FORTRAN 77. Figure 3.6.1 shows

the BSA signal processor and IBM AT compatible computer which were used.

3.7 CTA System

The constant temperature anemometer (CTA), is an analog device with a
frequency response limited by the feedback loop which maintains the
probe at constant temperature. This limit depends on the cable length,
the probe type, the AC gain and many other factors. Fortunately, the
CTA frequency response is adjustable by the incorporation of a
"square-wave test" function built into the device. By adjusting the
bridge arm inductance and capacitance while simultaneously increasing
the AC Gain and Filter settings, it is possible to optimize the
frequency response of the system. The CTA was adjusted to a frequency
response exceeding 150 kHz, as measured by the oscilloscope used during
the square-wave test. This value is considerably higher than the
frequency cutoff imposed by the spatial resolution of the wire. For
this investigation, this value is 25 kHz at the centerline, and about
2.5 kHz at the largest radial location. See Section 5.6. This is still

well above the frequencies of interest here.
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Figure 3.1.1

The Experimental Facility

24



Figure 3.2.1
The Seeding Generator and Free Jet
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Jet Coordinate System, Measurement Positions,
and LDA Measurement Volume Orientation

Figure 3.3.1 .
Safety Precautions for High Seeding Density Conditions
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Chapter 4: SOFTWARE

The software required for testing the algorithm consisted of
commercially available programs, archival programs, and custom-made

programs for calculation of biased and unbiased power spectral density.

Data Acquisition and storage was carried out using the standard Dantec
BSA software. A conversion routine, DATCV, provided by Dantec, converts
the binary raw data to "physical variables" (i.e.: m/s) in ASCII format.

The spectral analysis routine operates on this converted data file.

In addition to the above programs, others were used or written for
various reasons. These include a battery of programs created by the
Turbulence Research Laboratory at SUNYAB:

IDSL, a driver for the Wildfire Buffer Interface,

RECDAT, a data acquisition program used in conjunction with the
PHOENIX A/D Converter,

PWSPEC, an FFT routine for calculating the unbiased spectral
estimate and block averaging of data obtained using RECDAT,

CALIBl, a hot-wire calibration and linearization program, and

TRLPIOT, a graphics program which runs on the VAX over a DECNET
line and produces graphics plots on the Tektronix terminal or VT100
Laser Printer.
Other software which was written includeé:

PLOTL a program to plot the power spectral density as a log-log or
semi-log plot,

MAINC a modified version of MAIN4 to proééss files of equispaced
data for test purposes. See the following sections for a detailed

description of the spectral analysis routine.
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4.1 Description of the Spectral Analysis Routine

A data processing scheme (Rapid Recursive Spectral Analysis Algorithm)
was implemented to calculate the biased and unbiased power spectral
density (equations 2.2.8, and 2.3.1) of the fluctuating (single)
velocity component, u;, (i =1, 2, 3, ... N) measured by the LDA. The
algorithm utilizes digital outputs from the LDA signal processor. These
outputs are: Doppler frequency, de residence time, 4. and arrival
time, t; of the i randomly spaced samples in the block of length, T.

The velocity component u, is calculated from the Doppler frequency, £f,;

using u; = C f,, where C is the calibration factor (see Section 3.4.)

Some flexibility has been incorporated into the routine to make it more
user-friendly. For example, the user can select the harmonic
frequencies fk'(fk- k/T, k=1, 2, 3, ... F), and the block averaging
time, T. A recursive relation is used to speed up computation time and
a data window is applied in the time domain to decrease high frequency
digital noise. A plotting routine is called after successive block
averages to provide qualitative investigation of the spectrum and to
display other important system parameters: name of raw data file, total
number of samples in the file, total samples processed, samples in
current block, and actual duration of current block. A detailed
description of thé program and flow chart is given below. The major

segments of the program are:

i) MAIN4; the main program, which sequentially reads blocks of
data and averages the spectral estimate obtained with results from

previous blocks,

ii) SPEC4; a subroutine, which calculates the spectral estimate,

Sp(£y). )
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iii) PLOT4; a plotting routine which sequentially plots block
averaged results. This gives an indication of convergence of the

spectrum and an indication of suspicious results.

4.2 Flow Chart

Refer to the flow chart in Figure 4.2.1 for the following discussion of

the spectral analysis routine.

The user initially sets the parameters: block averaging time, T (in
seconds); upper harmonic frequency, F (dimensionless); "mode" of
harmonic frequency spacing, and harmonic frequency interval, DF

(dimensionless.)

The term harmonic frequency is used to differentiate from physical
' frequency (in Hertz.) To convert from harmonic frequency to physical
frequency it is necessary to divide harmonic frequency by the block
averaging time, T. The harmonic decomposition of the record (of length
T) requires breaking it into integral segments the inverse period of
which is the harmonic frequency, k = 1, 2, 3, ... F. These harmonic
frequencies correspond to the physical frequencies, f, - 1/T, 2/T, 3/T,
F/T.

When the block averaging time is 1 second, the harmonic frequency is
equal to the physical frequency. In the general case, T does not equal
1 second, therefore, the following transformation is necessary in

calculating S;(f,):

Se{fi)e S (k) 4.2.1

S¢(£fy) is the spectral estimate at physical frequency £, Sp(k) is its

30



harmonic equivalent. See Section 4.3 for details.

The spectral resolution of the power spectral density calculated on the
basis of a data record of length T is: 1/T. Therefore, spectral
resolution increases with block averaging time, at the expense of block

number, "M" for a run of fixed total length.

