
Abstract

In this master thesis an investigation of a buoyancy-driven boundary layer has
been done. This kind of flow is very hard to predict numerically, because of lim-
itations of the turbulence models used, which in turn is caused by the lack of of
accurate and detailed measurements. An experiment is proposed to provide new
data on the buoyancy-driven turbulent boundary layer, where particular attention
is given to the near-wall region. This experiment will both work as a validation
for numerical codes as well as shed new light on the physics behind the phenom-
ena. The experimental rig will be built up at the division of Thermo and Fluid
Dynamics at Chalmers University of Technology.

The first task of the project was to make a literature review of recent experi-
mental work and of the underlying theories for buoyancy-driven boundary layers.
The review of experimental work confirmed that the lack of detailed experimen-
tal data for turbulent natural convection flows at high Grashof numbers, and
that the proposed experimental methodology for simultaneous measurements of
velocity and temperature is appropriate. An investigation of the inlet flow into
the proposed experimental facility showed large deviations from the desired inlet
conditions of axisymmetric radial inflow. The recommendation was therefore to
redesign the inlet and improve the contraction in order to satisfy the requirement
on the inlet flow. The second task was to investigate the turbulent structures
in this flow. To do this, data from a direct numerical simulation (DNS) was
used. Two techniques were used for the investigation, the first to identify vortex
structures based on a modification of pressure minimum definition. The second
technique used was based on proper orthogonal decomposition (POD). A variant
called ”snapshot POD” was used here.

From the analysis of the coherent structures it was found that, so called horse-
shoe vortices exist in the flow. From the ”snapshot POD” it was found that the
first modes only contained about 7-9 % of the energy. This is low compared to
what has been reported for other flow cases. The most probable explanations are
that either too few samples were used, or that the cyclic boundary conditions in
the simulations affected the result. In the latter case, POD would transform to
Fourier decomposition, in which case many modes are necessary to comprise the
field.
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Nomenclature

Latin

A Matrix containing all bl [-]
A Element in the coefficient matrix [-]
bk Coefficient of POD mode k [-]
bl POD coefficient vector [-]
cp Specific heat at constant pressure [ J

kgK
]

C Correlation matrix [-]
D Depth of computational geometry [-]
f Function of [-]
F0 Kinematic wall heat flux [mK

s
]

g Gravitational force [m
s2 ]

H Height of computational geometry [-]
Hc Height of contraction [m]
H1 Height of contraction inlet [m]
H2 Height of contraction outlet [m]
k Thermal conductivity [ W

mK
]

L Streamwise length scale [m]
Lc Length of contraction [m]
m Number of velocity components [-]
n Spanwise spatial position [-]
N Total number of realizations [-]
o Streamwise spatial position [-]
p Fluctuating pressure [Pa]
P Mean pressure [Pa]
P? Mean static pressure minus hydrodynamic pressure [Pa]
qw Wall heat flux [ W

m2 ]
r Radial coordinate [m]
rc Radial coordinate for contraction [m]
rm Matching point for contraction [m]

R Two-point correlation function [m2

s2 ]
S Strain rate tensor [1

s
]

t Time [s]
T Stress tensor [1

s
]
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viii

u? =
√

τw

ρ
Friction velocity [m

s
]

v Velocity vector [m
s
]

V Volume [m3]
vr Radial fluctuating velocity [m

s
]

vx Streamwise fluctuating velocity [m
s
]

vy Cross-stream fluctuating velocity [m
s
]

vz Spanwise fluctuating velocity [m
s
]

Vr Mean radial velocity [m
s
]

Vx Mean streamwise velocity [m
s
]

Vy Mean cross-stream velocity [m
s
]

Vz Mean spanwise velocity [m
s
]

W Width of computational geometry [-]
x Space vector [m]
x Streamwise coordinate [m]
y Spanwise coordinate [m]

Greek symbols

α Thermal diffusivity [m2

s
]

β =

[
−1

ρ

(
∂ρ̃

∂Θ̃

)
p=contant

]

∞

Thermal expansion coefficient [ 1
K

]

δ Outer cross-stream length scale [m]
δij Kronecker delta [-]
∆P Pressure difference [Pa]
η Inner cross-stream length scale [m]
ηt Inner thermal cross-stream length scale [m]
θ Azimuthal coordinate [rad]
θ Fluctuating temperature [K]
Θ Mean temperature [K]
λ Eigenvalue [-]
µ Dynamic viscosity [Ns

m2 ]

ν Kinematic viscosity [m2

s
]

ρ Mean density [ kg
m3 ]

ρ′ Fluctuating density [ kg
m3 ]

τw Wall shear stress [ N
m2 ]

φ Deterministic vector field [-]
Φ Basis modes [-]
Φ Dissipation function [ N

m2s
]

Ψ Vector of basis modes [-]
Ω Region in space [-]
Ω Rotation tensor [1

s
]



ix

Non-dimensional parameters

Gr = gβ(Θw−Θ)L3

ν2 The Grashof number
H = Gr × Nu × Pr2 The ”H-number”
Nu = hL

k
The Nusselt number

Pe = Re×Pr The Peclet number
Pr = ν

α
The Prandtl number

Ra = Pr×Gr The Rayleigh number
Re = V L

ν
The Reynolds number

Overlines

− Averaged quantities
˜ Instantaneous quantities
̂ Discrete quantities

Subscripts

i,j,k Indices for tensor notation
k,l Indices of realization number
Si Scaling functions for inner variables
So Scaling functions for outer variables
w Evaluated at the wall
x Based on a vertical length scale
∞ Evaluated at infinite distance from the wall

Superscripts

∗ Complex conjugate
’ Another position
T Transpose

Relation symbols

∼ ”on the order of magnitude of”
≡ ”defined as” (equivalent to)
∼= ”approximately equal to”
∝ ”proportional to”
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Abbreviations

DNS Direct Numerical Simulation
HWA Hot-Wire Anemometry
HVAC Heat, Ventilation and Air Condition
LDA Laser Doppler Anemometry
LES Large Eddy Simulation
PIV Particle Image Velocimetry
POD Proper Orthogonal Decomposition
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Chapter 1

Introduction

1.1 Background

Buoyancy-driven flows are important in many areas of application. They represent
a fundamental problem in heat transfer research and occurs in many engineering
situations. Examples of engineering applications where buoyancy-driven flows are
present and play an important role are cooling of nuclear power plants, cooling of
electronic devices, home heating and copper refining. They are also an important
feature in the atmosphere, e.g. in the process of cloud formation and creation of
tornados.

Buoyancy-driven flows appear when there is a density gradient. This density
gradient is normally caused by chemical reactions or temperature differences.
Buoyancy-driven flows can be either pure natural convection or some combina-
tion with forced convection, usually called mixed convection. The present work is
restricted to buoyancy-driven boundary layer flows. Studies of buoyancy-driven
boundary layers have been theoretical, experimental and numerical based on com-
puter simulations. The investigations many times show different results. In chap-
ter 2 a literature review is presented and it will be demonstrated that the inves-
tigations show different results.

The division of Thermo and Fluid Dynamics, Chalmers University of Technology
has an on-going project that focus on Large Eddy Simulation (LES) of buoyancy
affected flows. The proposed experimental set-up will work as a validation for
these LES computations. The proposed experimental set-up is a modification of
the one described in Persson and Karlsson (1996). More specifications, including
a schematic picture, for the experimental set-up can be found in appendix B.

1



2 CHAPTER 1. INTRODUCTION

1.2 Objectives and methods

The purpose of the present work was to perform basic measurements of the flow for
the proposed experimental set-up. Initial measurements of the inlet flows showed,
however, a velocity variation around the perimeter of about ±10%. Such a large
variation was considered unacceptable (the axisymmetry condition was not sat-
isfied) and the inlet section had to be redesigned. Measurement of the velocity
for the initial contraction, together with drawing of a modified version of a new
contraction, can be found in appendix C. The redesign and manufacturing of the
new inlet section was time consuming and made further measurement impossible
within the time frame of this master thesis. The focus of the work was therefore
shifted towards an general investigation of this kind of flows, as a preparation for
a future experiment. The first task was to perform a literature review of pre-
vious investigations. The second task was to investigate the turbulent structure
of buoyancy-driven flows using Direct Numerical Simulation (DNS). Computer
based visualization and a decomposition technique called Proper Orthogonal De-
composition, POD, have been chosen as tools for this part.



Chapter 2

Literature review

Buoyancy-driven boundary layers have been investigated for many years with
varying degrees of success. In the beginning the focus was to perform single point
measurements using thermal anemometry to measure velocity and temperature
separately. The problem with thermal anemometry is that velocity measurements
can not be made very accurately in flows with varying temperature. With the
development of laser based methods that are capable of measuring velocity more
accurately, independent of temperature variations, more reliable data was ob-
tained. The rapid increase of computer capacity for the last decades has lead to
that much work is spent on numerical simulations. This has in some ways shifted
the focus from basic research to more applied studies.

In this chapter a review is presented of previous work most related to this study
is presented. For more detailed reviews on buoyancy dominated flows, see Wos-
nik (1994). The chapter is divided into one section about previous experiments
and another section about previous theoretical and numerical investigations. The
conclusion of the review is that there is a great need to conduct new, refined
experiments because of the discrepancies found in the previous investigations.

2.1 Previous experimental investigations

Cheesewright (1968) used used hot-wire anemometry (HWA) and resistance wires
for measurements of velocities and temperatures of a turbulent natural convection
along a heated vertical flat plate. This was considered to be the best experiment
until Hoogendorn and Euser (1978) found that the energy balance was not sat-
isfied in Cheesewrights experiment. Hoogendorn and Euser used hot-wires and
thermo-couples for the velocity and temperature measurements, respectively. The
problem when using HWA in turbulent natural convection flows is that the ex-
pected velocities in these flows are less than 1 m/s and that the HWA is sensitive
to velocity and temperature simultaneously, which makes it difficult to separate
velocity fluctuations from temperature fluctuations. For such small velocities is

3



4 CHAPTER 2. LITERATURE REVIEW

the HWA very difficult to calibrate and the accuracy of measured results is poor.

Hoogendorn and Euser used a special low velocity anemometer for velocities below
0.3 m/s. Ierokipiotis (1983) used laser doppler anemometry (LDA) to measure
the velocity. The main advantage of LDA compared to HWA in this case is that it
gives accurate measurements for low velocities and it does not affect the flow, since
it is a non-intrusive technique. Another challenge in this flow is to perform simul-
taneous measurements of velocity and temperature with high spatial resolution
so both quantities can be considered to be measured in the same point. This is
needed to obtain the physically and theoretically important velocity-temperature
correlations. Miyamoto et al. (1982) used LDA and thermo-couples, while Tsuji
and Nagano (1988a, b) used a combination of V-shaped hot-wires and resistance
wires for this purpose. Tsuji et al. (1991) extended previous work to higher
Grashof number. The Grashof number is a fundamental parameter that governs
buoyancy-driven flows. More about it is given in chapter 3. They found that the
Reynolds’s stress, vxvy, was positive all the way to the wall. On the other hand,
Kato et al. (1993) found a region of negative vxvy using LDA for the velocity
measurements. Persson and Karlsson (1996) also found a region of negative vxvy

close to the wall, but they used a vertical cylinder instead of a vertical flat plate.
They used LDA for the velocity measurements and a cold wire as resistance ther-
mometer for the temperature measurements. There are uncertainties in to what
extent the resistance wire affected the velocity measurement. Recent work on
measurement technique for simultaneous measurements of velocity and tempera-
ture, of relevance for the present work, is reported by Heist and Castro (1998),
Pietri et al. (2001) and Tagawa et al. (2001). In particular, Heist and Castro
(1998) show that a larger physical distance between LDA measuring volume and
thermometer is needed than that used by Persson and Karlsson(1996). Despite
some uncertainty in the result, the measurements of Tsuji and Nagano are the
ones often used to validate numerical simulations.

2.2 Theoretical and numerical investigation

The theoretical paper that is mostly cited is the paper by George and Capp (1979).
They based their theory on similarity analysis for infinite Grashof numbers. Wos-
nik and George (1994) extended that theory to treat finite Grashof numbers.
Versteegh and Nieuwstadt (1998) used direct numerical simulation to investigate
the natural convection between two vertical, differentially heated walls and quite
low Grashof number. Their results were not in agreement with the asymptotic
solution of George and Capp. This could have been anticipated given the low
Grashof number. In particular, the important ratio of outer to inner length scales
need to be at least 1000 for an asymptotic theory to be applicable. For the DNS it
was lower than 100. Today, because of the increase in computer performance and
that shorter time for product development is demanded, much work for these kind
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of flows is spent on computational fluid dynamics (CFD). Examples are Camargo
et al. (1996), Barhaghi et al. (2002) and Davidson et al. (2003). Computa-
tions often rely on theoretical and experimental investigations. Because of the
uncertainties mentioned in the previous section, the computations do not predict
accurate results, especially close to walls. This is why it is important to conduct
new experiments of the turbulent natural convection boundary layer next to walls
with the improved experimental techniques that are now available.
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Chapter 3

Theory for buoyancy-driven

boundary layers

The aim of this chapter is to provide a theoretical background to buoyancy-driven
boundary layer flows next to a vertical surface, including the governing equations.
Most focus will be put on pure natural convection, but mixed convection will also
be treated. A discussion about heat transfer features will also be given. The
derivation of the governing equations follows Wosnik (1994). The approximations
that are made to achieve the equations are of interest and should be verified in
the proposed experiment.

3.1 Turbulent natural convection

Natural convection belongs to a class of flows that are called buoyancy-driven
flows. Natural convection flows are caused by the density variations, most fre-
quently related to temperature differences or chemical reactions, together with
the acceleration of gravity. In the proposed experiment an internal cylinder wall
is maintained at a constant temperature, which is higher than the surrounding
temperature. The fluid will start to move from the bottom and form a laminar
boundary layer. When the fluid is moving farther up along the wall the boundary
layer will evolve into a transition region and finally it will become turbulent and
ultimately, provided that the cylinder is long enough, fully turbulent.