The data record consists of velocity, residence time, and arrival time.
The arrival time can be used to determine the beginning and end of
blocks. Since particle arrival time is random, there is a small
difference between the actual block length, T, and the selected block
length, T. However, since the inverse average data rate is small

compared to the block length, this difference is negligible,

Note, that most spectral analysis routines operate on blocks of fixed
record length. This is a natural consequence of the fact that most
spectral analysis routines operate on equispaced data, and fixed sample
number corresponds to fixed record length. When the sampling rate is
random, (as in LDA measurements) fixed sample number corresponds to
random block length. Spectral analysis of blocks with different record
lengths leads to various problems. In the present investigation, it
would cause spectral estimates to be calculated at random (i.e.: not
fixed) frequencies, which would be difficult to average. Also,
distinguishing the effect of insufficient record length (discussed in
Section 7.3) would be very difficult if the record length changed. For
these reasons, throughout the investigation, calculations were performed

on blocks of data of fixed record length.

Some important notes concerning the program source code are injected

here. The block of converted data is stored in three vectors U, T, and
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DT in the main program. These arrays are dimensioned to 5028. This
limits the combination of block length and data rate (N) to 5028. The
converted data includes "false records" from the signal processor.
These records correspond to arrival time overflows ("ATO's") which are

ignored when reading sequential strings of valid data.

The calculation of S;(fy, will be discussed fully in section 4.3.
However, it is useful to write the expression (4.2.1) for S;(£f)

explicitly:

T, N j2ns e, N 2
STm(fk)=( xlﬁti)z“ xldtiz{lznldiuidtie * |2—Zi-l(diuidtl’)}

Sm(£x) is the spectral estimate calculated from the "m*®" block of data
and has units [m?/s] f, = k/T is frequency [Hz], "i" is the itk particle
in the block (which resets after each block), u; is the velocity

component [m/s], t; is the arrival time [s], N is the number of samples
in the block [ ], 4t is the residence time [s], T, is the length of the
m*® block [s], d; is the data window [ ], andm =1, 2, 3, ... M. Note,
that this algorithm uses a single summation and therefore differs from
the one used by Buchhave (1979) which incorporated a double summation.

This was discussed fully in Section 2.2.

There are two modes of program operation: fixed and variable. These

modes distinguish the variation in harmonic frequency spacing, as

follows:

.
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mode = FIX: k =1, DF,2DF,3DF,... F 4.2.2
mode = VAR: k = DF°,2DF°,3DF°,...(DF-1)DF?°,
DF',2DF',3DF',..(DF-1)DF",

DF?*,2DF?,3DF?2,... F 4.2.3

Notice the function of the harmonic frequency interval, DF. In fixed
mode DF is the fixed spacing between harmonic frequencies. Since F is
the maximum harmonic frequency, in fixed mode the number frequencies at
which Fourier Coefficients will be calculated is (F/DF) + 1. (The

variation of k differs when DF = 1. In this case, k = 1, 2 w3 ... F.)

In variable mode, the spacing between harmonic frequencies varies. The
harmonic frequency spacing is constant "DF" times, after which the
harmonic frequency increases by équaring itself. It is easier to

understand the function of DF in variable mode by using an example. Let

DF = 10. In variable mode, the harmonic frequencies used will be : k =
1, 2,3, ...9,10, 20, 30, ... 90, 100, 200, 300, ... 900, 1000, 2000,
3000, ... 9000, 10000, 20000, ... F. Variable mode allows logarithmi-

cally spaced intervals to be used in the calculation of power spectral
density. A minor note should be inserted: the program limits the number

of times that the harmonic frequency will square itself before reaching

F. This limit is 4.

The data window, d, is used to improve the spectral window associated
with the spectral estimate. Data windows are, employed to reduce the
effect of finite duration sample intervals on calculations of power

spectral density. As previously described, the data window is a boxcar
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function with unit amplitude: d; -1, i =1, 2, 3, ...N. Since
multiplication by unity does not effect the calculations, the data

window is included only to maintain the generality of the development.

After S;(f;) has been calculated from the m'® block using equation 4.2.1,
the results are averaged with the results from previous blocks by
ensemble averaging. This procedure continues until the end of the data
file, after which, the results of the block averaged power spectral

density calculation are stored for analysis.

4.3 The Rapid Recursive Relation

The calculation of S;(fy) does not entail the straightforward evaluation
of equation 4.2.1. As previously noted, a recursive relation ("Rapid
Recursive Fourier Transform") is used to speed up computation time.

Therefore, the calculation of S¢(£,) is slightly modified.

"Rapid Recursive Factors," M; are used to calculate Qor(K),

Gor(k)=) 1\ c,M* 4.3.1
¢, =d,u,dat, 4.3.2
MkE= 2 T 4.3.3

which are in turn used to calculate Si(f}),

Sr(k)=

r 5 N
( {vélt,-)z— ildt?{|Uor(fk)'|2‘Zi_l(d,.u,.dt,.)z}, 4.3.4

i=]

Finally, S;(k) is converted from harmonic to physical frequency.

S(k/T) e Sp(k) : 4.3.5
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The recursive relation will be explained further. Let, M (f )=ej2n/,1,
i

where, fe=k/T.

Incorporate the following notation: i2me/T

M(1/T)=M}!=e

2nke /T

Mi=e 4.3.6

In fixed mode notice that, M:zDF - Mf"_l)DFMiDF. 4.3.7

That is, the quantity, j2ra(DF) /T

M?PPE =, for n>1
can be calculated by multiplying the quantity M (R DDF
t

which has already been calculated, by M DF = g i2PF/T
i - .