The parameter that governs natural convection flow is the Grashof number defined
as

GrL ≡
gβ(Θw − Θ)L3

ν2
(3.1)

where g is the acceleration of gravity, ν is the kinematic viscosity, Θw − Θ is the
difference between the local temperature and that at the wall, β is the thermal
expansion coefficient and L is a length scale (often chosen as the vertical dis-
tance along the wall).The Grashof number can be interpreted as a ratio between

7
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y

g

Vx

x

Figure 3.1: A schematic picture of the turbulent natural convection boundary layer
next to a heated wall with the coordinate system shown.

buoyant forces and viscous forces and is based on a vertical length scale. Another
parameter of interest is the Rayleigh number, which is simply RaL = Pr×GrL. Pr
is the Prandtl number defined as ν/α. The transition from laminar to turbulent
flow occur around GrL ' 109. Critical values of GrL ranging from 3.5×108 to
1.5×1010 have been reported for air flows (Wosnik 1994). A schematic picture of
the natural convection along a vertical wall is shown in figure 3.1.

Turbulent flows often arise from laminar flows as the Reynolds number (or the
Grashof/Rayleigh number as in the case of natural convection) is increased. This
is because small disturbances to the flow are not damped out by the flow and
instead begin to grow by taking energy from the original laminar flow. One have
to notice that there are two critical Grashof numbers. The first is when the flow
becomes unstable at the first time and the second when the flow becomes fully
turbulent. There is no exact definition of turbulence but there are some general
characteristics of turbulent flows (Tennekes and Lumley (1972)).

• Turbulent flows are irregular and have a three-dimensional spatial character.

• Turbulent flows are very dissipative, which means that the kinetic energy
is transferred from large scales to small scales and then finally transformed
into internal energy.

• Turbulent flows are diffusive which give rise to an increase in mass, momen-
tum and heat transfer.

• Turbulence occurs at high Reynolds numbers or as in the case with turbulent
natural convection, high Grashof/Rayleigh numbers.



3.2. GOVERNING EQUATIONS 9

V(t) 

t 

Figure 3.2: A turbulent velocity signal as function of time. The straight line is
the average value.

• Turbulence is a continuum, which means that the smallest turbulent scales
are much larger than the molecular size.

• Turbulence is not a feature of the fluid but of the fluid flow.

In figure 3.2 is a turbulent velocity signal shown as function of time. The straight
line showing the average value.

3.2 Governing equations

Below are the instantaneous governing equations (continuity, momentum and en-
ergy) given in Cartesian tensor notation.

Equation of continuity

∂ρ̃

∂t
+

∂ρ̃Ṽi

∂xi

= 0 (3.2)

Equation of momentum

ρ̃

[
∂Ṽi

∂t
+ Ṽj

∂Ṽj

∂xj

]
= −

∂P̃

∂xi

+
∂T̃ij

∂xj

+ ρ̃gi (3.3)

Equation of energy

ρ̃cp

[
Ṽj

∂Θ̃

∂xj

+
∂Θ̃

∂t

]
− βΘ̃

[
∂p̃

∂t
+
˜

Vj
∂p̃

∂xj

]
=

∂

∂xj

(
k

∂Θ̃

∂xj

)
+ Φ (3.4)
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where

T̃ij = 2µ

[
S̃ij −

1

3
S̃kkδij

]
(3.5)

S̃ij =
1

2

[
∂Ṽi

∂xj

+
∂Ṽj

∂xi

]
(3.6)

β ≡

[
−

1

ρ̃

(
∂ρ̃

∂Θ̃

)

p=contant

]

∞

(3.7)

and Φ is the dissipation function, δij is the Kronecker delta and β is the volumet-
ric coefficient of thermal expansion.

To make it easier to handle, e.g. using statistically analysis, the instantaneous
quantities can be divided into two parts, a mean and a fluctuating part. This
decomposition is called Reynolds decomposition (Panton 1996). Reynolds decom-
position is performed on pressure, density, temperature and velocities as shown
below:

P̃ = P + p

ρ̃ = ρ + ρ

Θ̃ = Θ + θ

Ṽi = Vi + vi

where a capital letter means mean quantities and a lower case letter means fluctu-
ating quantities, except for density where mean density is denoted by an overbar.
The above quantities are dependent on both time and position. The mean quan-
tities are ensemble averages and, for example in case of Vi, defined as

Vi(x, y, z, t) ≡ lim
N→∞

1

N

N∑

n=1

Ṽi

(n)
(x, y, z, t) (3.8)

’N’ is the total number of independent experiments. The other average quantities
are defined in similar ways. It should be noted that an ensemble average is im-
possible to achieve during laboratory work. The governing equations 3.2-3.4 can
be simplified. If the flow is assumed to be statistically stationary in time, these
ensemble averages can be replaced by time averages.

Further, the dissipation function can normally be neglected. This can be done
because the expected velocities are small and the temperature differences are not.
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These equations can be even more simplified if assuming that the flow can be
treated as incompressible. Flows that have large length scales, e.g. natural con-
vection flow phenomena in the atmosphere, can not be treated as incompressible.
For the experiment in this project, with a moderate length scale, it is a suitable
assumption that the pressure can be treated as incompressible (Wosnik 1994).
Using above assumptions, the equations 3.2-3.4 become:

Equation of continuity

∂Ṽi

∂xi

= 0 (3.9)

Equation of momentum

ρ̃Ṽj
∂Ṽi

∂xj

= −
∂p̃

∂xi

+
∂

∂xj

(
µ

∂Ṽi

∂xj

)
+ giρ̃ (3.10)

Equation of energy

ρ̃cpṼj
∂Θ̃

∂xj

=
∂

∂xj

(
k

∂Θ̃

∂xj

)
(3.11)

To account for temperature dependence of density the gradient of the hydrostatic
pressure distribution can be written as:

(
∂P̃

∂xi

)

y→∞

=
∂P∞

∂xi

= ρ∞gi (3.12)

P∞ is the hydrostatic pressure at infinite distance from the wall. If assuming
that the density can be treated as constant everywhere except where it appears
in the body force, the Boussinesq assumption (Incropera 1995), the equation of
momentum becomes

Ṽj
∂Ṽi

∂xj

= −
1

ρ∞

∂(P? + p)

∂xi

+
∂

∂xj

(
µ

∂Ṽi

∂xj

)
+ gi

ρ̃ − ρ∞

ρ∞

(3.13)

where P? is the mean static pressure minus the hydrostatic pressure. The fluc-
tuating pressure can be expanding in a Taylor series to relate the density to
temperature. If neglecting higher order terms, the linearization becomes

ρ̃ − ρ∞ ≈ −ρ∞β(Θ̃ − Θ∞) (3.14)

where the volumetric coefficient of thermal expansion, eguation 3.7, has been used
again. If applying this linearization and averaging it will lead to the following set
of equations.
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Equation of continuity

∂Vi

∂xi

= 0 (3.15)

Equation of momentum

Vj
∂Vi

∂xj

= −
1

ρ∞

∂P?

∂xi

+
∂

∂xj

(
ν

∂Vi

∂xj

− vivj

)
− giβ(Θ − Θ∞)δi1 (3.16)

Equation of energy

Vj
∂Θ

∂xj

=
∂

∂xj

(
α

∂Θ

∂xj

− vjθ

)
(3.17)

Note that the operations of averaging and differentiation commute. The lin-
earization is not a good approximation for large temperature differences, but for
moderate differences it is a suitable approximation.