The calculation of M "PF
H
is then used to calculate M+ DDF
i

until k = F,

The recursive calculation is more complicated in variable mode. Notice
that relation 4.3.7 (for fixed mode) can be employed "DF" times in
variable mode, during intervals which have fixed harmonic spacing (i.e.:
during decades.) For the intervals in which that isn’'t true (i.e.:

between decades), the definition 4.3.3 is employed to calculate M

The following expression shows how the recursive relation is implemented

in variable mode:

M?DF”=M§n-l)DF”MiDFx n#1l 4.3.8
ME = ol n=k=1 4.3.9

In the above equations, x is any arbitrary number equal to 1, 2, 3, or

4,
The combination of the Rapid Recursive Fourier Transform and the use of

variable spaced frequency intervals optimizes the speed of calculation

of Sy(£.).
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Figure 4.2.1

Flow Chart of The Rapid Recursive Spectral Analysis Routine
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Chapter 5: PROCEDURE

Following is a description of the procedure used to conduct the
experiments with a discussion of the most important experimental

considerations involved.

5.1 Optical Alignment

The He-Ne LDA system must be aligned before use. The technique used to
align the optics is a standard procedure available from any of the
commercial manufacturers of LDA equipment. In summary, the procedure
entails the adjusting two laser beams to become parallel. Once focused,
the beams should intersect at the measurement volume. The receiving
optics, configured in forward scatter must then also be adjusted. The
receiving optical unit is equipped with a variable focusing lens which
must be placed a minimum distance of 600 mm from the intersection before
focusing. The unit must be adjusted such that the.image of the focused
intersection passes through a pinhole into the photo-multiplier (PM)
tube. Once this is accomplished, the transmitting and receiving optics

are properly aligned.

5.2 Signal Processor Adjustment

Preliminary measurements were taken with the LDA measurement volume
located at an appropriate test point. At this time seeding density and
electrical controls are adjusted to optimize data collection. A
quantifiable indicator of the signal quality is provide by the
validation meter on the front of the signal processor. The filtered and
amplified Doppler burst signal is available for qualitative judgement of
signal quality using an oscilloscope. Filter settings, amplifier and PM

tube gain, and frequency shift controls provide the most critical
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control over the quality of the monitor output signal. These controls
were adjusted until the monitor output signal was clean with no filter
clipping evident. Filter clipping can be determined by using the
on-line histogram included in the data acquisition software. Once the
frequency shift is adjusted to provide sufficient zero crossings of the
Doppler burst with no filter clipping and sufficient validation and data

rate, the system is ready to operate.

5.3 Measurement Volume

The laser Doppler anemometer front lens focal length was 310 mm, beam
separation was 50 mm, beam expansion was 1.95 X. These optical
specifications along with the dimension of the laser beam from the
manufacturer yield an LDA measurement volume dimension of: .16 x .16 x

1.3 mm, with the orientation indicated in Figure 3.4.1.

The measurement locations used in this investigation are indicated in
Figure 3.4.1. One centerline and two off-axis positions were used, at a
downstream location of 10 jet diameters. The measurement position was
determined using a laser beam to identify the jet centerline, and a
plumb-bob to determine the downstream and radial coordinates. A
traversing mechanism fitted with a vernier adjustment was used to

accurately position the hot wire probe.

5.4 Data Rate

.

With the optics aligned, the signal processor settings optimized, and
the LDA measurement volume positioned at the test point, the system data
rate can be adjusted. The seeding density and signal processor gain are

the most important parameters affecting the data rate. For this
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investigation the data rate was maintained at a constant value during
each run at different positions. Different runs were made at high and
low data rates with short and long run times, respectively, to

investigate the effect on spectral variability.

The data rate was limited in practice to a mean value of 5 khz. This
was the limit at which the BSA could continuously output all measured
variables over the IEEE interface without an input buffer overflow error
(which would cause gaps in the data record.) Although, in principle,
gaps in the record of the velocity data do not affect the direct Fourier
Transform, the sequential block averaging technique implemented did not
check for blocks of empty data. Therefore the possibility of
encountering an entire block without data was eliminated by ensuring
that data acquisition was continuous. Note that "gaps" in the velocity
record could also correspond to an imProper seeding technique. In
practice, the software could be set Qp to check for gaps larger than
"expected" for a given mean data rate and flag the user of a possible

error condition.

5.5 Data Collection Time

The time-out limit for data collection is user controlled. As discussed
above, there were certain practical limits encountered in establishing a
high data rate (it was limited by the signal processor computer

interface.) Similarly, other practical limits dictated the maximum data
collection time, as will be discussed below. .
The number of blocks used to block average the spectral estimates should

be as large as possible to decrease the variability associated with the
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estimate (see section 2.5.) The block averaging time should be as long
as possible for maximum spectral resolution. These two considerations

dictate that the total sampling time should be as large as possible.

The constraint on unlimited data acquisition time is computer storage
space. Since the program does not operate "on-line", all the data which
is collected must be stored. (Note, that there is no reason why the
algorithm couldn’'t be implemented on-line, given the right processor, or
by implementing parallel processing, for example.) The converted data
must also be stored. For this investigation, one floppy disk of raw
data (360 kbytes) requires over 3 Mbytes of hard disk storage in ASCII
format. This corresponds to a total record length of about 50000
velocity samples. The number of runs, data rate, and length of a run,

are severely impacted by storage requirements.