3.3 The Reynolds’ stress equation

An equation for the fluctuating velocities can be obtained by subtracting the
momentum equation for the mean motion from the equation for the instantaneous
motion.

Vj
∂vi

∂xj

= −
1

ρ

∂p

∂xi

+
∂

∂xj

(2νsij) −

(
vj

∂vi

∂xj

− vj
∂vi

∂xj

)
− vj

∂Vi

∂xj

+ gβθδi1 (3.18)

Multiplying this equation by vk and averaging leads to

Vjvk
∂vi

∂xj

= −
1

ρ
vk

∂p

∂xi

+ vk
∂

∂xj

(2νsij) − vkvj
∂vi

∂xj

− vkvj
∂Vi

∂xj

+ gβθδi1 (3.19)

Rewriting this equation with reversed indexes i and k, adding both equations and
rearranging leads to an equation for vkvi

Vj
∂vkvi

∂xj

=
∂

∂xj

[
1

ρ
(vipδkj + vkpδij) − vivkvj + 2ν(vksij + viskj)

]

+
p

ρ

(
∂vi

∂xk

+
∂vk

∂xi

)
−

(
vivj

∂Vk

∂xj

+ vkvj
∂Vi

∂xj

)

− 4νsijskj + gβ(vkθδi1 + viθδk1) (3.20)

This is the Reynolds’ stress equation. If the free indices i and k are contracted it
will give the equation for the turbulent kinetic energy.

Vj

∂(1
2
vivi)

∂xj

=
∂

∂xj

[
1

ρ
vjp + 2ν(visij) −

1

2
vivivj

]

− 2ν(sijsij) − vivjSij + gβviθδi1 (3.21)
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On the left-hand side is the convection of turbulent kinetic energy. The first three
terms on the right-hand side are transport terms due to pressure-gradient work,
viscous stresses and by velocity fluctuations, respectively. The fourth term is the
viscous dissipation of turbulent kinetic energy. The fifth term is the turbulence
production and the sixth term is the buoyant production.

In a similar way, an equation governing the transport of mean square temper-
ature fluctuations can be derived. Subtracting the mean energy equation from
the instantaneous equation, multiplying with the fluctuating temperature θ and
averaging leads to

Vj
∂

∂xj

(
1

2
θ2

)
=

∂

∂xj

[
−

1

2
vjθ2 + α

∂

∂xj

(
θ2
)]

− vjθ
∂Θ

∂xj

− α
∂θ

∂xj

∂θ

∂xj

(3.22)

3.4 Three parts of the boundary layer

The turbulent natural convection boundary layer next to a heated vertical wall can
be divided into two regions, an inner and an outer region, according to George and
Capp (1979) and Wosnik and George (1994). The inner layer can be divided into
two parts, the buoyant sublayer and the conductive and thermo-viscous sublayer.
A schematic picture of the boundary layer can be found in figure 3.3. In this sec-
tion are the equations for the different sub-layers provided. The assumptions are
that the flow is homogenous in the spanwise direction and that the average veloc-
ity in that direction is zero. Because of the cylindrical geometry for the proposed
experimental set-up, the governing equations are given in cylindrical coordinates
in appendix A. The x-direction is directed opposite to the gravitational force and
the y-direction is the direction directed out from the the heated wall, as shown in
figure 3.1.

Equation of continuity

∂Vx

∂x
+

∂Vy

∂y
= 0 (3.23)

Equation of momentum in cross stream direction

ρ

(
Vy

∂Vy

∂y
+ Vx

∂Vy

∂y

)
= µ

[
∂2Vy

∂y2
+

∂2Vy

∂x2

]
−

∂P?

∂y
+

∂(−v2
y)

∂y
+

∂(−vyvx)

∂x
(3.24)

Equation of momentum in vertical direction

ρ

(
Vy

∂Vx

∂y
+ Vx

∂Vx

∂x

)
= µ

[
∂2Vx

∂y2
+

∂2Vx

∂x2

]
−

∂P?

∂x
+ρgx(Θ−Θ∞)+

∂(−v2
x)

∂x
+

∂(−vyvx)

∂y

(3.25)
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A B C

Figure 3.3: The three parts of the turbulent natural convection boundary layer. A:
The thermo-viscous and conductive sublayer. B: The buoyant sublayer. C: The
outer region.

Equation of momentum in spanwise direction

0 =
∂(−vxvz)

∂x
+

∂(−vyvz)

∂y
(3.26)

Equation of energy

ρcp

[
Vy

∂Θ

∂y
+ Vx

∂Θ

∂x

]
= k

∂2Θ

∂y2
+ k

∂2Θ

∂x2
+

∂(−vyθ)

∂y
+

∂(−vxθ)

∂y
(3.27)

3.4.1 The outer region of the boundary layer

Further, the boundary layer approximation that ∂/∂x ∼ 1/L � ∂/∂y ∼ 1/δ,
where L is a streamwise and δ is a cross stream length scale, is applied and an
order of magnitude analysis is performed (Tennekes and Lumley 1972). The mean
velocities and temperature are scaled with VSo and ΘSo and the fluctuating veloc-
ities and temperature with vSo and θSo. When doing the above steps the following
set of equations are achieved

Equation of continuity

∂Vx

∂x
+

∂Vy

∂y
= 0 (3.28)
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Equation of momentum in vertical direction

Vx
∂Vx

∂x
+ Vy

∂Vx

∂y
' −

∂(vxvy)

∂y
+ gβ(Θ − Θ∞) (3.29)

Equation of energy

Vx
∂Θ

∂x
+ Vy

∂Θ

∂y
' −

∂(θvy)

∂y
(3.30)

with the following boundary conditions as y → ∞

Vx = 0 (3.31)

Θ = Θ∞ (3.32)

−vyvx = 0 (3.33)

−vyθ = 0 (3.34)

The y-momentum equation has been used to eliminate the pressure term in the
x-momentum equation. No viscous and conduction terms remain in the reduced
equations 3.28-3.30. This imply that these equations are not valid close to the
wall. A thing that is important to mention is that equations 3.29 and 3.30 are
only exactly true at infinite Reynolds and Peclet numbers (Wosnik and George
(1994)). At finite value residual effects of the neglected terms remain.

-vyvx, -vxvz and -vyvz are the turbulent stresses and -vyθ and -vxθ are the tur-
bulent heat fluxes. These terms are the reason why turbulent flows are difficult.
With these non-linear fluctuating terms there are more unknown variables than
equations. This is referred to the turbulence closure problem. The turbulent stress
and heat flux terms often have to be modelled when performing numerical com-
putations.

3.4.2 The thermo-viscous and conductive sublayer

The region closest to the wall is called the near wall region. It can be divided into
two parts, the buoyant sublayer and the thermo-viscous and conductive sublayer.
In the thermo-viscous and conductive sublayer, the sublayer closest the wall, are
viscous forces important in the momentum equations and conduction is important
in the energy equation. The momentum equations and the energy equation must
then have at least one viscous and one conduction term, respectively. In order
to get this the governing equations must be rescaled with inner length scales,
η ∼ ν/VSi and ηt ∼ α/VSi, which have to be sufficiently small relative to δ, i.e
the Reynolds and Peclet numbers based on these inner length scales should be of
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order unity. VSi and ΘSi are the scaling quantities for the mean temperature and
velocities in inner variables. For scaling of fluctuating temperature and velocities
are θSi and vSi used. The continuity equation is the same as in equation 3.28 and
the momentum equation and the energy equation becomes then

Equation of momentum in vertical direction

0 '
∂

∂y

(
ν
∂Vx

∂y
− vxvy

)
+ gβ(Θ − Θ∞) (3.35)

Equation of energy

0 '
∂

∂y

(
α

∂Θ

∂y
− vyθ

)
(3.36)

with the following boundary conditions at y = 0

Vx = 0 (3.37)

Θ = Θw (3.38)

−vxvy = 0 (3.39)

−vyθ = 0 (3.40)

Equations 3.35 and 3.36 can be integrated with respect to y. The integrated
x-momentum equation becomes

ν
∂Vx

∂y
− vxvy +

∫ y′

0

gβ(Θ − Θ∞)dy′ ∼= ν

(
∂Vx

∂y

)

y=0

≡
τw

ρ
≡ u2

? (3.41)

where τw is the wall shear stress and u? is the friction velocity. The inner layer
can not be a constant stress layer because of the presence of the integral of the
buoyancy force term, except probably at infinite Grashof number. Whether the
buoyancy term remain in this limit is not clear. George and Capp (1979) and
Wosnik and George (1994) assume it does. Recently however, there are theoretical
arguments that it does not (George 2003). An issue is whether gβ must be included
as a scaling parameter in the inner region or not. The integrated energy equation
becomes

α
∂Θ

∂y
− vyθ ∼= α

(
∂Θ

∂y

)

y=0

≡ −
qw

ρcp

≡ −F0 (3.42)

where qw is the wall heat flux, α is the thermal diffusivity and F0 is the kinematic
wall heat heat flux. From equation 3.42 the heat flux can be concluded to be
constant across the inner layer and that it is independent of the radial distance.
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3.4.3 The buoyant sublayer

There is a flow region at the outside of the the inner layer where viscous and
conduction terms are losing their importance. This region can also be seen as the
inside of the outer flow region. This region is called the buoyant sublayer. For this
region the only terms in the reduced equations that remain are the ones that are
common for both the outer and the inner flow regions. The continuity equation
is the same as 3.28 and the x-momentum equation and energy equation becomes

Equation of momentum in vertical direction

0 ' −
∂(vxvy)

∂y
+ gβ(Θ − Θ∞) (3.43)

Equation of energy

0 ' −
∂(vyθ)

∂y
(3.44)

From equation 3.43 and 3.44 it is clear that the Reynolds’ stress is continuously
modified by the buoyancy term and that the heat flux in this region is almost
constant. As noted above for the viscous sublayer, whether buoyancy should be
included here is also an issue (George 2003).

3.5 Heat transfer

Heat transfer is one of the most important things in industrial fluid mechanics.
Problems involving both minimizing heat transfer, include heat losses from pipes,
and maximizing heat transfer and cooling of electronic components. Heat trans-
fer can be divided into thermal radiation, conduction and convection. Thermal
radiation is energy emitted by matter that is at finite temperature, and conduc-
tion can be viewed as the transfer of energy from more energetic to less energetic
particles of a substance due to interactions between particles. As should have
been understood from previous discussions, the focus in this project is on con-
vective heat transfer. In convective heat transfer is energy transferred both by
random molecular motion (diffusion), and macroscopic motion of the fluid. Of-
ten the term advection is used for macroscopic fluid motion and convection for
cumulative transport. Contribution from diffusion dominates closer to the wall
but the macroscopic fluid motion becomes more important as the boundary layer
grows. As mentioned in sec. 3.1 the heat transfer rate increases when a flow
becomes turbulent compared to laminar flows. This means that if the problem is
to minimize the heat transfer one should avoid getting transition to turbulence.
If one wants to maximize the heat transfer one should instead promote turbulence.
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Heat transfer laws are commonly given in terms of a local Nusselt number (di-
mensionless heat transfer coefficient). For engineering situations it is often some
kind of average value of the heat transfer that is wanted. This gives a prediction
of the overall heat transfer. A scientist instead, is more interested in the local
heat transfer rate for investigation of flow structures. For a laminar boundary

layer, with constant wall temperature, the relation Nux ∝ Gr
1

4

x is found from
exact solutions of the boundary layer equations (Ostrach (1953)). The relation is
based on a vertical length scale. For a turbulent boundary layer there is no exact
solution and different suggestions for the relation is often found in the literature.
Engineers tries to improve their computational models by changing constants in
formulas so it suits their flow cases better. This works for engineering purpose
but it will not give a general solution and understanding of the problem. The
relation that is mostly accepted is the one from George and Capp (1979). They
matched the scalings for the temperature profiles for inner and outer regions and
achieved the following formula for constant wall temperature.

Nux = f(Pr)H
1

3

x (3.45)

where ’f’ is a function of the Prandtl number and Hx is referred to ”the H-number”
and Hx is defined as Grx × Nux × Pr2. The heat transfer is independent of the
vertical distance x. It has been shown by Wosnik (1994) and Wosnik and George
(1994) that this equation is only valid at infinite Reynolds number. In practice is
a Reynolds number of 103 − 104, based on the outer length scale, needed to reach
this infinite limit. This mean Grashof numbers about 108 − 1012 or larger. The
physical reason for this is that at finite Reynolds number occurs the dissipation
over the entire energy spectrum, due to the fact that the energy containing and
dissipation wave number are not separated. For finite numbers, which are the
cases for laboratory measurements and engineering problems, the heat transfer
retain its x-dependence. It is instead dependent on the boundary layer growth
and the local Reynolds number.

3.6 Mixed convection

Besides of pure buoyancy-driven flows there can also be buoyancy-driven flows that
are affected by a pressure gradient that is due to the free stream velocity. This is
said to occur when Gr/Re2 ≈ 1 and these flows are called mixed convection flows.
This means that both equations for natural convection and forced convection
must be used and makes it very hard to deal with theoretical. There are very
few theoretical papers dealing with mixed turbulent convection. The boundary
conditions will also be different. For example, the free stream velocity does not
equal zero at infinity, but instead equals the free stream speed. One can not
exclude the buoyancy terms, as for forced convection, and on the other hand can
they not be kept fully, as in case of natural convection. The DNS data used in
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the present study for analyzing buoyancy-driven boundary layer flows are from a
mixed convection case.
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Chapter 4

Coherent structures and POD

In this chapter will a discussion about coherent structures be given. Equations
for the proper orthogonal decomposition, POD, of a velocity field will also be
provided. The focus is put on a variant called ”snapshot POD”. The energy
distribution and reconstruction of velocity components will be shown.

4.1 Coherent structures

In the present work one of the tasks was to investigate the turbulent structures
in buoyancy-driven boundary layers. When investigating how the turbulence is
created and transferred, much of the work found in the literature was focused
on looking for different kind of vortex structures. These are frequently called
coherent structures. The problem with this concept is that there is no universal
definition of vortex or coherent structures, which makes the whole idea very vague.
For example Robinson (1991) defines a coherent motion as a three-dimensional
region of the flow over which at least one fundamental flow variable (velocity
component, density, temperature, etc.) exhibits significant correlation with it self
or with another variable over a range of space and/or time that is significantly
larger than the smallest local scales of the flow. From this definition one can more
or less say that a coherent structure is any by some arbitrary mean identifiable
structure in the flow. The main reasons for studying coherent structures are to

• aid predictive modeling of the statistics of turbulent flows.