5.6 Hot Wire Data Acquisition and Processing

The seeding generator was shut off before measuring with the hot wire
anemometer to eliminate the effect of the glycerine smoke on the-
calibration. With all other factors unchanged, 100 blocks of 0.2048
second hot wire data were taken with an A/D converter sampling the
non-linearized output of the anemometer at 10 khz. The calibration
curve was fit with a fourth order polynomial to convert the raw voltages
to velocity. A standard block averaging FFT routine was used to
calculate the half-line power spectral density (equation 2.4.1) averaged
over 100 blocks. The integrated half-line spectrum compared to within
1% of half the mean square value of the velocity fluctuation calculated
for the hot wire data. This test gives confidence in the results of the
hot wire power spectral density, which was used subsequently for

comparison with the results from the LDA.
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In applications where the sampling rate is fixed, the time between
samples is constant and the Nyquist Theorem applies. In these
applications (i.e.: measurements made with an A/D converter,) the
sampling rate limits the alias-free frequency response to f_ /2. When
the sampling rate is random, as in the case of the LDA operated under
conditions of low seeding density, the Nyquist Theorem does not apply
and the frequency response is not in principle limited by the sampling
rate, although the variability is affected (see Section 2.5.) From the
result calculated in Section 5.9, the Nyquist criteria stipulates that
the sampling rate of the A/D converter should exceed 64 kHz to resolve

the Kolmogorov microscale.

If the hot wire prébe is large, however, such that it cannot resolve a
structure of length 1,, then it makes no sense to sample faster than d-!
where d = 1,/ s and s is the speed with which the structure is
convected past the measurement point. For this investigation, the
dimension, 1, of the hot wire probe (200um) exceeds tﬁice the dimension
of the Kolmogorov micro-scale (n=Soum) Therefore, it is the
non-infinitesmal spacial extent of the transducer which determines the
optimum sampling rate. This sample rate, f, is given by:
U

fc=2lw

9.6.1

for é= 10 m/s, and 1, = .200 mm, f, = 25 kHz. Therefore, the optimum
sampling rate to be used in digitizing the analog output of the hot-wire
anemometer system is 50 kHz. Obviously, a lower rate could have been

used away from the centerline where the mean welocity was lower.
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5.7 Experimental Variables

After collection of data using both LDA and hot wire probe, the
measurement location was changed and the above procedure repeated.
Typically, one on-axis and two off-axis positions were used. This

constituted a single run of the experiment.

Besides varying the position (which is equivalent to altering the
turbulence intensity,) other variables were adjusted during the course
of the procedure. The most important of these parameters was the system
data rate which was adjustable in the range 0.5 - 20 khz. Once the data
rate was fixed, it was maintained constant during the course of one run.
Data collection time was varied to compensate for the data rate, as

subject to disk storage space as previously described.

Besides position, turbulence intensity, data rate, and sampling time,
other parameters such as arrival time clock frequency, block averaging
time, etc. were adjusted experimentally for verification and testing
purposes. The impact of these effects on the outcome of the power

spectral density calculations was examined.

5.8 Data Reduction Time

The Rapid Recursive Spectral Analysis Algorithm (RRSAA) computes the
block averaged power spectral density of the turbulent velocity measured
by the laser Doppler anemometer using data from randomly arriving

.

particles. A description of the program and its functions is included

in Chapter 4.

Results from the power spectral analysis of LDA data were compared with

the results from the hot wire anemometer. Biased and unbiased estimates
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of power spectral density were calculated and compared as a function of

increasing turbulence intensity.

It may be of interest to note the time required for data acquisition and
reduction (using the 8 MHz IBM AT compatible computer with 28 ms hard
disk access time.) At a single position, data collection required
approximately 10 seconds (although some runs lasted up to two minutes.)
The amount of time required to convert from binary numbers to physical
units (using DATCV) was approximately 8 minutes per 10000 samples. For
a typical data file of 10 seconds, with an average data rate of 5 khz,
40 minutes are required to run the conversion routine. The spectral
analysis program on the other hand has a variable run time depending on

the user selected parameters, but typical values can be mentioned.

Most of the processing (using MAIN4) was performed using the following .
parameters: F = 1000, T = 1.0 s, DF = 10, mode = VAR. For the example
under consideration, 30 frequencies are used and 30 spectral estimates
calculated. The frequency resolution for this example is 1 Hz and the
maximum spectral frequency 1 kHz. Since run time is 10 seconds, with T
equal to 1 second, 10 blocks will be block averaged. Approximately 45
seconds are therefore required to read the first block of data, followed
by 45 seconds to calculate the spectral estimate. For 10 blocks,

approximately 15 minutes will be required to process the data file.

It is interesting to note that extremely fast processing of the data
would not significantly reduce processing time, since most of the time
(for this particular example) is consumed by computer I/0 and data
"pre-conversion." Increased speed could be obtained, however, by
performing the calculations "on-line." The drawback of on-line

processing is that the raw data is lost.
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Note that if the input parameters are changed, for example setting F =
10000, DF = 1, mode = FIX, which corresponds to calculating 10000
estimates for 10 blocks of 5000 samples each, several hours will be

required to process the same data file.

5.9 Estimating the Highest Frequencies To Be Measured

The highest frequency to be measured in turbulent flows of moderate
turbulence intensity (u«'/@<1)corresponds to the inverse time in which it
takes the smallest structures in the flow to be convected past the
measurement point. This frequency can be calculated by the following

procedure.

The smallest spacial structures in turbulent flow are the eddies which
dissipate turbulent energy in the form of heat at the Kolmogorov
microscale. By Taylor’'s hypothesis, these structures are convected past
the measurement point at the mean velocity as if frozen. This is
because the turnover time of these eddies is long compared to the

convection time.

The Kolmogorov Microscale 5, is given by:

n=(v3/€)”4 5.9.1
Where vis the kinematic viscosity of air and eis the turbulent
dissipation.
us
€= 7 ] 5.9.2

For the near jet, the length scale, Lcan be estimated according to the
empirical relation L-.07x. u’ is the rms velocity (about 25% of the mean

velocity, @on the jet centerline at x/D=10)
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Using the values: v-15x10"*m®/s and D=«028m yields a value: n=-50um for the
Kolmogorov microscale. The inverse turnover time, f, of Kolmogorov

structures being convected past the measurement point at mean velocity
U=10m/s is:

u

= 5.9.3
[y 2mn

which for the mean centerline velocity, @=-10m/s yields the highest

frequency to be measured in the flow, f.-32kHz.

5.10 Impact of Hardware on Residence Time Weighting

The technique of residence time weighting to correct for velocity bias
has come under fire in the international community over the past several
years. It is of interest to address the ambivalence which the technique

has engendered and comment on the possible reasons for it.

Application of the residence time weighting technique usually requires
implementation using hardware available from commercial vendors. It
will be argued that the peculiarities of commercially available hardware

may be responsible for the proliferation of controversy concerning

residence time weighting.

Three peices of information are required to determine the unbiased (or
biased) power spectral density. Let us consider the techniques used in
commercially available equipment to determine these three pleces of
information and show that the intricacies inherent in these techniques

may be responsible for the problems plaguing widespread acceptance of

the residence time weighting algorithm.
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Consider first, the measurement of particle arrival time. Measurement
of the arrival time of a particle can be accomplished in one of two
ways: relative and absolute. In the relative mode of operation, the
time between particle arrivals is measured (inter-arrival time). 1In the
absolute mode of operation, each particle is "time stamped" relative to
a free-running clock which begins at time, t = 0. We can summarize the
analysis of particle arrival time measurement and its effect on
residence time weighting and accuracy of measurement, in general, by
stating that a fixed frequency absolute arrival time mode of operation
will always produce better resolution in the measurement of arrival time
than a relative arrival time mode of operation using a floating point
clock whose base frequency is equal to the frequency of the absolute
arrival time clock (Kotas 1987). This problem seems to have been
addressed. by the commercial manufacturers. For example, the BSA
processor, manufactured by Dantec Electronics, Inc. incorporates an
absolute arrival time technique which .is superior to the older device
from this manufacturer which measured inter-arrival time using a

(variable frequency) floating point clock.

Consider next, the measurement of particle velocity and residence time.

these two peices of information are determined using the following

techniques (using the Dantec model 55L90a Counter Processor as an

example) .

The time of passage for a particle to cross 8 fringes in the measurement
volume, Py is recorded. This value is divide by 8 to get the Doppler
period, and inverted to get the Doppler frequency. The time of passage,
Pg, is measured using a floating point clock, and output as a 12 bit
number, with an 8 bit mantissa and a 4 bit exponent. The residence time

is calculated on the basis of the Doppler period, by multipying it by
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the number in the fringe counter. The fringe counter is an 8 bit binary
number representing the number of fringes crossed by the particle as it
crosses the measurement volume. Unfortunately, the fringe counter in
the 55L90a Counter Processor overflows at 256 fringes, and gives no
indication of this overflow to the user. Whenever the fringe number
exceeds 255, therefore, the residence time determined by this signal
processor will be greatly in error. Although the Doppler frequency
calculation is still correct, and therefore, the velocity is valid, the
residence time which is used to implement the residence time weighting
algorithm will be severely in jeopardy. Capp (1983) points out that

this is a major consideration in all applications of LDA measurements at

low velocity.

It should again be pointed out that the flaw inherent in this signal
processor has been corrected in the Dantec 57N10 Burst Spectrum Analyzer
(see Section 5.2). 1In addition, there exist a limited number (one?) of

55L90a Counter Processors which have been modified by Dantec (George

1988).

In conclusion, we have examined the hardware in common use for
implementing the technique of residence time waiting and have examined
how the representation of the data influences the results. Although it
may seem presumptious to blame the suspicion regarding residence time
weighting on commercially available hardware, the arguments presented

certainly tend to support that argument.
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Chapter 6: RESULTS
6.1 Characteristics of the Unbiased Power Spectral Density

Characteristics of the unbiased power spectral density are evident in
the results presented in Figures 6.1.1 through 6.1.5. Preliminary tests
of the Rapid Recursive Spectral Analysis Algorithm included; analysis of
a known signal with variably modulated Doppler frequency, and adaptation
of the program for hot wire anemometer data. These tests proved
successful. For the later test results, see Figure 6.1.1. The test
conditions in this figure correspond to a jet centerline position at x =
10 D, 25% turbulence intensity. The two results differ slightly because
the hot wire results were block averaged 100 times and the LDA results
were only block averaged 10 times. When the two sets had the same

number of blocks used for averaging, the two results were identical.