• make it easier to control turbulence.

• try to understand the dynamical phenomena that occur in the flow.

Frequently, a pressure minimum is used as a detection criterion for a vortex core.
There are two things that makes this definition inconsistent. First, there can
be unsteady straining, which can create a pressure minimum without involving
a vortical motion or swirling motion. Second, viscous effects can eliminate the
pressure minimum in a flow with vortical motion. Jeong and Hussain (1995)

21
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proposed another method which removes the above effects. This method will be
used in the present study. The information on local pressure extrema is contained
in the Hessian of pressure (∂2

p

∂x2 ). A Hessian is a matrix of second partial derivatives
of a function, in this case pressure. An equation involving the Hessian of pressure
can be obtained by taking the gradient of the momentum equations which gives

∂a

∂x
= −

1

ρ

∂2p

∂x2
+ ν

∂3v

∂x3
(4.1)

where the left hand side is the acceleration gradient. Note that the Hessian of the
pressure is symmetric. The left hand side can be decomposed into symmetric and
antisymmetric parts as

∂a

∂x
=

[
DS

Dt
+ Ω · Ω + S · S

]

︸ ︷︷ ︸
symmetric

+

[
DΩ

Dt
+ Ω · S + S · Ω

]

︸ ︷︷ ︸
antisymmetric

(4.2)

The antisymmetric part is the vorticity equation, while the symmetric part is

−
1

ρ

∂2p

∂x2
=

DS

Dt
− ν

∂2S

∂x2
+ Ω · Ω + S · S (4.3)

where D
Dt

is the material derivative, S is the strain-rate tensor and Ω is rotation
tensor. The first term on the right hand side of equation 4.3 is the unsteady
straining and the second term contains the viscous effects. These two terms will
be omitted according to the above method by Jeong and Hussain (1995). Only
Ω · Ω + S · S will be considered for determination of a local pressure minimum.
The definition in this case for a vortex core is a connected region with two negative
eigenvalues of Ω · Ω + S · S. Since this expression is symmetric it has only real
eigenvalues. Another fact is that in a plane, the requirement for a local pres-
sure minimum are two positive eigenvalues of the Hessian of pressure (Jeong and
Hussain (1995)). From this is the definition for a vortex core that the second
eigenvalue should be negative. This is the definition that will be used in the
present study for visualization of turbulent structures.

4.2 Proper orthogonal decomposition

Above was a technique to visualize vortex structures given. Another way to
investigate the turbulent structures is to use a technique called Proper Orthogonal
Decomposition (POD). This was introduced into the fluid dynamic field by Lumley
(1967). From now on will (·) and (·′) mean (x, y, z, t) and (x′, y′, z′, t′), respectively.
The basic idea is as follows. Take a four dimensional, random, vector field v(·).
Seek a deterministic vector field φ(·) which has the maximum projection on the
random field, v(·), in a mean square sense. Another way to describe it is to find a
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deterministic field, φ(·), for which | γ |
2

=<| v, (·)φ(·) |2> is maximized. If v(·)
and φ is defined on a Hilbert space, then the inner product can be defined as

(v, (·)φ∗(·)) = γ =

∫ ∫ ∫

V

v(·)φ(·)∗d(·) (4.4)

asterisk means complex conjugate. If calculus of variation is applied, then the
right choice of φ(·) to maximize <| γ |2> is a solution to the integral equation

∫

Ω

R(·, ·′)φ(·′)d(·′) = λφ(·) (4.5)

where R(·, ·′) is the two-point correlation function defined as

R(·, ·′) ≡ v(·)vT (·′) (4.6)

Here, a variant of the POD technique, called ”snapshot POD”, will be used. The
original POD is more suitable for high temporal resolution and low spatial resolu-
tion, as in case of hot-wire measurements. The ”snapshot POD” is preferred when
one have high spatial resolution but low temporal resolution, like PIV measure-
ments (Pedersen 2003). In the case of DNS data one can choose which one to use
but, as will be seen later, the ”snapshot POD” is more computationally efficient.
The ”snapshot POD” was first derived by Sirovich (1987). When performing a
POD the data must be to be uncorrelated, in practice separation two times the
integral scale in times ensures this. If number of samples are large, the two-point
space-correlation tensor becomes approximately

R(·, ·′) =
1

N

N∑

l=1

vl(·)v
T
l (·′) (4.7)

where k and l are the realization number, i.e. different time steps. N is the total
number of realizations and T denotes transpose. Assume that the basis modes
can be written as

Φ(·) =
N∑

k=1

Ak(·)vk(·
′) (4.8)

then equations 4.7 and 4.8 together with equation 4.5 gives

∫

Ω

1

N

N∑

l=1

vl(·)v
T
l (·′)

N∑

k=1

Ak(·)vk(·
′)d(·′) = λ

N∑

k=1

Ak(·)vk(·) (4.9)

Equation 4.9 can be rewritten as

N∑

k=1

(
1

N

∫

Ω

vT
l (·′)vk(·

′)d(·′)

)
Ak(·) = λAl(·) (4.10)
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This can be written as an eigenvalue problem, which in matrix form can be ex-
pressed as

CA = λA (4.11)

A is now Ak,l and equation 4.11 is the same as equation 4.10, but for all l. When
solving the eigenvalue problem given by equation 4.11 the result is N orthogonal
eigenvectors and corresponding eigenvalues. The eigenvectors can be used to
obtain the basis modes in equation 4.8.

Φk(·) =

∑N
l=1 Ak,lvl(·)∥∥∥

∑N
l=1 Ak,lvl(·)

∥∥∥
(4.12)

Equation 4.12 has been normalized to obtain an orthonormal basis. The above
equations are for continous data, but in practice the data are discrete. The dis-
cretized eigenvalue problem 4.11 can be written as

ĈAk = λkAk (4.13)

where Ĉ is calculated as

Ĉ = vTv (4.14)

In the same way can the discretized eigenvalue problem for classical POD be
written as

R̂φk = λkφk (4.15)

where R̂ is calculated as

R̂ = vvT (4.16)

The size of matrix Ĉ is N × N while R̂ has size mno × mno. For the present
study, m is number of velocity components used and n and o are number of
points in the two dimensional spatial domain. From this can be seen that there
is a huge reduction in computational cost for ”snapshot POD” if one have high
spatial resolution but not high temporal resolution. For the DNS data used in
the present study, N is 126 and mno is about 30 000. The eigenvalue problem is
solved and the eigenvalues are ordered according to their size, largest first. The
eigenvectors from equation 4.13 can be used for constructing the POD modes
according to equation 4.12. The POD modes for the ”snapshot POD” becomes

φk =

∑N
l=1 Ak,l(·)vl(·)∥∥∥

∑N
l=1 Ak,l(·)vl(·)

∥∥∥
(4.17)