Referring to Figure 6.1.2, (which is a log-log plot of the power
spectral density comparing the unbiased estimate with the hot wire FFT
estimate) notice that the LDA power spectral density (unbiased spectral
estimator) agrees with the hot wire power spectral density (HWFFT

estimator) to several hundred Hertz, after which, a wide disagreement is

apparent,

Representation of the power spectral density on a log-log plot may be
misleading. The same data presented on a log-log plot in Figure 6.1.2
is presented on a semi-log plot in Figure 6.1.3. Here the slight
deviations between the two curves at high frequencies are not as
apparent. The quantitative agreement of the measurements here appears

excellent to frequencies extending into the kiloHertz range.
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Figure 6.1.4 again reflects the quantitative agreement between the
measured hot wire power spectral density (HWFFT) and the unbiased power
spectral density estimate (direct transform.) Here the two techniques
both clearly distinguish the on-axis and off-axis power spectral
density, showing a higher peak for the off-axis position (higher
turbulence intensity), and a more rapid decay with frequency compared to
the on-axis position (lower turbulence intensity.) The same data is

presented in Figure 6.1.5 on a semi-log plot where the agreement is good

to several kiloHertz.

Generally, the unbiased power spectral density integrated to within 1%
of half the mean square fluctuation and showed excellent agreement with
the hot wire anemometer measurements to several hundred Hertz. For the

results presented, the range of the unbiased power spectral density

spanned more than two decades.
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Figure 6.1.1

Test of Direct Transform on Equispaced Data
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Figure 6.1.2

Comparison of Hot Wire and LDA Power Spectral Density (Log-Log Plot)
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Figure 6.1.3

Comparison of Hot Wire and LDA Power Spectral Density (Semilog Plot)
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Figure 6.1.4

Comparison of On Axis and Off Axis Measurements From LDA and Hot Wire
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Figure 6.1.5

On Axis and Off Axis Power Spectral Density, Hot Wire and LDA
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6.2 Comparison of the Behavior of the Biased and Unbiased Power Spectral .

Density

The experimental calculations of power spectral density reveal that the
result obtained using the unbiased estimator (2.2.8) matches the results
obtained using the biased estimator (2.3.1) and the HWFFT estimator
(2.4.1) at low turbulence intensity. The results also show that the
biased and unbiased power spectral density diverge for increasing levels
of turbulence intensity, with the unbiased estimator following closely

to the behavior of the HWFFT estimator (hot wire results.)

The similarity of the three estimates at low turbulence intensity is
clearly revealed in Figure 6.2.1, where the turbulence intensity is 25%.
These measurements correspond to the jet centerline position, where it
is evident that the biased and unbiased estimates show virtually the
same behavior. Since the velocity bias effects are not significant at
low turbulence intensity, this is the expected result, George (1988).
Figure 6.2.2 is a semi-log plot of the same data with the hot wire
results extracted. Note the quantitative agreement of the biased and

unbiased estimates at this relatively low turbulence intensity.

As the turbulence intensity increases, the biased and unbiased power
spectral densities begin to diverge. This is evidént in Figure 6.2.3
where the unbiased estimator remains virtually identical to the results
obtained with the hot wire, but the biased power spectral density begins
to increase in value relative to the unbiased result. Again, this is
the expected behavior according to the hypotﬁesis of the cause of
velocity bias (see Section 7.2.) However, since it is known (Beuther

1987) that the hot wire is contaminated by cross flow and rectification
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Figure 6.2.2
Comparison of Unbiased and Biased Power Spectral Density at 25%

Turbulence Intensity
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Comparison of Unblased and Biased Power Spectral Density With Hot Wire
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Figure 6.2.4
Comparison of Unbiased and Biased Power Spectral Density at 75%

Turbulence Intensity
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Figure 6.2.5
Comparison of Unbiased and Biased Power Spectral Density at 100%

Turbulence Intensity
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6.3 Increased Processing Speed Due To The Rapid Recursive Fourier

Transform (RRFT)

Three ways of calculating the direct Fourier transform, a. were
compared to see how much time could be saved by implementing the Rapid
Recursive Fourier Transform in data processing. These three techniques

all calculate the residence time weighted Fourier transform of wo(t).

j2rkt/T)

N
LZOT(k)=ZuiAtie( 6.3.1
i=1

The first method consisted of converting the complex exponential above

into its equivalent sin and cosine expression:

N
Gor(k)=) u,At(cos2mkt,/T+ jsin2mkt,/T). 6.3.2
iw]

The second method consisted of calculating g,r directly, using equation

6.3.1.

The third method involved implementing the following recursive

relationship in the calculation of successive values for @

N
Gor(k)=) u,At, M} 6.3.3
i=1
Mk = ej2ltkl‘/T 6 3 4
M ' =MIM! 6.3.5

The above relations show how values of Rapid Recursive Factors, M,

(used to calculate a,) are determined from the previous value.

Results of the comparison revealed that the Rapid Recursive Fourier

Transform reduced computation time by a factor of two over Method One

(6.3.2), and a factor of three over Method Two (6.3.1.) As discussed in
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the Introduction, the primary value of the approach utilized here is the
elimination of the need to carry out a double summation. Therfore, the
Rapid Recursive Spectral Analysis Algorithm eliminates the principle

difficulties present in the investigation of Buchhave (1979).
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Chapter 7: DISCUSSION OF RESULTS
7.1 Characteristics of the Unbiased Power Spectral Density

One of the major motivations in conducting this study was to develop a
spectral estimation algorithm for randomly sampled LDA data which is
fast, flexible, and accurate. It was hoped that the estimate of power
spectral density obtained using the direct Fourier transform technique
described, would be superior to the previously utilized technique
requiring a double summation in the direct Fourier transform, and the
alternative technique requiring a Fourier transform of the slotted auto
correlation (the Blackman Tukey technique.) It is important to comment
on the relative merits of the Rapid Recursive Spectral Analysis
Algorithm (RRSAA) with reference to its behavior indicated in the
results. It is also important to analyze how the results can be

improved and how these improvements can be -implemented.