The original velocity field can be reconstructed by expanding it in series using the
POD basis. The original velocity field is projected onto the POD basis and thus
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are the expansion coefficients, POD coefficients, determined. The expansion for
the discrete case is

vl =
N∑

k=1

bk,lφk = Ψbn (4.18)

where Ψ = [φ1 · · ·φN ]

bl = φT
l ul (4.19)

One of the most important features of POD is that the eigenvalues are a measure
of the turbulent kinetic energy. The largest eigenvalue and corresponding basis
mode can be used to describe the most energetic structures of the velocity field.
The total turbulent kinetic energy is given by the sum of all eigenvalues.
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Chapter 5

The computational geometry

The data that will be used for analyzing the turbulent structures are from a direct
numerical simulation (DNS). It is important later, when drawing conclusions,
to know the conditions for the computation. For a detailed description of the
numerical part, see Davidson et al. (2003). The basic idea of DNS is to solve
the governing equations at sufficiently high temporal and spatial resolution that
everything in the flow can be considered as resolved and turbulence models are
not used. The problem with DNS is that it requires a large computer capacity
and today is it not possible to use DNS for complex flow cases and one is limited
to small time and space domains. The flow case under consideration here is fully
developed mixed convection in a vertical channel. The geometry can be found in
figure 5.1. One wall is hot, (Θ = 1), and the other wall is cold, (Θ = 0). The
dimensionless height (H) is 8π, the width (W) is 2 and the depth (D) is 2π. In x-
and z-directions are periodic boundary condition applied, i.e. what goes in must
also go out. The z-direction it not physical bounded, only in the computational
geometry, and that is why the dashed lines are used. Because this is a mixed
convection flow, both the Reynolds and Grashof numbers are important. The
Reynolds number Reτ = u?H/2

ν
= 150, where u? is the friction velocity (which

in this case equals unity). The Grashof number equals 7.68 × 106. These values
are low, which means that there is no scale separation between inner and outer
length scales. This imply that the asymptotic theory will not be valid for this
simulation.

27
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Figure 5.1: The computational geometry



Chapter 6

Results

6.1 Results from the visualization

The visualization was performed on the above DNS data for 114 time steps. The
second largest eigenvalues were calculated using a FORTRAN code. The visual-
ization was made in TECPLOT. Iso-surfaces for all negative second eigenvalues
are used in the analysis. The reason for performing this investigation of turbulent
structures is to investigate if this flow field contains vortex structures that takes
the form of a horseshoe, so called horseshoe vorticies. If this is the case, it is be-
lieved that the simulation has high enough Grashof/Reynolds number to capture
these structures. From figure 6.1 one can identify some horseshoe structures. In
the left figure is the horseshoe structure located closer to the hot wall than in the
right. The right figure is from a later time step than the left figure. The figures
are only part of the whole computational geometry.

6.2 Results from the POD analysis

The POD computations were made in MATLAB. The mean velocities were sub-
tracted from the instantaneous velocities to get the fluctuations. These fluctua-
tions were arranged in a vector instead of a matrix. All velocity components were
placed in the same vector, which makes the computation efficient. As mentioned
in chapter 4, POD gives an estimate of the energy distribution for different sizes of
the structure. In figure 6.2 is the energy distribution for the first 50 modes shown.
All three velocity components have been used in the left figure. One can se that
the largest structures contains less than 7 % of the total kinetic energy. This is a
very low value compared to results from other flow cases, for example Johansson
(2002). It should also be mentioned that it only affected the result slightly if one,
two or all three velocity components were used. In the left part of figure 6.2 is
only the streamwise fluctuating velocity component used. The first mode contains
in this case about 9 % of the total kinetic energy. Further, the energy decrease
with smaller and smaller structures, but not as rapidly as expected. As has been
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Horseshoe vortex

Horseshoe vortex

Figure 6.1: Visualization of vortex structures for part of the computational geom-
etry. Right figure is for a later time step than the left figure. In both figures can
horseshoe structures be identified

reported for other flow cases the POD analysis has shown that the most energy is
contained in only the first modes and the rest can be neglected (Johansson 2002).
This can not be done in this case. All modes seem to be important. This can
be seen when a reconstruction of the velocity field is made. In figure 6.3 is the
fluctuating streamwise velocity component for 3 and 50 modes for one time step
shown. They are both compared with the original velocity field. It is plotted
for a position in the middle of the geometry (x-direction) and across the whole
geometry. With only three modes the reconstruction is quite poor. The velocity
does not even have the same sign. When using 50 modes, the reconstruction is
more similar to the original velocity field. Their can be a couple of explanations
why these results appear. One possible explanation could be that 126 snapshots
are to few to give an accurate statistical independent analysis. This is a prob-
lem when using DNS data. One gets a huge amount of data and it takes long
time to calculate it. For example, these 126 snapshots took about 80 hours to
calculate and generated about 2 gigabyte of data. Another reason can be due to
the cyclic boundary conditions and the flow case it self. In Figure 6.4 are the
instantaneous velocity vectors (streamwise and cross-stream) for a certain time
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Figure 6.2: The energy distribution for the first 50 modes. Left: All fluctuating
velocity components used. Right: Only the streamwise component used.

step shown. From this figure it can be argued that the flow field in x-direction is
periodic which means that the ”snapshot POD” should not be used directly. It
seems that the periodic boundary conditions makes the solution not physically a
real solution. The velocities have to be Fourier transformed in these directions
before doing the POD analysis. This will make the POD computations much more
time consuming. A comparison was performed to see what happens to the POD
analysis if correlated data was used instead of the uncorrelated data. Number of
snapshots were about the same. From this was found that the first mode con-
tained about 27 % of the energy, see figure 6.5. This is a result that was expected
from the uncorrelated data also. This does not mean that correlated data should
be used for this kind of analysis. It probably only means that to few correlated
data were used, so the physical time was very short, and because of that nothing
significant happened with the flow during the analysis.
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Figure 6.3: Comparison between the original streamwise velocity fluctuations and
the reconstructed. In the left figure has three modes been used and in the right has
50 modes been used.
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Chapter 7

Concluding remarks

In this master thesis has an investigation been made on boundary layers caused by
buoyancy-driven flows. A literature review was performed and an analysis of the
turbulent structures in the flow was performed. It is obvious from the literature
that a new large-scale experiment is needed to verify the theories, especially at
large Grashof number. From the visualization it is found that this flow case has
so called horseshoe structures. From the POD analysis is it clear that more work
should be spend on that technique for this flow case. The energy distribution was
found to be different from other flow cases.

7.1 Future work

Besides assembling of the experimental facility and initial measurements it is sug-
gested that more attention is paid to the POD analysis of the flow case. This
should be done rather than analyzing coherent motions based on pressure mini-
mum criteria, because the pressure minimum criteria is very vague and there is
no universal definition. The following ideas should be tested to improve the POD
results.

• Make a Fourier transform in the seemingly periodic directions.

• Use larger amount of uncorrelated samples in the analysis

A natural continuation of the POD analysis is to perform it on measurements as
well as on DNS data. This will give an answer to if the results are due to boundary
conditions or something else related to the computations, or if the difference in
energy is small between the different modes for this kind of flow.
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Appendix A

Boundary layer equations in

cylindrical coordinates

In this appendix is the governing equations for a turbulent natural convection
boundary layer given in cylindrical coordinates. It follows the same structure
as for the cartesian equations in chapter 2. It has been assumed that it is 2-
dimensional flow. The x-direction is directed opposite way of the gravitational
force and r-direction is the radial direction directed out from the the heated cylin-
der wall.