The major accomplishments of this investigation are: the development of
a fast spectral algorithm for randomly spaced data which is free from
velocity bias, the demonstration of the severity of effects of velocity
bias in the spectral measurement of flows with high turbulence
intensity, and the presentation of further proof that residence time

' weighting eliminates velocity bias. It should be noted once again, that
the Rapid Recursive Fourier Transform, combined with a single summation
algorithm, have resolved the major problems of the previous

investigation by Buchhave (1979).

Probably the greatest disappointment of the project was the inability of
the RRSAA to achieve a range of 3 decades or more, The reason for this

behavior is evident from the following analysis of Equation 2.2.8.
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Equation 2.2.8 shows that the unbiased power spectral density is
calculated by subtracting two numbers. In the high frequencies, slight
errors in eithexr, or both, of these relatively large numbers cause a
severe effect on the error in the difference between them. The problem
is best illustrated by Figure 7.1.1 which shows the unbiased power
spectral density calculated without subtracting the second term on the
right hand side of equation 2.2.8 (which will hereafter be referred to
as the "sampling noise".) The sampling noise in Figure 7.1.1 is
approximately 4 m?/s2/Hz (axes not 1abe1ed), which contributes a flat
level across the range of frequencies presented. When it is subtracted,
the power spectral density approaches zero. However, slight differences
in either of the terms on the right hand side of equation 2.2.8 can
cause large relative errors in the result. (Note also, that this
technique can yield realizations of power spectral density which are
negative, which is clearly physically impossible.) Various means were
attempted to reduce the error inherent in the small difference between

two large numbers. These will be briefly summarized below.

The sampling noise JF(u.dtd)' is itself random variable which converges to
its true mean value at the inverse square root of the number of samples
used to average it. Therefore, by increasing the block number, M and
the number of samples, N, it is.bossible to obtain a more accurate
estimate of the noise term. Unfortunately, increasing the block length
usually entails decreasing the number of blocks, since the product MN is
limited by data storage (see Section 5.4). When this is the case, there

is no net effect on the variability (Equation 2.5.5).
An attempt was made to improve the estimate of the sampling noise by

averaging it "outside" the spectral estimate (i.e.: removing it from

Equation 2.2.8). It was felt that this could effectively increase the
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block length used to calculate the sampling noise. However, since the
sampling noise for each block is correlated with the spectral estimate
for the block, removing the noise term and separately "total block

averaging" actually worsens the results.

An attempt was made to more accurately measure the sampling noise by
adjusting the signal processor, to parametrically alter the resolution
of the velocity relative to the residence time (see Section 3.5). The
result is illustrated in Figure 7.1.2. Obviously, this procedure lacked
effect. It was concluded that the only way to improve the accuracy in
measuring the noise term is to use both a longer block averaging time.

and a higher number of blocks.

Examination of the behavior of the unbiased power spectral density
estimate reveals that it is accurate for over two decades spanning
several hundred Hertz. . Increased accuracy can be achieved by using
longer total sample time with .longer block lengths and a higher data
rate. The encouraging aspects of the technique are that it is not
subject to velocity bias (as will be discussed below), is relatively
fast (due to the recursive relation used), and has user-friendly

features (see Section 4.1.)

The advantage of the direct transform is its speed: power spectral
density can be calculated at given frequencies without having to first
compute the autocorrelation curve. This makes the technique attractive
for applications where a dominant frequency ié present in the flow and
the user has a general idea of what the frequency is. For these

applications, the direct transform will probably be superior to the

Blackman-Tukey technique.
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It is clear that the RRSAA leads to a relatively large error in power
spectral density calculations at frequencies above about 200 Hertz.

Like any spectral algorithm, extremely large amounts of data are
required to obtain stable, accurate results at high frequencies. This
conclusion suggests that the following improvements could be implemented
to improve the technique of power spectral density estimation using the

direct transform.

The first recommendation is that the technique should be implemented
"on-line." Most of the time spent in data reduction was consumed by
computer I/O operations, which would be eliminated in an on-line mode.
Another factor which limited the amount of data used, was the large
amount of storage space required. This could also be eliminated by

performing data processing on-line and dispensing with the data.

For applications where the raw data must be saved, magnetic tape storage
is recommended. The number of data points used to calculate the power
spectral density using this technique should be on the order of several
hundred thousand for accurate results. As previously described, this

could most conveniently be accomplished by implementing the technique
on-line.

The measurements of power spectral density have high frequency
resolution, but vary widely at high frequency. This is the expected
increase in variability at the low spectral values due to the random
particle arrivals (Equation 2.5.5). Since th; power spectral density
fluctuates around zero, it is apparent that the results could be
improved by implementing a moving average, or constant percent bandwidth

filter. This type of filter averages many more realizations per decade

at high frequencies than at low frequencies. Although a decrease in
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spectral resolution is obtained with the use of such filters, since the
power spectral density rolls off smoothly, the resolution would only be
slightly reduced. Positive and negative values of power spectral
density at high frequencies "smooth out" upon application of a moving
average filter to produce stable, accurate readings. Digital filtering
was not performed on the data obtained in the course of this

investigation so as to maintain a clearer insight into the fundamental

effects being studied.