The outer region of the boundary layer

Equation of continuity

∂Vx

∂x
+

1

r

∂(rVr)

∂r
= 0 (A.1)

Equation of momentum in vertical direction

Vx
∂Vx

∂x
+ Vr

∂Vx

∂r
' −

1

r

∂(rvxvr)

∂r
+ gβ(Θ − Θ∞) (A.2)

Equation of energy

Vr
∂Θ

∂r
+ Vx

∂Θ

∂x
' −

∂(vxθ)

∂x
−

1

r

∂(θvrr)

∂r
(A.3)

with the following boundary conditions as r → ∞

Vx = 0 (A.4)

Θ = Θ∞ (A.5)

−vrvx = 0 (A.6)
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−vrθ = 0 (A.7)

The thermo-viscous and conductive sublayer

Equation of momentum in vertical direction

0 '
ν

r

∂

∂r

(
r
∂Vx

∂r

)
−

1

r

∂(rvxvr)

∂r
+ gβ(Θ − Θ∞) (A.8)

Equation of energy

0 '
∂

∂r

(
α

∂Θ

∂r

)
−

1

r

∂(θvrr)

∂r
(A.9)

with the following boundary conditions at r = 0

Vx = 0 (A.10)

Θ = Θw (A.11)

−v′

rv
′

x = 0 (A.12)

−vrθ = 0 (A.13)

The buoyant sublayer

Equation of momentum in vertical direction

0 ' −
ν

r

∂(rvxvr)

∂r
+ gβ(Θ − Θ∞) (A.14)

Equation of energy

0 ' −
1

r

∂(θvrr)

∂r
(A.15)



Appendix B

Specifications for the proposed

experimental facility

In this chapter are some details about the proposed experimental facility provided.
Some basic data is summarized in the table below.

Diameter of outer isolating shell 1.2 m
Diameter of the heated cylinder 0.15 m
Height of the heated cylinder 4.5 m
Max. temperature of cylinder 80◦C

Max. Grashof number* 4 × 1011

Working fluid Air
*According to equation 3.1 with Θw = 80◦C and Θ∞ = 20◦C, ν evaluated at the
film temperature and with height L=4m.

The proposed experimental facility (figure B.1) consists of a centrally positioned
heated vertical aluminium cylinder that is 4.5 m high and 0.15 m in diameter.
The aluminium cylinder is enclosed by a circular shell that is 1.2 m in diameter
and an inlet box at the bottom and an outlet box at the top. The reason that
the aluminium cylinder is enclosed by a shell is to minimize disturbances from the
surrounding and to control the flow. By controlling the temperature and the flow
rate of the air around the heated cylinder, the co-flow (a small flow at small height
due to mixed convection) can be adjusted to be zero at a certain height. This
mean that the thermal stratification can be controlled. The aluminium cylinder
is heated with water and the water flow is large so the cylinder can be considered
isothermal. Maximum temperature of the cylinder wall is about 80 degrees C,
which will give a Grashof number of about 4 × 1011 at height 4 m. The water is
heated inside a water tank, which contains about 1 m3, with electrical heaters.
The water tank is placed about 3 meters above the floor to increase the pressure
on the suction side of the pump in order to avoid cavitation.

The working fluid is chosen to be air. Air is more suitable than water because

43



44APPENDIX B. SPECIFICATIONS FOR THE PROPOSED EXPERIMENTAL FACILITY

120

150

1200

5
0
0
0

4
5
0
0

1
2
0

Hot water aluminium cylinder

Water tank

Isolating shell

Air inlet Air inlet

Hot water
circulation 
system

Air circulation 
system

Figure B.1: A schematic picture of the proposed experimental rig. The values are
in mm.

water has large refraction-index variations due to the variations in density which
makes optical methods impossible to use for accurate velocity measurements. It
is also easier to work with air than water, i.e. leakage. The air enters the system
from inlet pipes in the inlet box. The air flow circulates around the aluminium
cylinder and exits through an air collection hood at the top. The air from the
outlet passes through a HVAC (Heat, Ventilation and Air Condition) unit and is
cooled down. When the air has been cooled down it enters the inlets again. The
air should be uniformly distributed around the perimeter so that the inlet flow
becomes horizontal and directed radially inwards. This implies that the flow is to
be considered as axisymmetric and two-dimensional. This is of great importance
because this will specify well-known inlet and outlet boundary conditions, which
are one requirement for using the experiment for validation of turbulence models.
The outer shell has optical transparent windows to allow Laser based measure-
ment methods, such as LDA (Laser Doppler Anemometry) and PIV (Particle
Image Velocimetry), as well as flow visualizations.



Appendix C

Modification of the contraction

As mentioned in chapter 1, the inlet velocity was not sufficiently uniform around
the inlet perimeter to be considered axisymmetric. It is believed that this was due
to the design of the initial contraction, see figure C.1. Two cases were investigated
for the initial design of the contraction. The first measurement was 25 mm over
the bottom plate and 5 mm out from the inlet. The second measurement was
25 mm over the bottom plate and 98 mm out from a screen that was placed
before the inlet to damp out the velocity fluctuations. In figure C.2 is the radial
inlet mean velocity profile shown. These velocities were measured at 32 positions
around the inlet perimeter using a pitot-static tube and a sensitive, integrating
pressure transducer. In figure C.3 is the deviation from the mean velocity shown
for both cases. One can see that there is large deviation from the mean value
at many positions. As already pointed out was this the reason for redesigning
the contraction. It is hard draw any conclusion whether or not a screen make any
improvement in this case. At some positions is the deviation smaller with a screen
and at other it is larger.

Figure C.1: The initial contraction with three screens shown. The flow is coming
from right. The origin is placed in the center of the inlet section
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Figure C.2: The radial inlet mean ve-
locity profile for the initial contraction
with and without perforated plate.
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Figure C.3: The deviation from mean
velocity around the perimeter of the ini-
tial contraction.

The contraction was redesigned in order to improve the flow quality. The new
contraction is based on the contraction from Morel (1975 and 1977). Too reduce
the fluctuations the outlet height for the modified contraction has increased from
50 mm to 120 mm. In figure C.4 is a drawing of the modified contraction. The
modified inlet section has, because of that, increased in overall diameter to 3 300
mm (including inlet pipes). More screens has also been added in hope to improve
the flow quality. The shape of the contraction is calculated using the two formulas:

Hc = H1 −
H1 − H2(

rm

Lc

)2

r3
c

L3
c

(C.1)

for rc

Lc

≤ rm

Lc

.

Hc = H2 +
H1 − H2

1 −
(

rm

Lc

)2

(
1 −

rc

Lc

)3

. (C.2)

for rc

Lc

> rm

Lc

.

H1 0.24 m Inlet height
H2 0.06 m Outlet height
Lc 0.48 m Contraction length
rm 0.252 m Matching point
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Figure C.4: The modified contraction with three screens shown. The flow is coming
from right. The origin is placed in the center of the inlet section