7.2 Comparison of the Behavior of the Biased and Unbiased Power Spectral

Density

The divergence of the biased and unbiased power spectral density for
increasing turbulence intensity indicates that bias in spectral
measurements of turbulent flows increases with the relative fluctuation
of velocity. This behavior is not surprising in light of the discussion
in Chapter 1; velocity bias is accentuated by large fluctuations in the
velocity since large fluctuations cause an increasingly weighted
correlation in the particle/velocity statistics. Increased turbulence
intensity is therefore associated with increased velocity bias. The
bias in spectral measurements confirmed in the course of this
investigation bears out this hypothesis. Velocity bias is less
distinguishable in flows with low relative fluctuation and therefore,
correcting for bias in such flows is less important.

Figure 7.2.1 illustrates the errors generated by velocity bias in
turbulent flows. In this figure, the integrated biased power spectral
density is normalized by the integrated unbiased power spectral density
to calculate the relative error. Note the general parabolic behavior

and the increase in error with turbulence intensity.
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7.3 Comparison With Previous Results

It was noted in the Introduction, that this work was an outgrowth of the
investigation by Buchhave (1979). It is relevant, therefore, to comment
on the results of the previous investigation in comparison with the

pPresent one.

The results presented by Buchhave (1979) of power spectral density using
the unbiased estimator are illustrated in Figure 7.3.1. There is
evidence of periodicity, or oscillations in the high frequencies. This
is believed to have been caused by an insufficient block length, as will

be discussed.

The effect of short block length can be explained in conjunction with
the discussion on data windows in Section 2.6, where it was demonstrated
that the effect of multiplying the velocity time history, u(t), by the
data window, d(t), in the time domain, is equivalent to convolving the
Fourier transform of d(t) by the Fourier transform of u(t) in the

frequency domain.

Assuming the data window to be a boxcar function, h(t) of length, T
(wvhich is the block length). The Fourier transform of the box-car

function, h(t) is the "sinc" function.

H(f)=f h(t)e’*"''dt 7.3.1
=Tsinc2nr ft - 7.3.2
sincx=812x 7.3.3

The function H(f) has a main lobe of height T and width 1/T. As T-e

the spectral window has the characteristics of a delta function. For
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finite T, the spectral window has finite width and side lobes. Since
the calculation of a. (/) involves convolving the actual spectrum with
the function H(f), oscillations are produced by the side lobes sampling

the true spectrum.

Although Buchhave (1979) used a Hanning window rather than a boxcar
window, the effects of insufficient block length are the same: short
blocks create strong side lobes which sample the true spectrum upon
convolution to produce oscillations in the spectral estimate. It is
concluded that this effect has produced the results presented in Figure
7.3.1. Therefore, block lengths used in this investigation were always

much larger (721s) than those used in the previous investigation.

It has been argued that the algorithm used by Buchhave was too slow and
made it necessary to use blocks of insufficient length. These, in turn,
caused oscillations in the power spectral density due to the window
effect described above. The results obtained in the current
investigation do not show these oscillations and therefore support this
explanation of Buchhave'’'s results. Most importantly, they confirm that

the anomolies in his results were due to the method, and were not

intrinsic in the bias-free approach.

The implementation of a spectral estimate incorporating a single
summation (to replace the double sum used by Buchhave) and the Rapid
Recursive Fourier Transform have provided a bias-free spectral

estimation algorithm which is fast, flexible, and free from velocity

bias.
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Figure 7.1.1
Unbiased Power Spectral Density With Sampling Noise Included
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Figure 7.1.2
Comparison of Power Spectral Density Measured Using Different Clock

Speeds
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Figure 7.2.1

Relative Error of Integrated Biased Power Spectral Density
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Figure 7.3.1

Unbiased Power Spectral Density Measurements Reported By Buchhave (1979)
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Chapter 8: CONCLUSION

A data processing scheme for calculating the power spectral density of
the velocity measured by the laser Doppler anemometer has been developed
and tested. The algorithm is derived by interpreting the velocity
record as an analog signal and incorporating the residence times of the
randomly arriving particles into the spectral estimate. According to
hypothesis, this "unbiased" spectral estimator is free from the velocity
bias caused by correlation between fluid velocity and particle

statistics.

An experimental procedure was conducted to investigate the effect of
residence time weighting on power spectral density measurements of
turbulent flows using the laser Doppler anemometer operated under
conditions of low seeding density. The results reveal that the "biased"
spéctral estimate (which incorporates no provision for eliminating
velocity bias), the unbiased estimate, and an FFT estimate, using a hot
wire anemometer, all agree at low turbulence inténsity, but that the
biased estimate diverges from the other two at increasing levels of
turbulence intensity. The experiments have revealed that the effect of
velocity bias in power spectral density measurements can cause errors in
excess of 200% at turbulence intensities of 100%. Since the bias in
spectral measurements is related to this differenée, it is clear that
bias increases with turbulence intensity. In reference to the cause of
velocity bias, this divergent behavior confirms the hypothesis that
residence time weighting eliminates velocity bias from spectral

measurements of turbulent flows.
The Rapid Recursive Spectral Analysis Algorithm developed in the course

of this investigation has been shown to be fast, flexible, and free from

velocity bias. Furthermore, the problems associated with the previous
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investigation by Buchhave (1979), (insufficient record length and
inefficient data processing) have been successfully resolved. Consider-
ing the large variability of the measurements in the high frequencies,
and the large amounts of data necessary to produce stable, accurate
results, implementation of the algorithm as an "on-line" technique is

recommended.
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